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Abstract

Future network intruders will probably use a
zombie army to deliver many different attacks,
rather than recruiting a new army per attack.  We
describe a Midgard Worm, which can build an
extremely resilient and scalable overlay network
to deliver attack code quickly.  The worm's master
could disseminate a 1-megabyte exploit or
upgrade to a million zombies from any zombie in
less than six minutes.  Even if 80% of the zombies
were disinfected, 70% of the remainder would
remain connected and ready to receive new
exploits.  We discuss the basic design principles
behind such a worm and methods of combating
this kind of attack.

1. Introduction

Until recently, computer worms seemed to be mainly
proofs of concept or idle entertainments for hackers
interested in causing random mayhem [Spafford 89,
CERT CA-2001-19, Moore 03].  But experts have
predicted that worms would begin to recruit armies of
machines for purposes beyond merely demonstrating
their danger  [Staniford 02], and the recent Blaster
worm outbreak appears to have been designed to do
precisely that [CERT CA-2003-20].  Since a well-
designed worm can compromise hundreds of
thousands, or perhaps even millions of nodes
[Staniford 02], it can serve as an excellent
mechanism to recruit vast zombie armies to
perpetrate distributed denial of service (DDoS)
attacks, serve as spam sources, or perform any other
nefarious action that requires large numbers of
computers.

While the worm author could put the code for his
army to execute in the worm’s payload, there are
good reasons not to.  First, it increases the payload
size and may slow down worm propagation.  Second,
distributing attack code in the worm’s payload limits
flexibility.  The worm can perform that single action,
but no other.  Third, including the payload might

provide defenders with information about the worm,
possibly allowing them to limit its spread.  Also,
defenders will receive a complete copy of the code
that the zombie army will execute, usually well
before it runs, allowing them to analyze and
counteract it.  While the attacker can encrypt the
payload, he must either include the key with it or
distribute it later.  If the key is included with the
payload, the encryption is of little value.  If he
distributes the key later, he might as well choose the
more flexible option of distributing the payload at the
same time. Thus, sophisticated worms are likely to
have a more general mechanism for delivering
exploit code to their zombie armies.

For example, Sobig.F zombies attempted to
download exploit code from 20 different Internet
nodes at a particular time [CERT IN-2003-03].  This
code seems to have been relatively harmless, but
since Sobig.F zombie nodes were totally
compromised, the attack could have performed any
malicious actions on those computers, from wiping
their hard drives to launching massive attacks toward
others.  However, because Sobig.F used a fairly
unsophisticated code distribution mechanism,
authorities prevented its zombies from obtaining their
code.

More sophisticated code distribution mechanisms are,
unfortunately, all too possible. [Staniford 02]
introduced a “worm network” concept for direct
worm-to-worm communication and programmable
worm updates.  In this paper, we describe how an
attacker could actually implement a worm network
that would be highly effective and extremely difficult
to counter, and through which an attacker could
disseminate arbitrary exploit code to zombies at any
time to launch a second-wave attack.  We describe a
class of worms we call Midgard worms.1  Midgard

                                                  
1 Named after a monstrous serpent in Norse mythology that

circled the world and held its own tail in its mouth.  At Ragnorak,
the Norse end of the world, the Midgard serpent would emerge
from the ocean and spit venom over the entire world.
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worms build up a highly resilient code dissemination
structure based on creating an overlay network of
compromised nodes.  Midgard worms exploit the
existing characteristics of worms (such as repeated
attempts to infect already infected machines) to
improve the structure’s resiliency and speed of
dissemination.  This class of worms is highly feasible
and could be designed by an attacker of no more than
moderate sophistication.

The new danger of a Midgard worm is that it offers
the attacker a resilient, surreptitious “anytime,
anywhere, any flavor” capability: attacks can be
launched at a moment’s notice, injected at any point
in the overlay, and can be crafted to any purpose.
Attackers could use a Midgard worm to create a
network of compromised machines that would allow
them to perform many “useful” activities, such as
sending massive amounts of spam to machines all
over the Internet, extorting money via threats of
devastating DDoS attacks, breaking cryptographic
keys by brute force, storing and distributing stolen
software or data for fun and profit.  A variety of
malicious activities could happen at any time in any
sequence.  The owner of the zombie army could even
rent it out to others to allow them to perform any
desired activity that required large numbers of nodes.

Our preliminary analysis suggests that a Midgard
worm’s code dissemination network could distribute
a 1-megabyte exploit program to 1 million sites in
under 6 minutes.

