
UCLA C.S. Dept Technical Report TR070003 February 2007

Delay Aware, Reconfigurable Security for Embedded
Systems

Tammara Massey, Philip Brisk, Foad Dabiri, William Bishop, Ricardo Oliveira, Majid Sarrafzadeh

ABSTRACT
Wireless embedded systems, especially life-critical body-area
networks, need security in order to prevent unauthorized and
malicious users from injecting traffic and accessing confidential
data. Coupled with the security costs in system performance and
power consumption, embedded systems are also restricted by the
type of security that can fit in their limited memory. The
Dynamic Security System (DYNASEC) architecture is a
reconfigurable security system that allows a central node to
program other nodes with different levels of security. A delay-
aware heuristic based on throughput and encryption decides when
the level of security should be changed under various timing
constraints. The goal is to maximize the strength of the security
while meeting the deadline. This experimental analysis of a
reconfigurable electrocardiogram (ECG) application validates the
efficacy of the DYNASEC architecture in a body area network.
Our experiments demonstrate that DYNASEC enables lightweight
medical embedded systems to dynamically optimize security
levels to meet timing constraints in a body sensor network.

Categories and Subject Descriptors
B.8.2 [Performance and Reliability]: Performance Analysis and
Design Aids

General Terms
Performance, Design, Experimentation, Security.

Keywords
Performance evaluation, security, embedded systems, body area
networks, quality of service, medical applications, adaptable
systems.

1. INTRODUCTION
Security is becoming increasingly important in wireless
embedded systems, especially when the data being transmitted is
life-critical and/or confidential via legal mandate. Nowhere is this
more important than body-area networks where motes embedded
on the patient’s body could be monitoring a potentially fatal
health condition and/or providing the controls for a drug delivery
system that could save the patient’s life in the result of an
anomaly [12]. Security is challenging, however, because
embedded systems typically have limited battery supplies and
processing power coupled with the fact that real-time applications
have stringent timing constraints that cannot be violated. Within
the security community, the trend has been toward stronger
cryptographic algorithms with increased processing requirements;
meanwhile, increased wireless communication rates have placed
further strain on battery lifetimes. The result is called a security-
processing gap, a term which recognizes the collective disparity
between security requirements and the processing capabilities of
embedded processors [23]. Wireless communication in networked

embedded systems, furthermore, is limited by bandwidth and
power. Such systems must minimize the number of packets sent
in order to conserve precious power resources.
Wireless networks are more vulnerable to security attacks than
wired networks, because the malicious intruder simply needs to
activate an antenna rather than physically compromising a wire.
An attacker can easily eavesdrop or inject data into an
unprotected network simply by receiving or transmitting.
Consequently, data integrity and confidentiality must be ensured
while maintaining network availability; however, approaches to
security must deviate from those employed for wired networks
due to limited computational and communication capabilities of
the nodes in the network.
Sensor Operating System (SOS) is an operating system that
provides code migration between different embedded systems
[11]. Code migration is a service that enables one embedded
system to download a program or module to be executed on
another. Code migration is essential for creating networked
embedded systems that can be reconfigured after deployment.
Code migration, unfortunately, makes SOS particularly
vulnerable to attacks on authentication, whereby an attacker
injects a malicious program onto a node which will then execute
it. This type of attack can be countered by using symmetric key
cryptography that authenticates each message with a MIC
(Message Integrity Code), a secure checksum of the message.
Snooping is prevented by encrypting the messages with either the
Skipjack or RC5 ciphers. In the abstract, this solution is not
particularly novel; however, an effective implementation that
meets timing constraints, despite the security processing gap, and
minimizes power consumption while providing at least the
minimum amount of required security is difficult to achieve.
As a motivating example, consider a wireless network in the
healthcare industry. The Health Insurance Portability and
Accountability Act (HIPAA) mandates that any healthcare
professional who “maintains or transmits health information shall
maintain reasonable and appropriate administrative, technical, and
physical safeguards to ensure the integrity and confidentiality of
the information; to protect against any reasonably anticipated
threats or hazards to the security or integrity of the information;
and unauthorized uses or disclosures of the information.” If the
sensors attached to the device detect abnormal health-related
activity, then additional processing power is required and extra
packets must be transmitted to take care of the situation within
hard real-time constraints [12].
Clearly, the medical condition of the patient experiencing an
abnormal health problem must take precedence over the
confidentiality of the data. Here, we assume that the cost of
security under normal operating conditions is too high to allow
the deadline to be met. Consequently, a reconfigurable type of
security that lowers the strength of the security while enabling the
system to reach its deadline is necessary; however, the security

UCLA C.S. Dept Technical Report TR070003 February 2007

should be lowered no further than the absolute minimum that will
permit the system to meet its deadline.
To meet these needs, we have designed and implemented
Dynamic Security System (DYNASEC), a reconfigurable security
architecture for Sensor Operating Systems (SOS). The primary
contributions of this paper include:
(1) The DYNASEC architecture, which ensures message integrity

and confidentiality when programs are uploaded wirelessly
on embedded systems.

(2) A lightweight delay-aware system that selects the maximum
level of security while meeting timing constraints.

