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Notation

- M: model points set

- S: scene points set

- mi: i-th model’s point

- si: i-th scene’s point

- RT : R transposed

- R−1: R inverse

- SO(3): Special Orthogonal Matrices Set,

SO(3) := {R ∈ R3×3 | RT R = I, det(R) = +1}

- ~v: vector

- < M >: model reference frame

- < S >k: scene reference frame at the step k

- < Li >: reference frame of the i-th lidar scan

- gsm: transformation from the model to the scene reference frame

- ak
sm: parameter’s vector at the time k of the transformation gsm

- Rsm: rotation matrix from the < M > to the < S > reference frame

- Tsm: translation vector from the < M > to the < S > reference frame

- xq
s : coordinate of the point q expressed with respect to < S >

- xq
m: coordinate of the point q expressed with respect to < M >

- ‖ · ‖: Euclidean Norm

- 〈·, ·〉: Inner Product
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Summary

With this thesis, a strategy for building reconstruction relying on LIDAR
data only is presented. It provides a comprehensive introduction into the
field of reconstrunction from LIDAR data, for both indoor and outdoor map-
ping. We describe and compare various already existing techniques and pro-
pose a largely improved algorithm based on Point Set Registration by using
a RANSAC-based ICP (ICPSAC) approach that makes it a robust and accu-
rate point set registration algorithm in presence of noise and large amount of
outliers.

Simulated and experimental results show that our algorithm achieves very
good performance in terms of both robustness and accuracy in a relatively
short time.
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Chapter 1

Introduction

1.1 Abstract

The measured data acquired by sampling the same scene at different time
instants and from different perspectives, is expressed in different coordinate
frames. Registration is the process of coherently expressing the different sets of
data into one coordinate system. Our algorithm must face a problem which has
not been satisfactorily solved yet: finding an accurate transformation between
two point sets (measurements obtained at different time instants) against quite
large rotation and translation, noise and strong outliers presence. We will
show how the algorithm is stable even in difficult work conditions. In fact it
can properly deal with occlusions (i.e., objects that partially appear in one
measurement) and it has been successfully tried with low-overlapping scenes.

1.2 Related Work

Registration of point sets is an important component in many computer vi-
sion problems such as motion tracking, face recognition, imaged guided surgery
and robot navigation. For these reasons, extensive studies on the point set reg-
istration and related problems can be found in a rich literature covering those
teoretical and practical issues.

A very common class of approaches is based on the Iterative Closest Point
(ICP) algorithm proposed by Besl and McKay [3]. This is a standard solution
to the alignment problem. Nonetheless, it has its own limitations, like the
local convergence problem which requires sufficient overlap between the data-
sets and a close inizialization. Also, a naive implementation of ICP is known
to be prone to outliers.

Therefore, since the introduction of ICP, many variants have been intro-

1



UCLA C.S. Dept Technical Report TR070005 April 2007

duced on the basic ICP concept, seeking to improve robustness, convergence
and precision affecting all phases of the algorithm from the selection and
matching of points to the minimization strategy.

For instance, Fitzgibbon [4] presents an attempt to directly, rather than
iteratively, minimize the registration error using a general-purpose nonlin-
ear optimization, that is the Levenberg-Marquardt algorithm. Chetverikov
et al. [5] propose a robustified extension based on the consistent use of the
Least Trimmed Squares approach in all phases of the operation, but needs the
overlap between the two point sets has to exceed 50%. However the major
drawback of these approaches is the necessity of a roughly preregistration be-
tween the two data sets or at least a good guess on the initial transformation
to guarantee the correct solution can be found. Yet, they are not robust to
large outliers amount.

Another interesting class of solutions involves methods that align two point
sets without establishing the explicit point correspondence, and thus achieve
a good robustness to the missing correspondences and outliers. The idea is
to model each of the two point sets by a kernel density function and then
quantify the similarity between them using a certain distance measure between
probability density functions, e.g. the Kullback-Leibler divergence.

For instance, Tsin and Kanade [1] propose a kernel correlation based point
set registration approach where the cost function is proportional to the corre-
lation of two kernel density estimates. Jian and Vemuri [2] instead resolve the
problem representing each of the point by a mixture of Gaussians and treating
the point set registration as a problem of aligning the two mixtures. Finally,
Myronenko et al. [20] propose a probabilistic method for non-rigid registration
which is treated as a Maximum Likelihood estimation problem with motion
coherence constraint over the velocity field.

The reason for the popularity of probabilistic techniques stems from the
fact that robot mapping is characterized by uncertainty and sensor noise, but
the problem is that they have an intrinsic computational inefficiency, i.e. they
are too slow for most realtime applications.

In this paper, we present a method that belongs to the firstly aforemen-
tioned class of approaches but with the main contributions that (i) it does not
need an initial estimate of the relative pose, (ii) it works in very bad conditions
(large amounts of noise and outliers), (iii) it has a very short convergence time
and (iv) it has low error probability even with the 80% of outliers.

The thesis is organized as follows. In the Chapter 2 we discuss the issues
involved in range image registration, including the definition of registration and
our lidar model description. In the following chapters, we discuss the methods
to achieve registration with respective results. We present the results obtained
with the ICP registration and RANSAC-based registration (Chapter 3), then
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we present our new proposed ICPSAC registration (Chapter 4) with some
simulated and experimental results, finally we conclude by showing simulated
results obtained by using some of the already existing approaches, the Coherent
Point Drift [20] (CPD) and Kernel Correlation [1] (KC) algorithms, on the
same data set utilized for testing ICPSAC (Chapter 5).
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Chapter 2

LIDAR Registration Algorithm

2.1 Problem Definition

We address the question of building reconstruction and pose estimation
combining LIDAR data only, obtained from several viewpoints, into a map
using global registration.

LIDAR is an acronym for LIght Detection And Ranging. The lidar instru-
ment is an optical remote sensing technology which transmits light out to a
target and which measures properties of scattered light to find range and/or
other information of a distant target. The transmitted light interacts with
and is changed by the target. Some of this light is reflected/scattered back to
the instrument where it is analysed. The change in the properties of the light
enables some property of the target to be determined as well. Range finder
lidars are the simplest lidars. They are used to measure the distance from the
lidar instrument to a solid or hard target. The prevalent method to determine
distance to an object or surface is to use laser pulses. Like the similar radar
technology, which uses radio waves instead of light, the range to an object is
determined by measuring the time delay between transmission of a pulse and
detection of the reflected signal.

The reason why we want to deal with this problem is that computational
efficiency is an important issue to take into account. In fact, the environment
is sensed on-the-fly, i.e. while the robot is moving, and the robot sensors are
subject to strict range limitations that make it necessary to navigate through
its environment while building a map. A complicating aspect of the robot
mapping problem arises from the high dimensionality of the entities that are
being mapped. In such case, then, sensors which give a wide angle represen-
tation at a high frequency, even if the data is sparse, are favoured over a high
resolution representation, which takes a longer acquisition time. Lasers sen-
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sors provide range images∗ consisting of a set of point-measurements. Usually,
such range images are acquired from several viepoints by moving the entire
setup through an environment and measuring with a 2D laser orthogonally
to the motion trajectory. For sensing the environment SICK LMS 291 laser
range finders are used on our robotic platform. With such a configuration the
question of determining the displacement of the setup arises. In the following
we focus on localization and map building.

Most of the work in mobile robotics regarding these topics is based on
two-dimensional data, where the robot is assumed to move on flat ground.
Research in mobile robotics is concerned with finding solutions to the prob-
lem of localization and map building which enable the robot to autonomously
localize itself and create a map. To create globally consistent maps it is neces-
sary for the robot to be continously localized while registering new data with
the map is building. This is known in the literature as Simultaneous Localiza-
tion and Mapping (SLAM) problem. This is because mapping includes both,
estimating the position of the robot relative to the map and generating a map
using the sensory input and the estimates about the robot’s pose. The ability
to simultaneously localize a robot and accurately map its environment is con-
sidered by many to be a key prerequisite of truly autonomous robots but it
is considered to be complex problem as well, because for localization a robot
needs a consistent map and for acquiring the map the robot requires a good
estimate of its location. This mutual dependency among the pose and the map
estimates makes the SLAM problem hard.

2.2 LIDAR Model

2.2.1 Range of apllication and product features

SICK LMS 291 laser scanner is non-contact measurement system, that scan
its surroundings two-dimensionally. As scanning system, the device require
neither reflectors nor position marks. The system can be used in a bunch of
applications:

• determining the volumes or contours of bulk materials;

• determining the volumes of objects;

• determining the positions of objects;

• collision prevention.

∗In our context, by image we mean the surface information of the object or of the
environment from specific point of view.
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In our context, the LMS 291 is prevalently used for determining the position
of the objects in the environment. In fact the scanner’s measurement data are
individually processed in real time with an external evaluation software for
determining the position.

