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Abstract. A random geometric graph G(n, r) is a graph resulting from placing n points uniformly
at random on the unit area disk, and connecting two points iff their Euclidean distance is at
most the radius r(n). Recently, this class of graphs have received much attention as a model
for wireless networks. The Bernoulli graph B(n, p) is a random graph in which each edge is
chosen independently with edge probability p(n). The critical parameter for connectivity played
a major role in the study of both G(n, r) and B(n, p), and in what may seem surprising, it has
been shown that both graphs have closely related critical connectivity thresholds for the radius
and the edge probability. In particular, if πr2 = p = log n+γn

n
then both graphs are connected

w.h.p. iff γn → +∞ and disconnected w.h.p. iff γn → −∞. To explain the similarities in the
connectivity thresholds, we introduce an extension of the random geometric graphs: the random
distance graph, D(n, g): A graph resulting from placing n points uniformly at random on the unit
disk and connecting every two points independently with probability g(d), where d is the distance
between the nodes and g is the connection function. We give a connection function gα

r (d) with
parameters r and α such that: When α = 1, D(n, gα

r ) is identical to G(n, r) and when α = πr2,
D(n, gα

r ) is identical to B(n, p). Using results from continuum percolation we are able to bound
the connectivity threshold of D(n, gα

r ) for πr2 ≤ α ≤ 1. We show that the connectivity is governed
by the probability that a node is isolated which was previously known for G(n, r) and B(n, p).
Note, however, that in the evolution stage of connectivity these two graphs differ significantly,
G(n, r) has a large diameter and many small cliques while B(n, p) has a small diameter, and no
small cliques. So, interestingly, neither G(n, r) nor B(n, p) are suitable to model social networks.
On the contrary, we show that a typical case of random distance graph is adequate to model social
networks and, in particular, is a ”Small World” graph, capturing both high clustering and small
average path length. As opposed to previous Small World models that rely on deterministic sub-
structures to grantee connectivity, random distance graphs offer a completely randomized model
with a proven connectivity threshold.

1 Introduction

A random geometric graph G(n, r) [1–4] is a graph resulting from placing n points
uniformly at random on the unit disk1 and connecting two points iff their Euclidean

1 This work is concerned with the 2-dimenstional case



distance is at most the radius r(n). These graphs have traditionally been studied in
relation to subjects such as statistical physics and hypothesis testing, and have been
used in the last few years as models for ad-hoc and sensor networks [4]. The Bernoulli
graph B(n, p) (a.k.a. Erdős-Rényi graph) is a random graph with n nodes in which each
edge (out of the

(
n
2

)
possible edges) is chosen independently at random with an edge

probability p(n). These graphs were first offered by Gilbert [5] and have been thoroughly
investigated since the seminal work of Erdős and Rényi [6, 7].

One of the main goals of studying random graphs is to elucidate the properties of
what is called a typical graph: the graph we likely to see after setting the parameter of
the model to a specific function of n (in our case setting r(n) or p(n) as functions of n)
and leting n go to infinity. If a property Q exists with probability going to 1 as n goes to
infinity (i.e. with high probability), we say that a typical graph has property Q. In this
context we can also speak of the evolution of the typical graph: the way the properties
of a typical graph change as the typical graph evolves when we increase the order of
the functions we set the parameter to. The parameter threshold is called critical if Q
exhibits a sharp threshold: the difference between the parameter’s settings for which the
property Q holds with high probability (w.h.p. ) and the parameter’s settings for which
the property Q holds with low probability goes to zero as n →∞.

The critical parameter for connectivity, both for G(n, r) and B(n, p), has been of
special interest. In what may seem surprising, it has been shown that both graphs have
closely related critical thresholds for the radius and the edge probability. In particular
if πr2 = log n+γn

n
then G(n, r) is connected w.h.p. iff γn → +∞ and disconnected w.h.p.

iff γn → −∞ [1, 2] and likewise, if p = log n+γn

n
then B(n, p) is connected w.h.p. iff

γn → +∞ and disconnected w.h.p. iff γn → −∞ [6, 7]. This gives rise to the natural
question of how to explain the similarities in the connectivity threshold between these
two graphs? Recently, more results on random geometric graphs have been coupled to
known results on Bernoulli graphs, revealing some interesting similarities around the
critical connectivity thresholds, for example both graphs have sharp threshold for all
monotone properties [8] and both graphs have optimal cover time near the connectivity
threshold [9, 10].