(3) An experimental analysis in a simulation that establishes
DYNASEC’s ability to maximize security while meeting
timing constraints.

The overall goal of DYNASEC is to dynamically maximize
security settings in order to meet timing constraints. This sets
DYNASEC apart from other established security protocols for
embedded networks that have not addressed timing constraints in-
depth [2][16][10][19][13]. DYNASEC’s reconfigurable security
architecture has two modes: (1) integrity and (2)
integrity+encryption. Integrity verifies that messages were not
modified in transit; encryption ensures that only authorized nodes
can read the information, which is broadcast across an otherwise
insecure wireless channel. DYNASEC also implements two
lightweight cryptographic protocols: Skipjack and RC5.

The remainder of the paper is organized as follows. Section 2
discusses related research in security in embedded systems.
Section 3 follows by describing the design and implementation of
DYNASEC’s reconfigurable security architecture. Section 4
describes the light-weight medical application that ran on top of
the reconfigurable security architecture. Section 5 describes the
experimentation of delay in a simulation and explains the
algorithm for the dynamic allocation of security. Finally, Section
6 culminates with conclusions and future work.

2. RELATED WORK
DYNASEC has been designed and implemented to meet the
security and power utilization needs of the next generation of
networked embedded systems. One of the most important design
challenges for such systems is flexibility [22]. DYNASEC allows
an embedded system sufficient flexibility to adapt to changing
system requirements and to reprogram the embedded device via
wireless code migration.
Prior research has focused on implementing optimal security
protocols on embedded systems or analyzing power consumption
on embedded systems [8][29][16][10][19][13][21]. Previous
work has also mentioned flexibility, reconfigurability, and
adaptive execution of security protocols as future work
[25][23][21] but has not tackled the problem directly.
TinyPK [29] is a security scheme that provides authentication and
key exchange between an external party and a sensor network. It
is based on the well-known RSA cryptosystem using e=3 as the
public exponent. RSA is public key cryptography whose public
operations are very fast compared to other public key technology
computations. The security properties of the low exponent
variant of RSA have been extensively studied [2]. The purpose of
these variants is to reduce the runtime overhead of the algorithm
for both wireless embedded devices and high-performance servers

that are heavily loaded; clearly, the former pertains to this paper.
Moreover, backwards compatibility is preserved.
To make TinyPK practical for low power sensor devices, the
authors [29] designed the system to implement only public key
operations, data encryption and signature verification in the
sensor network.
DYNASEC, in contrast to TinyPK, allows the cryptographic
algorithms to change depending on timing constraints. In
DYNASEC, if timing constraints do not permit the encryption to
be used, it can be swapped in favor of a lighter-weight protocol.
Likewise, if a lighter-weight protocol (in terms of power
consumption) is available and can meet the security constraints,
then DYNASEC replaces the power expensive encryption to
further reduce power consumption.
Malan et al. [16] describe the first known implementation of
elliptic curve cryptography (ECC) for embedded systems on the
mica2 mote. ECC has smaller keys than other types of
cryptography with the same level of security. Prior to this work, it
was assumed—although never experimentally verified—that
public key cryptography was too computationally expensive for
wireless embedded systems. Fortunately, the authors were able to
establish that public key cryptography is actually tractable on
constrained embedded systems. Gura et al. [10] describe an
implementation of RSA and ECC on mica2 motes using
optimized assembly code. Their algorithm reduces the number of
memory accesses in the mote. DYNASEC, once again, is not
limited to any single cryptographic algorithm.
The Timed Efficient Stream Loss-tolerant Authentication
(TESLA) protocol [19] uses symmetric cryptographic functions to
achieve asymmetric properties. Asymmetric properties prevent an
unauthorized receiver who has somehow computed the secret key
to a message from injecting malicious data into the network,
effectively impersonating the sender. TESLA requires that all
nodes in the network be loosely synchronized with the source, as
well as agree on the timing structure and key disclosure delay.
DYNASEC on the other hand does not need to be synchronized
because all timing measurements are done within one node.
TinySec [13] is a link layer security scheme for wireless sensor
networks. TinySec provides link-by-link security, access control,
message integrity, and confidentiality. Packet level authentication
is provided using MAC (Message Authentication Code) and
confidentiality is provided through Skipjack and RC5 encryption.
DYNASEC provides similar functionality as TinySec in that it
encrypts data bit by bit as it is transported over the radio.
However, DYNASEC also it gives flexibility to the system
because it allows it to switch between the different levels of
security.

3. DYNASEC SYSTEM DESIGN
DYNASEC offers link-by-link integrity and encryption that has
been implemented in an SOS. To ensure integrity, DYNASEC
computes a Message Integrity Code (MIC) over the header and
payload of the packet. The payload can also be encrypted after the
MIC has been computed.