Midgard worms will appear sooner or later.  Most of
the component parts of such worms have already
been observed in released worms or other malicious
code.  The remaining parts resemble other popular
and well-known programs (such as peer file-sharing
networks) and are not tremendously challenging to
code.  This paper discusses the logical evolution and
feasibility of this worm.  It also draws attention to the
danger posed to the Internet community by Midgard
worms and to spur government, industry, and
researchers to find solutions to this problem before it
becomes a crisis.

In scope and detail, this paper goes beyond existing
work that suggests the possibility of building worm
networks.  We demonstrate how easy it would be to
use a worm to automatically create and manage a
code dissemination network, and discuss the likely
performance characteristics of such a worm and its
network, including how long it would take for its
master to inject new code into a vast number of
nodes, the likely performance impact of doing so on

the Internet as a whole, and the resiliency of this
dissemination network.  Finally, we discuss methods
that might be used to discover and counteract such a
worm, and discuss what changes in the Internet
would make the creation and use of such a worm less
likely.

2. Structure of a Midgard Worm

The search and the infection procedures of a Midgard
worm are the same as other worms.  The unique
characteristic of this kind of worm is that it creates a
resilient self-organizing overlay of zombie nodes.
This overlay allows the attacker to inject arbitrary
exploit code at any time and from any point in the
overlay, thereby disseminating the exploit code to all
the recruited zombies. A Midgard worm can start
building its overlay network during the infection
phase, but further overlay construction will continue
even if it stops propagating. Once a Midgard worm
has recruited and organized its zombie army, the
overlay network it has built serves as a superhighway
for code propagation, even allowing upgraded
versions of the worm itself to be distributed.

In order to disseminate exploit code, Midgard worms
could build a resilient overlay that is similar to
Revere overlays [Li 02b], or adopt any other type of
overlays, including trees, hypercubes, butterflies, fat
trees, or a random graph.  Sophisticated and resilient
overlays would make Midgard worms harder to
defeat, and these are the focus of this paper.

The basic step in forming a Midgard overlay network
is to incorporate a single new zombie into an existing
zombie overlay.  Except for the very first infected
machine, every zombie needs to find some others
already in the overlay and attach itself to them as a
child.  Here, a zombie can employ various methods to
discover other overlay members.  Obviously, this
zombie was originally infected by some other
machine, so it has no difficulty with the
bootstrapping step of finding the first parent.  It
would be possible for that parent to pass the new
child a list of other zombies who might serve as
additional parents.  It would also be possible for the
child to simply wait for other zombies to attempt to
infect it.  Many of the methods that worm designers
use to probe for susceptible nodes will cause multiple
infected nodes to probe the same potential target.  If a
zombie is still looking for parents, each probing node
is a candidate, so if an infected machine simply waits
long enough, it is likely to hear from as many parents
as it needs.
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A zombie becomes another’s child through a three-
way-handshake procedure, initiated by either the
child or the parent. When a zombie infects a new host
or tries to infect an already infected machine, the
parent-initiated handshake would be used, which
would look like this:

P: Will you be my child?

C: Yes.

P: Great. You are now hooked up.

If initiated by the child, it would look like:

C: Can I be your child?

P: Yes, confirm if you still want me.

C: Yes. You are now my parent, and I am
now your child.

The probe messages sent to find new infectable nodes
serve as the parent’s initial step in the parent-initiated
handshake. If the node contacted is not yet a zombie
and is infectable, after infection it will return a
message representing the second step in the
handshake.  If this node already is a zombie, it will
decide if it wants to add the contacting node as a
parent.  If so, it continues the three-way handshake.
If not, it simply ignores the message.

A child-initiated handshake could happen when an
already infected zombie wants to connect itself with
more parent zombies, improving its efficacy of
receiving new exploit code.

During the handshake, the parent and child exchange
enough addressing information to be able to
communicate again in the future.  The child does not
necessarily need to save information about its
parents, but may do so if it wants to replace existing
parents with better ones in the future.  The parent and
child might also exchange other useful information,
such as hardware characteristics that will allow them
to make better decisions in the future.

A three-way handshake is not strictly necessary; a
two-way exchange is sufficient to form an overlay.
In the parent-initiated case, the third message ensures
that the child has an accurate parent list, which is
important if the number of parents is deliberately
limited.  In the child-initiated case, the third message
prevents a defender from overloading a parent with
large numbers of false children at spoofed addresses
by insisting that the child verify its ability to
communicate.

Aggressive worms will contact nodes many times to
see if they can be infected, so a zombie would expect
to hear from many other zombies.  It need not accept
all of them as parents, and it need not choose to
switch existing parents for more recently advertised
ones.  Instead, it will try to select “best” parents.

