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ABSTRACT 
Wireless embedded systems, especially life-critical body-area 
networks, need security in order to prevent unauthorized and 
malicious users from injecting traffic and accessing confidential 
data. Coupled with the security costs in system performance and 
power consumption, embedded systems are also restricted by the 
type of security that can fit in their limited memory.  The 
Dynamic Security System (DYNASEC) architecture is a 
reconfigurable security system that allows a central node to 
program other nodes with different levels of security.  A delay- 
aware heuristic based on throughput and encryption decides when 
the level of security should be changed under various timing 
constraints. The goal is to maximize the strength of the security 
while meeting the deadline.  This experimental analysis of a 
reconfigurable electrocardiogram (ECG) application validates the 
efficacy of the DYNASEC architecture in a body area network. 
Our experiments demonstrate that DYNASEC enables lightweight 
medical embedded systems to dynamically optimize security 
levels to meet timing constraints in a body sensor network. 

Categories and Subject Descriptors 
B.8.2 [Performance and Reliability]: Performance Analysis and 
Design Aids 

General Terms 
Performance, Design, Experimentation, Security. 

Keywords 
Performance evaluation, security, embedded systems, body area 
networks, quality of service, medical applications, adaptable 
systems. 

1. INTRODUCTION 
Security is becoming increasingly important in wireless 
embedded systems, especially when the data being transmitted is 
life-critical and/or confidential via legal mandate. Nowhere is this 
more important than body-area networks where motes embedded 
on the patient’s body could be monitoring a potentially fatal 
health condition and/or providing the controls for a drug delivery 
system that could save the patient’s life in the result of an 
anomaly [12]. Security is challenging, however, because 
embedded systems typically have limited battery supplies and 
processing power coupled with the fact that real-time applications 
have stringent timing constraints that cannot be violated. Within 
the security community, the trend has been toward stronger 
cryptographic algorithms with increased processing requirements; 
meanwhile, increased wireless communication rates have placed 
further strain on battery lifetimes. The result is called a security-
processing gap, a term which recognizes the collective disparity 
between security requirements and the processing capabilities of 
embedded processors [23]. Wireless communication in networked 

embedded systems, furthermore, is limited by bandwidth and 
power. Such systems must minimize the number of packets sent 
in order to conserve precious power resources.  
Wireless networks are more vulnerable to security attacks than 
wired networks, because the malicious intruder simply needs to 
activate an antenna rather than physically compromising a wire. 
An attacker can easily eavesdrop or inject data into an 
unprotected network simply by receiving or transmitting. 
Consequently, data integrity and confidentiality must be ensured 
while maintaining network availability; however, approaches to 
security must deviate from those employed for wired networks 
due to limited computational and communication capabilities of 
the nodes in the network. 
Sensor Operating System (SOS) is an operating system that 
provides code migration between different embedded systems 
[11]. Code migration is a service that enables one embedded 
system to download a program or module to be executed on 
another. Code migration is essential for creating networked 
embedded systems that can be reconfigured after deployment. 
Code migration, unfortunately, makes SOS particularly 
vulnerable to attacks on authentication, whereby an attacker 
injects a malicious program onto a node which will then execute 
it. This type of attack can be countered by using symmetric key 
cryptography that authenticates each message with a MIC 
(Message Integrity Code), a secure checksum of the message. 
Snooping is prevented by encrypting the messages with either the 
Skipjack or RC5 ciphers. In the abstract, this solution is not 
particularly novel; however, an effective implementation that 
meets timing constraints, despite the security processing gap, and 
minimizes power consumption while providing at least the 
minimum amount of required security is difficult to achieve.  
As a motivating example, consider a wireless network in the 
healthcare industry. The Health Insurance Portability and 
Accountability Act (HIPAA) mandates that any healthcare 
professional who “maintains or transmits health information shall 
maintain reasonable and appropriate administrative, technical, and 
physical safeguards to ensure the integrity and confidentiality of 
the information; to protect against any reasonably anticipated 
threats or hazards to the security or integrity of the information; 
and unauthorized uses or disclosures of the information.”  If the 
sensors attached to the device detect abnormal health-related 
activity, then additional processing power is required and extra 
packets must be transmitted to take care of the situation within 
hard real-time constraints [12].  
Clearly, the medical condition of the patient experiencing an 
abnormal health problem must take precedence over the 
confidentiality of the data.  Here, we assume that the cost of 
security under normal operating conditions is too high to allow 
the deadline to be met. Consequently, a reconfigurable type of 
security that lowers the strength of the security while enabling the 
system to reach its deadline is necessary; however, the security 
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should be lowered no further than the absolute minimum that will 
permit the system to meet its deadline. 
To meet these needs, we have designed and implemented 
Dynamic Security System (DYNASEC), a reconfigurable security 
architecture for Sensor Operating Systems (SOS). The primary 
contributions of this paper include: 
(1) The DYNASEC architecture, which ensures message integrity 