3.1 Operating System and Hardware
SOS, Sensor Operating System, [11] is an operating system
designed specifically for embedded systems and uses a message
passing system to sever ties between the core operating system

UCLA C.S. Dept Technical Report TR070003 February 2007

and individual applications (modules). Modules can be loaded or
removed at run time without interrupting the core operating
system. Rather than using a main function, modules implement a
message handler in the form of a single switch/case block that
directs messages to their module specific code.
SOS’s ability to dynamically upload modules makes it especially
vulnerable to attacks on integrity, which is of particular
importance in sensor networks. Users should be able to trust the
values detected by the sensors that is collected and forwarded to
more powerful centralized nodes for processing. To ensure
integrity, unauthorized parties cannot be allowed to modify
messages or inject their own messages into the network. If an
attacker can inject a message into the network that uploads a
module or program to be executed, then the entire network will
operate at the attacker’s whim.
SOS can run on a Mica2 mote device [5]. The Mica2 mote has
three components: a processor board, a sensor board, and a
programming board. The processor board is a MPR400CA, which
uses an Atmel ATmega 128L microprocessor with 128KB of
internal flash memory. This microprocessor simultaneously
executes sensor processing and the radio/network communication
stack. The sensor board is a MTS310CA, and contains a light
sensor, a temperature sensor, and acoustic sensor, a sound sensor,
a 2-axis accelerometer, and a 2-axis magnetometer. The
programming board is a MIB510 [5]. Additional sensor boards
can also be added to the Mica2 mote, such as an ECG sensor
board [7].
The implementation for DYNASEC was done in the kernel of
SOS. The security was implemented in the kernel because the
kernel is more secure against malicious code. The security levels
however increased the size of the kernel. The DYNASEC kernel
takes up 39% of the internal memory. On the other hand, the
original SOS kernel takes up 17% of the internal memory. If an
application program for the mote was memory intensive, only one
type of encryption algorithm could be implemented in the kernel
and the key size.
The reason for the increased kernel size in DYNASEC is due to
the tables (e.g. s-boxes) required for each different cryptographic
algorithm; the size of the code itself is not nearly so large. This
will be an inevitable affect of any cryptographic implementation
on a memory-constrained device, unless new cryptographic
algorithms are designed specifically to minimize the size of the
data segment. Although an interesting area for future research,
this is beyond the scope of DYNASEC.

3.2 Authentication
DYNASEC uses cipher block chaining (CBC-MIC), for
computing and verifying MICs. CBC-MIC is efficient and fast,
relies on a block cipher, and minimizes the number of
cryptographic primitives implemented in memory. CBC-MIC is
provably secure, but the messages must be a standard size.
Bellare, Kilian and Rogaway [1] suggest three alternatives for
generating MICs for variable sized messages. The lightweight
variant that XORs the message length with the first plaintext
block is implemented in DYNASEC. This XOR variant is more
attractive than the other two variants developed because the
length of the message is not needed until the end of the
computation.

A MIC size of 4 bytes was chosen for DYNASEC. With a 4 byte
MIC, an attacker has a 1 in 232 chance in blindly forging a valid
MIC for a particular message. This number may not be large
enough in conventional networks, but in sensor networks, this
provides an adequate level of security. Attackers can try to flood
the channel with forgeries, but on a 19.2kb/s channel, one can
only send 40 forgery attempts per second, so sending 231 packets
at this rate would take over 20 months! The small size of the
MIC is kept to 4 bytes because the majority of power
consumption comes from radio due to the increased header [13].

3.3 Encryption
DYNASEC protects against attacks on data integrity and
eavesdropping under the assumption that the mote is not
physically compromised. DYNASEC does not attempt to protect
against replay attacks. Secure encryption requires two design
decisions: selecting an encryption scheme and specifying the
initialization vector (IV) format. In DYNASEC, an 8 byte IV and
CBC is used.
Skipjack is an asymmetric block cipher developed by the National
Security Agency (NSA) and is implemented in DYNASEC
because it performs well in embedded microcontrollers [13].
Skipjack uses a Feistal network with an s-box that uses
permutations of numbers ranging from 0 to 255. Skipjack has an
80 bit key length and uses 32 rounds. Two round functions, Rule
A and Rule B, are used and they alternate every 8 rounds [27].
DYNASEC uses an 80 bit key for Skipjack encryption.
The CBC algorithm uses Cipher Text Stealing (CTS) as described
in Schneir’s Applied Cryptography and RFC-2040 [26]. In CTS,
the ciphertext can be the same size as the plaintext, even when the
plaintext is not a multiple of the block size. Incremental
decryption and encryption allows the incoming data stream to be
processed one byte at a time. Incremental decryption and
encryption allows for cipher operations to be done as soon as each
block of data is received from the network. This allows
decryption to be pipelined with the arrival of more data.
RC5 uses a simple block cipher, but has a variable block and key
size. RC5 uses a Feistal-like network with modular additions and
XORs. RC5 also has data dependent rotations or rounds that may
make it susceptible to cryptanalysts [24]. The number of rounds
in our implementation is twelve. Twelve rounds were chosen
because this is the minimum amount of rounds for the RC5
protocol. The minimum was chosen to stay coherent with our
goals to keep the power utilization of the encryption as low as
possible. Since the RC5 key size is variable, DYNASEC allows
the user to change the size of the keysize. The key lengths used
in our experiments are 80 and 160 bits. The RC5 and Skipjack
implementations are based on those described by Karlof et al.
[13].
RC5 is a stronger cryptographic algorithm than Skipjack, and it
also runs faster. However, RC5 requires that a pre-computed key
schedule to be stored in memory taking up 104 bytes for each
key, 2.6% of the total RAM in a Mica2 mote. However, RC5 is
patented, making it less appealing for open-source and academic
projects [13].