The advantages in using the LMS 291 are:

• a rapid scanning times, thus measurements objects can move at high
speed;

• no special target-object reflective properties are necessary;

• no reflectors and no marking of the measurement object are necessary;

• backgrounds and surroundings do not have any influence on the mea-
surements;

• measurement objects may be in any position;

• measurement data is available in real time and can be used for further
processing via a serial interface;

• no illumination of the measurement area is required.

2.2.2 Operating principle

The LMS system operates by measuring the time of flight of laser light
pulses: a pulsed laser beam is emitted and reflected if it meets an object
surface within the range of the sensor. The reflection is registered by the
scanner’s receiver. The elapsed time between transmission and reception of
the impulse is directly proportional to the distance between the scanner and
the object. This measurement principle has the benefit to detect an object
independently of object color and surface structure.

This range finder has a configurable angular resolution. A light impulse
(spot) is emitted every 0.25◦, 0.5◦ or 1◦, depending on the variant, with a
measuring range up to 80 meters and a maximum scanning angle of 180◦.

The pulsed laser beam is deflected by an internal rotating mirror so that a
fan-shaped scan is made of the surrounding area (laser radar). The contour of
the target object is determined from the sequence of impulses received. Laser
scanner measurement data is used for object measurement and determining
position. These measurement data correspond to the surrounding contour
scanned by the device and are given out in binary format via the RS-232 inter-
face. Fundamentally, the distance value per individual impulse is evaluated.
This means that a distance value is provided every 0.25◦, 0.5◦ or 1◦, depending
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Figure 2.1: Time of flight between the transmission and reception of the impulse.

Angular Resolution
Max. Scanning Angle 0.25◦ 0.5◦ 1◦

180◦ 721 361 181
90◦ 361 181 91

Table 2.1: Maximum number of measured values for some different LIDAR’s configura-
tions.

on the angular resolution of the scanner. Note that the LMS turns towards the
left (see Figure 2.2). For the simulation, LMS 291’s noise standard deviation
is used, whereas for the experimental tests the LMS 291 is configured in order
to have an angular resolution of 0.5◦ and a scanning angle of 90◦, so that 181
measured data points are obtained after each scan.

8
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Figure 2.2: Direction of transmission for LMS 291 scanner.

Description Value
Range max. 80 m

Angular resolution 0.25◦/0.5◦/1◦ (selectable)

Response time 53 ms/26 ms/13 ms

Measurement resolutiona 10 mm

Systematic errorb typ. ±35 mm (indoor mode)

Noise’s standard deviationc (σn) typ. 10 mm (indoor mode)

aThe resolution of a measuring device is the smallest possible distance different from
zero between two consecutive individual measurement values. The resolution can be reduced
by using averaged values.

bThe systematic error is the sum of all the deviations over a defined excent of range
and reflectivity, which cannot be reduced even using averaged values.

cThe noise’s standard deviation is calculated using a certain number of measurement
values of a target with a certain reflectivity at a certain distance with a certain amount of
illumination (at range 1, . . . , 20 m/≥ 10% reflectivity/≤ 5 kLux for the LMS 291).

Table 2.2: General Technical Data of the LMS 291.
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2.3 Images Registration

Typically, a cloud of point samples from the surface of the objects is ob-
tained from two or more points of view, in different reference frames. Let’s
consider two sets of points, the model set and the scene set which for conve-
nience we will denote by M and S, belonging to Rn, where n is usually equal
to 3 or 2†, with their elements being denoted by {mi}Nm

i=1 and {si}Ns
i=1. The

task of point set registration is to determine the parameters of a rigid-body
displacement, denoted by

g : Rn → Rn ; x 7→ g(x) , (2.1)

which yields the best alignment of the two sets. In particular, the rotation
matrix R and the translation vector T which, when applied to the scene points,
best align model end scene.

The map g preserves the norm and the cross product of any two vectors,

1. norm: ‖g∗(~v)‖ = ‖~v‖ , ∀~v ∈ Rn, where

~v = x− y , g∗(~v) := g(x)− g(y) ;

2. cross product : g∗(~v)× g∗(~u) = g∗(~v × ~u) , ∀~u, ~v ∈ Rn.

The set of all possible configurations of a rigid body can then be described by
the space of rigid-body motions or special Euclidean transformations

SE(3) := {g = (R, T ) | R ∈ SO(3), T ∈ R3}. (2.2)

If we denote the actual transformation from the model to the scene configura-
tion by gsm = (Rsm, Tsm), i.e. indicating with xq

m the coordinates of a generic
point q with respect to (w.r.t.) the model reference frame, its coordinates
expressed w.r.t. the scene reference frame will be

xq
s = gsm(xq

m) = Rsmxq
m + Tsm . (2.3)

Our goal is to find the robot’s trajectory that, for the 2-D case, is at each step
given by the orientation angle and the translation vector of the robot{

θr = θsm

T r = Tms

. (2.4)

†In our specific case, we will centre our attention to n = 2 case for the reason why lidars
measure on a plane.

10
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For solving this problem, we need to find, therefore, the transformation gsm

or the inverse g−1
sm = gms = (Rms, Tms), being the two transormation linked by

the following relations {
Rms = R−1

sm = RT
sm

Tms = −RT
smTsm

. (2.5)

For instance, let ams ∈ Rp be the parameter vector of the actual transfor-
mation from the scene to the model configuration. Then, the problem is solved
if we are able to find the transformation gms such that

M = gms(ams;S) . (2.6)

In fact, in such a case, we can find the unknown parameters, i.e. the robot’s
trajecotory, that for the 2-D case are given by the following relations{

θr = θsm = −θms

T r = Tms

, (2.7)

where θms can be easily obtained from the rotation matrix Rms.

To deal with our kind of approach, in order to correctly align the two sets,
we need to establish a consistent point-to-point correspondence between the
two sets, also known as correspondence problem or data association problem.
The correspondence problem is the problem of determining not only if sensor
measurements taken at different points in time correspond to the same physical
object in the world, but also to determine if a specific measure taken at an
instant of time corresponds to any among the previous measures, and if yes,
what. Therefore, we need to specify a function of the data that find the true
correspondence between the scene and the model points. For the moment, let’s
assume we know how to solve the latter problem and let’s define the function

φ : R → R ; φ(i) 7→ j , (2.8)

that select for each point of the scene the corresponding model point.

Because of the outliers presence, a large portion of the scene points may
have no correspondence in the model set. Yet, the numbers of points in the two
sets might be different, that is Nm 6= Ns. If we indicate with η the percentage
of the data points that can be paired, then Nor = ηNs points belong to the
overlapping region‡. To cope with this problems, we introduce the weights

‡Let’s assume the overlapping region is characteristic enough to allow for unambigous
matching.
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vector w whose i-th component wi is zero for no matching, one otherwise.
Then the function to be minimized is

min
ams

e(ams, φ) = min
ams

Ns∑
i=1

wi

∥∥x
mφ(i)
m − gms(ams;x

si
s )

∥∥2
, (2.9)

For a 2-D Euclidean registration, p = 3. Indeed, the parameters of gms are
the rotation angle θms and the two elements of the translation vector Tms =
[txms tyms]

T ∈ R2. Then, in general, the coordinates xq
s of any point q expressed

w.r.t the scene reference frame < S > is transformed into the new coordinates
xm w.r.t. the model reference frame < M > according to the following relation

xq
m = gms(ams;x

q
s ) =

[
cos θ sin θ
− sin θ cos θ

]
xq

s +

[
txms

tyms

]
, xq

m , xq
s ∈ R2 . (2.10)

Figure 2.3: Coordinate frames of two consecutives scans for the 2-D case. < M > is the
reference frame of the first scan, < S > the reference frame of the second
one.

For a 3-D Euclidean registration, the number of parameters is p = 6 and
they are the three rotation angles αms, βms, γms along the three main axis

12
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and the three elements of the translation vector Tms = [txms tyms tzms]
T ∈ R3.