and confidentiality when programs are uploaded wirelessly 
on embedded systems. 

(2) A lightweight delay-aware system that selects the maximum 
level of security while meeting timing constraints. 

(3) An experimental analysis in a simulation that establishes 
DYNASEC’s ability to maximize security while meeting 
timing constraints. 

The overall goal of DYNASEC is to dynamically maximize 
security settings in order to meet timing constraints. This sets 
DYNASEC apart from other established security protocols for 
embedded networks that have not addressed timing constraints in-
depth [2][16][10][19][13]. DYNASEC’s reconfigurable security 
architecture has two modes: (1) integrity and (2) 
integrity+encryption. Integrity verifies that messages were not 
modified in transit; encryption ensures that only authorized nodes 
can read the information, which is broadcast across an otherwise 
insecure wireless channel. DYNASEC also implements two 
lightweight cryptographic protocols: Skipjack and RC5. 

The remainder of the paper is organized as follows.  Section 2 
discusses related research in security in embedded systems.  
Section 3 follows by describing the design and implementation of 
DYNASEC’s reconfigurable security architecture. Section 4 
describes the light-weight medical application that ran on top of 
the reconfigurable security architecture.  Section 5 describes the 
experimentation of delay in a simulation and explains the 
algorithm for the dynamic allocation of security.  Finally, Section 
6 culminates with conclusions and future work. 

2. RELATED WORK 
DYNASEC has been designed and implemented to meet the 
security and power utilization needs of the next generation of 
networked embedded systems. One of the most important design 
challenges for such systems is flexibility [22]. DYNASEC allows 
an embedded system sufficient flexibility to adapt to changing 
system requirements and to reprogram the embedded device via 
wireless code migration. 
Prior research has focused on implementing optimal security 
protocols on embedded systems or analyzing power consumption 
on embedded systems [8][29][16][10][19][13][21].  Previous 
work has also mentioned flexibility, reconfigurability, and 
adaptive execution of security protocols as future work 
[25][23][21] but has not tackled the problem directly.  
TinyPK [29] is a security scheme that provides authentication and 
key exchange between an external party and a sensor network. It 
is based on the well-known RSA cryptosystem using e=3 as the 
public exponent. RSA is public key cryptography whose public 
operations are very fast compared to other public key technology 
computations.  The security properties of the low exponent 
variant of RSA have been extensively studied [2].  The purpose of 
these variants is to reduce the runtime overhead of the algorithm 
for both wireless embedded devices and high-performance servers 