3.4 Keying
In cryptographic design, a good rule of thumb is to use different
keys for different applications. A DYNASEC key refers to a pair

UCLA C.S. Dept Technical Report TR070003 February 2007

of keys, one for encrypting data, and one for computing MICs;
both keys are 64 bytes. The simplest keying mechanism uses a
single network-wide key among the authorized nodes. A network-
wide key provides a baseline level of security, maximizes
usability, and minimizes configuration. Any authorized node can
exchange messages with any other authorized node, and all
communication is encrypted. Messages from unauthorized nodes
are rejected.
DYNASEC has four 64 byte keys as input to CBC-MIC and
CBC-encryption. Different keys are used for different levels of
security so that if one level is hacked, the attacker does not have
the key to the other levels. To improve the strength of the keys,
future work would include changing the keys dynamically over
time.

3.5 Communication
The message format of SOS has nine components: destination id,
source id, destination address, source address, message type,
payload length, data, and status flag. In SOS, the payload is
dynamically allocated via calls to malloc, enabling messages of
arbitrary length, with a maximum size of 256 bytes. All
components except the flag byte, which has two free bits, are
transmitted over the radio. To differentiate among security modes,
SOS has been modified to transmit the flag byte over the network.
In addition, the flag byte can signal high priority messages.
The Initialization Vector (IV) consists of 8 bytes in total. The first
four bytes are the destination address (2 bytes), message type (1
byte), and message length (1 bytes). The last 4 bytes are
initialized with random numbers when the mote initializes, and is
incremented by one after each packet is sent over the network. A
4 byte MIC (Message Integrity Code) is also included at the end
of the payload.
An important design decision was to keep the original message
structure allowing for backwards compatibility with pre-existing
SOS applications. As a message passing system, SOS uses the
same message structure for all kinds of communication: (1)
between different nodes using the network and (2) between
different modules within the same node. The new DYNASEC
fields were incorporated in the original SOS message format;
however, additional changes were required to the radio driver,
since the new fields transmitted over the radio are dependent on
the security mode used by the application.
The data was encrypted as it was sent over the radio bit by bit.
The advantage of encrypting the data over the radio is to avoid
saving two large data structures for the encrypted and decrypted
version. This, however, puts a delay constraint on the data. The
data cannot spend more time being encrypted/decrypted than it
takes to send a byte.
The Mica2 radio driver was modified for DYNASEC to
accommodate the different security modes. Power is saved by
encrypting data as it goes over the radio bit-by-bit, eliminating the
need to store the data twice. The Mica2 radio driver in SOS is a
state machine, with different submachines for transmission and
reception.
Figure 1a and Figure 1b show the diagram for the transmission
and reception submachines respectively. The new states,
RXSTATE_DYNASEC and TXSTATE_DATA_DYNASEC,
were added to each submachine to handle authentication and

encryption in the radio. In the case of the transmission
submachine, the code checks if the appropriate flag bits are set for
DYNASEC.

Figure 1a: Radio State Diagram – TX_STATE Submachine.

Figure 1b: Radio State Diagram – RX_STATE Submachine.

If only authentication is set, then the initialization vector is not
sent over the radio. In this case the MIC computation routine is
called and the MIC is computed over the entire packet, headers
and payload. If encryption is set, then the IV and the MIC are sent
over the radio, and the encryption routines are called to encrypt
only the payload of the message.
When receiving a packet, the code waits for the reception of the
flag byte. When this byte is received, the appropriate bits are
checked and, depending on the security modes used to send the
packet, the MIC/de-encryption routines may be called.
The communication function used by SOS to send packets over
the network was modified to enable Skipjack cryptography.
Skipjack works with blocks of 8 bytes size. Therefore, the
communication function was changed so that when the length is
smaller than 8 bytes, a data pointer would be allocated and
padded with extra zeros to bring the data to 8 bytes.

4. LIGHTWEIGHT MEDICAL SYSTEM
APPLICATION
DYNASEC is built specifically for resource constrained
lightweight devices. Due to the portability requirements of Body
Area Networks (BANs), they are comprised mainly of lightweight

DYNASEC=TRUE

TXSTATE_SYNC

TXSTATE_HEADER

TXSTATE_DATA

TXSTATE_PREAMBLE

DYNASEC=FALSE TXSTATE_DATA_DYNASEC

TXSTATE_FLUSH

TXSTATE_DONE

TXSTATE_CRC

RXSTATE_DATA

RXSTATE_CRC_BYTE

RXSTATE_HEADER

DYNASEC=FALSE

DYNASEC=TRUE

RXSTATE_CRC_BYTE2 RXSTATE_DYNASEC

UCLA C.S. Dept Technical Report TR070003 February 2007

medical systems with miniature embedded sensors that monitor
physiological activities of the body or probe the outside
environment for harmful chemicals, dangerous radiation levels,
and a more general score of events. Even though ubiquitous
BANs may contain various types of non-invasive and in-vivo
sensors, our application focuses specifically on the
electrocardiogram (ECG) sensor.
A sensor board for the ECG sensor was developed by Fulford-
Jones et al. [7]. The CodeBlue project [15] includes a sensor-
network-based ECG application; unlike DYNASEC, however,
CodeBlue does not attempt to dynamically vary security to meet
timing constraints.