Then the corresponding (2.10) is

xq
m = gms(ams;x

q
s )

=

cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ
sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ
−sβ cβsγ cβcγ

xq
s +

txms

tyms

tzms

 , (2.11)

where xq
m , xq

s ∈ R3 and cx and sx stand for cos x and sin x respectively.
In general, the affine relations (2.10) and (2.11) can be rewritten in a linear

form by using the homogeneous representation, i.e. if g = (R, T ), R, T ∈ Rn,
then its homogeneous representation is

ḡ =

[
R T
0 1

]
∈ R(n+1)×(n+1) (2.12)

with which we can represent the transformation by a linear matrix multiplica-
tion. In such case, the (2.10) and (2.11) can be written as

Xq
m = ḡmsX

q
s , (2.13)

where Xq
m is the homogeneous representation of xq

m, that is

Xq
m =

[
xq

m

1

]
∈ Rn+1 . (2.14)

We conclude this section punctualizing the fact that the relation (2.7) gives
the robot’s orientation and position at each step if the robot’s reference frame
coincide with the lidar’s one. If this is not the case, for finding the real robot’s
configuration, we need to express the estimated transformation gms w.r.t. the
robot’s reference frame. Since the lidar is fixed on the robot’s chassis, it
is sufficient to take the transformation grl, i.e. the transformation from the
lidar’s reference frame < L > to the robot’s reference frame < R >, into
account as well. The transformation grl is known and using the homogeneous
representation it can be written as

ḡrl =

[
Rrl Trl

0 1

]
, (2.15)

therefore the robot configuration can be obtained, using the homogeneous
representation, by simply premultiplying the matrix ḡms by ḡrl

ḡr
ms = ḡrlḡms . (2.16)

13
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2.4 Global Registration

To digitalize the environment, multiple scans have to be registered. If we
denote with < Li > the reference frame of the i-th lidar scan, in order to
initialize the global registration problem, we can think of the first lidar scan
as the initial model reference frame and of the second scan as the initial scene
reference frame, i.e. at the step k = 0 we have < M >0 = < L1 > and
< S >0 = < L2 >. Then, for a generic step k, the model frame < M >k and
the scene frame < S >k will be given by{

< M >k = < S >k−1 = < Lk+1 >

< S >k = < Lk+2 >
, k = 1, 2, 3, . . . (2.17)

After registration, the scene has to be globally consistent. Various meth-
ods have been proposed for minimizing the trajectory error and then improving
the overall result. A straightforward method is the pairwise matching, where
the new scan is registered against the scan with the largest overlapping ar-
eas. Instead, Chen and Medioni introduced an incremental matching method.
The new scan is registered against the union of the previously acquired and
registered scans, i.e., when we merge a current view range image, instead of
registering it with only a neighboring view, we can register it with the merged
data from all previously processed views to find out the needed transformation.
Both methods accumulate the registration errors such that the registration of
many scans leads to inconsistent scenes and to problems with the robot lo-
calization. Other matching approaches with global error minimization have
been proposed, e.g., Pulli [8] presents a registration method that minimizes
the global error and avoids inconsistent scenes, distributing the global error
while the registration of one scan is followed by registration of all neighboring
scans.

14



Chapter 3

Preliminary Work

Before discussing about our new approach, we show in this chapter the
limits of the ICP and RANSAC based approaches and what motivated us to
look for improvements.

3.1 ICP Algorithm

3.1.1 Algorithm description

The Iterative Closest Point (ICP) algorithm is one of the most common
approaches to image registration problem because of its semplicity and per-
formance. ICP starts with two meshes and an initial guess for their relative
rigid body transformation, and iteratively refines the transformation repeat-
edly generating pairs of corresponding points and minimizing an error metric.

Beginning with an initial estimate of the registration parameters, a0
ms, the

algorithm forms a sequence of estimates ak
ms which progressively reduce the

error e(ams) defined in the (2.9). Each iteration of the algorithm comprises
the following three steps:

1. Compute correspondences φ, pairing each point of S to the closest point
in M:

φ(i) = arg min
j∈{1...Nm}

∥∥xmj
m − gms(a

k
ms;x

si
s )

∥∥2
, i = 1 . . . Ns , (3.1)

so that mφ(i) is the closest model point to the point si transformed by
the current estimate ak

ms.

2. Update the transformation, ak
ms, computing the motion that minimizes

15
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the mean square error between the paired points:

ak+1
ms = arg min

ams

Ns∑
i=1

∥∥x
mφ(i)
m − gms(a

k
ms;x

si
s )

∥∥2
, (3.2)

This step can be performed in closed form procedures such as Singular
Value Decomposition (SVD) or the quaternion-based algorithm∗.

3. Apply the motion to S and update the mean squared error (MSE).

The three steps are iterated untill the set of correspondences does not change
in the first step, in fact the value of ak+1

ms would be set equal to ak
ms in the

second step, so no further change is possible. Convergence to a local minimum
is guaranteed.

Anyway, this algorithm it has its own limitations. The local convergence
problem requires sufficient overlap between the data-sets and a close inizial-
ization in order to be able to find the true transformation. Also, a naive
implementation of ICP is prone to failure due to outliers. We shows some
experimental results in the next section.

3.1.2 Performance evaluation

For testing the algorithm, we perform some tests on synthetic data, with
different configuration and working conditions. To form S, the original model
M is rotated by a known angle. Then, noise and uniformly distributed outliers
are added to both the data sets. In the following figures, on the left is the model
M and superimposed unregistered scene S; on the right is the registered data
after running the algorithm.

First, to test the ICP algorithm, we perform a set of exact rigid registration
experiments without noise and outliers. The algorithm behaves well in ideal
conditions with small rotation angle (Figure 3.1), but with larger values of θ,
e.g. θ = −π/4 as in Figure 3.2, the result is not satisfactory at all.

Introducing a medium level of noise, it still continues to work, but it
presents a larger sensitivity to the outliers (Figure 3.4); with 30% of outliers
the resulting estimation is totally wrong.

Finally, testing ICP with data sets affected by both noise and outliers, the
result is like we expected. ICP is not able to find the true transformation, but
it converges in a local minimum.

∗See the Appendix A for more details.
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3.1.3 Final considerations

Concluding this Section, we can state ICP works pretty fine as long as no
outliers are present and for very small rotation angle. The Figure 3.7 shows
the mean and the standard deviation of the errors on the angle θ and the
translation vector T . The error is small only for small θ and no outliers.

Thus, even if ICP is very simple and intuitive algorithm, it presents a large
sensitivity to outliers and above all to medium values of θ, local minima and
exact point matching.

For this reason, since the introduction of ICP, there have been many im-
provements of it. Also, the computational expense of the ICP algorithm de-
pends mainly on the number of points. In a brute force implementation the
point pairing is in O(n2). Data reduction reduces the time required for match-
ing. Many approaches have been introduced for subsampling the data. One of
these was proposed by Thrun et al. [9]. They proposed a fast filtering method
to reduce and smooth the data. It is a combination of a median and a reduc-
tion filter. The median filter removes the outliers by replacing a data point
with the median value of the n surrounding points. The data reduction in-
stead joins into one point multiple data points located close together. Other
improvements affect the nearest neighbor search. In fact at each iteration,
corresponding points between the two images are determined by a nearest
neighbor method. Determining these correspondences accounts for the ma-
jorty of the runtime expense of ICP. Besl and McKay [3] suggested the use of
the k-d tree method that uses a backtracking search to identify nearest neigh-
bors whose expected computation time to perform each search is proportional
to log N , where N is the number of points. They also indicated that other
methods may be suitable. There have been some explorations into the use of
alternatives the most interesting one being the method proposed by Greenspan
and Yurick [7] called approximated k-d tree that improves runtime efficiency
with the tradoff of reducing the accuracy of the determined correspondences.
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Figure 3.1: ICP: (a) Initial configuration: Nm = Ns = 30, θ = π/8 rad, T = [30 − 30]T

cm, no presence of noise and no outliers. (b) Registration result.
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Figure 3.2: ICP: (a) Initial configuration: Nm = Ns = 30, θ = −π/4 rad, T = [30 −30]T

cm, no presence of noise and no outliers. (b) Registration result.
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Figure 3.3: ICP: (a) Initial configuration: Nm = Ns = 30, θ = π/8 rad, T = [30 − 30]T

cm, presence of noise and no outliers. (b) Registration result.
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Figure 3.4: ICP: (a) Initial configuration: Nm = Ns = 30, θ = π/8 rad, T = [30 − 30]T

cm, no presence of noise and 20% of outliers. (b) Registration result.
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Figure 3.5: ICP: (a) Initial configuration: Nm = Ns = 30, θ = π/8 rad, T = [30 − 30]T

cm, no presence of noise and 30% of outliers. (b) Registration result.
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Figure 3.6: ICP: (a) Initial configuration: Nm = Ns = 30, θ = π/8 rad, T = [30 − 30]T

cm, presence of noise and 30% of outliers. (b) Registration result.
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Figure 3.7: ICP: (a) Mean and standard deviation of the error on the estimated rotation
angle θ and on the estimated translation vector T without noise and small
angle θ (up to π/8 rad). (b) As (a) but with noise presence. (c) Mean and
standard deviation of the error on the estimated rotation angle θ and on the
estimated translation vector T with noise and different values of θ (up to
π/4 rad).
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3.2 RANSAC Based Registration

3.2.1 Algorithm description

The Random Sample Consensus (RANSAC) algorithm introduced by Fish-
ler and Bolles [6] is a widely used robust estimator that has become a standard
solutions in many estimation problems.

The RANSAC algorithm proceeds as follows. Repeatedly, subsets of the
input data are randomly selected and model parameters fitting the sample are
computed. In a second step, the quality of the parameters is evaluated on the
input data. Different cost functions (see Section 4.3) have been proposed, the
standard being the number of inliers, i.e. the number of data points consistent
with the model. The process is terminated when the probability of finding a
better model becomes lower than a probability ξ. The speed depends on two
factors. The percentage of outliers determines the number of random samples
needed to guarantee the 1 − ξ confidence in the solution. The time needed
to access the quality of a hypothesized model parameters is proportional to
the number of the input data points. Almost all models whose quality is
verified are incorrect with arbitrary parameters originating from contaminated
samples, therefore such models are consistent with only a small number of the
data points.