that are heavily loaded; clearly, the former pertains to this paper. 
Moreover, backwards compatibility is preserved. 
To make TinyPK practical for low power sensor devices, the 
authors [29] designed the system to implement only public key 
operations, data encryption and signature verification in the 
sensor network.  
DYNASEC, in contrast to TinyPK, allows the cryptographic 
algorithms to change depending on timing constraints. In 
DYNASEC, if timing constraints do not permit the encryption to 
be used, it can be swapped in favor of a lighter-weight protocol. 
Likewise, if a lighter-weight protocol (in terms of power 
consumption) is available and can meet the security constraints, 
then DYNASEC replaces the power expensive encryption to 
further reduce power consumption. 
Malan et al. [16] describe the first known implementation of 
elliptic curve cryptography (ECC) for embedded systems on the 
mica2 mote. ECC has smaller keys than other types of 
cryptography with the same level of security. Prior to this work, it 
was assumed—although never experimentally verified—that  
public key cryptography was too computationally expensive for 
wireless embedded systems. Fortunately, the authors were able to 
establish that public key cryptography is actually tractable on 
constrained embedded systems. Gura et al. [10] describe an 
implementation of RSA and ECC on mica2 motes using 
optimized assembly code. Their algorithm reduces the number of 
memory accesses in the mote. DYNASEC, once again, is not 
limited to any single cryptographic algorithm.  
The Timed Efficient Stream Loss-tolerant Authentication 
(TESLA) protocol [19] uses symmetric cryptographic functions to 
achieve asymmetric properties. Asymmetric properties prevent an 
unauthorized receiver who has somehow computed the secret key 
to a message from injecting malicious data into the network, 
effectively impersonating the sender. TESLA requires that all 
nodes in the network be loosely synchronized with the source, as 
well as agree on the timing structure and key disclosure delay. 
DYNASEC on the other hand does not need to be synchronized 
because all timing measurements are done within one node. 
TinySec [13] is a link layer security scheme for wireless sensor 
networks. TinySec provides link-by-link security, access control, 
message integrity, and confidentiality. Packet level authentication 
is provided using MAC (Message Authentication Code) and 
confidentiality is provided through Skipjack and RC5 encryption. 
DYNASEC provides similar functionality as TinySec in that it 
encrypts data bit by bit as it is transported over the radio.  
However, DYNASEC also it gives flexibility to the system 
because it allows it to switch between the different levels of 
security. 

3. DYNASEC SYSTEM DESIGN 
DYNASEC offers link-by-link integrity and encryption that has 
been implemented in an SOS. To ensure integrity, DYNASEC 
computes a Message Integrity Code (MIC) over the header and 
payload of the packet. The payload can also be encrypted after the 
MIC has been computed.  

3.1 Operating System and Hardware 
SOS, Sensor Operating System, [11] is an operating system 
designed specifically for embedded systems and uses a message 
passing system to sever ties between the core operating system 
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and individual applications (modules). Modules can be loaded or 
removed at run time without interrupting the core operating 
system.  Rather than using a main function, modules implement a 
message handler in the form of a single switch/case block that 
directs messages to their module specific code. 
SOS’s ability to dynamically upload modules makes it especially 
vulnerable to attacks on integrity, which is of particular 
importance in sensor networks. Users should be able to trust the 
values detected by the sensors that is collected and forwarded to 
more powerful centralized nodes for processing. To ensure 
integrity, unauthorized parties cannot be allowed to modify 
messages or inject their own messages into the network.  If an 
attacker can inject a message into the network that uploads a 
module or program to be executed, then the entire network will 
operate at the attacker’s whim. 
SOS can run on a Mica2 mote device [5]. The Mica2 mote has 
three components: a processor board, a sensor board, and a 
programming board. The processor board is a MPR400CA, which 
uses an Atmel ATmega 128L microprocessor with 128KB of 
internal flash memory. This microprocessor simultaneously 
executes sensor processing and the radio/network communication 
stack. The sensor board is a MTS310CA, and contains a light 
sensor, a temperature sensor, and acoustic sensor, a sound sensor, 
a 2-axis accelerometer, and a 2-axis magnetometer. The 
programming board is a MIB510 [5].  Additional sensor boards 
can also be added to the Mica2 mote, such as an ECG sensor 
board [7]. 
The implementation for DYNASEC was done in the kernel of 
SOS.  The security was implemented in the kernel because the 
kernel is more secure against malicious code.  The security levels 
however increased the size of the kernel.  The DYNASEC kernel 
takes up 39% of the internal memory. On the other hand, the 
original SOS kernel takes up 17% of the internal memory.  If an 
application program for the mote was memory intensive, only one 
type of encryption algorithm could be implemented in the kernel 
and the key size.   
The reason for the increased kernel size in DYNASEC is due to 
the tables (e.g. s-boxes) required for each different cryptographic 
algorithm; the size of the code itself is not nearly so large. This 
will be an inevitable affect of any cryptographic implementation 
on a memory-constrained device, unless new cryptographic 
algorithms are designed specifically to minimize the size of the 
data segment. Although an interesting area for future research, 
this is beyond the scope of DYNASEC.    

3.2 Authentication 
DYNASEC uses cipher block chaining (CBC-MIC), for 
computing and verifying MICs. CBC-MIC is efficient and fast, 
relies on a block cipher, and minimizes the number of 
cryptographic primitives implemented in memory. CBC-MIC is 
provably secure, but the messages must be a standard size. 
Bellare, Kilian and Rogaway [1] suggest three alternatives for 
generating MICs for variable sized messages. The lightweight 
variant that XORs the message length with the first plaintext 
block is implemented in DYNASEC. This XOR variant is more 
attractive than the other two variants developed because the 
length of the message is not needed until the end of the 
computation. 