4.1 Heart Detection Algorithm
A distinctive characteristic of the ECG signal is that transmitting
the waveform of the ECG takes up a lot of bandwidth. When
several ECG waveforms are transmitted over the network, the
heavy network load of the waveforms reduces throughput in the
network. Additionally, high noise interference from movement of
the patient results in an undecipherable waveform created while
signal processing on the sensor. Therefore, a lightweight ECG
heartbeat extraction algorithm was developed to extract the
heartbeat of the patient from the ECG waveform and to be
resilient to noise. The ECG extraction algorithm is based on the
SQRS algorithm [20], which can be found on MIT’s physionet
website [18]. The algorithm has been modified to improve
performance when tested over the MIT-BIH database of ECG
waveforms with different forms of simulated noise superimposed
on the underlying signals. Specifically, the thresholding method
was modified to make it more robust to noise experienced on the
ECG leads. The original SQRS algorithm extracts features by
using the derivation of the waveform to classify the features.
From experimental testing on the MIT-BIH database and on ECG
sensor boards attached to embedded systems, the algorithm’s
absolute threshold to classify features occasionally misclassified
features due to noise. Our algorithm implemented a moving
threshold with a lower and an upper value that were independent
of one another and resulted in it being more robust to the specific
types of noises experience on the embedded ECG medical
systems. Due to memory constraints on the lightweight medical
device, additional noise classification was removed from the
algorithm in order to make it as small and lightweight as possible.
The ECG algorithm first passes the incoming signal through a
simple FIR filter with coefficient weights [1.5, 0, -1.5].
Assuming a sampling frequency of 100 Hz, this gives a weighted
derivative of the incoming signal with a max gain near 36 Hz
achieved with the original FIR filter employed by the SQRS
algorithm. This signal is then tested to see if it passes either an
upper or lower threshold, both of which are dynamically updated.
If the signal passes the upper and lower signals in an alternating
fashion within 190 milliseconds of each occurrence, the detection
of an R wave is declared. If more than four threshold crossings
occur in an alternating fashion within 190 milliseconds of each
other, the algorithm waits to see if more occurrences occur within
240 milliseconds of each other to prevent artifacts from being
detected as beats.
The heart rate detection algorithm was tested over 48 ECG
recordings in the MIT-BIH arrhythmia database of ECG
recordings [18]. Combined noise including abrupt baseline shifts

and drift, power line noise, EMG noise and motion artifact noise
was superimposed on each recording, and the mean positive
predictivity1 and sensitivity2 was measured and were found to be
97.6%, 91.9% respectively. The types and characteristics of super
imposed noise were based on work by Freisen et al. [6] and
observations of ECG waveforms recorded on portable lightweight
medical systems [17].
To determine heart rate, the algorithm calculates the reciprocal of
the interval between the times of detected R waves. After five
seconds of no detected beats, the algorithm declares a heart rate of
zero beats per minute. Upon receiving zero beat per minutes, a
health care professional would check on the patient to see if the
leads have fallen off or failed or if the patient has died.

4.2 Granularity of ECG waveform
The frequency of the ECG waveform can also be modified to vary
the granularity of the received waveform. Obviously, a higher
frequency will capture more data and reveal a more precise
waveform; however, if several ECG devices are in the vicinity, a
lower frequency could improve the overall network capacity.
Several assumptions are made in our observations. First, we
assume that the Skipjack and RC5 cryptographic algorithms from
[13] are secure. Secondly, we assume that several ECG devices
will be in the same vicinity and may result in congestion. In an
application such as triage [17], this is a valid assumption. Triage
occurs during a mass casualty incident when hundreds or
thousands of people are injured. If an electronic triage system was
remotely monitoring the vital signs of the patients, many ECG
motes would be in close vicinity to one another.

5. EXPERIMENTATION
DYNASEC was run in a simulation to analyze the power
utilization and processing delay on the Mica2 mote. Specifically,
we analyzed how the different levels of security and various
packet sizes affect delay and power. In order to quantitatively
analyze the delay and power, the code was run in the Avrora
simulation environment [28]. Avrora simulates the embedded
systems platform by running the actual microprocessor program.
Avrora finds a good medium between cycle-accurate simulation,
which can require excessive simulation time, and lower
granularity functional simulations. Avrora recognizes that many
embedded systems go to sleep on a regular basis and triggers
simulation only when an event is at the head of the queue. Since
Avrora is cycle-accurate, it models all low levels events in the
application. Accurate Prediction of Power Consumption (AEON)
is a power model built within Avrora that used actual
measurements for calibration and validation [14].

DYNASEC has four levels of security: L0: plaintext; L1: MIC
authentication; L2: Skipjack encryption with a 64 bit key; and L3:
RC5 encryption with a 64 bit key. L0 is the least secure, while L3
is the most secure. Each level of security has a processing delay

1 Predictivity is defined as true_positives/(true_positives +

false_positives) and gives the percent of declared beats that
were truly beats.