Note, however, that these two graphs have quite different characteristics: in B(n, p)
nodes appear to be only ”place holders” for random edges selection, while in G(n, r) nodes
are assigned some properties (i.e. coordinates x and y), on which the existence of edges
depends. This leads to major differences in structure. For example, in the connectivity
regime, B(n, p) has small diameter, and no small cliques while G(n, r) has large diameter
and many small cliques. Another important distinction between these graphs concerns
the conditional probability that given the existence of edges k∼ i and k∼j there is also
an edge i ∼ j. (i.e. P (i ∼ j | k ∼ i, k ∼ i).) In B(n, p) these events are independent so
P (i∼j | i∼k, j∼k) = P (i∼j), while in G(n, r) the two events are not independent and
P (i∼j | i∼k, j∼k) � P (i∼j).



This lack of independence, also called ”locality”, is one of two important properties
of social networks, and in particular, Small World graphs [11]. The locality property
is measured by the clustering coefficient [11]: a number between 0 and 1 that reflects
the fraction of a vertex’s neighbors which are neighbors themselves. This reflects the
observation that in social networks people that have a common friend are more likely
to be friends with each others than two people chosen at random from the population;
this intuition is confirmed by a wide range of real life data [11, 12]. The other major
property of Small World graphs is the existence of a small average path length between
nodes. (and from an algorithmic perspective, the ability to find such a path locally [13].)
Interestingly, in the evolution stage of connectivity G(n, r) displays locality but not small
path length, and B(n, p) displays small path length but not locality, so neither graphs
are adequate to model social networks.

This motivates our investigation of whether a more general class of random graph
exist, one that contains both G(n, r) and B(n, p) as special pathological cases, but whose
typical case, in the evolution stage of connectivity, is adequate to model social networks.
That is a class of graphs that present both locality and small average path length.

2 Statement of Results

Let U be the unit area disk centered at the origin of the R2 plane.

Definition 1 (Random Distance Graph) For n nodes and a function g : [0, 2√
π
] →

[0, 1] let D(n, g) be a random distance graph resulting from the following process. First
place n nodes uniformly at random in the unit disk U . Second, for each pair of nodes
i, j with distance d(i, j) place an edge between i and j independently from all other edges
with probability pij = g(d(i, j)).

Intuitively, we add edges between nodes as a function of their distance and therefore
the underlying structure of the graph depends on the connection function g. Here we
primarily consider a specific type of function, a step function gα

r , with parameters r and
α. This function creates edges with probability α = α(n) for nodes at distance less or
equal to a radius r = r(n) (short edges), and with probability β = β(n) for nodes at
distance larger than r (long edges). Moreover we choose β(α) as a function of α, and in
order to keep the average degree of the graph invariant with respect to α, we require:

(1− α)πr2 = β(1− πr2) (1)

Formally, for πr2 ≤ α ≤ 1 the function gα
r is defined as follow:

gα
r (d) =

{
α if d ≤ r,

β = (1−α)πr2

1−πr2 if d > r.
(2)



For πr2 ≤ α ≤ 1, D(n, gα
r ) is an extension of random geometric graphs that can

capture both G(n, r) and B(n, p). On one hand when α = 1, β = 0 and we have
D(n, g1

r) ≡ G(n, r), a random geometric graph2. On the other hand when α = πr2, from
(1), we get that β = πr2. Since α = β edges do not depend any more on the distance and
every edge is chosen independently with probability p = α so D(n, gπr2

r ) ≡ B(n, p = πr2)
which is the original random Bernoulli graph. Note that both these graphs, as well as
D(n, gα

r ) for any πr2 ≤ α ≤ 1, have the same average degree, δavg = (n− 1)πr2 and the
same expected number of edges mavg =

(
n
2

)
πr2. When r = Θ( log n

n
) then δavg = Θ(log n)

and mavg = Θ(n log n). Our first result extends the sharp threshold for connectivity from
G(n, r) and B(n, p) to D(n, gα

r ):

Theorem 1 (Connectivity) Let πr2 = log n+γn

n
. Then for πr2 ≤ α ≤ 1, D(n, gα

r ) is
connected w.h.p. iff γn →∞ and is disconnected w.h.p. iff γn → −∞.