A MIC size of 4 bytes was chosen for DYNASEC.  With a 4 byte 
MIC, an attacker has a 1 in 232 chance in blindly forging a valid 
MIC for a particular message. This number may not be large 
enough in conventional networks, but in sensor networks, this 
provides an adequate level of security. Attackers can try to flood 
the channel with forgeries, but on a 19.2kb/s channel, one can 
only send 40 forgery attempts per second, so sending 231 packets 
at this rate would take over 20 months!  The small size of the 
MIC is kept to 4 bytes because the majority of power 
consumption comes from radio due to the increased header [13]. 

3.3 Encryption 
DYNASEC protects against attacks on data integrity and 
eavesdropping under the assumption that the mote is not 
physically compromised. DYNASEC does not attempt to protect 
against replay attacks. Secure encryption requires two design 
decisions: selecting an encryption scheme and specifying the 
initialization vector (IV) format. In DYNASEC, an 8 byte IV and 
CBC is used.   
Skipjack is an asymmetric block cipher developed by the National 
Security Agency (NSA) and is implemented in DYNASEC 
because it performs well in embedded microcontrollers [13]. 
Skipjack uses a Feistal network with an s-box that uses 
permutations of numbers ranging from 0 to 255.  Skipjack has an 
80 bit key length and uses 32 rounds.  Two round functions, Rule 
A and Rule B, are used and they alternate every 8 rounds [27]. 
DYNASEC uses an 80 bit key for Skipjack encryption.  
The CBC algorithm uses Cipher Text Stealing (CTS) as described 
in Schneir’s Applied Cryptography and RFC-2040 [26].  In CTS, 
the ciphertext can be the same size as the plaintext, even when the 
plaintext is not a multiple of the block size.  Incremental 
decryption and encryption allows the incoming data stream to be 
processed one byte at a time.  Incremental decryption and 
encryption allows for cipher operations to be done as soon as each 
block of data is received from the network. This allows 
decryption to be pipelined with the arrival of more data.  
RC5 uses a simple block cipher, but has a variable block and key 
size.  RC5 uses a Feistal-like network with modular additions and 
XORs.  RC5 also has data dependent rotations or rounds that may 
make it susceptible to cryptanalysts [24].  The number of rounds 
in our implementation is twelve.  Twelve rounds were chosen 
because this is the minimum amount of rounds for the RC5 
protocol.  The minimum was chosen to stay coherent with our 
goals to keep the power utilization of the encryption as low as 
possible.  Since the RC5 key size is variable, DYNASEC allows 
the user to change the size of the keysize.  The key lengths used 
in our experiments are 80 and 160 bits.  The RC5 and Skipjack 
implementations are based on those described by Karlof et al. 
[13]. 
RC5 is a stronger cryptographic algorithm than Skipjack, and it 
also runs faster.  However, RC5 requires that a pre-computed key 
schedule to be stored in memory taking up 104 bytes for each 
key, 2.6% of the total RAM in a Mica2 mote.  However, RC5 is 
patented, making it less appealing for open-source and academic 
projects [13]. 

3.4 Keying 
In cryptographic design, a good rule of thumb is to use different 
keys for different applications. A DYNASEC key refers to a pair 
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of keys, one for encrypting data, and one for computing MICs; 
both keys are 64 bytes. The simplest keying mechanism uses a 
single network-wide key among the authorized nodes. A network-
wide key provides a baseline level of security, maximizes 
usability, and minimizes configuration. Any authorized node can 
exchange messages with any other authorized node, and all 
communication is encrypted. Messages from unauthorized nodes 
are rejected. 
DYNASEC has four 64 byte keys as input to CBC-MIC and 
CBC-encryption. Different keys are used for different levels of 
security so that if one level is hacked, the attacker does not have 
the key to the other levels. To improve the strength of the keys, 
future work would include changing the keys dynamically over 
time.  