2 Sensitivity is defined as true_positives/(true_positives +
false_positives) and gives the percent of declared beats that
were truly beats.

UCLA C.S. Dept Technical Report TR070003 February 2007

from the encryption and decryption associated with it. As the
level of security increases, the processing delay also increases.
Our system changes the amount of information that is transmitted
and the type of encryption in order to meet timing constraints in
the network. This heterogeneous network can be composed of
different types of devices with different security capabilities and
constraints. For simplicity, we consider that all the devices in the
network are embedded ECG medical systems that can change to
all four levels of security. We also assume that the forwarder does
not adjust the level of security when forwarding packets in the
network. DYNASEC can send data in three sizes: 1 byte for heart
rate, 50 bytes for low ECG waveform sample frequency, and 100
bytes for high ECG waveform sample frequency.

5.1 Processing Delay Measurements
The processing delay for the four levels of security was measured
at different granularities (100 bytes, 50 bytes, and 1 byte) were
measured for normalized time periods. As can be seen in Figure
2, modifying the size of the packet has a large effect on delay.
Also, as the security levels increases, the processing delay also
increases. Switching from the heart rate extraction algorithm to a
waveform greatly reduces the number of packets that can be sent
out into the network by approximately 75 fold. Therefore, when
the network becomes overloaded and cannot support all the data,
a lower level of security will selected by the light-weight
embedded systems. Also, in the case when one node has a large
amount of high priority data that must reach the sink, the nodes in
the networks can modify their system so that all systems meet
their deadlines. By optimizing the level of security, DYNASEC
allows a healthcare provider to extract enough information to
effectively monitor patients and still comply by HIPAA
guidelines. Maximal security at all times would be ideal, but is
unfortunately unrealistic for the current generation of wireless
embedded devices employed in BANs.

Processing Delay of DYNASEC Security Levels
with Different Packet Sizes for the ECG

Application

0

5000

10000

15000

Zero One Two Three
Security Level

Pr
oc

es
si

ng
 D

el
ay

(c
yc

le
s) 1
50
100

Figure 2: Processing Delay of DYNASEC Security Levels with

Different Packet Sizes for the ECG application

5.2 Power Measurements
Detailed power measurements (represented in cycles) were taken
for a single node for start-up and normalized periods with varying
timeouts. The power was measured for the first four security
levels in DYNASEC. All security levels had similar distributions
of power among the CPU, leds, radio, sensor board, and flash
components. The variance between the percentages for the first

four security levels was less than one percent. As can be seen in
Figure 3, most of the power is consumed by the radio. The second
largest consumer of power in the mote is the CPU as it does
processing of encryption and other functionalities.

Power Distribution for Level Four Security - RC5

CPU
26%Leds

6%

Radio
63%

SensorBoard
5%

flash
0%

CPU Leds Radio SensorBoard flash

Figure 3: Power Distribution in Mica2 Mote for Level Four
Security

Due to the fact that the radio takes up the most power and our
optimizations are on the encryption and decryption are on the
CPU, the power levels did not vary greatly between different
security levels. Therefore, power was not used as a metric for
changing the security level.

5.3 Dynamic Security Allocation
Dynamic security allocation is modeled as a budgeting problem
on a directed acyclic graph (DAG) representing communication
links in a network. It is assumed that data is collected at sensors
and routed through acyclic paths toward a centralized collection
of nodes for further processing. Unlike prior work on budgeting in
VLSI/CAD (e.g. [9]), DYNASEC must compute a solution
efficiently in real-time rather than optimally offline.
Let V = {v1, …, vN} be the nodes in the network. Communication
links in the network are organized as a DAG G(V, E), where V is
the set of nodes and E is a set of edges. An edge (vj, vk)∈E
indicates the existence of a communication link from vj to vk. The
delay of e, denoted D(vj, vk) is the time required to transmit a
packet across the link from vj to vk.
Each security algorithm si has an associated delay di, the time
required to encrypt the data. qi is the probability that si will be
broken by an adversary at a single node and pi = 1 – qi is the
probability that si will not broken. We assume that there are M
different security algorithms. In the case of this paper, M = 5.
Let cji = 1 if node vj selects security algorithm si and 0 otherwise.
A legal solution to the problem defined above assigns exactly one
security algorithm to each node in the network.

Definition 1: The security of a system, S, is defined to be the
aggregate probability that there are no security failures:

∏∑
= =

=
N

j

M

i
iji pcS

1 1

 (1)

Definition 2: A path P is a sequence of nodes P = <v1, …, vK>
such that there is a link from vj to vj+1, 1 < j < K-1. The delay of
P, denoted D(P), is computed as follows, and includes the delay
of the security algorithm, which is performed at v1.

UCLA C.S. Dept Technical Report TR070003 February 2007

 ()∑∑
−

=
+

=

+=
1

1
1

1
1 ,)(

K

j
jj

M

i
ii vvDdcPD (2)

In a DAG, a source is a node with no predecessors and a sink is a
node with no successors. The longest possible line of
communication in a DAG is from a source to a sink. Let P* be the
set of all paths originating on sources and terminating on sinks.
Lastly, T is defined to be a global timing constraint, which must
be met in order for the embedded system to transmit the necessary
packets in order to respond to an anomaly.
The problem statement and formulation are as follows:

Problem Statement: Given a network modeled as a DAG
G(V,E), assign security algorithm si to each node such that the
overall security of the system is maximized while meeting the
global timing constraint.

