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Abstract

Tree structures are used extensively in domains such as computational biology, pattern recog-
nition, XML databases, computer networks, and so on. One important problem in mining
databases of trees is to find frequently occurring subtrees. Because of the combinatorial ex-
plosion, the number of frequent subtrees usually grows exponentially with the size of frequent
subtrees, and therefore, mining all frequent subtrees becomes infeasible for large tree sizes. In
this paper, we present CMTreeMiner, a computationally efficient algorithm that discovers only
closed and maximal frequent subtrees in a database of labeled rooted trees, where the rooted
trees can be either ordered or unordered. The algorithm mines both closed and maximal fre-
quent subtrees by traversing an enumeration tree that systematically enumerates all frequent
subtrees. Several pruning techniques are proposed to prune the branches of the enumeration tree
that do not correspond to closed or maximal frequent subtrees. Heuristic techniques are used to
arrange the order of computation so that relatively expensive computation is avoided as much
as possible. These techniques are based on a novel concept, the blanket of a frequent subtree,
in the POSET structure for all frequent subtrees. We study the performance of our algorithm
through extensive experiments using both synthetic data and datasets from real applications.
The experimental results show that our algorithm is very efficient in reducing the search space
and quickly discovers all closed and maximal frequent subtrees.
keywords: Trees, Graph algorithms, Data mining, Mining methods and algorithms, frequent
subtree, closed frequent subtree, maximal frequent subtree

1 Introduction

1.1 Motivation

Graphs are widely used to represent data and relationships. Among all graphs, a particularly
useful family is the family of rooted trees: in the database area, XML documents are often rooted
trees where vertices represent elements or attributes and edges represent element-subelement and
attribute-value relationships; in Web traffic mining, access trees are used to represent the access
patterns of different users; in analysis of molecular evolution, an evolutionary tree (or phylogeny)
is used to describe the evolution history of certain species [12]; in computer networking, multicast
trees are used for packet routing [10]. From these examples we can also see that trees in real
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applications are often labeled, with labels attached to vertices and edges where these labels are not
necessarily unique.

In this paper, we study one important issue in mining databases of labeled rooted trees–finding
frequently occurring subtrees. This issue has practical importance, as shown in the following
examples.

Gaining general information of data sources When a user initially studies a new dataset, he
or she may not know the characteristics of the dataset. The frequent substructures of the dataset
will often help the user to understand the dataset and guide the user to query the details about
the dataset. For example, Wang et al. [25] applied their frequent subtree mining algorithm to an
Internet movie database and discovered the common structures of the movie documents.

Directly using the discovered frequent substructures Cui et al. [10] showed a potential
application of discovering frequent subtrees in network multicast routing. When multiple events are
running in the network, for a router, building and storing routing tables for all the events requires
too many resources (both time and space). Therefore it is more practical to partition the events
into groups and to build a routing table for each group of events. Here frequent subtrees among
the multicast trees of different events hint at the events to be put into one group.

Association rule mining To a commercial online book seller, the information on its web site
structure is very important. One sample association rule that may be of interest to the online
book seller is “According to the web logs, before buying a specific book, 90% buyers visited the
customer evaluation section, the book description section, and the table of contents of the book
(which is a subsection of the book description section).” Such an association rule can provide the
book seller with insights concerning buyers’ navigation patterns and therefore help improve the
web site design.

Classification and clustering Classification and clustering techniques classify or group data
points according to their similarities. Here, a data point can be a labeled tree. For example, from
the web logs of a web site we can obtain the access patterns (access trees) of the visitors. We can
use the access trees to classify different types of users (casual vs. serious customers, normal visitors
vs. web crawlers, etc.). In another example, Zaki et al. [31] presented an algorithm to classify XML
documents according to their subtree structures.

Helping standard database indexing and access methods design Frequent subtrees in
a database of labeled trees can provide us with information on how to build efficient indexing
structures for the databases and how to design efficient access methods for different types of queries.
For example, Yang et al. [29] presented algorithms for mining frequent query patterns from the logs
of historic queries on an XML document. Answers to historic frequent queries can be stored and
indexed for future efficient query answering.

However, as we have observed in our previous studies [6,8], because of the combinatorial explo-
sion, the number of frequent subtrees usually grows exponentially with the tree size. This is the
case especially when the transactions in the database are strongly correlated. Two consequences
follow from this exponential growth. First, the end-users will be overwhelmed by the huge number
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of frequent subtrees presented to them and therefore have difficulty in gaining insights from the
frequent subtrees. Second, mining algorithms may become intractable due to the exponential num-
ber of frequent subtrees. The algorithms presented by Wang et al. [25] and Xiao et al. [26] tried
to alleviate the first problem by finding and presenting to end-users only the maximal frequent
subtrees. A maximal frequent subtree is a frequent subtree none of whose proper supertrees is
frequent. Usually, the number of maximal frequent subtrees is much smaller than the total number
of all frequent subtrees. Nevertheless, because both of these algorithms use post-processing tech-
niques that prune away non-maximal frequent subtrees after discovering all the frequent subtrees,
they do not solve the second problem mentioned above. To avoid creating all the frequent subtrees
in the first place, hence solving both the problems mentioned above, in this paper, we propose
an efficient algorithm–CMTreeMiner. Instead of looking for all frequent subtrees in a database
of rooted trees, the algorithm directly aims at closed and maximal frequent subtrees only, where
a closed frequent subtree is a frequent subtree t that every t’s proper supertree occurs in fewer
transactions than t does. (We will give more rigorous definitions in the following sections.) In the
proposed algorithm, we use several pruning and heuristic techniques. With the pruning techniques,
a large part of the search space that does not correspond to closed or maximal frequent subtrees
is determined in the early stages of the algorithm and is pruned from the search space; with the
heuristic techniques, the order of the tests are organized in such a way that the pruning takes place
as early as possible and the relatively expensive computation is eliminated whenever possible. As
the search space greatly reduced and the relatively expensive computation greatly eliminated, the
running time of our algorithm is much reduced compared to algorithms that search the entire space
for all the frequent subtrees. In addition, our algorithm handles databases of rooted ordered trees
and databases of rooted unordered trees equally well.

1.2 Related Work

Recently, there has been growing interest in mining databases of labeled trees, in part due to
the increasing popularity of XML in databases. The proposed frequent subtree mining algorithms
can be broadly classified into three categories. The first category are Apriori-like algorithms that
systematically traverse a lattice structure of all frequent subtrees through either a depth-first or a
breadth-first traversal order. In [30], Zaki presented such an algorithm, TreeMiner, to discover all
frequent embedded subtrees (i.e., those subtrees that preserve ancestor-descendant relationships)
in a forest or a database of rooted ordered trees. The algorithm was extended in [31] to build a
structural classifier for XML data. In [7], Chi et al. have studied the problem of indexing and
mining free trees and developed an Apriori-like algorithm, FreeTreeMiner, to mine all frequent
free subtrees. In Apriori-like algorithms, a candidate subtree is generated by joining two frequent
subtrees with smaller size. The second category of algorithms are based on enumeration trees.
In these algorithms, a candidate subtree is generated by extending its unique parent, which is a
frequent subtree of smaller size, in the enumeration tree. In [2] Asai et al. presented such an
algorithm, FREQT, to discover frequent rooted ordered subtrees. For mining rooted unordered
subtrees, Asai et al. [3], Nijssen et al. [19], and Chi et al. [6, 8, 9] all proposed algorithms based on
enumeration tree growing. Because there could be multiple ordered trees corresponding to the same
unordered tree, similar canonical forms for rooted unordered trees are defined in all these studies.
The third category of algorithms for mining frequent subtrees adopt the idea of the FP -tree [11]
in frequent itemsets mining and construct a concise in-memory data structure that preserves all
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necessary information. This data structure is then used for mining frequent subtrees. In [26], Xiao
et al. presented such an algorithm called PathJoin. In addition, PathJoin allows the user to keep
only maximal frequent subtrees by using a post-processing pruning that, after obtaining all frequent
subtrees, eliminates those that are not maximal.

In addition to the work we have mentioned above, there are other studies on mining frequent
subtrees, such as those given in [22, 24], that do not guarantee completeness, i.e., some frequent
subtrees may not be in the search results. Moreover, closely related to mining frequent subtrees,
many recent studies have focused on mining frequent subgraphs and closed frequent subgraphs [13–
15,27,28], which are much more difficult problems than mining frequent subtrees (e.g., the subgraph
isomorphism is an NP -complete problem while the subtree isomorphism problem is in P ).