The idea is to use this concepts for building a more stable to outliers algo-
rthm that we call RANSAC-based algorithm. Each iteration of this algorithm
comprises the following three steps:

1. A random sample of the minimum number of points among the scene set
S is selected. We call this minimal set Sh.

2. The ICP algorithm, as described in the Section 3.1, is applied with inputs
Sh and M.

3. The number of inliers is counted.

The three steps are iterated for a fixed number of trials and then the best result
(e.g., the registration with the bigger number of inliers†) is given as output.

3.2.2 Performance evaluation

First, to test the RANSAC-based algorithm, we perform a set of exact rigid
registration experiments without noise and outliers. We generate the reference
model and the rotated model the same way as the previous section. We add

†For other possible loss function, see Section 4.3.
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outliers points randomly drawn from a uniform distribution. On the left is the
modelM and superimposed unregistered scene S; on the right is the registered
data after running the algorithm.

The algorithm behaves well in ideal conditions with small rotation angle
(Figure 3.8), but with larger values of θ, e.g. θ = −π/4, as shown in Fig-
ure 3.13.(c), the result is not as satisfactory as ICP’s one. Also, it works well
as long as the outliers percentage is low. In fact, with a percentage of 50%, it
is no longer able to find the correct transformation (Figure 3.12).
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Figure 3.8: RANSAC: (a) Initial configuration: Nm = Ns = 30, θ = π/8 rad, T =
[30 − 30]T cm, no presence of noise and no outliers. (b) Registration result.

3.2.3 Final considerations

The algorithm seems to work well in presence of low outliers percentages
(Figure 3.10-3.11) but by performing a test with rotation angles up to π/4 rad,
the result is not satisfactory. In such case, the average error on the estimated
rotation angle is over 20 degrees.

In the next chapter we explain how to improve this approach for obtaining
better results with a more robust at outliers approach.
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Figure 3.9: RANSAC: (a) Initial configuration: Nm = Ns = 30, θ = π/8 rad, T =
[30 − 30]T cm, presence of noise and no outliers. (b) Registration result.
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Figure 3.10: RANSAC: (a) Initial configuration: Nm = Ns = 30, θ = π/8 rad, T =
[30 − 30]T cm, no presence of noise and 20% of outliers. (b) Registration
result.
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Figure 3.11: RANSAC: (a) Initial configuration: Nm = Ns = 90, θ = π/8 rad, T =
[30 − 30]T cm, no presence of noise and 40% of outliers. (b) Registration
result.
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Figure 3.12: RANSAC: (a) Initial configuration: Nm = Ns = 30, θ = π/8 rad, T =
[30 − 30]T cm, presence of noise and 50% of outliers. (b) Registration
result.
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Figure 3.13: RANSAC: (a) Mean and standard deviation of the error on the estimated
rotation angle θ and on the estimated translation vector T without noise
and small angle θ (up to π/8 rad). (b) As (a) but with noise presence. (c)
Mean and standard deviation of the error on the estimated rotation angle
θ and on the estimated translation vector T with noise and different values
of θ (up to π/4 rad).
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Chapter 4

ICPSAC Registration

In this chapter, we introduce a new and largely improved algorithm for
Point Set Registration by using a RANSAC-based ICP approach, called ICP-
SAC. The objective of ICPSAC is to find inliers in the shortest possible time
and to guarantee, with a certain probability, that all the inliers and then the
correct solution at the registration problem are found.

4.1 ICPSAC Algorithm Description

The basic idea of ICPSAC is to merge the ICP and the RANSAC well
known concepts for constructing an algorithm much more robust to noise and
outliers presence than any other current counterpart. The algorithm is more
formally stated∗ in Table 4.1.

Our algorithm is very simple and it works in the following way. First of
all, the mutual distances among all the points in the model and in the scene
are computed. Then the algorithm described in Table 4.1 is applied as far as
a sufficient number of inliers is founded. The algorithm could be run for a
fixed number of trials and then one can take as output the best transforma-
tion among all the computed ones. In this way, one can avoid to be worried
about the parameter Nmin, but this approach might waste computational time.
We assume in fact the noise is not large enough and that it’s sufficient a small
amount of inliers to detect the true transformation. In such a case, the compu-
tational time is privileged. We punctualize the fact that the reasearch of the
nearest couple (m1,m2) in the step 2 of the algorithm is of crucial importance
for its good behaviour. With reference to the Figure 4.1, the nearest couple is
found in this way. First of all, the nearest point m1 to the point s1, according

∗For simplicity, the algorithm is stated for the 2-D case but it can be easily extended for
the 3-D case.
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1. Selection of the scene control points

(a) Select randomly the minimum number of points (2 points for a 2D transforma-
tion, see Section A.2), s1 and s2, among the set S with the constraint

dS = d(s1, s2) ≥ dmin

where dmin is a user controllable threshold set trading between noise effect
reduction and correct registration probability enhancement (see Section 4.2.3).

2. Selection of the model control points

(a) Select, among all the points inM, the nearest (see Section 4.1) couple (m1,m2)
to the previously selected couple (s1, s2) with the constraint

dM = d(m1,m2) ' dS .

- If such a couple does not exist, go back to the step 1.

3. Model Parameter Estimation

(a) Find the transformation parameters a using the selected couples.

(b) Apply the estimated transformation to the set S for finding

S ′ = g(a;S) .

4. Model Verification

(a) Count the number Nin of points in S ′ consistent with the model M.

- If Nin ≥ Nmin, where Nmin depends on the outliers percentage, then a is
a good estimate; solve the least mean square problem only on the found
inliers,

a∗ = arg min
a

Nin∑
i=1

∥∥xmi
m − g(a;xsi

s )
∥∥2

,

and return a∗.
- If Nin < Nmin, go back to the step 1.

Table 4.1: A summary of the stages of the ICPSAC algorithm for a 2D transformation.
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1. Selection of the scene control points

(a) Select randomly the minimum number of points (2 points for a 2D transformation, see Section A.2),
s̄1 and s̄2, among the set S with the constraint

dS = d(̄s1, s̄2) ≥ dmin

where dmin is a user controllable threshold set trading between noise effect reduction and correct
registration probability enhancement (see Section 4.2.3).

2. Selection of the model control points

(a) Select as feasible all those couples of points whose mutual distance dM is approximately equal to dS ,

C = {(mi,mj), i, j = 1, . . . , Nm, i 6= j | dM = d(mi,mj) ' dS},

and
C̄ = {mi | (mi,mj) ∈ C},

being Nc = #C̄.

- If the set C is empty, go back to the step 1.(a).

(b) Sort in ascending order all the points ci belonging to the set C according to their distance from the
point s̄1,

Cs̄1 = {ci, i = 1, . . . , Nc | d(ci, s̄1) < d(ci+1, s̄1)}.

(c) For i = 1 to Nc, select m̄1 = ci as the corresponding point to s̄1.

- Select as the corresponding point to s̄2 the point m̄2 such that the couple (m̄1, m̄2) ∈ C and
d(m̄2, s̄2) < d(cj , s̄2), ∀j = 1, . . . , Nc, j 6= i and (m̄1, cj) ∈ C.

- If a couple is found, go to the step 3.

- If no couple is found, go back to the step 2.(c) where i← i + 1.

3. Model Parameter Estimation

(a) Find the transformation parameters a using the two selected couple

(b) Apply the estimated transformation to the set S for finding

S′ = g(a;S)

4. Model Verification

(a) Count the number Nin of points in S′ consistent with the modelM.

- If Nin ≥ N∗, then N∗ = Nin and a∗ = a where a∗ is the best found solution and N∗ the
greatest number of found inliers so far.

- If N∗ ≥ Nmin where Nmin is a threshold that depends on the outliers percentage, then
a∗ is a good estimation; solve the least mean square problem only on the found inliers,

a∗ = arg min
a

NinX
i=1

‚‚xmi
m − g(a;xsi

s )
‚‚2

,

and return a∗.

- If N∗ < Nmin, then go back to the step 2.(c) where i← i + 1.

Table 4.2: A summary of the stages of the modified ICPSAC algorithm for a 2D trans-
formation.
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to the euclidean distance, is selected. Then, among all the points of M that
have distance from m1 approximately equal to the distance dS between s1 and
s2, i.e. the points in the green circular region whose width is set to dth, the
nearest to s2 is chosen to be the correspondent counterpart. It’s obvious that,
with reference to the Figure 4.1, |dS − dM| ≤ dth/2 and that dth depends from
the strenght of the noise and therefore it should be appropriately set. In fact,
if dth is too small, maybe no point is found. On the contrary, if dth is too large,
it might happen that inconsistent points are found.

Finally, a more stable modified version of ICPSAC is stated in Table 4.2.

Figure 4.1: Selection of the control points in the 2D case: the (m1,m2) couple is pre-
ferred on (m1,m3).