Parent selection has major goals, some conflicting:

o Ensure low latency for delivering exploit
code (this roughly equates to minimizing the
diameter of the network).

o Avoid causing network congestion during
exploit delivery.

o Ensure a resilient overlay by choosing
parents unlikely to be simultaneously
disconnected.

o Provide the attacker with multiple injection
points for exploit code.

o Avoid keeping long lists of other infected
nodes.

Zombies could select parents simply by becoming the
child of any Midgard zombie that contacts them.  If
the worm designer used a purely random algorithm
for generating the IP addresses that are probed in a
search for new victims, eventually every zombie
would try to infect every other.  In the long term, the
overlay would stabilize to a completely connected
graph, which would tend to lead to high congestion
when attack code is to be disseminated.  It would also
make it easy for defenders to obtain a complete list of
the overlay’s members by inspecting one or a few
infected machines.

Instead, the worm designer could specify that a
particular number m of parents be maintained for
each zombie.  The first m unique infecting zombies
that contact a newly infected machine could become
its parents.  Of course, if those m zombies are cleaned
up or removed from the network, the child would
become disconnected.  Since other zombies are still
contacting it with superfluous attempts to reinfect it,
the child could use these infection attempts as
liveness indicators, swapping in recently heard-from
zombies for older parents.  However, if this were the
only method, a defender could disconnect zombies
from the overlay by sending them false infection
probes at a higher rate than the real worm.  Leaving
aside the possible congestion effects and questionable
legality of this defense approach, the worm designer
could cripple this defense by maintaining a small
number of more permanent parents.  For example, the
zombie that actually infected the child could be kept
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as one of the permanent parents.  Whether the parent,
the child, or both have the right to alter the selection
is a matter of the design of a particular Midgard
worm.

Since modern worms often search only a restricted
portion of the IP address space, and may pay
particular attention to the local network, the overlay
network would have limited resiliency if the worm
depended only on direct contacts with other zombies
to form links.  Another way to improve the resiliency
would be to exchange a random subset of each
worm’s parent or child list each time a zombie
contacts a previously infected machine.  A further
improvement would be to make such an exchange
only when the two zombies are “far apart” in the IP
address space, encouraging wide separation of linked
nodes.

Unlike previous worms, Midgard worms have a
motivation for maintaining links between already
infected zombies, so it is likely that the designer of
such a worm will use somewhat different techniques
for generating IP addresses to probe for infectable
machines.

Midgard worms could use arbitrarily sophisticated
methods to select and maintain their parent lists.  For
example, they could use heartbeat messages to
determine liveness of parents and children, or they
could maintain path vectors to allow them to choose
parents that offer greater resiliency [Li 02b].  Given
that existing defense techniques would have a hard
time handling even unsophisticated parent
maintenance schemes (see Section 4 below), we omit
further discussion of more complex approaches.

The above discussion is couched in terms of parents
and children. Midgard worms could also be built as
peer networks.  Doing so would necessitate storing
some information on both sides of the virtual
connection between two zombie nodes, but they may
need to store such information anyway.

3. Disseminating Code Through an
Overlay Network

Once an overlay network has been set up as part of a
Midgard worm’s propagation, the attacker can inject
code into the overlay to disseminate arbitrary
programs.  Depending on details, parents can push
code to children, or children can pull it from their
parents.  A push-based design is advantageous
because it doesn’t require the children to engage in

polling that might reveal a zombie’s existence, so we
will concentrate on that model here.

The attacker could choose to inject the code to be
disseminated at a single point in the overlay network,
or he could release it nearly simultaneously in
multiple places.  The attacker could either manually
inject the code, or use an automated program at some
other site to contact the injection points.  Note that
because every node in a Midgard worm’s overlay
network is highly likely to be an ultimate descendant
of every other node in the network, any infected node
is a feasible dissemination point.  Barring
interference, code injected at any node in a Midgard
worm’s overlay network will be propagated quickly
to every other node in the overlay (Section 5.1).

Each injection point will then push the code to its
immediate children which will in turn, push the code
to its own direct descendants.  Since each infected
node has multiple parents, a zombie is likely to
eventually receive a copy of the code from each of
them.  Only one copy is needed, so extra copies of
the same code will be discarded, just like Usenet
messages [Horton 87].  A careful attacker who wants
to use his zombie overlay network repeatedly will
include features to identify the most recently
disseminated code, such as cryptographically signed
version numbers or expiration dates.  These features
can also reduce congestion by suppressing
transmission of duplicate or outdated exploits.