1.3 Our Contributions

The main contributions of this paper are: (1) We introduce the concept of closed frequent subtrees
and study its properties and its relationship with maximal frequent subtrees. (2) We study the
POSET (partial order set) structure of all frequent subtrees and represent it using a special data
structure–the enumeration DAG (directed acyclic graph). We study the relationship between the
enumeration DAG and the enumeration tree, a commonly used data structure in various frequent
subtree mining algorithms. We introduce a novel concept, the blanket of a frequent subtree in the
enumeration DAG. (3) In order to mine both closed and maximal frequent rooted ordered subtrees,
we present CMTreeMiner, a computationally efficient algorithm that discovers all closed frequent
subtrees and maximal frequent subtrees by traversing an enumeration tree. In the algorithm, the
blanket is used to determine the closedness and maximality of a frequent subtree. In addition,
we propose efficient techniques that, in the early stages of the enumeration tree traversal, prune
branches in the enumeration tree that will not give closed or maximal frequent subtrees. We also
propose heuristic techniques for organizing the order of tests so that the pruning occurs early
and relative expensive computation is eliminated whenever possible. (4) By using a canonical form
representation for labeled rooted unordered trees, we extend our CMTreeMiner algorithm to mining
frequent unordered subtrees. We show that with certain variations, all the techniques that we have
developed for mining frequent ordered subtrees can be applied to mining frequent unordered trees as
well. (5) Finally, we have implemented our algorithm and have carried out extensive experimental
analysis. We use both synthetic data and real application data to evaluate the performance of our
algorithm and compare the performance of our algorithm with those of several existing algorithms.

To the best of our knowledge, CMTreeMiner is the first algorithm that, instead of using post-
processing procedures, directly mines only closed and maximal frequent subtrees.

The rest of the paper is organized as follows. In section 2, we give necessary background in
graph theory, the problem definition, and various related concepts. In section 3, we look in detail
at the CMTreeMiner algorithm for mining closed and maximal frequent subtrees from databases
of labeled rooted ordered trees. In section 4, we extend the CMTreeMiner algorithm to handle
databases of labeled rooted unordered trees. In section 5, we show experiment results. Finally, in
Section 6, we offer conclusions and future research directions.
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2 Background

In this section, we provide the definitions for some general concepts that will be used in the
remainder of the paper. More specific concepts will be introduced in later sections.

2.1 Background in Graph Theory

A labeled Graph G = [V, E,Σ, L] consists of a vertex set V , an edge set E, an alphabet Σ for vertex
and edge labels, and a labeling function L : V ∪ E → Σ that assigns labels to vertices and edges.
A graph is directed (undirected) if each edge is an ordered (unordered) pair of vertices. A path is
a list of vertices of the graph such that each pair of neighboring vertices in the list is an edge of
the graph. A cycle is a path such that the first and the last vertices of the path are the same.
A graph is acyclic if the graph contains no cycle. A rooted unordered tree is a directed acyclic
graph satisfying (1) there is a distinguished vertex call the root that has no entering edges, (2)
every other vertex has exactly one entering edge, and (3) there is a unique path from the root to
any other vertex. A rooted ordered tree is a rooted tree that has a predefined left-to-right ordering
among the children of each vertex. The size of a rooted tree is defined as its number of vertices.
For convenience, in this paper we call a rooted tree of size k a k-tree. In a rooted tree, if vertex v
is on the path from the root to vertex w then v is an ancestor of w and w is a descendant of v. If
in addition v and w are adjacent, then v is the parent of w and w is a child of v. If a vertex w has
no child, then w is called a leaf. A rooted tree t is called a subtree of another rooted tree s if and
only if t can be obtained by repeatedly removing a leaf or the root from s (the latter case is allowed
only when removing the root does not result in s becoming disconnected). If in addition, the size
of t is strictly less than the size of s, then t is called a proper subtree of s. If t is a (proper) subtree
of s, then s is called a (proper) supertree of t. Notice that the definitions of (proper) subtree and
supertree apply to both rooted ordered trees and rooted unordered trees. Obviously, for a rooted
ordered tree s and a subtree t of s, the left-to-right ordering among the children of each vertex in
t is a sub ordering of that in s.

The subtree defined above is also called induced subtree. In [30], Zaki defined a different type of
subtree called embedded subtree: For a tree s with vertex set Vs and edge set Es, and a tree t with
vertex set Vt and edge set Et, t is said to be an embedded subtree of s if and only if (1) Vt ⊆ Vs, and
(2) (v1, v2) ∈ Et (here v1 is the parent of v2 in t) only if v1 is an ancestor of v2 in s. Intuitively, as
an embedded subtree, t must not break the ancestor-descendant relationship among the vertices of
s. In this paper, unless otherwise specified, subtree means induced subtree.

2.2 The Frequent Subtree Mining Problem

Let D denote a database where each transaction s ∈ D is a labeled rooted tree. (D can be either
a database of labeled rooted ordered trees or a database of labeled rooted unordered trees.) For
a given pattern t (where t is a rooted tree and whether t is ordered or unordered depends on D),
we say t occurs in a transaction s if t is a subtree of s. Let σt(s) = 1 if t is a subtree of s, and
0 otherwise. We say s supports pattern t if σt(s) is 1 and we define the support of a pattern t in
the database D as support(t) =

∑
s∈D σt(s). A pattern t is called frequent if its support is greater

than or equal to a minimum support (minsup) specified by a user. The frequent subtree mining
problem is to find all frequent subtrees in a given database.
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A similar frequent subtree mining problem can be defined in the context of embedded subtrees,
as done by Zaki in [30].

One nice property of frequent subtrees is the apriori property, as given in the following:

Lemma 1. Any subtree of a frequent tree is also frequent and any supertree of an infrequent tree
is also infrequent.

Proof. If a tree occurs in a transaction, then all its subtrees also occur in the transaction; if a tree
does not occur in a transaction, then none of its supertrees can occur in the transaction.

2.3 Closed and Maximal Frequent Subtrees

We define a frequent tree t to be maximal if none of t’s proper supertrees is frequent, and closed if
none of t’s proper supertrees has the same support that t has.

The set of all frequent subtrees, the set of closed frequent subtrees and the set of maximal
frequent subtrees have the following relationship.

Lemma 2. For a database D and a given minsup, let F be the set of all frequent subtrees, C be the
set of closed frequent subtrees, and M be the set of maximal frequent subtrees, then M⊆ C ⊆ F .

Proof. C ⊆ F is implied by the definition of C. For M⊆ C, we notice that for a tree t ∈ M, since
t is frequent and none of t’s proper supertrees is frequent, so none of t’s proper supertrees has the
same support as t has, and therefore t ∈ C.

We are interested in mining closed and maximal frequent subtrees, instead of mining all frequent
subtrees, because generally, there are much fewer closed or maximal frequent subtrees compared
to the total number of frequent subtrees [20]. In addition, by mining only closed and maximal
frequent subtrees, we do not lose much information, if any at all, because the set of closed frequent
subtrees maintains the same information (including support) as the set of all frequent subtrees, and
the set of maximal frequent subtrees subsumes all frequent subtrees:

Lemma 3. We can obtain all frequent subtrees from the set of maximal frequent subtrees; similarly,
we can obtain all frequent subtrees with their supports from the set of closed frequent subtrees with
their supports.

Proof. For the first statement, we notice that any frequent subtree is a subtree of one (or more)
maximal frequent subtree(s); for the second statement, we notice that for a frequent subtree t that
is not closed, support(t) = maxt′{support(t′)} where t′ is a supertree of t that is closed.

3 Mining Closed and Maximal Frequent Rooted Ordered Subtrees

In this section, we describe our CMTreeMiner algorithm that mines both closed and maximal
frequent subtrees from a database of labeled rooted ordered trees. In the next section, we will
extend the algorithm to labeled rooted unordered trees.

In the following discussion, we use the database given in Figure 1 as a running example. The
database consists of 3 transactions and the minsup is set to 2. Each transaction in the database
has a unique transaction id, i.e., tid1, tid2, and tid3, respectively. For the rest of the paper, for
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Figure 1: A Database with Three Transactions

convenience, we interchangeably talk about a transaction and its transaction id. In addition, in the
database, a unique index number is assigned to each vertex in a transaction, as shown in Figure 1.

If a labeled tree is rooted, then without loss of generality we can assume that all edge labels
are identical: because each edge connects a vertex with its parent, so we can consider an edge,
together with its label, as a part of the child vertex. So for all examples in the following discussion,
we assume that all edges in all trees have the same label or equivalently, are unlabeled, and we
therefore ignore all edge labels.