Problem Formulation:

 Maximize: S (3)

 Subject to the Following Constraints:

 ∑
=

=
M

i
jic

1

1 j∀ (4)

 *PP∈∀ () TPD ≤ (5)

Constraint (4) ensures that exactly one security algorithm is
assigned to each node. Constraint (5) ensures that each source-to-
sink path in the DAG satisfies the timing constraint. Since every
possible communication-path is a sub-path of some source-to-sink
path, constraint (5) satisfies every possible communication path in
the DAG.
Currently, we have implemented a relatively efficient greedy
algorithm that solves the problem as described above. In the
algorithm, each node dynamically lowers its security level if it
cannot achieve a desired level of throughput, and dynamically
raises its security level if its current throughput level is
significantly higher than the minimal threshold. On a node-by-
node basis, this approach will ensure that constraint (5) is
satisfied; however, there is no guarantee that the value of S, in
equation (3), will be anywhere close to maximal.
Complex solvers for budgeting problems, however, are not
realistic in this situation. The reason is that the motes already
have limited memory and a solver that uses offline methods such
as linear programming or network flow would be too large;
likewise, the speed of the solution is practically more important
than its quality, since the overall response of the network must be
rapid in life-critical situations. As stated earlier, solving the
budgeting problem effectively and efficiently is future work, and
is intended solely to augment and improve our current solution.

6. CONCLUSION
In conclusion, an authentication and encryption scheme with four
levels of security was created in DYNASEC. The application
layer had two distinct security modes: (1) authentication and (2)
authentication and encryption. The dynamic uploading of
modules in the SOS operating system makes it especially
vulnerable to attacks on authentication. An attacker can upload
its own malicious programs onto other nodes in the network. We

have countered against this attack by using symmetric key
cryptography and authenticating each message with a MIC
(Message Integrity Code), a secure checksum of the message. We
have also guarded against snooping by encrypting the messages
with SKIPJACK or RC5.
A reconfigurable security system was presented that switched
between different security levels and packet sizes depending on
timing constraints. DYNASEC’s architecture gives the embedded
system the flexibility to adapt to the dynamic environment where
it is deployed. DYNASEC takes advantage of SOS’s unique
architecture and use the SPI interrupt handler to send only the
necessary headers over the network. Other operating systems for
embedded systems, such as TinyOS, cannot dynamically change
the header length without manually reprogramming the embedded
system. DYNASEC’s adaptability gives systems a reasonable
amount of security while meeting timing constraints.
The heart rate detection algorithm produces reliable results while
operating under considerable environmental and human noise,
such as noise created by muscle activity and respiration. Our
reconfigurable application uses the heart rate detection algorithm
to modify its packet size in response to network and system
conditions. These reconfigurable features make it practical to
deploy ECG devices in a broad range of care providers, patients,
and environments.

7. ACKNOWLEDGMENTS
Excluded for blind review.

8. REFERENCES
[1] Bellare, M., Kilian, J. and Rogaway, P. The Security of the

Cipher Block Chaining Message Authentication Code.
Journal of Computer and System Sciences, 61 (3): 362-399,
December 2000.

[2] Boneh, D. and Shacham, H. Fast variants of RSA. In RSA
Laboratories’ Cryptobytes, vol 5 no. 1, pages 1-8,
Winter/Spring 2002.

[3] Brickell, E., Denning, D., Kent, S., Mahler, D. and Tuchman,
W., SKIPJACK Review, Interim Report, July 28, (1993), 8
pages.

[4] A. Cerpa, J. L. Wong, L. Kuang, M. Potkonjak and Deborah
Estrin, "Statistical Model of Lossy Links in Wireless Sensor
Networks." In ACM/IEEE Fourth International Conference
on Information Processing in Sensor Networks (IPSN'05),
2005.

[5] CrossBow, Technologies. http://xbow.com.
[6] Friesen, G. M., Jannett, T. C., Jadallah, M. A., Yates, S. L.,

Quint, S. E., and Nagle, H. T. A Comparison of the Noise
Sensitivity of Nine QRS Detection Algorithms,” IEEE
Transactions on Biomedical Engineering, vol. 37, no. 1, pp.
85-98, 1990.

[7] Fulford-Jones, T., Wei, G-Y., and Welsh, M. A Portable,
Low-Power, Wireless Two-Lead EKG System, In
Proceedings of the 26th IEEE EMBS Annual International
Conference, San Francisco, CA, USA, September 2004.

[8] Ganesan, P., Venugopalan, R., Peddabachagari, P., Dean, A.,
Mueller, F., and Sichitiu, M. Analyzing and Modeling
Encryption Overhead for Sensor Network Nodes. In

UCLA C.S. Dept Technical Report TR070003 February 2007

Proceedings of Wireless Sensor Networks and Applications
(WSNA 2004), San Diego, CA, 2003.