4.2 Performance Evaluation

In this section we primarly discuss about the algorithm’s performance and
then we present some results on the application of our method to data sets.

4.2.1 Analysis of complexity

We briefly analyze here the computational complexity of the ICPSAC al-
gorithm. Let’s assume to have already computed the mutual distances among
each point of the model and scene. Then the steps 1.(a) takes only O(1). The
step 1.(b) instead takes O(Nm) because all the points in the model set M must
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to be scored for ensuring to find the nearest points to the selected points in the
scene set S. However the complexity can be decreased to O(log Nm) using a
kd-tree. Once the points are selected, finding the transformation between the
two couple of points takes only O(1), and then applying that to all the scene
points takes O(Ns). Also the count of the inliers takes O(Ns). We can then
state that the total computational time is O(N), where N = max(Nm, Ns).
This means that in the worst case, the computational time is linear in the
number of the points in the scene or in the model.

Now, one can be asked how many iterations should the ICPSAC algorithm
be run for. We discuss about this in the next Subsection.

4.2.2 Rate of convergence

Let’s find now the number of trials k required to select a subset of n good
data points in the scene and the right correspondent points in the model. Let
w be the probability to select these n good data points. In the 2D case n = 4
and we have

w = Pr(s1 is inlier)× Pr(m1 is inlier | m1 is the closest point to s1)×
× Pr(s2 is inlier | s1 is inlier, d(s1, s2) = dS)× (4.1)

× Pr(m2 is inlier | m2 is the closest point to s2, d(m1,m2) = dM ' dS)

It’s easy to realize that it would be hard to analitically find the probability w.
For this reason, we prefer to find it via experimental results (see Table 4.3).
The probability distribution of the number k of Bernoulli trials† needed to get
one success has, in probability theory and statistics, a geometric distribution.
If the probability of success on each trial is p, then the expected value and the
variance of the geometrically distributed random variable k are

E(k) =
1

p
, var(k) =

1− p

p2
. (4.2)

Therefore, in our case, the number of attempts to find a consensus set is on
average 1/w with a standard deviation of

√
1− w/w. From another point of

view, if we want to know the expected selection number k that ensures with
probability q that at least one of the random selections is a good choice for
finding the true transformation, we should expect to wait for k iterations,
where k is given by

(1− (1− w)k) = q =⇒ k =
log(1− q)

log(1− w)
. (4.3)

†A Bernoulli trial is an experiment whose outcome is random and can be either of two
possible outcomes, “success” and “failure”.
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θ (rad) %out = 0 0.3 0.5 0.8
0 1.000 0.474 0.242 0.039

π/8 0.181 0.093 0.050 0.013

π/5 0.109 0.063 0.041 0.004

π/4 0.086 0.058 0.023 0.002
(a)

θ (rad) %out = 0 0.3 0.5 0.8
0 0.978 0.479 0.264 0.026

π/8 0.042 0.009 0.010 0.002

π/5 0.026 0.010 0.009 0.002

π/4 0.011 0.004 0.007 0.001
(b)

Table 4.3: (a) Typical values of w for different values of θ and amount of outliers in the
noiseless case. (b) Typical values of w for different values of θ and amount of
outliers in the noise case.

In Table 4.3 some experimentally computed values of w for corresponding
values of θ and outliers percentage are shown. For example, if we are in a
usual configuration, i.e. presence of noise with 30% of outliers and a rotation
angle θ = π/8 we have w ' 0.042 and to obtain a 90% assurance of making
at least one error-free selection, we might expect to find it in k = log(1 −
0.9)/ log(1− 0.042) ' 53 selections.

4.2.3 Sensitivity to noise

We use a method to test how sensitive the registration methods are in the
presence of noise perturbation. We generate slightly rotated versions of the
same point set and add zero mean random noise to both the reference model
and the rotated model

Choice of the distance dmin

To acquire a map, robots must possess sensors that allow them to perceive
the surrounding world. Sensors commonly used are cameras, range finders
using sonars, laser and infrared technology, radar, GPS, etc. However, all
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Figure 4.2: (a) Typical values of w for different values of θ and amount of outliers in the
noiseless case. (b) Typical values of w for different values of θ and amount
of outliers in the noise case.

these sensors are subject to errors, often referred to as measurement noise.
We can think of the laser’s measurements generated according to the fol-

lowing model
yt = f(at,nt), t = 1, 2, 3, . . . (4.4)

that is, the measurements obtained at the time t are a function of the parameter
vector at and of the noise nt.

Let’s assume that the uncertainty on the measurements can be expressed,
according to the Gauss Error Theory Model, as an additive noise. Therefore,
the result of the physical measurement comprises two parts: an estimate of
the true value of the measurements and the uncertainty of its estimate. Under
this assumption, the (4.4) can be written as

yt = f(at) + nt, t = 1, 2, 3, . . . (4.5)

where f(at) is the ideal data from the instrument and nt is the measurement
error. Let’s assume the Central Limit Theorem is valid in this contest and that
the instrument is not affected by systematic errors (i.e., that can be removed
by suitable calibration). Then we can think that nt is normally distributed
with zero mean and Σ variance,

nt ∼ N (0, Σ) , (4.6)

where

Σ =

[
σ2

ρ σρϕ

σϕρ σ2
ϕ

]
. (4.7)
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Figure 4.3: .

Also, we can assume that the error along the beam’s direction ρ is in-
dipendent from the error along the angle ϕ, therefore σρϕ = σϕρ = 0. The
probability density function (pdf ) of nt is

p(ρ, ϕ) = (2π)−1|detΣ|−1/2 exp
{
− 1

2

[
ρ ϕ

]
Σ−1

[
ρ
ϕ

]}
, (4.8)

We discuss here how to choose the distance dmin between the two points
(see Table 4.1). Of course, it’s easy to understand that in order to minimize
the transformation error due to the noise, we should set the distance to infinity.
However, on the other hand, we would want to choose the points closed enough
eachother, not only to guarantee to find them among the points of the next
scans, but also to increase the probability w to find a correct solution. In
fact, greater the distance dmin is, fewer points are feasible for finding the true
transformation.

We want to minimize the error between the real rotation angle θ∗ and the
estimated rotation angle θ̂ (see fig. 4.3), that is

min
d
|θ∗i − θ̂i| = min

d
|θ̃i| = min

d
|θ̃d

i + θ̃a
i | , i = 1, 2, 3, . . . (4.9)

where θ̃d
i is the error due to the distance between the points selected for the

estimation, θ̃a
i is the error due to wrong associations and d is the distance
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between the two points selected for finding the transformation’s parameters.
The error θ̃a

i does not depend from the distance between the two selected
points. Therefore

min
d
|θ̃i| = min

d
|θ̃d

i |+ θ̃a
i , i = 1, 2, 3, . . . (4.10)

So, what we need to minimize is the following

min
d
|θ̃d

i | , i = 1, 2, 3, . . . (4.11)

From the lidar technical data, the error variance along the beam direction
is much greater than the error variance along the beam’s angle. Thus, with
good approximation, we can write

d sin θ̃d ≈ cσρ =⇒ sin θ̃d ≈ c

d
σρ (4.12)

where c is a constant that depends on the desired confidence.
For small values of θ̃d, we can use the sin θ̃d ' θ̃d approximation. Then, if

we want a maximum error of ε, we have that

θ̃d ≈ c

d
σρ ≤ ε (4.13)

and therefore, in order to reduce the error due to the noise, the points should
be choosen with a minimum retalive distance given by the following relation

dS ≥
c

ε
σρ (4.14)

Experimental results are given in the Figure 4.4-4.5. In particular, in the
Figure 4.4 it is shown the rotation and translation estimation errors increasing
the distance between the two points. The bigger the distance is, the smaller
the errors are. Notice also that the bigger the variance σ2

ρ is, the bigger the
minimum distance for having an error under a certain threshold is, hence, if
the fixed distance is too small, the resulting error is big even for small values
of the noise variance (see Figure 4.5).

4.2.4 Simulation results

In this Section we show some visual results, using different data configu-
rations. First, to test the validity of our approach, we perform a set of exact
rigid registration experiments on some data sets without noise and outliers.
Then, to test robustness and to see how our method behaves in presence of
noise and outliers, we generate corrupted template point set from some model
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Figure 4.4: (a) Average error and standard deviation on the estimated rotation due to
the distance among the selected control points, for different values of the
noise strenght. (b) Average error and standard deviation on the estimated
translation due to the distance among the selected control points, for differ-
ent values of the noise strenght.

36



UCLA C.S. Dept Technical Report TR070005 April 2007

0 0.5 1 1.5 2 2.5 3
0

20

40

60

80

Error’s Variance [cm]

m
ea

n 
er

ro
r 

on
 θ

 [d
eg

]

Variable noise and fixed distance.

 

 
d = 5.126
d = 11.0479
d = 123.0674
d = 200.1988

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

Error’s Variance [cm]

st
d 

of
 th

e 
er

ro
r 

on
 θ

 [d
eg

]

Variable noise and fixed distance.