3.1 The Enumeration DAG and Its Relationship with the Enumeration Trees

We first introduce a data structure, called the enumeration DAG, to represent the partial order
set (POSET) of all frequent subtrees. As is well known, the subtree/supertree relationship defines
a partial order on the set of all frequent subtrees. This POSET is not a lattice structure, as
opposed to the lattice of frequent itemsets, because the least upper bound and the greatest lower
bound are not well defined. However, we still can put all frequent subtrees in a data structure
of multiple levels, where each level consists of the frequent subtrees with size equal to the level
number. In addition, directed edges are added between neighboring levels: each edge represents a
subtree/supertree relationship between two frequent subtrees in neighboring levels and points from
the subtree to the supertree. The result is an enumeration DAG (directed acyclic graph) whose
transitive closure is the partial order defined on the POSET of all frequent subtrees. Figure 2 gives
the enumeration DAG of all frequent subtrees for the database shown in Figure 1.

Enumeration trees, which are commonly used for frequent subtree mining, are actually spanning
trees of the above enumeration DAG. Enumeration trees were first introduced by Asai et al. [2]
for systematically enumerating all frequent rooted ordered trees. In Asai et al.’s algorithm, each
candidate subtree is generated at most once (and therefore redundancies are avoided) from its
unique parent in the enumeration tree. The parent of a subtree is uniquely determined by removing
the rightmost vertex of the subtree according to the depth-first traversal order. Figure 3 shows the
enumeration tree, which is a spanning tree of the enumeration DAG in Figure 2. In Figure 3, for
each frequent subtree, we use a bounding box to emphasize its parent in the enumeration tree.

As observed by Asai et al., to add a new vertex w to a frequent subtree t, in order for w to be the
rightmost vertex of the new subtree, w’s parent v must be a vertex on the rightmost path of t, and
w must be v’s rightmost child. The rightmost path of t is the path from the root to the rightmost
vertex of t. For example, for the root tree shown in Figure 4, vertex G is the rightmost vertex and
the rightmost path is the path in the shaded area. A frequent subtree mining algorithm therefore
systematically grows the enumeration tree by extending each frequent subtree in the enumeration
tree. When extending a frequent subtree t, an additional vertex w is added as the rightmost child
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of one vertex on the rightmost path of t (and therefore w becomes the new rightmost vertex); if
the resulting t′ is frequent, t′ becomes a child of t in the enumeration tree.
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Our CMTreeMiner algorithm follows Asai et al.’s enumeration tree idea. However, the enumer-
ation DAG (more specifically, the blanket) is used to determine the closedness and the maximality
of frequent subtrees. In addition, the enumeration DAG (the blanket) is also used to prune the
branches of the enumeration tree that do not correspond to closed or maximal frequent subtrees.

3.2 The Blanket, the Closedness and the Maximality Checking

For a frequent subtree t, we define the blanket of t, denoted by Bt, as the set of immediate supertrees
of t that are frequent, where an immediate supertree of t is a supertree t′ of t that has one more
vertex than t. Figure 6 shows a rooted tree t and some supertrees that are potentially in Bt (tree(a)
is not frequent so actually it is not in Bt). For a node t (which represents a frequent subtree) in the
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enumeration DAG of all frequent subtrees, the blanket Bt of t consists of the nodes reachable from
t in one step. The definition of blanket applies to both rooted ordered trees and rooted unordered
trees.

tree t
F

C

B
C

B

A

C

B E

C

B

C

D B

(b)(a) (c) (d)

Figure 6: A Rooted Ordered Tree t (left) and Some Potential Supertrees in Its Blanket Bt (right)

For a subtree t and one of its immediate supertrees t′ ∈ Bt, we use t′\t to represent the additional
vertex w in t′ that is not in t. Please notice that t′\t represents not only the vertex label of w, but
also its position. In addition, t′\t might be the root of t′, as shown in case(a) in Figure 6.

Using the definition of blanket, we can define maximal and closed frequent subtrees in an
equivalent manner which turns out to be quite useful:

Lemma 4. A frequent subtree t is maximal iff Bt = ∅; a frequent subtree t is closed iff for each
t′ ∈ Bt, support(t′) < support(t).

Proof. Directly from the definition of the closed frequent subtrees and that of maximal frequent
subtrees.

Therefore, instead of a post-processing step, we can tell the closedness and the maximality of a
frequent subtree t by checking the supports of its supertrees in Bt. However, this checking by itself
does not help us too much, for we still have to traverse the whole enumeration tree. In the next
section, we will see how the blanket helps us to prune the branches in the enumeration tree that
do not correspond to closed or maximal frequent subtrees.

3.3 The Pruning Techniques

In the previous section, we have used the enumeration tree to enumerate all frequent subtrees. How-
ever, the final goal of our algorithm is to find only closed and maximal frequent subtrees. Therefore,
it is not necessary to grow the complete enumeration tree, because under certain conditions, some
branches of the enumeration tree are guaranteed to produce no closed or maximal frequent sub-
trees and therefore can be pruned from the search space. In this section, we introduce techniques
that prune the unwanted branches with the help of the enumeration DAG (more specifically, the
blankets).

3.3.1 Occurrence-Matching and Transaction-Matching

If a subtree t occurs in a transaction s, it can occur more than once. For example, the 2-tree with
C as the root and B as C’s only child (i.e., t8 in Figure 7) occurs once in tid1, once in tid2, and
twice in tid3. We call each of them an occurrence of t in the database. For a t′ ∈ Bt, we say that
t′ and t are occurrence-matched if for each occurrence of t in (a transaction of) the database, there
is at least one (there could be more than one) corresponding occurrence of t′; we say that t′ and t
are transaction-matched if for each transaction s ∈ D such that σt(s) = 1, we have σt′(s) = 1.



UCLA Computer Science Department Technical Report CSD-TR No. 040020 10

Lemma 5. If t′ and t are occurrence-matched, then they are transaction-matched.

Proof. Directly implied by the two definitions.
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Figure 8: The Enumeration Tree after Prun-
ing

For example, t13 and t10 in Figure 7 are occurrence-matched. (Figure 7 is a redrawn enumeration
tree for our database, with indices added for convenience of discussion.) This is because (1) t13 ∈
Bt10 and (2) whenever t10 occurs in any position of any transaction in the database, there is a
vertex B (t13\t10) as the left sibling of the vertex E in t10. On the other hand, t14 and t8 are
transaction-matched but not occurrence-matched: although t14 occurs in all transactions where t8
occurs (tid1, tid2, and tid3), t14 does not occur in all position that t8 occurs. In tid3, t8 occurs
twice but t14 only occurs once.

3.3.2 The Left-Blanket Pruning

For a frequent subtree t and one of its supertrees t′ ∈ Bt, the vertex t′\t can be at different
locations, such as position 1 through position 12 shown in Figure 5. According to whether t′\t
is the rightmost vertex of t′, we divide Bt into two parts: the left-blanket Bt left and the right-
blanket Bt right, as shown in Figure 5. For every t′ ∈ Bt right, t′\t is the rightmost vertex of
t′ (in Figure 5, this corresponds to t′\t to be at position 10, 11, or 12); for every t′ ∈ Bt left,
t′\t is not the rightmost vertex of t′ (in Figure 5, this corresponds to t′\t to be at position 1
through 9). An equivalent definition for the left-blanket and right-blanket is that Bt right = {t′ ∈
Bt|t′ is a child of t in the enumeration tree} and Bt left = Bt\Bt right. (Here Bt\Bt right means
Bt ∩Bt right.)

Now we are ready to introduce the first pruning technique–the left-blanket pruning.
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Lemma 6. For a frequent subtree t in the enumeration tree, if there exists a t′ ∈ Bt left such that
t′ and t are occurrence-matched, then (1) t is not closed (and therefore not maximal) and (2) for
each child t′′ of t in the enumeration tree (i.e., for each t′′ ∈ Bt right), there exists at least one
supertree t′′′ ∈ Bt′′ left so that t′′′ and t′′ are occurrence-matched.

Proof. The first statement is true because support(t) = support(t′). For the second statement, we
notice that t′\t occurs at each occurrence of t so it occurs at each occurrence of t′′; in addition, t′\t
is on the left of the rightmost path of t so t′\t will never occur in t′′. Therefore, we can obtain the
t′′′ that satisfies the requirement by adding t′\t to t′′.

Theorem 1. For a frequent subtree t in the enumeration tree, if there exists a t′ ∈ Bt left such
that t′ and t are occurrence-matched, then neither t nor any t’s descendants in the enumeration
tree can be closed (or maximal), and therefore t (together with all t’s descendants) can be pruned
from the enumeration tree.

Proof. By inductively applying Lemma 6 to t and its children in the enumeration tree.