3.5 Communication 
The message format of SOS has nine components: destination id, 
source id, destination address, source address, message type, 
payload length, data, and status flag.  In SOS, the payload is 
dynamically allocated via calls to malloc, enabling messages of 
arbitrary length, with a maximum size of 256 bytes. All 
components except the flag byte, which has two free bits, are 
transmitted over the radio. To differentiate among security modes, 
SOS has been modified to transmit the flag byte over the network. 
In addition, the flag byte can signal high priority messages. 
The Initialization Vector (IV) consists of 8 bytes in total. The first 
four bytes are the destination address (2 bytes), message type (1 
byte), and message length (1 bytes). The last 4 bytes are 
initialized with random numbers when the mote initializes, and is 
incremented by one after each packet is sent over the network.  A 
4 byte MIC (Message Integrity Code) is also included at the end 
of the payload.  
An important design decision was to keep the original message 
structure allowing for backwards compatibility with pre-existing 
SOS applications.  As a message passing system, SOS uses the 
same message structure for all kinds of communication: (1) 
between different nodes using the network and (2) between 
different modules within the same node. The new DYNASEC 
fields were incorporated in the original SOS message format; 
however, additional changes were required to the radio driver, 
since the new fields transmitted over the radio are dependent on 
the security mode used by the application.  
The data was encrypted as it was sent over the radio bit by bit.  
The advantage of encrypting the data over the radio is to avoid 
saving two large data structures for the encrypted and decrypted 
version. This, however, puts a delay constraint on the data. The 
data cannot spend more time being encrypted/decrypted than it 
takes to send a byte.   
The Mica2 radio driver was modified for DYNASEC to 
accommodate the different security modes. Power is saved by 
encrypting data as it goes over the radio bit-by-bit, eliminating the 
need to store the data twice. The Mica2 radio driver in SOS is a 
state machine, with different submachines for transmission and 
reception.  
Figure 1a and Figure 1b show the diagram for the transmission 
and reception submachines respectively. The new states, 
RXSTATE_DYNASEC and TXSTATE_DATA_DYNASEC, 
were added to each submachine to handle authentication and 

encryption in the radio. In the case of the transmission 
submachine, the code checks if the appropriate flag bits are set for 
DYNASEC. 

  
Figure 1a: Radio State Diagram – TX_STATE Submachine. 

 
Figure 1b: Radio State Diagram – RX_STATE Submachine. 

If only authentication is set, then the initialization vector is not 
sent over the radio. In this case the MIC computation routine is 
called and the MIC is computed over the entire packet, headers 
and payload. If encryption is set, then the IV and the MIC are sent 
over the radio, and the encryption routines are called to encrypt 
only the payload of the message.  
When receiving a packet, the code waits for the reception of the 
flag byte. When this byte is received, the appropriate bits are 
checked and, depending on the security modes used to send the 
packet, the MIC/de-encryption routines may be called. 
The communication function used by SOS to send packets over 
the network was modified to enable Skipjack cryptography.  
Skipjack works with blocks of 8 bytes size. Therefore, the 
communication function was changed so that when the length is 
smaller than 8 bytes, a data pointer would be allocated and 
padded with extra zeros to bring the data to 8 bytes. 

4. LIGHTWEIGHT MEDICAL SYSTEM 
APPLICATION 
DYNASEC is built specifically for resource constrained 
lightweight devices. Due to the portability requirements of Body 
Area Networks (BANs), they are comprised mainly of lightweight 
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medical systems with miniature embedded sensors that monitor 
physiological activities of the body or probe the outside 
environment for harmful chemicals, dangerous radiation levels, 
and a more general score of events.  Even though ubiquitous 
BANs may contain various types of non-invasive and in-vivo 
sensors, our application focuses specifically on the 
electrocardiogram (ECG) sensor.  
A sensor board for the ECG sensor was developed by Fulford-
Jones et al. [7]. The CodeBlue project [15] includes a sensor-
network-based ECG application; unlike DYNASEC, however, 
CodeBlue does not attempt to dynamically vary security to meet 
timing constraints. 