Next we can prove the following about clustering and the diameter of D(n, gα
r ):

Theorem 2 (Clustering) Let πr2 = log n+γn

n
and γn → ∞. For πr2 ≤ α ≤ 1 the

clustering coefficient of D(n, gα
r ) represented as C = P (i ∼ j | k ∼ i, k ∼ j) is w.h.p.

C = α ∗ c′ + o(1) where c′ ≈ 0.5865.

Theorem 3 (Diameter) Let πr2 = log n+γn

n
and γn → ∞. For a constant ε > 0 and

πr2 ≤ α ≤ 1− ε the diameter of D(n, gα
r ) is w.h.p. Θ( log n

log log n
).

Another important perspective of Small World graphs mentioned earlier is the algo-
rithmic one [13]. From this perspective, motivated by the original Milgram experiment
[14], social network not only have a short average path length, but enable for such a path
to be found locally in a distributed manner, namely by local routing. Local routing is a
mechanism for which a message is sent from a source to a destination using only local
information available at each node. The destination’s location is known (for example in
the message header), and each node can only forward a message to one of its immediate
neighbors based on their locations, thus we can route the message in a distributed way
without global knowledge. We are interested in a graph that permits short local routing.
Namely, the expected route length (number of steps) from source to destination is on
the same order as the graph diameter. Finally we can show the following:

Theorem 4 (Local Routing) There exist a random distance graph D(n, g) that has
the following properties with high probabilty: It is connected, has average degree Θ(log n),
high clustering, small diameter and allows short local routing.

2 where ≡ stand for the same generating process.



3 Related Work

This work was influenced by a large variety of recent work on random geometric graphs,
and in particular work that exposed the similarities to the Bernoulli model, in connectiv-
ity [1, 2], monotone properties [8] and the cover time of random walk [10]. The origin of
distance graphs goes back to the work of Gilbert [15] and later to the random connection
model used in continuum percolation by Penrose and others [4, 16]. Those models where
concern with a Poisson process on the entire plane while the random distance graph is
define on the unit disk and with a uniform point distibution. We are, however, not aware
of previous work that explores the connection between B(n, p) and G(n, r) by showing
that the integral over the connection function g(x) is the same for both graphs. In [2]
Gupta and Kumar conjectured that if πr2p(n) = log n+γn

n
the same results on connec-

tivity holds, but this seems to be harder case since it increases the border effect. (their
proof for connectivity of G(n, r), as well as ours, depends on the negligibility of the effect
of nodes that are less than r away from the border.)

In [13] Kleinberg first propose the algorithmic perspective of the Milligram experi-
ment and offered a grid-based distance graph that support local routing. In his model,
as well as in the original Small World model of Watts and Strogatz [11], the graph starts
from a deterministic connected graphs (i.e ring or grid) and random edges are only later
introduced or rewired. In Watts and Strogatz model the initial graph is a connected ring
of clusters, when edges are rewired the graph become a Small World, at the extreme
enough edges are rewired to result in a Bernoulli graph. Random Intersection Graphs
(RIG)[17] are another model of random graphs motivated by social structure, in particu-
lar by a collaboration networks such as authors-papers or actors-movies, but it does not
have any geometric flavor. Under certain parameters values this model is also identical
to B(n, p) [18] and under others differs significantly. Unfortunately, across its parameters
range it has only two asymptotic clustering coefficient values, either o(1) or 1-o(1).

4 Proofs

Recall that U is the unit area disk at the origin. Let Ū be the disk of radius 1
π
− r and

let ∆U be U \ Ū . Let diskr(i) be the disk of radius r centered at Xi, and luner(i, j) be
the intersection of diskr(i) and diskr(j). (we omit r where there is no confusion.) If, for
nodes uniformly distributed in U , it is given that a node i ∈ disk(j) then i is uniformly
distributed in disk(j) and if it is given that i /∈ disk(j) then i is uniformly distributed
in U \ disk(j).