In the example shown in Figure 8, t1, t3, t4, t10 and t15 are pruned from the enumeration tree
by using the left-blanket pruning.

In the theorem we have used occurrence-matching, because a transaction-matching element in
Bt left does not allow us to prune t. For example, t14 ∈ Bt8 left and t14 and t8 are transaction-
matched (for they both occur in every transaction in the database given in Figure 1). But if we
prune t8 and its descendants from the enumeration tree, we will miss t22, which is a closed (and
maximal) frequent subtree.

3.3.3 The Right-Blanket Pruning

If an occurrence-matching t′ occurs in the right blanket Bt right of t, we cannot prune t from the
enumeration tree. However, depending on the location of t′\t, we still can possibly prune some
children of t in the enumeration tree. For example, assume that the rooted tree t in Figure 4 is
frequent and we want to extend t by finding all t’s children in the enumeration tree. To find t’s
children, we add a vertex at position 10, 11, or 12 in Figure 5 to see if the resulting supertree t′

of t is frequent. However, if there is an element t′ ∈ Bt right such that t′\t is at the location of 10
in Figure 5 and if t′ and t are occurrence-matched, then although we still have to explore t′ in the
enumeration tree, after doing it, we do not have to further extend t by adding a new rightmost
vertex to position 11 or position 12 in Figure 5. In other words, we can prune some children of t
in Bt right by skipping the exploration of the ancestors of vertex G on the rightmost path of t.

Theorem 2. For a frequent subtree t in the enumeration tree, if there exists t′ ∈ Bt right such that
t′ and t are occurrence-matched, and the parent of t′\t is v (where v is a vertex on the rightmost
path of t), then we do not have to extend t by adding new rightmost vertices to any proper ancestor
of v.

Proof. Assume that there is a child t′′ of t in the enumeration tree that is obtained by adding a new
rightmost vertex t′′\t to t, where the parent v′ of t′′\t is a proper ancestor of v. Then v is on the
left of the rightmost path of t′′ and therefore so is t′\t (because t′\t is a child of v). As a result we
can construct a t′′′ ∈ Bt′′ left by adding t′\t to t′′ and obviously t′′′ and t′′ are occurrence-matched.
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Therefore by Theorem 1, neither t′′ nor its descendants in the enumeration tree can be closed (or
maximal).

In the example shown in Figure 8, t13 and t20 are pruned from the enumeration tree by using
the right-blanket pruning. Actually, these two subtrees will not appear in the enumeration tree
at all, i.e., because of the right-blanket pruning of t8 and t14 respectively, t13 and t20 will not be
generated in the first place.

3.4 The Order of Computation–A Heuristic Technique

To extend a frequent subtree t in the enumeration tree, supertrees in Bt and their supports are
needed. However, in some cases, only a subset of Bt is needed (e.g., when t can be pruned using
the left-blanket pruning). In this section, we show that different subsets of Bt have different
computational costs. We also organize the order of computation for these subsets to avoid, whenever
possible, computing the subset with the highest computational cost.

3.4.1 The Subsets to Be Computed

To extend a frequent subtree t in the enumeration tree, depending on if t can be pruned from the
enumeration tree and if t is closed/maximal, we will have to compute one or more of the following
mutually exclusive subsets of Bt:

BOM
t = {t′ ∈ Bt|t′ and t are occurrence-matched}

BTM
t = {t′ ∈ Bt\BOM

t |t′ and t are transaction-matched}
BF

t = {t′ ∈ Bt\(BOM
t ∪BTM

t )|t′ is frequent}

Each of these three subsets can be further partitioned into the left part and the right part, by
projecting them on Bt left and Bt right. (For example, BOM

t = BOM
t left ∪ BOM

t right.) If there exists
t′ ∈ BOM

t left, then neither t nor any of t’s descendants in the enumeration tree can possibly be
closed or maximal, so we can safely prune t and all t’s descendants from the enumeration tree. If
BOM

t left = ∅ but there exists t′ ∈ BOM
t right, then t still cannot be closed or maximal. In this case,

although we cannot prune t from the enumeration tree, we can possibly apply Theorem 2 to prune
some children of t in the enumeration tree. If BOM

t = ∅, then no pruning is possible and we have
to compute BTM

t to determine if t is closed. If BTM
t 6= ∅, then t is not closed and therefore not

maximal; if BTM
t = ∅, then t is closed. In this case, t can also be maximal and whether or not

BF
t = ∅ determines whether or not t is maximal.

3.4.2 How to Compute the Subsets

Now we study in detail how to compute each of these three subsets and show that their computa-
tional costs are different.

For a frequent subtree t, each occurrence of t has some candidate supertrees for BOM
t . To finally

determine BOM
t , we compute the intersection of these candidate supertrees from each occurrence

of t, because for a supertree t′ ∈ BOM
t , t′\t should occur with each occurrence of t. For example,

assume that we want to compute BOM
t8 for t8 in Figure 7. As we can see, t8 occurs once in tid1,

once in tid2, and twice in tid3. We first look at the first occurrence of t8 for candidate supertrees
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in BOM
t8 . The first occurrence happens in tid1 and there are three candidate supertree t′8’s (here

we only show t′8\t8): D (as the left sibling of B), E (as the right sibling of B), and F (as the child
of B). (We ignore A because it is not frequent.) Next, we look at all the remaining occurrences of
t8 to see if any of these three candidate supertrees occur in all of them. It turns out that only two,
E and F , are in all occurrences, and therefore BOM

t8 consists of these two supertrees. From this
example we see that computing BOM

t is not an expensive operation: BOM
t is just the intersection

of the candidate supertrees from all occurrences of t.
Computing BTM

t is similar to computing BOM
t , except that each transaction, instead of each

occurrence, has its candidate supertrees for BTM
t . If there are multiple occurrences of t in the same

transaction, then the union of the candidate supertrees from these occurrences is taken as the
candidate supertrees proposed by the transaction. For example, assume that we want to compute
BTM

t17 for t17 in Figure 7. The occurrence of t17 in tid1 has two candidate supertrees (here we only
show t′17\t17): a D (as the left sibling of B) and an F (as the child of E); the occurrence of t17

in tid2 has two candidate supertrees: a D (as the left sibling of B) and a G (as the child of E).
However, t17 occurs twice in tid3, so we compute the union of all the candidate supertrees from
both occurrences, which results in 4 candidate supertrees: a C (as the left sibling of B), a D (as
the left sibling of B), a G (as the child of E), and another C (as the parent of C). The intersection
of these candidate supertrees in each transaction gives us a single element in BTM

t17 –a D as the left
sibling of B. Again, we can see that computing BTM

t is not an expensive operation, although it
is slightly more expensive than computing BOM

t . In addition, we can see that the computation
of BOM

t and BTM
t does not involve storing any support, and the computation may be terminated

before visiting all the occurrences of t: whenever the intersection of candidate supertrees becomes
empty, the rest of the occurrences can be skipped.

To compute BF
t , however, is relatively expensive, for the following reason. Again, each trans-

action has candidate supertrees for BF
t , and if there are multiple occurrences of t in a transaction,

the union of the candidate supertrees from each of these occurrences is taken as the candidate
supertrees from the transaction. This time, however, instead of a simple intersection, the union
of all the candidate supertrees from each transaction is used. Furthermore, the support of each
candidate supertree must be stored and updated in the process, although a large part of the can-
didate supertrees may turn out to be infrequent at the end. For example, assume that we want to
compute BF

t22 for t22 in Figure 7. t22 occurs once in each of tid1, tid2, and tid3. For the occurrence
in tid1, two candidate supertrees need to be recorded (here we only show t′22\t22): a G (as the child
of D) and an F (as the child of E); for the occurrence in tid2, two candidate supertrees need to
be recorded: an F (as the child of D) and a G (as the child of E); for the occurrence in tid3, one
candidate supertree needs to be recorded: a C (as the left sibling of D). Although finally none of
these candidate supertrees turns out to be frequent (they all occur less than the minimum support
2), during the process, we have to store all of them and update their supports whenever necessary,
because we do not know if any of them will become frequent at the end. This also implies that
the memory usage for computing BF

t is not bounded by the size of any transaction. Therefore,
computing BF

t is relatively expensive.

3.4.3 The Order of Computation

Fortunately, the subset of Bt that has the most pruning power, i.e., BOM
t , costs the least to compute.

In order to avoid computing BF
t as much as possible, we adopt the following order in our algorithm
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to compute the three subsets:

(1) Compute BOM
t . If ∃t′ ∈ BOM

t left, prune t; else if ∃t′ ∈ BOM
t right, apply Theorem 2. In either case,

there is no need to compute BTM
t or BF

t , because t is neither closed nor maximal.