[9] Ghiasi, S., Huang, P-K., and Jafari, R. Probabilistic delay
budget assignment for synthesis of soft real-time
applications. IEEE Transactions on VLSI Systems, vol. 14,
no. 8, August, 2006, pp. 843-853.

[10] Gura, N., Patel, A., Wander, A., Eberle, H., and Shantz, S.
Comparing Elliptic Curve Cryptography and RSA on 8-bit
CPUs. In Proceedings of Workshop on Cryptographic
Hardware and Embedded Systems (CHES 2004), Cambridge,
MA, 2004.

[11] Han, C., Rengaswamy, R., Shea, R., Kohler, E., and
Srivastava, M. SOS: A Dynamic Operating System for
Sensor Networks. In Proceedings of the Third International
Conference on Mobile Systems, Applications, And Services
(Mobisys 2005), Seattle, WA, 2005.

[12] Jafari, R., Dabiri, F., Brisk, P., and Sarrafzadeh, M. Adaptive
and Fault Tolerant Medical Vest for Life Critical Medical
Monitoring". In Proceedings of the 20th ACM Symposium
on Applied Computing (SAC 2005), March 2005, Santa Fe,
NM.

[13] Karlof, C., Sastry, N., and Wagner, D. TinySec: A Link
Layer Security Architecture for Wireless Sensor Networks.
In the Proceedings of the Second ACM Conference on
Embedded Networked Sensor Systems (SenSys 2004),
Baltimore, MD, 2004.

[14] Landsiedel, O., Wehrle, K., and Gotz, S. Accurate
Prediction of Power Consumption in Sensor Networks. In
Proceedings of The Second IEEE Workshop on Embedded
Networked Sensors (EmNetS-II), Sydney, Australia, 2005.

[15] Malan, D. J., Fulford-Jones, T., Welsh, M., and Moulton, S.
CodeBlue: An Ad Hoc Sensor Network Infrastructure for
Emergency Medical Care, in Proceedings of the
International Workshop on Wearable and Implantable Body
Sensor Networks (BSN 2004), Imperial College, London, U.
K., April, 2004.

[16] Malan, D.J., Welsh, M., and Smith, M.D. A Public-Key
Infrastructure for Key Distribution in TinyOS Based on
Elliptic Curve Cryptography. First IEEE International
Conference on Sensor and Ad Hoc Communications and
Networks, Santa Clara, California, 2004.

[17] Massey, T., Gao, T., Welsh, M., Sharp, J., and Sarrafzadeh,
M. "The Design of a Decentralized Electronic Triage
System." American Medical Informatics Association (AMIA
2006). Washington, DC, Nov. 2006.

[18] MIT-BIH Arrhythmia Database Directory. Harvard-MIT
Division of Health Sciences and Technology, Biomedical
Engineering Center. 1997.

[19] Perrig, A., Canetti, R. Tygar, J.D. and Song, D. The TESLA
Broadcast Authentication Protocol, RSA Cryptobytes, 2002.

[20] Pino, E., Ohno-Machado, L., Wiechmann, E., and Curtis, D.
Real-Time ECG Algorithms for Ambulatory Patient
Monitoring. Proceedings of AMIA 2005 Annual Symposium,
Washington, D. C., USA, 2005.

[21] Potlapally, N. Ravi, S., Raghunathan, A., Jha, N. Analyzing
the Energy Consumption of Security Protocols. In the
Proceedings of the International Symposium on Low Power
Electronics and Design (ISLPED 2003), Seoul Korea, 2003.

[22] Ravi, S., Raghunathan, A., Kocher, P., and Hattangady, S.
Security in Embedded Systems: Design Challenges. ACM
Transactions on Embedded Computing Systems, Vol 3, No 3,
2004. Pages 461-491.

[23] Ravi, S., Raghunathan, A., Potlapally, N. And Sankaradass,
M. System Design Methodologies for a Wireless Security
Processing Platform. In Proceedings of Design Automation
Conference (DAC 2002), New Orleans, Louisana, 2002.

[24] Rivest, R. The RC5 Encryption Algorithm. In the
Proceedings of the 1994 Leuven Workshop on Fast Software
Encryption (Springer 1995), pages 86-96.

[25] Schaumont, P., Verbauwhede, I., Sarrafzadeh, M., and
Keutzer, K. A Quick Safari Through the Reconfiguration
Jungle. In Proceedings of Design Automation Conference
(DAC 2001), Las Vegas, CA. 2001.

[26] Schneir, Bruce. Applied Cryptography. John Wiley & Sons,
1996.

[27] SKIPJACK and KEA Algorithm Specifications, Version 2.0,
http://csrc.nist.gov/encryption/Skipjack-kea.htm.

[28] Titzer, B., Lee D., and Palsberg, J. Avrora: Scalable Sensor
Network Simulation with Precise Timing. In Proceedings of
International Symposium on Information Processing in
Sensor Networks (IPSN), Los Angeles, California, 2005.

[29] Watro, R., Kong, D., Cuti, S., Gardiner, C., Lynn, C., and
Kruus, P. TinyPK : Securing Sensor Networks with Public
Key Technology, In Proceedings of the 2nd ACM Workshop
on Security of Ad Hoc and Sensor Networks (SASN 2004),
Washington, D.C., 2004.