4.1 Proof of Theorem 1 (Connectivity)

Proof. We make use of results from continuum percolation, in particular a model that was
first introduced by Gilbert [15] and later analyzed rigorously by Penrose [19]. Here we



concern ourselves only with the two dimensional case; Let g(x), x ∈ R2, be a measurable
function taking values in [0, 1] such that

g(x) = g(|x|), x ∈ R2 (3)

0 <

∫
R2

g(x)dx < ∞ (4)

Let P be a homogeneous Poisson process on R2 with rate ρ: the expected number of
point in any region is equal to the area of the region multiplied by ρ. Let {X1, X2, X3 . . . }
be the set of points placed by P in R2. In addition, a point X0 = 0 is added and when
considering this point at the origin it is assumed to be an ”arbitrary point of the Poisson
process” [19].

Let P(ρ, g) denote the following random graph: Given a generalization of P ∪X0 we
connect every two points {Xi, Xj} i 6= j with probability g(d(Xi, Xj)), independently
of any other pair of points. The connected components of P(ρ, g) are called clusters,
and let C(0) be the ”cluster at the origin”, the set of points that have a path to X0

in P(ρ, g). Let card(C(0)) be the cardinality of C(0). For a given g(x), P(ρ, g) and an
integer k, let qk(ρ) denote the probability that C(0) has k points, i.e. the probability
that card(C(0)) = k

We make use of the following results:

I. Probability of Isolation (Theorem 3 [19]): If g enclose zero (essentially g is sym-
metric, g has bounded support, and g is bounded away from zero in some open
neighborhood of the surface, see
[19]; all the functions considered in this paper encloses zero) then for large ρ the
probability of the origin to be in a size one cluster and the probability of the origin
to be in any finite size cluster are the same:

Pρ(card(c(0)) < ∞)

Pρ(card(C(0)) = 1)
=

1

q1(ρ)

∞∑
k=1

qk(ρ) → 1 as ρ →∞ (5)

In other words, for large ρ, w.h.p. the point at the origin is either isolated or connected
to an infinite cluster.

II. Uniqueness Theorem (Theorem 6.3 [20]): w.h.p. there is at most one infinite cluster
in P(ρ, g).

Putting these results together we get that in order to bound the probability of P(ρ, g)
to be connected (for an appropriate g), it is sufficient to bound q1(ρ), the probability
that the point at the origin is isolated, i.e. card(C(0)) = 1. In [19] it has been shown
that

q1(ρ) = Pρ[card(C(0)) = 1] = exp

(
−ρ

∫
Rd

g(x)dx)

)
(6)



If we let g(x) = gα
r and ρ = n, then we can bound the probability of isolation at the

origin:

∫
U

gα
r (x)dx = α(πr2) + β(1− πr2)

= α(πr2) +
(1− α)πr2

1− πr2
(1− πr2)

= πr2

=
log n + γn

n

So from (6) the probability of the origin to be isolated is:

q1(n) = exp

(
−n

∫
R2

g(x)dx)

)
= exp

(
−n

log n + γn

n

)
= exp(− log n− γn)

=
1

n
e−γn

Let E1(G) be the expected number of order 1 components in U for random graph G and
P 1(G) the probability that there is at least one order 1 component in U for G. Since we
are still (not for long) considering R2 any other point in U has the same probably to be
isolated and we have

P 1(P(n, g)) ≤ E1(P(n, g)) = nq1(n) = e−γn (7)

When limn→∞ γn = ∞ then P 1(P(n, g)) → 0 and the graph is connected with high
probability since every point is in the unique infinite cluster. The problem is that this
result relays on the fact that P(n, g) is defined over R2 and each point in U is isomorphic
to the origin. In our case we are concerned with a process that throws points only inside
the unit disk, and the problem of the border’s effect arise.