(2) Compute BTM
t if BOM

t = ∅. If BTM
t 6= ∅, there is no need to compute BF

t , because t is neither
closed nor maximal; else, t is closed.

(3) Explore t in the enumeration tree. If any children t′ of t turns out to be frequent, then there
is no need to compute BF

t , because t is not maximal.

(4) Compute BF
t left if BOM

t = ∅, BTM
t = ∅, and none of t’s children in the enumeration tree is

frequent. If BF
t left = ∅, then t is both closed and maximal, otherwise, t is closed but not

maximal.

3.5 Putting It All Together–The CMTreeMiner Algorithm

Figure 9 and Figure 10 summarize the final CMTreeMiner algorithm. The inputs of the algorithm
are the database and the user-defined minimum support, and the outputs are the closed frequent
subtrees and the maximal frequent subtrees. Applying the algorithm to the database shown in
Figure 1, the outputs will be three closed frequent subtrees (t6, t21, and t22 in Figure 8), among
which two (t21 and t22) are maximal frequent subtrees.

Algorithm CMTreeMiner(D, minsup)
1: CL ← ∅, MX ← ∅;
2: C ← frequent 1-trees;
3: CM-Grow(C, CL, MX, D, minsup);
4: return CL, MX;

Figure 9: The CMTreeMiner Algorithm

3.6 Possible Variations

It is worthwhile to point out some possible variations to the CMTreeMiner algorithm. The al-
gorithm mines both closed frequent subtrees and maximal frequent subtrees at the same time.
However, the algorithm can be easily changed to mine only closed frequent subtrees or only maxi-
mal frequent subtrees. To mine only closed frequent subtrees, the algorithm is modified to skip the
step of computing BF

t left (i.e., lines 15, 16, and 17). For mining only maximal frequent subtrees,
the algorithm modification is to skip computing BTM

t and use BOM
t to prune the subtrees that are

not maximal. This pruning is indirect: BOM
t only prunes the subtrees that are not closed, but if

a subtree is not closed then it cannot be maximal. If BOM
t = ∅, for better pruning effects, we can

still compute BTM
t to determine if we want to compute BF

t left. In this case, although we only want
the maximal frequent subtrees, the closed frequent subtrees are the byproducts of the algorithm.
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Subroutine CM-Grow(C, CL, MX, D, minsup)
1: for each t ∈ C do
2: E ← ∅;
3: compute BOM

t ;
4: if BOM

t = ∅ then compute BTM
t ;

5: if ∃t ∈ BOM
t left then continue;

6: else
7: for each vertex v on the rightmost path of t, bottom-up, do
8: for each valid new rightmost vertex w of t do
9: t′ ← t plus vertex w, with v as w’s parent;

10: if support(t′) ≥ minsup then E ← E ∪ t′;
11: if ∃t′ ∈ BOM

t right s.t. v is the parent of t′\t then break;
12: if E 6= ∅ then CM-Grow(E, CL, MX, D, minsup);
13: if BOM

t = ∅ and BTM
t = ∅ then

14: CL ← CL ∪ t;
15: if E = ∅ then
16: compute BF

t left;
17: if BF

t left = ∅ then MX ← MX ∪ t;
18: return;

Figure 10: The CM-Grow Subroutine

4 Mining Closed and Maximal Frequent Rooted Unordered Sub-
trees

In this section, we extend the CMTreeMiner algorithm to handle databases of labeled rooted
unordered trees. By defining a canonical form for labeled rooted unordered trees, we extend the
concepts that are introduced in the previous section, such as the enumeration DAG, the enumeration
tree, and the blanket. In addition, we show that all the pruning and heuristic techniques in the
CMTreeMiner algorithm are applicable to mining labeled rooted unordered trees.

4.1 The Canonical Form for Rooted Labeled Unordered Trees

From a rooted unordered tree we can derive many rooted ordered trees, as shown in Figure 11.
From these rooted ordered trees we want to uniquely select one as the canonical form to represent
the corresponding rooted unordered tree.

(d)

A

B B

DC C

A

B B

C DC D C C

BB

A

BB

A

CC D

(a) (b) (c)

Figure 11: Four Rooted Ordered Trees Obtained from the Same Rooted Unordered Tree
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Without loss of generality, we assume that there are two special symbols, “$” and “#”, which
are not in the alphabet of edge labels and vertex labels. In addition, we assume that (1) there
exists a total ordering among edge and vertex labels, and (2) “#” sorts greater than “$” and both
sort greater than any other symbol in the alphabet of vertex and edge labels. We first define the
depth-first string encoding for a rooted ordered tree as the string of labels obtained through a depth-
first traversal of the tree, where a “$” represents a backtrack and a “#” represents the end of the
string encoding. The depth-first string encodings for each of the four trees in Figure 11 are for (a)
ABC$$BD$C#, for (b) ABC$$BC$D#, for (c) ABD$C$$BC#, and for (d) ABC$D$$BC#.
With the string encoding, we define the depth-first canonical form (DFCF) for a labeled rooted
unordered tree using the following recursive definition:

(1) For a labeled rooted unordered tree with a single vertex, it is trivially in DFCF;

(2) For a labeled rooted unordered tree t with more than one vertex, its DFCF is obtained by
the following recursive procedure: assuming that the root r of t has K children denoted by
r1, . . . , rK , we first determine the DFCFs for the subtrees tr1 , . . . , trK rooted at r1, . . . , rK , then
reorder these DFCFs (which are labeled rooted ordered trees) from left to right in the increasing
lexicographical order of their depth-first string encodings.

In Figure 11, tree (d) is the DFCF for the corresponding labeled rooted unordered tree. It can
be shown [6] that the DFCF can be defined in another equivalent way: the DFCF of a labeled
rooted unordered tree t is the labeled rooted ordered tree, among all the labeled rooted ordered
trees that can be derived from t, that gives the smallest depth-first string encoding.

Using a tree isomorphism algorithm given by Aho et al. [1,17], we can construct the DFCF for
a rooted unordered tree in linear time with respect to the size of the tree.

Note that the depth-first string encoding we use here is equivalent to the string encoding that was
first proposed by Zaki [30] to represent labeled rooted ordered trees. Independent of our work [7],
Asai et al. [3] and Nijssen et al. [19] proposed similar canonical forms, which are equivalent to our
DFCF, for labeled rooted unordered trees.

4.2 Extending the Enumeration DAG and the Enumeration Tree

Similar to the case of rooted ordered trees, we can also build an enumeration DAG to represent
the POSET of all frequent rooted unordered trees. In the enumeration DAG, each node represents
a frequent rooted unordered tree in its canonical form (DFCF). Figure 12 shows the enumeration
DAG of all the frequent rooted unordered trees in the database given in Figure 1. An enumeration
tree, which is a spanning tree of the enumeration DAG, can be obtained by uniquely determining
the parent of each frequent subtree in the enumeration DAG. In our algorithm, we again adopt the
enumeration tree defined by Asai et al. [3], in which the parent of a frequent subtree t is determined
by removing the rightmost vertex from the DFCF of t. Figure 12 shows such an enumeration tree
(by ignoring the arrows with dashed lines). In the Figure, t6, t21, and t22 are closed, and among
them, t21 and t22 are maximal.

4.3 Extending the Blanket and Other Concepts

The concepts of the blanket, the occurrence-matching, and the transaction-matching all apply to
rooted unordered trees as well. The enumeration tree growing method is similar as well: for a
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frequent unordered subtree t in the enumeration tree (without loss of generality, when we talk
about a subtree t in the enumeration tree, we assume that t is in its DFCF), to create a candidate
child for t, a new vertex w is added as a child of some vertex v on the rightmost path of t. However,
even if the resulting t′ is frequent, in order for t′ (which is in DFCF) to be the child of t in the
enumeration tree, w must be the rightmost vertex of t′. This requirement restricts the range of
labels w can take, as will become evident from the following discussion.

Again, we define the left and the right blankets for a frequent subtree t in the enumeration tree
as Bt right = {t′ ∈ Bt|t′ is a child of t in the enumeration tree} and Bt left = Bt\Bt right. However,
for a t′ ∈ Bt, whether t′ is in Bt left or in Bt right not only depends on the location of t′\t, it may
also depend on the vertex label of t′\t. For example, in Figure 14, if the parent of t′\t is not a
vertex on the rightmost path of t (as shown in case I and case II), then t′ ∈ Bt left; if the parent
of t′\t is a vertex on the rightmost path of t, then depending on the vertex label, t′\t may (as
shown in case IV) or may not (as shown in case III) be the rightmost vertex of the DFCF for t′. In
the former case, t′ ∈ Bt right, because t′ is a child of t in the enumeration tree (i.e., removing the
rightmost vertex from t′ will result in t); in the latter case, t′ ∈ Bt left.