 

 

(a)

0 1 2 3
0

50

100

150

200

Error’s Variance [cm]

m
ea

n 
er

ro
r 

on
 T

x [c
m

]

Variable noise and fixed distance.

 

 

0 1 2 3
0

50

100

150

200

Error’s Variance [cm]

m
ea

n 
er

ro
r 

on
 T

y [c
m

]

Variable noise and fixed distance.

 

 

0 1 2 3
0

50

100

150

200

250

Error’s Variance [cm]

st
d 

of
 th

e 
er

ro
r 

on
 T

x [c
m

]

Variable noise and fixed distance.

 

 

0 1 2 3
0

50

100

150

Error’s Variance [cm]

st
d 

of
 th

e 
er

ro
r 

on
 T

y [c
m

]

Variable noise and fixed distance.

 

 

(b)

Figure 4.5: (a) Average error and standard deviation on the estimated rotation due to
the distance among the selected control points, for different values of the
distance dmin. (b) Average error and standard deviation on the estimated
translation due to the distance among the selected control points, for differ-
ent values of the distance dmin.
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set. We register outlier corrupted point sets. We add outlier randomly drawn
from a uniform distribution. We tested the algorithm increasing the outliers
percentage with different configurations (rotations up to π/4 rad and transla-
tions up to 30 cm) of sets with 100 points each on a PowerBook G4 1.25 GHz,
512 MB Ram. The arrangement is the same as the previous one, i.e. on the
left there is the model and superimposed unregistered scene; on the right there
is the registered data after running our algorithm.

We begin to test the new algorithm over a data set without noise and
outliers (Figure 4.6-4.7). The algorithm find the true parameters in a very
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Figure 4.6: (a) Initial configuration: Nm = Ns = 100, θ = π/8 rad, T = [−30 30]T , no
presence of noise and no outliers. (b) Registration result.

short execution time and it continues to work very well even with a large
amount of outliers (Figure 4.8-4.9). Also ICPSAC is not sensible to the noise
presence (Figure 4.10-4.11). Finally, the most important result is that its
behavior is pretty good even in the case of noise presence with large outliers
percentage (Figure 4.12-4.13).
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Figure 4.7: (a) Initial configuration: Nm = Ns = 100, θ = −π/4 rad, T = [−30 30]T ,
no presence of noise and no outliers. (b) Registration result.
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Figure 4.8: (a) Initial configuration: Nm = Ns = 100, θ = −π/4 rad, T = [−30 30]T ,
no presence of noise and 50% of outliers. (b) Registration result.
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Figure 4.9: (a) Initial configuration: Nm = Ns = 100, θ = −π/4 rad, T = [−30 30]T ,
no presence of noise and 80% of outliers. (b) Registration result.
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Figure 4.10: (a) Initial configuration: Nm = Ns = 100, θ = π/8 rad, T = [−30 30]T ,
presence of noise and no outliers. (b) Registration result.
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Figure 4.11: (a) Initial configuration: Nm = Ns = 100, θ = −π/4 rad, T = [−30 30]T ,
presence of noise and no outliers. (b) Registration result.
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Figure 4.12: (a) Initial configuration: Nm = Ns = 100, θ = −π/4 rad, T = [−30 30]T ,
presence of noise and 50% of outliers. (b) Registration result.
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Figure 4.13: (a) Initial configuration: Nm = Ns = 100, θ = −π/4 rad, T = [−30 30]T ,
presence of noise and 80% of outliers. (b) Registration result.
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4.2.5 Simulated overall results

In the following figures we show the ICPSAC’s behaviour for various pa-
rameters values, both for the noiseless case that the noisy case. Finally, we
give the overall results obtained with the best paramenter’s values choice for
different rotation angle values: the noiseless case in the Figure 4.26-4.29 and
the noisy case in the Figure 4.42-4.45. From the figures, one can see that the
average rotation error is always bounded and less than 0.01◦, while the aver-
age translation error is always bounded as well and less than 0.05 cm, even
with 80% of outliers. Even the probability error, defined as the number of
times the algorithm is not able to find a correct registration, is different from
zero only with the 80% of outliers for the reason that in some cases the inliers
intersection is void.

We can conclude saying that ICPSAC is stable not only in presence of
noise, in fact there are not remarkable differences between the noiseless case
and the noisy one, but also respect to an increasing outliers percentage. It
works pretty well even with the 80% of outliers, whenever a possible solution
may be found.
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Figure 4.14: Average registration error and standard deviation, respectively on the an-
gle rotation θ and the translations Tx and Ty, obtained by using the ICP-
SAC algorithm without noise for different values of the parameter dmin.
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Figure 4.15: Average registration error and standard deviation, respectively on the an-
gle rotation θ and the translations Tx and Ty, obtained by using the ICP-
SAC algorithm without noise for different values of the parameter dmin

(enlargement).
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Figure 4.16: Execution time and error probability of the ICPSAC algorithm without
noise for different values of the parameter dmin.

46



UCLA C.S. Dept Technical Report TR070005 April 2007

−10 0 10 20 30 40 50 60 70 80 90

−0.1

0

0.1

0.2

0.3

0.4

0.5

Outliers Percentage

E
xe

cu
tio

n 
T

im
e 

[s
]

ICPSAC − No noise − dth = 1σn, eth = 2σn

 

 
dmin = 10 [cm]

dmin = 50 [cm]

dmin = 150 [cm]

dmin = 300 [cm]

−10 0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Outliers Percentage

E
rr

or
 P

ro
ba

bi
lit

y

ICPSAC − No noise − dth = 1σn, eth = 2σn

 

 
dmin = 10 [cm]

dmin = 50 [cm]

dmin = 150 [cm]

dmin = 300 [cm]

Figure 4.17: Execution time and error probability of the ICPSAC algorithm without
noise for different values of the parameter dmin (enlargement).
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Figure 4.18: Average registration error and standard deviation, respectively on the an-
gle rotation θ and the translations Tx and Ty, obtained by using the ICP-
SAC algorithm without noise for different values of the parameter dth.
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Figure 4.19: Average registration error and standard deviation, respectively on the an-
gle rotation θ and the translations Tx and Ty, obtained by using the ICP-
SAC algorithm without noise for different values of the parameter dth

(enlargement).
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Figure 4.20: Execution time and error probability of the ICPSAC algorithm without
noise for different values of the parameter dth.
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Figure 4.21: Execution time and error probability of the ICPSAC algorithm without
noise for different values of the parameter dth (enlargement).
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Figure 4.22: Average registration error and standard deviation, respectively on the an-
gle rotation θ and the translations Tx and Ty, obtained by using the ICP-
SAC algorithm without noise for different values of the parameter eth.
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Figure 4.23: Average registration error and standard deviation, respectively on the an-
gle rotation θ and the translations Tx and Ty, obtained by using the ICP-
SAC algorithm without noise for different values of the parameter eth (en-
largement).
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Figure 4.24: Execution time and error probability of the ICPSAC algorithm without
noise for different values of the parameter eth.
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Figure 4.25: Execution time and error probability of the ICPSAC algorithm without
noise for different values of the parameter eth (enlargement).
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Figure 4.26: Average registration error and standard deviation, respectively on the an-
gle rotation θ and the translations Tx and Ty, obtained by using the ICP-
SAC algorithm without noise for different values of the angle rotation θ.
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Figure 4.27: Average registration error and standard deviation, respectively on the an-
gle rotation θ and the translations Tx and Ty, obtained by using the ICP-
SAC algorithm without noise for different values of the angle rotation θ
(enlargement).
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Figure 4.28: Execution time and error probability of the ICPSAC algorithm without
noise for different values of the angle rotation θ.
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Figure 4.29: Execution time and error probability of the ICPSAC algorithm without
noise for different values of the angle rotation θ (enlargement).

59



UCLA C.S. Dept Technical Report TR070005 April 2007

−10 0 10 20 30 40 50 60 70 80 90
−0.04

−0.02

0

0.02

0.04

0.06

Outliers Percentage

R
ot

at
io

n 
E

rr
or

 [d
eg

]

ICPSAC − With noise − dth = 4σn, eth = 3σn

 

 dmin = 10 [cm]

dmin = 50 [cm]

dmin = 150 [cm]

dmin = 300 [cm]

−10 0 10 20 30 40 50 60 70 80 90
−0.2

−0.1

0

0.1

0.2

0.3

Outliers Percentage

T
ra

ns
la

tio
n 

E
rr

or
 o

n 
x 

[c
m

]

ICPSAC − With noise − dth = 4σn, eth = 3σn

 

 dmin = 10 [cm]

dmin = 50 [cm]

dmin = 150 [cm]

dmin = 300 [cm]

−10 0 10 20 30 40 50 60 70 80 90
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Outliers Percentage

T
ra

ns
la

tio
n 

E
rr

or
 o

n 
y 

[c
m

]

ICPSAC − With noise − dth = 4σn, eth = 3σn

 

 dmin = 10 [cm]

dmin = 50 [cm]

dmin = 150 [cm]

dmin = 300 [cm]

Figure 4.30: Average registration error and standard deviation, respectively on the an-
gle rotation θ and the translations Tx and Ty, obtained by using the ICP-
SAC algorithm with noise for different values of the parameter dmin.
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Figure 4.31: Average registration error and standard deviation, respectively on the an-
gle rotation θ and the translations Tx and Ty, obtained by using the ICP-
SAC algorithm with noise for different values of the parameter dmin (en-
largement).
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Figure 4.32: Execution time and error probability of the ICPSAC algorithm with noise
for different values of the parameter dmin.
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Figure 4.33: Execution time and error probability of the ICPSAC algorithm with noise
for different values of the parameter dmin (enlargement).
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Figure 4.34: Average registration error and standard deviation, respectively on the an-
gle rotation θ and the translations Tx and Ty, obtained by using the ICP-
SAC algorithm with noise for different values of the parameter dth.