For a connection function g(x) let PU(n, g) be the graph resulting from the Poisson
process with density n on the unit disk U and D(n, g), as before, the graph resulting from
uniformly distributing n points in U . Let I be the indicator function and for a random
graph D(j, g) with j nodes let D(j, g)i stand for the event ”Xi is isolated in D(j, g)”
(and similarly we have G(j, r)j and B(j, p)j). By definition of the Poisson process and



expectation we have:

P 1(PU(n, g)) =
∞∑

j=1

P 1(D(j, g))e−n nj

j!

≤
∞∑

j=1

E1
(
D(j, g)

)
e−n nj

j!

=
∞∑

j=1

E

[ j∑
i=1

ID(j,g)i

]
e−n nj

j!

=
∞∑

j=1

jP (D(j, g)j)e
−n nj

j!

In [2] Gupta and Kumar proved that for πr2 = log n+γn

n

P 1(PU(n, g1
r)) ≤

∞∑
j=1

jP (D(j, g1
r)j)e

−n nj

j!
≤ e−γn (8)

More over they bound the probability Pdiss that D(n, g) is disconnected3. For ε > 0

Pdiss(D(n, g)) ≤ 2(1 + 6ε)

[
P 1(PU(n, g)) +

∞∑
j=1

jP (D(j, g)j)e
−n nj

j!

]
(9)

In particular for πr2 = log n+γn

n
and limn→∞ γn = c, using (8) they proved:

lim sup
n→∞

Pdiss(G(n, r)) = lim sup
n→∞

Pdiss(D(n, g1
r)) ≤ 4e−c

To prove our result we want to show that for πr2 ≤ α ≤ 1 and 1 ≤ j

lim sup
n→∞

Pdiss(D(n, gα
r )) ≤ 4e−c

This will follow from (8) and (9) and by showing that for πr2 ≤ α ≤ 1

P (D(j, g1
r)j) ≥ P (D(j, gα

r )j) ≥ P (D(j, gπr2

r )j) (10)

meaning that, for any α in the range, the probability that a node is isolated in D(n, gα
r ) is

smaller than it is in random geometric graph G(n, r) and larger than in random Bernoulli
graph B(n, p = πr2).

3 They prove it for G(n, r), but the result follows for the general case.



There are two cases: (i) Xj ∈ Ū and (ii) Xj ∈ ∆U . For the first case we have that
for G(j, r) and B(j, πr2) the probability that Xj is isolated is (1− πr2)j−1. For D(j, gα

r )
we have:

P (D(j, gα
r )j) = ((1− α)πr2 + (1− β)(1− πr2))j−1

= ((1− α)πr2 + (1− (1− α)πr2

1− πr2
)(1− πr2))j−1

= ((1− α)πr2 + (1− πr2)− (1− α)πr2)j−1

= (1− πr2)j−1

For (ii) Xj is less than r away from the border of U and let A = diskr(Xj)∩U < πr2.
Then for πr2 < α < 1 we have

P (D(j, gα
r )j) = ((1− α)A + (1− β)(1− A))j−1

= ((1− α)A + (1− A)− (1− α)πr2

1− πr2
(1− A))j−1

When α = 1 we get the case for G(j, r), P (G(j, r)j) = (1− A)j−1 and when α = πr2 we
get the case for B(j, πr2), P (B(j, πr2)j) = (1− πr2)j−1.

To confirm that (10) hold also for case (ii) it is sufficient to show that ∂
∂α

P (D(j, gα
r )j) ≥

0, and in particular it is enough to show that

∂

∂α

(
(1− α)A + (1− A)− (1− α)πr2

1− πr2
(1− A)

)
=

πr2

1− πr2
(1− A)− A

≥ πr2 − A ≥ 0

The second part of the theorem also follow from (10). Since it is known that for
B(n, πr2) and γn → −∞, B(n, πr2) is disconnected w.h.p. , and in particular that there
is an isolated node, from (10) the same will hold for D(n, gα

r ) and α ≥ πr2. ut

4.2 Proof of Theorem 2 (Clustering)

Proof. When computing the conditional probability P (i ∼ j | k ∼ i, k ∼ j) we ignore
the border effect (nodes in ∆U) since the fraction of these nodes is vanishing and their
contribution to the final result goes to zero. We can consider three disjoint cases: (i)
i, j ∈ disk(k). (ii) one of i, j is in disk(k) and the other is not. (iii) i, j /∈ disk(k). First
let’s define the following helping probabilities:

p∗ = P (j ∈ disk(i) | j, i ∈ disk(k)) = P (j ∈ lune(k, i) | j, i ∈ disk(k))

p∗∗ = P (j ∈ disk(i) \ lune(k, i) | j /∈ disk(k) ∧ i ∈ disk(k))