To distinguish case III and case IV in Figure 14, for each vertex v on the rightmost path of t,
we compute the ranges of labels that the new vertex w can take in each case. For case IV, the label
for w should be in such a range that adding w as the child of v will give us a supertree t′ ∈ Bt right

with w as the rightmost vertex; w with other labels will give us case III. It is worth mentioning
that this information is also important when we extend t, because it tells us what are the valid
children of t in the enumeration tree. Figure 15 gives an example for computing the range of valid
vertex labels at a given position on the rightmost path. In the figure, if we add a new vertex at
the given position, we may violate the DFCF by changing the order between some ancestor of the
new vertex (including the vertex itself) and its immediate left sibling. So in order to determine the
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range of allowable vertex labels for the new vertex (so that adding the new vertex will guarantee
to result in a new DFCF), we can check each vertex along the path from the new vertex to the
root. In Figure 15, the result of comparison (1) is that the new vertex should have label greater
than or equal to A, comparison (2) increases the label range to be greater than or equal to B, and
comparison (3) increases the label range to be greater than or equal to C. As a result, we know
that at this given location, adding a new vertex with label greater than or equal to C will result in
a t′ similar to case IV in Figure 14 (and therefore the resulting t′ is in Bt right), and adding a new
vertex with label less than C will result in a t′ similar to case III in Figure 14 (and therefore the
resulting t′ is in Bt left).

4.4 Extending the Pruning and the Heuristic Techniques

With well-defined left-blanket and right-blanket, the pruning techniques developed in the previous
section for labeled rooted ordered trees can be applied to labeled rooted unordered trees as well.
This is because Lemma 6, Theorem 1, and Theorem 2 are still valid for the enumeration tree of
unordered frequent subtrees. For example, in Figure 13, t1, t3, and t4 are pruned by the left-blanket
pruning; t13 and t14 are pruned by the right-blanket pruning.

Moreover, the right-blanket pruning for unordered trees can be more powerful than that for
ordered trees:

Theorem 3. For a frequent subtree t in the enumeration tree of frequent rooted unordered trees,
if there exists t′ ∈ Bt right such that t′ and t are occurrence-matched, and the parent of t′\t is v
(where v is a vertex on the rightmost path of t), then (1) we do not have to extend t by adding new
rightmost vertices to any proper ancestors of v, and (2) we do not have to extend t by adding to v
a new rightmost vertex with vertex label lexicographically greater than t′\t.
Proof. The first statement can be proved in the same way as Theorem 2. For the second statement,
we notice that for any t′′ ∈ Bt right such that the parent of t′′\t is v and t′′\t is lexicographically
greater than t′\t, we have that t′\t is the left sibling of t′′\t in all occurrences of t′′, and therefore
neither t′′ nor any of its descendants can be closed or maximal.

For example, in Figure 13 t9 and t10 are pruned by the right-blanket pruning, because that t8
and t2 are occurrence-matched. Here, although t9\t2 and t10\t2 share the same parent (vertex C)
with t8\t2, they are still pruned because t8\t2 < t9\t2 (B < D) and t8\t2 < t10\t2 (B < E).
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Finally, the heuristic order of computation for reducing relatively expensive computation can
be used for extending the enumeration tree of unordered frequent subtrees as well.

To summarize, with the definition of the canonical form (DFCF) and with only minor changes
(e.g., the procedure to determine left and right blankets), the CMTreeMiner algorithm developed
in the previous section can be used for mining frequent subtrees from databases of labeled rooted
unordered trees.

5 Experiments

We performed extensive experiments to evaluate the performance of the CMTreeMiner algorithm
using both synthetic datasets and datasets from real applications. All experiments were done on a
2GHz Intel Pentium IV PC with 1GB main memory, running RedHat Linux 7.3 operating system.
All algorithms were implemented in C++ and compiled using the g++ 2.96 compiler.

5.1 Experiments on Rooted Ordered Trees

Since to our knowledge, there is no existing work on mining closed or maximal frequent ordered
subtrees, we compare CMTreeMiner with the class of algorithms that use post-processing techniques
to get closed or maximal frequent ordered trees, and use the cost of FREQT, which is developed
by Asai et al. [2], as a lower bound for this class of algorithms. In the following experiments, we
only consider the cost of FREQT for discovering all frequent ordered subtrees, and zero cost in the
post-processing stage to obtain the closed or maximal ordered subtrees.

5.1.1 The Synthetic Dataset vs. the Real Dataset

The synthetic dataset T1M is generated by the tree generation program provided by Zaki [30]. In
brief, a mother tree is generated first with the following parameters: the number of distinct node
labels N = 100, the total number of nodes in the tree M = 10, 000, the maximal depth of the tree
D = 10 and the maximum fanout F = 10. The dataset is then generated by creating subtrees
of the mother tree. In our experiments, we set the total number of trees in the dataset to be
T = 1, 000, 000. The average number of nodes in each tree is 6.94.

The real dataset CSLOGS is provided by Zaki [30] and is composed of users’ access trees to
the CS department website at RPI. An access tree not only records the sequence of web pages that
have been visited in a user session; but also integrates the website’s topological information. It
is possible that the labels in an access tree are not unique. That means the same page is visited
multiple times in a user’s access sequence. CSLOGS contains 59, 691 trees that cover a total of
13, 361 unique web pages. The average size of each tree is 12.

5.1.2 Performance Comparison

Figure 16(a) shows the time spent by CMTreeMiner and FREQT under different support thresholds
for the synthetic dataset T1M. The running time increase for CMTreeMiner is much slower than
that for FREQT as the support threshold decreases. And when the support threshold is low,
the trends of CMTreeMiner and FREQT become more distinct. The significant increase in the
running time of FREQT at low support thresholds can be explained by the jump in the maximum
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frequent subtree size in Figure 16(b). The increase of the maximum frequent subtree size leads to
an exponential increase in the number of frequent subtrees, and finally the exponential increase in
the running time. Since CMTreeMiner does not directly mine frequent subtrees, but the closed
and maximal frequent subtrees, it is less affected than FREQT.

The above trends for CMTreeMiner and FREQT can also be observed in the real dataset
CSLOGS (see Figure 17(a), 17(b)), only more pronounced. The maximum frequent subtree size
increases dramatically from 28 to 204 when the support threshold drops from 0.2% to 0.1%, and
it becomes difficult for FREQT to find all frequent subtrees at support threshold 0.17% or lower.
On the other hand, CMTreeMiner can still handle such dramatic changes.
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Figure 16: Support Thresholds vs. Running Time and the Maximum Size of Frequent Subtrees for
T1M
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Figure 17: Support Thresholds vs. Running Time and the Maximum Size of Frequent Subtrees for
CSLOGS

The time savings of CMTreeMiner come from the difference between the number of frequent sub-
trees and closed frequent subtrees. The larger the difference is, the more significant are the savings
realized by CMTreeMiner. In fact, the savings are decided by the correlations among the frequent
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subtrees. Strong correlations imply that the same set of frequent subtrees can be represented by
a relatively small number of closed frequent subtrees. In real applications, strong correlations do
exist, and it is a motivation of the frequent subtree mining algorithms to discover these strong
correlations. Figure 18(a) and 18(b) show the number of frequent subtrees, the number of trees
that have been checked by CMTreeMiner, the number of closed frequent subtrees, and the number
of maximal frequent subtrees in dataset T1M and CSLOGS respectively, under different support
thresholds. It can be easily seen that in both datasets, the number of closed frequent subtrees is
significantly less than the total number of frequent subtrees, especially when the support threshold
is low. The number of subtrees that have been checked by CMTreeMiner is also significantly less
than the number of frequent subtrees at low support thresholds.
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Figure 18: Support Thresholds vs. the Number of Frequent Subtrees for T1M and CSLOGS
Respectively
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Figure 19: Support Thresholds vs. the Fraction of Subtrees that Compute BF
t for T1M and

CSLOGS Respectively

In CMTreeMiner, the most expensive operation is to compute the subset BF
t of the blanket

Bt for a frequent subtree t. Figure 19(a) shows the fraction of frequent subtrees for which this
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operation is actually performed, and the fraction of closed subtrees in CMTreeMiner for which BF
t

is computed. As we can see, as the support threshold decreases, the fraction decreases also. Our
understanding of this phenomena is that the pruning of non-closed subtrees occurs at places near
the root of the enumeration tree. A similar trend can be observed in the dataset CSLOGS (see
Figure 19(b)).