4.1 Heart Detection Algorithm 
A distinctive characteristic of the ECG signal is that transmitting 
the waveform of the ECG takes up a lot of bandwidth.  When 
several ECG waveforms are transmitted over the network, the 
heavy network load of the waveforms reduces throughput in the 
network. Additionally, high noise interference from movement of 
the patient results in an undecipherable waveform created while 
signal processing on the sensor. Therefore, a lightweight ECG 
heartbeat extraction algorithm was developed to extract the 
heartbeat of the patient from the ECG waveform and to be 
resilient to noise. The ECG extraction algorithm is based on the 
SQRS algorithm [20], which can be found on MIT’s physionet 
website [18]. The algorithm has been modified to improve 
performance when tested over the MIT-BIH database of ECG 
waveforms with different forms of simulated noise superimposed 
on the underlying signals. Specifically, the thresholding method 
was modified to make it more robust to noise experienced on the 
ECG leads. The original SQRS algorithm extracts features by 
using the derivation of the waveform to classify the features.  
From experimental testing on the MIT-BIH database and on ECG 
sensor boards attached to embedded systems, the algorithm’s 
absolute threshold to classify features occasionally misclassified 
features due to noise. Our algorithm implemented a moving 
threshold with a lower and an upper value that were independent 
of one another and resulted in it being more robust to the specific 
types of noises experience on the embedded ECG medical 
systems. Due to memory constraints on the lightweight medical 
device, additional noise classification was removed from the 
algorithm in order to make it as small and lightweight as possible. 
The ECG algorithm first passes the incoming signal through a 
simple FIR filter with coefficient weights [1.5, 0, -1.5].  
Assuming a sampling frequency of 100 Hz, this gives a weighted 
derivative of the incoming signal with a max gain near 36 Hz 
achieved with the original FIR filter employed by the SQRS 
algorithm. This signal is then tested to see if it passes either an 
upper or lower threshold, both of which are dynamically updated. 
If the signal passes the upper and lower signals in an alternating 
fashion within 190 milliseconds of each occurrence, the detection 
of an R wave is declared. If more than four threshold crossings 
occur in an alternating fashion within 190 milliseconds of each 
other, the algorithm waits to see if more occurrences occur within 
240 milliseconds of each other to prevent artifacts from being 
detected as beats.  
The heart rate detection algorithm was tested over 48 ECG 
recordings in the MIT-BIH arrhythmia database of ECG 
recordings [18].  Combined noise including abrupt baseline shifts 

and drift, power line noise, EMG noise and motion artifact noise 
was superimposed on each recording, and the mean positive 
predictivity1 and sensitivity2 was measured and were found to be 
97.6%, 91.9% respectively. The types and characteristics of super 
imposed noise were based on work by Freisen et al. [6] and 
observations of ECG waveforms recorded on portable lightweight 
medical systems [17].   
To determine heart rate, the algorithm calculates the reciprocal of 
the interval between the times of detected R waves.  After five 
seconds of no detected beats, the algorithm declares a heart rate of 
zero beats per minute. Upon receiving zero beat per minutes, a 
health care professional would check on the patient to see if the 
leads have fallen off or failed or if the patient has died. 

4.2 Granularity of ECG waveform 
The frequency of the ECG waveform can also be modified to vary 
the granularity of the received waveform. Obviously, a higher 
frequency will capture more data and reveal a more precise 
waveform; however, if several ECG devices are in the vicinity, a 
lower frequency could improve the overall network capacity.   
Several assumptions are made in our observations. First, we 
assume that the Skipjack and RC5 cryptographic algorithms from 
[13] are secure. Secondly, we assume that several ECG devices 
will be in the same vicinity and may result in congestion. In an 
application such as triage [17], this is a valid assumption. Triage 
occurs during a mass casualty incident when hundreds or 
thousands of people are injured. If an electronic triage system was 
remotely monitoring the vital signs of the patients, many ECG 
motes would be in close vicinity to one another. 

5. EXPERIMENTATION 
DYNASEC was run in a simulation to analyze the power 
utilization and processing delay on the Mica2 mote.  Specifically, 
we analyzed how the different levels of security and various 
packet sizes affect delay and power.  In order to quantitatively 
analyze the delay and power, the code was run in the Avrora 
simulation environment [28]. Avrora simulates the embedded 
systems platform by running the actual microprocessor program. 
Avrora finds a good medium between cycle-accurate simulation, 
which can require excessive simulation time, and lower 
granularity functional simulations. Avrora recognizes that many 
embedded systems go to sleep on a regular basis and triggers 
simulation only when an event is at the head of the queue.  Since 
Avrora is cycle-accurate, it models all low levels events in the 
application. Accurate Prediction of Power Consumption (AEON) 
is a power model built within Avrora that used actual 
measurements for calibration and validation [14]. 