Xk Xi

Xj

x

r

disk(i)

disk(k)

lune(i,k)

Fig. 1. Computing the conditional probability P (i∼j | k∼ i, k∼j)

Let i ∈ disk(k) and let y = 2x be the distance between k and i. Then lune(k, i) is equal
to twice the half lune (see Fig 1):

lune(k, i) = r2

(
2 arccos

(
x
r

)
− sin

(
2 arccos

(
x
r

)))
(11)

taking the integral over ydy = 2x2dx we get:

p∗ =

∫ r/2

0

2π2x2

πr2
r2 2 arccos(x

r
)− sin(2 arccos(x

r
))

πr2
dx

=
8

πr2

∫ r/2

0

x2 arccos(
x

r
)− sin(2 arccos(

x

r
))dx

=
8

πr2

(
−x(r2 + 2x2)

√
1− x2

r2 + 4rx2 arccos(x
r
) + r3 arcsin(x

r
)

4r

)∣∣∣∣∣
r/2

0

=
2

πr3

(
−r

2

(
r2 +

r2

2

)√3

2
+ r3π

3
+ r3π

6
− 0

)
=

2

π

(
−
√

33

8
+

π

3
+

π

6

)
≈ 0.5865



and

p∗∗ =

∫ r/2

0

2π2x2

πr2

(πr2 − r2(2 arccos(x
r
)− sin(2 arccos(x

r
))

1− πr2

)
dx

=
πx22

1− πr2
− 8

1− πr2

(
−x(r2 + 2x2)

√
1− x2

r2 + 4rx2 arccos(x
r
) + r3 arcsin(x

r
)

4r

)∣∣∣∣∣
r/2

0

=
2πr2

4(1− πr2)
− 2r2

1− πr2

(√
33

8
+

π

3
+

π

6

)
= o(1)

where the last step is a result of πr2 = o(1). Now we can calculate the clustering
coefficient as a function of α (note that β = o(1) and πr2 = o(1)):

P (i∼j | k∼ i, k∼j) = P (i∼j | k∼ i, k∼j, (i)) + P (i∼j | k∼ i, k∼j, (ii)) + P (i∼j | k∼ i, k∼j, (iii))

= (αp∗ + β(1− p∗)) + (αp∗∗ + β(1− p∗∗)) + (απr2 + β(1− πr2))

= αp∗ + o(1)

≈ α ∗ 0.5865 + o(1)

ut

4.3 Proof of Theorem 3 (Diameter)

Proof. It is well known that the diameter of a connected B(n, p) is log n
log np

and that the

unique giant component of order n emerge when p > 1
n

[21]. Since in our case α < 1− ε

is bounded away from 1 we get that β ≥ επr2

1−πr2 ≥ ε′ log n
n

for a constant ε
1−πr2 ≥ ε′ > 0.

The graph D(n, gα
r ) can be thought of as being built in two phases: in the first phase

we give each node its location and create B(n, p) with p = β, and in the second phase
we add the rest of the short edges with the appropriate probability. (i.e. α−β

1−β
.) For the

above p = β we can say the following about B(n, p) and its gaint component[21]: Let
I(n) be the set of nodes not in the giant component, then the expected size of I(n) is

E(|I(n)|) = x(c)
2c

n where x(c)
2c

is the fraction of nodes not in the giant component, and:

x(c) =
∞∑

k=1

kk−1

k!
(2ce−2c)k

where c > 1/2 is defined by p = 2c/n. In our case c ≥ ε′ log n → ∞ so x(c)/2c → 0. In
particular

E(|I(n)|) =
x(c)

2c
n = O(n1−2ε′

)



X/2

A ~ X2

i

j

U

Fig. 2. an area that is proportional to x2 when local routing from i to j with x = d(i, j).