We also studied the memory usage of both CMTreeMiner and FREQT, and found that they
are comparable. At the lowest support threshold 0.00025% for dataset T1M, the memory used
by CMTreeMiner is 256M , while that by FREQT is around 254M . As for CSLOGS, at the
support threshold 0.17%, the memory usages of CMTreeMiner and FREQT are 159M and 176M
respectively.

5.2 Experiments on Rooted Unordered Trees

In this section, we study the performance of CMTreeMiner on mining frequent unordered subtrees.
We first compare the performance of CMTreeMiner with that of HybridTreeMiner, an algorithm
that we have previously developed for mining all frequent unordered subtrees [8]. For this com-
parison, we use the dataset that has been used in [8]. Second, we compare the performance
of CMTreeMiner with that of PathJoin [26], a recently proposed algorithm that mines maximal
frequent unordered subtrees. For this comparison, we use both a synthetic dataset and a real
application dataset–the MBONE multicast data provided in [4, 5].

5.2.1 Comparison with HybridTreeMiner

HybridTreeMiner is an algorithm that we have previously developed for mining all frequent subtrees
from a database of rooted unordered trees [8]. Here we use one of the datasets given in [8] to
compare the performance of CMTreeMiner with that of HybridTreeMiner. The detailed procedure
for generating the dataset is described in [8] and here we give a very brief description. A set of |N |
(=100) subtrees are sampled from a large base (labeled) graph. We call this set of |N | subtrees
the seed trees. Each seed tree is the starting point for |D| · |S| transactions where |D| (=10,000)
is the number of transactions in the database and |S| (=1%) is the minimum support. Each of
these |D| · |S| transactions is obtained by first randomly permuting the seed tree then adding more
random vertices to increase the size of the transaction to |T | (=50). After this step, more random
transactions with size |T | are added to the database to increase the cardinality of the database
to |D|. The number of distinct edge and vertex labels is controlled by the parameter |L| (=10),
which is both the number of distinct edge labels and the number of distinct vertex labels. The
size of the seed trees |I| increases from 10 to 30. As can be seen, data generated in this way are
strongly correlated. An advantage of this generator is that the size of maximal frequent subtrees is
a parameter that can be controlled, so we can clearly observe the running time of various algorithms
as a function of the size of maximal frequent subtrees.

Figure 20 shows the experimental results. Figure 20(a) gives the total number of frequent
subtrees obtained by HybridTreeMiner, the number of subtrees checked by CMTreeMiner, the
number of closed frequent subtrees, and the number of maximal frequent subtrees. As we can
see from the figure, the total number of all frequent subtrees grows exponentially but the number
of closed subtrees and maximal subtrees do not. The number of subtrees that are checked by
CMTreeMiner grows in polynomial fashion. Therefore, as shown in Figure 20(b), as the size of
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Figure 20: CMTreeMiner vs. HybridTreeMiner on Synthetic Datasets

maximal frequent subtrees increases, the total running time of CMTreeMiner grows much more
slowly than that of HybridTreeMiner.

5.2.2 Comparison with PathJoin using Synthetic Data

PathJoin [26] is a recently proposed algorithm that mines maximal frequent subtrees from a
database of labeled rooted unordered trees. However, because PathJoin uses the paths from roots
to leaves to help subtree mining, it does not allow any siblings in a tree to have the same labels.
In addition, PathJoin assumes no edge labels. Therefore, we have changed the synthetic generator
in [8] to generate a dataset that meets these requirements. The parameters for the dataset are:
|D|=100,000, |N |=90, |L|=1,000, |S|=1%, |T |=|I|, and |I| varies from 5 to 50. (For |I| > 25,
PathJoin exhausts all available memory.)
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Figure 21: CMTreeMiner vs. PathJoin on Synthetic Datasets

Figure 21 compares the performance of PathJoin with that of CMTreeMiner on this dataset.
Figure 21(a) gives the total number of frequent subtrees obtained by PathJoin, the number of
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subtrees checked by CMTreeMiner, the number of closed frequent subtrees, and the number of
maximal frequent subtrees. As we can see from the figure, the number of subtrees that are checked
by CMTreeMiner and the number of closed subtrees grow in polynomial fashion. In contrast, the
total number of all frequent subtrees (which is a lower bound of the number of subtrees checked by
PathJoin) grows exponentially. As a result, as demonstrated in Figure 21(b), although PathJoin
is very efficient for datasets with small tree sizes, as tree sizes increase beyond some value (say 10),
it becomes obvious that PathJoin suffers from the exponential growth of computation time while
CMTreeMiner does not. Note that the Y -axis is drawn on a logarithmic scale, and therefore the
improvement correspond to orders of magnitude. For example, with the size of maximal frequent
subtrees to be 25 in the dataset, it took PathJoin nearly 3 days to find all maximal frequent subtrees
while it took CMTreeMiner only 90 seconds!

The memory usage of CMTreeMiner is also smaller than that of PathJoin. When PathJoin
exhausts the 1GB available memory at |I| = 26, CMTreeMiner uses about 302 MB memory; when
|I| = 50, CMTreeMiner uses about 567 MB memory.

5.2.3 Comparison with PathJoin using Data from Real Application

We also compared the performance of CMTreeMiner with that of PathJoin using a dataset of IP
multicast trees. IP multicast is an efficient way to send messages to a group of users. In our
experiment we have used the MBONE multicast data provided in [4, 5]. The data were measured
during the NASA shuttle launch between 14th and 21st of February, 1999. It has 333 vertices where
each vertex takes an IP address as its label. We sampled the data from this NASA dataset with
10 minutes sampling interval and got a dataset with 1,000 transactions. Therefore the transactions
are the multicast trees for the same NASA event at different times.
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Figure 22: CMTreeMiner vs. PathJoin on the Multicast Dataset

Figure 22 compares the performance of PathJoin with that of CMTreeMiner on the multicast
dataset. As shown in Figure 22(a), this dataset is extremely dense: as the support decreases, the
total number of frequent subtrees dramatically increases. However, the number of subtrees checked
by CMTreeMiner, the number of closed frequent subtrees, and the number of maximal frequent
subtrees grow relatively slowly. Therefore, as we can see from Figure 22(b), even before PathJoin
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uses up the memory, its running time blows up quickly. In contrast, CMTreeMiner can handle very
low supports (e.g., 0.2%, which corresponds to a subtree occurring in only 2 transactions) within
180 seconds.

5.3 Observations Obtained from Mining Real Application Data

In this section, we study two datasets from real applications: the first one is the dataset of multicast
trees that was introduced in the previous section; the second one is a dataset of Web access
trees obtained from the log files at UCLA Data Mining Laboratory. Instead of focusing on the
performance of algorithms, we study the maximal frequent trees mined from the datasets and look
for previously unknown information from these frequent trees.

5.3.1 The Dataset of Multicast Trees

For the multicast dataset that was introduced in the previous section, Figure 23 gives the size of
the largest maximal frequent subtree as a function of the minimum support. Our previous attempts
to mine all frequent subtrees from this dataset failed with support less than 80% [7] and now we
know why. Because this dataset of NASA multicast trees has very strong correlation among its
transactions (the difference between two consecutive transactions may result from a couple of users
who left the event and a couple of users who just joined the event), the sizes of maximal frequent
subtrees grow very large even with a very high support threshold. In addition, from Figure 23 we
can see that as the minimum support decreases to values less than 30%, the size of the largest
maximal frequent subtree does not change very much as the support threshold is decreased further.
This suggests that first, not all the 333 participants of the NASA shuttle launch event participated
at the same time (during the peak time, there were only about 240 participants), and second, a
large portion of the whole multicast tree participated at least 30% of the period during the event.
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Figure 23: Multicast Dataset Results
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Figure 24: WebLog Dataset Results

5.3.2 The Dataset of Web Access Trees

The second dataset is obtained from the log files at UCLA Data Mining Laboratory (http://dml.cs.ucla.edu).
The transactions in this dataset do not reflect the navigation pattern of each user, as opposed to
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the CSLOGS dataset; instead, each transaction records the fraction of the web site that is visited
during a single session in the web log. First, we used the WWWPal system [21] to obtain the
topology of the web site. Then we wrote a program that, for each session in the log file, generates
a spanning tree that contains all the webpages visited in the session. Our program generated 2,814
user access trees from the log files collected over year 2003 at our laboratory that touched a total
of 310 web pages. In the user access trees, the vertices correspond to the web pages and the edges
correspond to the links between the webpages. Similar to CSLOGS, URLs of the webpages are
taken as the vertex labels and therefore each vertex has a distinct label. We do not assign labels
to edges.