64



UCLA C.S. Dept Technical Report TR070005 April 2007

−10 0 10 20 30 40 50 60 70 80 90

3

4

5

6

7

8

x 10
−3

Outliers Percentage

R
ot

at
io

n 
E

rr
or

 [d
eg

]

ICPSAC − With noise − dmin = 300 cm, eth = 3σn

 

 
dth = 1σn

dth = 2σn

dth = 4σn

dth = 8σn

dth = 12σn

−10 0 10 20 30 40 50 60 70 80 90

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Outliers Percentage

T
ra

ns
la

tio
n 

E
rr

or
 o

n 
x 

[c
m

]

ICPSAC − With noise − dmin = 300 cm, eth = 3σn

 

 
dth = 1σn

dth = 2σn

dth = 4σn

dth = 8σn

dth = 12σn

0 10 20 30 40 50 60 70 80 90

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Outliers Percentage

T
ra

ns
la

tio
n 

E
rr

or
 o

n 
y 

[c
m

]

ICPSAC − With noise − dmin = 300 cm, eth = 3σn

 

 
dth = 1σn

dth = 2σn

dth = 4σn

dth = 8σn

dth = 12σn

Figure 4.35: Average registration error and standard deviation, respectively on the an-
gle rotation θ and the translations Tx and Ty, obtained by using the ICP-
SAC algorithm with noise for different values of the parameter dth (en-
largement).
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Figure 4.36: Execution time and error probability of the ICPSAC algorithm with noise
for different values of the parameter dth.
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Figure 4.37: Execution time and error probability of the ICPSAC algorithm with noise
for different values of the parameter dth (enlargement).
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Figure 4.38: Average registration error and standard deviation (only the possible values
are shown), respectively on the angle rotation θ and the translations Tx

and Ty, obtained by using the ICPSAC algorithm with noise for different
values of the parameter eth.
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Figure 4.39: Average registration error and standard deviation (only the possible values
are shown), respectively on the angle rotation θ and the translations Tx

and Ty, obtained by using the ICPSAC algorithm with noise for different
values of the parameter eth (enlargement).
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Figure 4.40: Execution time and error probability (only the possible values are shown)
of the ICPSAC algorithm with noise for different values of the parameter
eth.
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Figure 4.41: Execution time and error probability (only the possible values are shown)
of the ICPSAC algorithm with noise for different values of the parameter
eth (enlargement).
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Figure 4.42: Average registration error and standard deviation, respectively on the an-
gle rotation θ and the translations Tx and Ty, obtained by using the ICP-
SAC algorithm with noise for different values of the angle rotation θ (only
the possible values are shown).
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Figure 4.43: Average registration error and standard deviation, respectively on the an-
gle rotation θ and the translations Tx and Ty, obtained by using the ICP-
SAC algorithm with noise for different values of the angle rotation θ (en-
largement).
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Figure 4.44: Execution time and error probability of the ICPSAC algorithm with noise
for different values of the angle rotation θ.
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Figure 4.45: Execution time and error probability of the ICPSAC algorithm with noise
for different values of the angle rotation θ (enlargement).
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4.2.6 Experimental results

We show in this section some experimental results. We took five measure-
ment scans along a building’s corridor with the LMS 291 mounted on a robot
chassis. In the Figure 4.46-4.49 are shown the single registration results and
finally the Figure 4.50 shows the overall result of the map reconstrunction and
of the robot pose estimation using five sequential scans. The mobile robot
can reliably construct a good map of the environment (here, the third floor of
Computer Science Department at the UCLA) while simultaneously localizing
itself and this is accomplished using only a scanning sensor, the lidar.
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Figure 4.46: Experimental results: (a) first and second lidar’s scans; (b) registration
result.

76



UCLA C.S. Dept Technical Report TR070005 April 2007

−2000 −1500 −1000 −500 0 500 1000 1500 2000

500

1000

1500

2000

2500

3000

x [cm]

y 
[c

m
]

Scans: 2−3

 

 

Second Scan
Third Scan

−2000 −1500 −1000 −500 0 500 1000 1500 2000

500

1000

1500

2000

2500

3000

x [cm]
y 

[c
m

]

Registered Scans: 2−3

 

 

Second Scan
Third Scan

(a) (b)

Figure 4.47: Experimental results: (a) second and third lidar’s scans; (b) registration
result.
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Figure 4.48: Experimental results: (a) third and fourth lidar’s scans; (b) registration
result.
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Figure 4.49: Experimental results: (a) fourth and fifth lidar’s scans; (b) registration
result.
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Figure 4.50: A robot reconstructing a piece of corridor in the Computer Science De-
partment at the UCLA while localizing itself.
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4.3 Alternative Loss Functions

With ICPSAC, it is trivial to modify the errror function to include a robust
kernel One of the problems with RANSAC is that if the threshold eth for
considering the inliers is set too high then the estimate can be very poor.
RANSAC, in effect, finds the minimum of a cost function defined as

C1 =
∑

i

c1(e
2
i ) (4.15)

where c1(·) is

c1(e
2) =

{
0 e2 < e2

th

constant e2 ≥ e2
th

, (4.16)

In other words inliers score nothing and each outlier scores a constant penalty.
Thus the higher e2

th is the more solutions with equal values of C tending to
poor estimation. Rather than minimizing C, a new cost function C2 can be
minimized

C2 =
∑

i

c2(e
2
i ) (4.17)

where the robust error term c2(·) is

c2(e
2) =

{
e2 e2 < e2

th

T 2 e2 ≥ e2
th

, (4.18)

One can see that outliers are still given a fixed penalty but now inliers are
scored on how well they fit the data.
For optimizing the efficiency, other loss functions can be used. For instance,

the Hampels et al.’s [10] loss function c3 is a variant of the c2, and it is defined
as

c3(e
2) =



1
2
e2 |e| ≤ a

1
2
a(2|e| − a) a < |e| ≤ b

1
2
a[(|e| − c)2/(b− c) + (b + c− a)] b < |e| ≤ c

1
2
a(b + c− a) c < |e|

, (4.19)

i.e. it has still a rejection point, beyond which an outlier has no influence. An
alternative is the Student’s t-distribution [12], whose function is defined as

c4(e) =
1

2
(1 + f) log(1 + e2/f) (4.20)
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(a) (b)

Figure 4.51: Canonical loss functions for determining whether or not a point is com-
patible with a model.

that does not have a finite rejection point. All these loss functions have the
drawback to be nonconvex and therefore may have multiple local minima. A
more robust loss function is the Huber’s [11] M-estimator, that is defifend as

c5(e
2) =

{
1
2
e2 |e| ≤ c

1
2
c(2|e| − c) |e| > c

, (4.21)

The last three loss functions are shown in Figure 4.52.

4.4 Final Consideration

We conclude this section saying that ICPSAC is a new very robust algo-
rithm that combines the semplicity of ICP with the robustness of RANSAC.
Experimental results show that it is very robust regardless to (i) an initial
estimate of the relative pose and (ii) noise and (iii) strong outliers presence,
having moreover a short convergence time. Above all ICPSAC method simul-
taneously finds both the rigid transformation and the correspondence between
two point sets without making any prior assumption of the transformation
model.
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(a) (b)

(c)

Figure 4.52: Alternative loss functions for determining whether or not a point is com-
patible with a model: (a) Hampels, (b) Student’s t-distribution, (c) Huber.

81



UCLA C.S. Dept Technical Report TR070005 April 2007

82



Chapter 5

Alternative Algorithms

5.1 CPD Algorithm

5.1.1 Algorithm description

The Coherent Point Drift (CPD) algorithm is a probabilistic method es-
sentially thought for non-rigid registration but it can be used in the rigid case
as well. The registration is treated as a Maximum Likelihood estimation prob-
lem with motion coherence constraint over the velocity field such that one
point set moves coherently to align with the second set. The idea is, given
two point sets, to fit a Gaussian Mixture Model to the first point set, whose
Gaussian centroids are initialized from the points in the second set. The pro-
cess of adapting the Gaussian centroids from their initial position to their final
position is viewed as a temporal motion process with the imposed motion co-
herence constraint, over the velocity field, according to which points close to
one another tend to move coherently.