DYNASEC has four levels of security: L0: plaintext; L1: MIC 
authentication; L2: Skipjack encryption with a 64 bit key; and L3: 
RC5 encryption with a 64 bit key.  L0 is the least secure, while L3 
is the most secure.  Each level of security has a processing delay 
                                                                 
1 Predictivity is defined as true_positives/(true_positives + 

false_positives) and gives the percent of declared beats that 
were truly beats. 

2 Sensitivity is defined as true_positives/(true_positives + 
false_positives) and gives the percent of declared beats that 
were truly beats. 
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from the encryption and decryption associated with it. As the 
level of security increases, the processing delay also increases. 
Our system changes the amount of information that is transmitted 
and the type of encryption in order to meet timing constraints in 
the network.  This heterogeneous network can be composed of 
different types of devices with different security capabilities and 
constraints.  For simplicity, we consider that all the devices in the 
network are embedded ECG medical systems that can change to 
all four levels of security. We also assume that the forwarder does 
not adjust the level of security when forwarding packets in the 
network.  DYNASEC can send data in three sizes: 1 byte for heart 
rate, 50 bytes for low ECG waveform sample frequency, and 100 
bytes for high ECG waveform sample frequency. 

5.1 Processing Delay Measurements 
The processing delay for the four levels of security was measured 
at different granularities (100 bytes, 50 bytes, and 1 byte) were 
measured for normalized time periods. As can be seen in Figure 
2, modifying the size of the packet has a large effect on delay.  
Also, as the security levels increases, the processing delay also 
increases. Switching from the heart rate extraction algorithm to a 
waveform greatly reduces the number of packets that can be sent 
out into the network by approximately 75 fold.  Therefore, when 
the network becomes overloaded and cannot support all the data, 
a lower level of security will selected by the light-weight 
embedded systems.  Also, in the case when one node has a large 
amount of high priority data that must reach the sink, the nodes in 
the networks can modify their system so that all systems meet 
their deadlines. By optimizing the level of security, DYNASEC 
allows a healthcare provider to extract enough information to 
effectively monitor patients and still comply by HIPAA 
guidelines. Maximal security at all times would be ideal, but is 
unfortunately unrealistic for the current generation of wireless 
embedded devices employed in BANs. 

Processing Delay of DYNASEC Security Levels 
with Different Packet Sizes for the ECG 
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Figure 2: Processing Delay of DYNASEC Security Levels with 

Different Packet Sizes for the ECG application 

5.2 Power Measurements 
Detailed power measurements (represented in cycles) were taken 
for a single node for start-up and normalized periods with varying 
timeouts. The power was measured for the first four security 
levels in DYNASEC. All security levels had similar distributions 
of power among the CPU, leds, radio, sensor board, and flash 
components.  The variance between the percentages for the first 

four security levels was less than one percent. As can be seen in 
Figure 3, most of the power is consumed by the radio. The second 
largest consumer of power in the mote is the CPU as it does 
processing of encryption and other functionalities. 
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Figure 3: Power Distribution in Mica2 Mote for Level Four 
Security 

Due to the fact that the radio takes up the most power and our 
optimizations are on the encryption and decryption are on the 
CPU, the power levels did not vary greatly between different 
security levels. Therefore, power was not used as a metric for 
changing the security level. 

5.3 Dynamic Security Allocation 
Dynamic security allocation is modeled as a budgeting problem 
on a directed acyclic graph (DAG) representing communication 
links in a network. It is assumed that data is collected at sensors 
and routed through acyclic paths toward a centralized collection 
of nodes for further processing. Unlike prior work on budgeting in 
VLSI/CAD (e.g. [9]), DYNASEC must compute a solution 
efficiently in real-time rather than optimally offline.  
Let V = {v1, …, vN} be the nodes in the network. Communication 
links in the network are organized as a DAG G(V, E), where V is 
the set of nodes and E is a set of edges. An edge (vj, vk)∈E 
indicates the existence of a communication link from vj to vk. The 
delay of e, denoted D(vj, vk) is the time required to transmit a 
packet across the link from vj to vk.  
Each security algorithm si has an associated delay di, the time 
required to encrypt the data. qi is the probability that si will be 
broken by an adversary at a single node and pi = 1 – qi is the 
probability that si will not broken. We assume that there are M 
different security algorithms. In the case of this paper, M = 5.  
Let cji = 1 if node vj selects security algorithm si and 0 otherwise. 
A legal solution to the problem defined above assigns exactly one 
security algorithm to each node in the network.  