In Figure 24 we have shown the growth of the size of the largest maximal frequent subtree as
we reduce the support. As we can see, with larger support (from 1% to 5%), there are no large
frequent subtrees. However, as the support decreases to extremely low value (lower than 0.2%), the
size of the largest maximal frequent subtree jumps dramatically to very large values. Obviously,
these large frequent subtrees with low support were created by web crawlers or robots as opposed
of human web surfers. Therefore, Figure 24 tells us that among the visitors to our lab website,
around 0.2% are web crawlers.

6 Conclusion and Future Directions

In this paper, we have introduced the problem of mining closed and maximal frequent subtrees from
databases of rooted labeled trees. We presented a novel algorithm, CMTreeMiner, that efficiently
mines closed and maximal frequent subtrees without first generating all frequent subtrees. Various
pruning and heuristic techniques are used in the algorithm to reduce the search space and to
improve the computational efficiency. Our algorithm can be used for mining both labeled rooted
ordered trees and labeled rooted unordered trees. Extensive experiments showed that our algorithm
outperformed all existing frequent subtree mining algorithms. The discovered closed and maximal
frequent subtrees also revealed some interesting knowledge about the datasets that we have used.

We plan to extend our work in the following directions. First, our algorithm discovers frequent
induced subtrees only. In real applications, frequent embedded subtrees are equally important.
For example, in XML documents, not only the parent/child relationships, but also the ances-
tor/descendant relationships reveal important patterns in the documents, where the latter rela-
tionships can only be expressed using embedded subtrees. Therefore, mining closed and maximal
frequent embedded subtrees is one of our future directions. Second, some trees in real applications
are unrooted, i.e., they are free trees. For example, in pattern recognition, a free tree called shape
axis tree is used to represent shapes [16]. Extending our algorithm to mining closed and maximal
frequent free trees is another challenge. Third, frequent itemset mining has been extended to se-
quential pattern mining [23] and episode mining [18]. Many databases of labeled trees (e.g., the
multicast trees and the web access trees used in our study) also have time-stamps for each trans-
action tree. Mining closed and maximal sequential patterns and episode trees from such databases
is one of our future research topics.



UCLA Computer Science Department Technical Report CSD-TR No. 040020 27

Acknowledgements

Thanks to Professor Mohammed J. Zaki at the Rensselaer Polytechnic Institute for providing us
the CSLOGS dataset and the synthetic data generator. Thanks to Professor Yongqiao Xiao at
the Georgia College and State University for providing the PathJoin source codes and offering a
lot of help. Thanks to Professor Jun-Hong Cui at the University of Connecticut for providing the
NASA multicast event data and offering many helpful suggestions. Thanks to Professor John R.
Punin and Mukkai S. Krishnamoorthy at the Rensselaer Polytechnic Institute for helping us with
the WWWPal system.

This material is based upon work supported by the National Science Foundation under Grant
Nos. 0086116, 0085773, and 9817773. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views of the
National Science Foundation.

References

[1] A. V. Aho, J. E. Hopcroft, and J. E. Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley, 1974.

[2] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Satamoto, and S. Arikawa. Efficient substructure
discovery from large semi-structured data. In 2nd SIAM Int. Conf. on Data Mining, April
2002.

[3] T. Asai, H. Arimura, T. Uno, and S. Nakano. Discovering frequent substructures in large
unordered trees. In The 6th International Conference on Discovery Science, October 2003.

[4] R. Chalmers and K. Almeroth. Modeling the branching characteristics and efficiency gains of
global multicast trees. In Proceedings of the IEEE INFOCOM’2001, April 2001.

[5] R. Chalmers and K. Almeroth. On the topology of multicast trees. Technical Report, UCSB,
March 2002.

[6] Y. Chi, Y. Yang, and R. R. Muntz. Canonical forms for labeled trees and their applications
in frequent subtree mining. Knowledge and Information Systems. (to appear).

[7] Y. Chi, Y. Yang, and R. R. Muntz. Indexing and mining free trees. In Proceedings of the 2003
IEEE International Conference on Data Mining (ICDM’03), November 2003.

[8] Y. Chi, Y. Yang, and R. R. Muntz. HybridTreeMiner: An efficient algorithm for mining
frequent rooted trees and free trees using canonical forms. In The 16th International Conference
on Scientific and Statistical Database Management (SSDBM’04), June 2004.

[9] Y. Chi, Y. Yang, Y. Xia, and R. R. Muntz. CMTreeMiner: Mining both closed and maximal
frequent subtrees. In The Eighth Pacific Asia Conference on Knowledge Discovery and Data
Mining (PAKDD’04), May 2004.

[10] J. Cui, J. Kim, D. Maggiorini, K. Boussetta, and M. Gerla. Aggregated multicast–a compar-
ative study. In Proceedings of IFIP Networking 2002, May 2002.



UCLA Computer Science Department Technical Report CSD-TR No. 040020 28

[11] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In 2000
ACM SIGMOD Intl. Conference on Management of Data, May 2000.

[12] J. Hein, T. Jiang, L. Wang, and K. Zhang. On the complexity of comparing evolutionary trees.
Discrete Applied Mathematics, 71:153–169, 1996.

[13] J. Huan, W. Wang, and J. Prins. Efficient mining of frequent subgraph in the presence of
isomorphism. In Proc. 2003 Int. Conf. on Data Mining (ICDM’03), 2003.

[14] A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining frequent
substructures from graph data. In Proc. of the 4th European Conference on Principles and
Practice of Knowledge Discovery in Databases (PKDD’00), pages 13–23, September 2000.

[15] M. Kuramochi and G. Karypis. Frequent subgraph discovery. In Proceedings of the 2001 IEEE
International Conference on Data Mining (ICDM’01), November 2001.

[16] T. Liu and D. Geiger. Approximate tree matching and shape similarity. In International
Conference on Computer Vision, September 1999.

[17] F. Luccio, A. M. Enriquez, P. O. Rieumont, and L. Pagli. Exact rooted subtree matching in
sublinear time. Technical Report TR-01-14, Universita Di Pisa, 2001.

[18] H. Mannila, H. Toivonen, and A. Inkeri Verkamo. Discovery of frequent episodes in event
sequences. Data Mining and Knowledge Discovery, 1(3), 1997.

[19] S. Nijssen and J. N. Kok. Efficient discovery of frequent unordered trees. In First International
Workshop on Mining Graphs, Trees and Sequences, 2003.

[20] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets for
association rules. Lecture Notes in Computer Science, 1540:398–416, 1999.

[21] J. Punin and M. Krishnamoorthy. WWWPal system–a system for analysis and synthesis of
web pages. In WebNet 98 Conference, November 1998.

[22] D. Shasha, J. T. L. Wang, and R. Giugno. Algorithmics and applications of tree and graph
searching. In Symposium on Principles of Database Systems, pages 39–52, 2002.

[23] R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and performance
improvements. In Proc. 5th Int. Conf. Extending Database Technology, EDBT’96, 1996.

[24] A. Termier, M-C. Rousset, and M. Sebag. TreeFinder: a first step towards xml data mining.
In Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM’02), pages
450–457, 2002.

[25] K. Wang and H. Liu. Discovering typical structures of documents: A road map approach. In
21st Annual International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, pages 146–154, 1998.

[26] Y. Xiao, J-F Yao, Z. Li, and M. Dunham. Efficient data mining for maximal frequent sub-
trees. In Proceedings of the 2003 IEEE International Conference on Data Mining (ICDM’03),
November 2003.



UCLA Computer Science Department Technical Report CSD-TR No. 040020 29

[27] X. Yan and J. Han. gSpan: Graph-based substructure pattern mining. In Proc. 2002 Int.
Conf. on Data Mining (ICDM’02), 2002.

[28] X. Yan and J. Han. CloseGraph: Mining closed frequent graph patterns. In Proc. 2003 Int.
Conf. Knowledge Discovery and Data Mining (SIGKDD’03), 2003.

[29] L. H. Yang, M. L. Lee, W. Hsu, and S. Achary. Mining frequent quer patterns from xml
queries. In Eighth International Conference on Database Systems for Advanced Applications
(DASFAA ’03), 2003.

[30] M. J. Zaki. Efficiently mining frequent trees in a forest. In 8th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, July 2002.

[31] M. J. Zaki and C. C. Aggarwal. XRules: An effective structural classifier for XML data. In
Proc. of the 2003 Int. Conf. Knowledge Discovery and Data Mining (SIGKDD’03), 2003.