From [22] we have that for log n > np → ∞ the diameter of the giant component of
B(n, p) is (1 + o(1)) log n

log np
. To prove the theorem we need to show that there is no path

longer than log n
log np

in D(n, gα
r ) from nodes not in the giant component of B(n, β). Since

we already proved that D(n, gα
r ) is connected the theorem follows. A necessary condition

to have a path longer than log n
log np

is to have log n
log np

nodes from I(n) in an area of size less

than or equal to ( log n
log np

)πr2 = log2 n
n log np

. For i ∈ I(n) let Si be the number of nodes from

I(n) that are in an area of log2 n
n log np

which i belongs to. Let S = max{Si | i ∈ I(n)}. Now
since:

E(Si) = E(|I(n)|) log2 n

n log np
= O

(
log2 n

n−2ε′ log np

)
→ 0 (12)

it follows that P (S > log n
log np

) → 0 and so the diameter of D(n, gα
r ) is of the same order

as the diameter of the giant component of B(n, p = β). ut

4.4 Proof of Theorem 4 (Local Routing)

Proof. The proof follows the same idea of Kleinberg [13], we give a connection function
with the following guarantees (in expectation): after a constant number of steps the
distance to the destination is reduced by a factor of two. We then modify the function
to make sure the graph is also connected with average degree of Θ(log n). Let g′(x) =
(x
√

nπ+1)−2 for x ∈ [0, 2
π
] and 0 otherwise, so it is defined up to the maximum distance

on U . Observe that for any two points i, j ∈ U where x = d(i, j), there is an area A of at
least π(x

2
)2/6 s.t A ⊂ U and all the points in A are at most distance x/2 from j and at

most distance x from i. The expected number of nodes (for large enough A)4 is Θ(nA).

4 A is large since for x < r log n we can route to destination, without using long edges, in Θ(log n) steps.



Consider a message at i on its way to j, the probability that i will have a long range
neighbor in A is at least

n
π(x

2
)2/6

(x
√

nπ + 1)2
=

πnx2

24(πnx2 + 2x
√

πn + 1)

=
1

24
− o(1)

To guarantee that the graph is connected and that if a step at i fails (there is no long
edge to a node in A) there is a close neighbor k with the same order of distance to j, we
can just compose g′(x) with g1

r s.t g(x) = max{g′(x), g1
r(x)}. Now the expected number

of steps to reduce the distance to j by a factor of two is constant, and the total number
of steps to reach the destination is Θ(log n). In this case the average degree of D(n, g)
is bounded by:

n

∫
R

g(x) ≤
∫

R
g′(x) +

∫
R

g1
r(x)

= n(
1

n + 2n1.5
+

log(1 + 2
√

n)

n
− 1

n
) + n

log n + γn

n

= Θ(log n)

The high clustering is guaranteed by α = 1 and D(n, g1
r), it can be decreased by taking

α = 1− ε for a small enough ε. ut

5 Conclusions

We offer the perspective that the similarity of the connectivity threshold results for
G(n, r) and B(n, p) is a consequence of the integral over the connection function when
the nodes are uniformly distributed on the unit disk. In both cases the integral is log n

n
and

it determines the probability of isolated nodes which, in turn, govern the connectivity
threshold by a result from continuum percolation. Following this view, we introduce
a class of random distance graphs, D(n, gα

r ), with a connection function that has the
same integral as G(n, r) and B(n, p). This guarantees that the connectivity threshold is
identical for G(n, r) and B(n, p). In addition, we show that for a wide range of parameters
this class behaves as a Small World graph, contrary to G(n, r) and B(n, p). As opposed
to previous Small World models, we propose a completely random model which seems
to be more suitable for real-life situations.

We conjecture that a similar connectivity result can be obtained for more general
functions than presented here and we state the following:

Conjecture 1 Let c > 1 be a constant and let g(x) be a function [0, 2√
π
] → [0, 1] s.t

g(x) encloses zero and
∫
U g(x) = c log n

n
. Then D(n, g) is connected with high probability.



In future work we would like to prove more properties of random distance graphs like
the sharp threshold of monotone properties, the cover time and the mixing time and to
offer a random scale-free graph that is based on distance graphs.
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