Definition 1: The security of a system, S, is defined to be the 
aggregate probability that there are no security failures: 

∏∑
= =

=
N

j

M

i
iji pcS

1 1

         (1) 

Definition 2: A path P is a sequence of nodes P = <v1, …, vK> 
such that there is a link from vj to vj+1, 1 < j < K-1. The delay of 
P, denoted D(P), is computed as follows, and includes the delay 
of the security algorithm, which is performed at v1.  
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In a DAG, a source is a node with no predecessors and a sink is a 
node with no successors. The longest possible line of 
communication in a DAG is from a source to a sink. Let P* be the 
set of all paths originating on sources and terminating on sinks.  
Lastly, T is defined to be a global timing constraint, which must 
be met in order for the embedded system to transmit the necessary 
packets in order to respond to an anomaly.  
The problem statement and formulation are as follows: 

Problem Statement: Given a network modeled as a DAG 
G(V,E), assign security algorithm si to each node such that the 
overall security of the system is maximized while meeting the 
global timing constraint. 

Problem Formulation: 

 Maximize: S            (3) 

 Subject to the Following Constraints: 

 ∑
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1  j∀          (4) 

 *PP∈∀  ( ) TPD ≤        (5)  

Constraint (4) ensures that exactly one security algorithm is 
assigned to each node. Constraint (5) ensures that each source-to-
sink path in the DAG satisfies the timing constraint. Since every 
possible communication-path is a sub-path of some source-to-sink 
path, constraint (5) satisfies every possible communication path in 
the DAG.  
Currently, we have implemented a relatively efficient greedy 
algorithm that solves the problem as described above. In the 
algorithm, each node dynamically lowers its security level if it 
cannot achieve a desired level of throughput, and dynamically 
raises its security level if its current throughput level is 
significantly higher than the minimal threshold. On a node-by-
node basis, this approach will ensure that constraint (5) is 
satisfied; however, there is no guarantee that the value of S, in 
equation (3), will be anywhere close to maximal.  
Complex solvers for budgeting problems, however, are not 
realistic in this situation. The reason is that the motes already 
have limited memory and a solver that uses offline methods such 
as linear programming or network flow would be too large; 
likewise, the speed of the solution is practically more important 
than its quality, since the overall response of the network must be 
rapid in life-critical situations. As stated earlier, solving the 
budgeting problem effectively and efficiently is future work, and 
is intended solely to augment and improve our current solution. 

6. CONCLUSION 
In conclusion, an authentication and encryption scheme with four 
levels of security was created in DYNASEC.  The application 
layer had two distinct security modes: (1) authentication and (2) 
authentication and encryption. The dynamic uploading of 
modules in the SOS operating system makes it especially 
vulnerable to attacks on authentication.  An attacker can upload 
its own malicious programs onto other nodes in the network. We 

have countered against this attack by using symmetric key 
cryptography and authenticating each message with a MIC 
(Message Integrity Code), a secure checksum of the message.  We 
have also guarded against snooping by encrypting the messages 
with SKIPJACK or RC5. 
A reconfigurable security system was presented that switched 
between different security levels and packet sizes depending on 
timing constraints.  DYNASEC’s architecture gives the embedded 
system the flexibility to adapt to the dynamic environment where 
it is deployed.  DYNASEC takes advantage of SOS’s unique 
architecture and use the SPI interrupt handler to send only the 
necessary headers over the network.   Other operating systems for 
embedded systems, such as TinyOS, cannot dynamically change 
the header length without manually reprogramming the embedded 
system.  DYNASEC’s adaptability gives systems a reasonable 
amount of security while meeting timing constraints. 
The heart rate detection algorithm produces reliable results while 
operating under considerable environmental and human noise, 
such as noise created by muscle activity and respiration.  Our 
reconfigurable application uses the heart rate detection algorithm 
to modify its packet size in response to network and system 
conditions.  These reconfigurable features make it practical to 
deploy ECG devices in a broad range of care providers, patients, 
and environments.   
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