5.1.2 Registration results

Simulated performances are shown in the Figure 5.1-5.2 for the noiseless
case, whereas the noisy case is shown in the Figure 5.3-5.4. The algorithm is
robust to noise and to medium percentages of outliers but it cannot correctly
manage medium rotations, e.g. θ = −π/4, and high pergentage of outliers. In
fact, the failure percentage in such case is 1. Also, CPD registration error is
larger than ICPSAC one, it is useless in dynamic environment and computa-
tional demanding.
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Figure 5.1: Average registration error and standard deviation, respectively
on θ, Tx and Ty, obtained by using the CPD algorithm without
noise for different values of the angle rotation θ.
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Figure 5.2: Execution time and error probability of the CPD algorithm with-
out noise for different values of the angle rotation θ.
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Figure 5.3: Average registration error and standard deviation, respectively
on θ, Tx and Ty, obtained by using the CPD algorithm in presence
of noise for different values of the angle rotation θ.

86



UCLA C.S. Dept Technical Report TR070005 April 2007

−10 0 10 20 30 40 50 60 70 80 90
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Outliers Percentage

E
xe

cu
tio

n 
T

im
e 

[s
]

CPD Algorithm − With noise

 

 θ = 0 [rad]
θ = π/8 [rad]
θ = −π/6 [rad]
θ = π/5 [rad]

−10 0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Outliers Percentage

E
rr

or
 P

ro
ba

bi
lit

y

CPD Algorithm − With noise

 

 

θ = 0 [rad]
θ = π/8 [rad]
θ = −π/6 [rad]
θ = π/5 [rad]
θ = −π/4 [rad]

Figure 5.4: Execution time and error probability of the CPD algorithm in
presence of noise for different values of the angle rotation θ.
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5.2 Kernel Correlation Algorithm

5.2.1 Algorithm description

The Kernel Correlation Algorithm faces the point set registration problem
as finding the maximum kernel correlation configuration of the two point sets
to be registered. Kernel Correlation (KC) is an affinity measure and on a point
set X it is defined as the total sum of the KC of all the points qk in the set,

KC(X ) =
∑

i

KC(xqi ,X ) , (5.1)

where KC(xqi ,X ) is defined as

KC(xqi ,X ) =
∑
i6=j

KC(xqi ,xqj) . (5.2)

Finally, KC on two points is defined as

KC(xqi ,xqj) =

∫
K(x,xqi)K(x,xqj)dx . (5.3)

where K(x,xqi) is a kernel function centered at the data point xqi . If Gaussian
kernel is used, then

KG(x,xqi) = (πσ2)−n/2 exp(−‖x− xqi‖2/σ2) , (5.4)

where n is the vector’s dimension and the equation (5.3) can be written as

KCG(xqi ,xqj) = (2πσ2)−n/2 exp(−‖xqi − xqj‖2/2σ2) . (5.5)

At this point, given two finite size point sets, the model set M and the scene
set S, the KC method is defined as finding the parameter vector a of the
transformation gms which minimizes the following cost function

e(S,M, a) = −
∑
xs∈S

∑
xm∈M

KC(xm, gms(xs, a)) , (5.6)

where each transformed scene point xs is interacting with all the scene points.
It can be easily shown that

KC(M∪ gms(S, a)) = KC(M) + KC(gms(S, a))− 2e(S,M, a) . (5.7)

where KC(M) is independent from a and under rigid transformation, KC(gms(S, a))
is constant. Also, it can be shown that the equation (5.6) can be rewritten as

e(S,M, a) = −N2

∫
x

PMPSdx , (5.8)
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where

PM(x) =
∑

xm∈M

K(x,xm)/N , PS(x, a) =
∑
xs∈S

K(x, gms(xs, a))/N , (5.9)

are the kernel density estimates.

5.2.2 Registration results

As for CPD algorithm case, simulated performances are given. The noise-
less case is shown in the Figure 5.5-5.6, whereas the noisy case is shown in
the Figure 5.7-5.8. KC cannot manage outliers as well as CPD and moreover
its registration error is much larger than ICPSAC one. Also is computational
demanding and useless in dynamic environment.
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Figure 5.5: Average registration error and standard deviation, respectively
on θ, Tx and Ty, obtained by using the KC algorithm without
noise for different values of the angle rotation θ.
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Figure 5.6: Execution time and error probability of the KC algorithm with-
out noise for different values of the angle rotation θ.
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Figure 5.7: Average registration error and standard deviation, respectively
on θ, Tx and Ty, obtained by using the KC algorithm in presence
of noise for different values of the angle rotation θ.
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Figure 5.8: Execution time and error probability of the KC algorithm in
presence of noise for different values of the angle rotation θ.
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Chapter 6

Conclusion

Point set registration is a problem of pivotal importance that continues
to attract considerable interest. In this work we present a novel algorithm
for point set registration which unifies some previous works in the field, that
exhibits better tolerance to outliers and is more computationally efficient than
competiting methods.

Most of the existing techniques for solving the partially-overlapping regis-
tration problem have the following limitations:

• they cannot ensure a correct solution even for the noiseless case;

• they require a good initial estimate of the rigid transformation between
the two data sets.

In this thesis, we have proposed the ICPSAC approach, which has none of the
above limitations. It can be used for the featureless case while requiring no
initial estimates. Furthermore, our method is faster than most of the existing
methods. Also, it uses the rigidity constraint among the pre-selected points
to restrict the possible associations. Experiments on both syntethic and real
data have demonstrated the effectiveness of our method and that it is efficient
and reliable for registering lowly overlapping range images.
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Appendix A

Corresponding Point Set
Registration

The closed form procedures for yielding the least squares rotation and trans-
lation is reviewed. The quaternion-based algorithm is preferred in three di-
mensions, while in two dimensions we use a simple algorithm that finds the
oriented angle between two vectors.

A.1 Quaternion-based Algorithm

The unit quaternion is a vector qR =
[
q0 q1 q2 q3

]T ∈ R4, where q0 ≥ 0,
and q2

0 + q2
1 + q2

2 + q2
3 = 1. The rotation matrix R ∈ SO(3) generated by a unit

rotation quaternion is

R =

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q2

0 + q2
2 − q2

1 − q2
3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 + q2

3 − q2
1 − q2

2

 . (A.1)

Let qT =
[
q4 q5 q6

]T
be a translation vector. Now, the complete registration

state vector is q =
[
qR qT

]T
.

Let S = {si}Ns
i=1 be a measured data point set to be aligned with a model

point set M = {mi}Nm
i=1 where Ns = Nm = N and where each point si corre-

sponds to the point mi with the same index. The function to be minimized
is

f(q) =
1

N

N∑
i=1

∥∥xmi −R(qR)xsi − qT

∥∥2
. (A.2)
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The center of mass µs and µm are given by

µs =
1

Ns

Ns∑
i=1

xsi , µm =
1

Nm

Nm∑
i=1

xmi . (A.3)

The cross-covariance matrix Σ of the sets S and M is then given by

Σ =
1

N

N∑
i=1

[(xsi − µs)(x
mi − µm)T ] =

1

N

N∑
i=1

[(xsi)(xmi)T ]− µsµ
T
m . (A.4)

The vector ∆ = [A23 A31 A12]
T where Aij = (Σ − ΣT )ij, is used to form the

symmetric matrix Q(Σ)

Q(Σ) =

[
tr(Σ) ∆T

∆ ΣT − tr(Σ)I3

]
, (A.5)

where I3 is the 3×3 identity matrix. The unit eigenvector qR corresponding to
the maximum eigenvalue of the matrix Q(Σ) is selected as the optimal rotation.
The optimal translation vector is then given by

qT = µm −R(qR)µs . (A.6)

A.2 Vector-based Algorithm

In the 2-D case, the transformation between two point sets is found by
using a simpler procedure that needs only two couple of corresponding points.
Given two points m1 and m2 belonging to the model set and the corresponding
scene set points s1 and s2, we want to find the transformation that aling the
two couple of points.

First of all, we found the vectors ~v1 and ~v2 defined by the couple of points,
that is

~v1 = xm1 − xm2 , ~v2 = xs1 − xs2 , (A.7)

then the unsigned angle θ̄, i.e. the angle between the two vectors, can be found
using the inner product relation

θ̄ = arccos
( 〈~v1, ~v2〉
‖~v1‖‖~v2‖

)
. (A.8)

Now, for finding the right sign to give to θ̄ for finding θms, we check if

sign(〈~v1, ~v2〉) 6= sign(〈~v1, ~v3〉) , (A.9)
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Figure A.1: A rigid body transformation between a scene frame < S > and
a model frame < M >.

where ~v3 is ~v2 rotated of π/2. In such case the signed angle is θms = −θ̄.
Otherwise θms is simply equal to θ̄.

At this point, the translation can be found and it is equal to

Tms = xm1
m −Rmsx

s1
s , (A.10)

where Rms ∈ SO(2) is the rotation matrix obtained by θms.
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