When a zombie receives a piece of code from a
parent, it will check its authenticity.  The simplest
way to do so is to disseminate a public key with the
original worm code.  Each subsequently disseminated
piece of attack code will come with a digital
signature created with the matching private key,
allowing each zombie node to check the authenticity
and integrity of the code it receives using purely local
operations.  Authenticated code received for the first
time will be executed (or perhaps scheduled for later
execution).  Duplicate authenticated code will be
discarded.  Improperly signed code will also be
discarded, and possibly the parent node that sent it
will be removed from the list of proper parents and
replaced with another candidate.

Arbitrary sophistication could be added to this
process.  For example, the code could be individually
encrypted for each child, using a key that is a
function of the child’s IP address, or each zombie’s
code could be slightly altered before encryption,
using the same key for each zombie.    While
providing little secrecy, these measures would ensure
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that every copy of the code flowing through the
network is represented by different bits, making
detection of the widespread dissemination of a single
piece of code harder.  Disconnected zombies could be
aware of their disconnection and initiate a pulling
process when they became reconnected, allowing
them to find code that was disseminated during their
absence [Li 02b].

Midgard worms need not guarantee that all of their
zombies receive and execute the desired code, an
important fact for defenders to remember.  Cleaning
up a few zombies does little harm to a Midgard
worm, either in reduction of the size of its army or in
affecting the connectivity of its overlay network (see
Section 5.2).  If a few nodes are deceived into not
downloading the right code (perhaps by changing
their local copy of the public key they use to check
authenticity), no great damage is done to the worm’s
goal.  As long as a large percentage of the nodes
receive and execute the proper code, its purpose is
served.  Thus, the overlay network set up by a
Midgard worm does not need sophisticated
mechanisms to guarantee complete connectivity,
assure delivery of code to all zombies, completely
conceal their presence from knowledgeable
observers, or prevent the insertion of a few imposter
nodes set up by defenders.  The aim is achieved as
long as a substantial fraction of the infected machines
is responsive to the attacker.  Note that “substantial”
does not necessarily mean “majority.”  As long as the
absolute count of responding machines suits the
attacker’s needs, a Midgard worm will be successful.

4. Defending Against Midgard
Worms

We can combat Midgard worms at various points in
their life cycle.  We can attempt to limit their spread;
we can find and disinfect the zombies they have
taken over; or we can insulate uninfected machines
from the damage that the Midgard worm’s zombies
try to inflict.

4.1 Limiting the Spread of Midgard
Worms

Midgard worms can spread using the same
mechanisms as any other worm.  Thus, the same
defensive measures being developed to combat other
worms will work equally well for Midgard worms
[Twycross 03], and will not be discussed in greater
detail here.  Such mechanisms are currently of

limited efficacy, and are not expected to be
completely effective any time in the near future.  So,
at best, these mechanisms will cut down on the size
of the zombie army recruited by a Midgard worm,
but will not eliminate it.

4.2 Finding Midgard Worm Zombies
Again, many methods used to find the zombies
created by other worms will work equally well for
Midgard worms.  However, Midgard worms do have
some unique characteristics that may make it easier
for defenders to detect their presence.

Searching for Listeners
To receive commands, Midgard worm zombies must
listen on some socket, making them potentially
detectable by a port scanner.  However, deploying
such a scan is of questionable ethics, and it could
easily be defeated by a number of methods, such as
only responding to authenticable probes, using a
well-known and commonly open socket in a special
way, only responding to probes from known parents,
or only opening the socket at prearranged times.
There are undoubtedly other ways to defeat a scan, so
we do not believe that scanning will be an effective
way to find zombies.

Searching for Heartbeats
A wisely pessimistic worm author must assume that
the defenders will disinfect a large number of his
zombies.  To combat this, the author could have the
zombies send heartbeats to ensure that their parents
and children are still connected.  In theory, it would
be possible to sniff a network for these heartbeats and
thus detect the infected machines.  Heartbeats are not
necessary if infected machines perpetually contact
each other in redundant attempts to reinfect, but such
attempts are just as noisy and characterizable as
actual heartbeats.

However, as our analysis in Section 5.2 shows, if the
attacker sets up a sufficient number of parents for
each zombie and suitably randomizes the choice of
parents, cleaning up even a high percentage of the
zombies will tend to leave the others connected.
Thus, heartbeats are not necessarily a good strategy
for worm authors, and so a defense strategy based on
their presence may be useless.
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Traffic Analysis
After initial infection, the one time when a Midgard
worm can be readily detected is when a second-wave
attack is released.  At that time, all zombies will
come alive and will exchange data with their parents
and children.  Assuming that the second wave is a
program, the total data involved could be large.  This
pattern will be very distinctive and obvious (not least
because it is likely to cause major interference with
legitimate Internet traffic).  The attacker can use a
trivial encryption scheme to alter the bit contents of
the many messages being sent to disseminate his
code, but he can do little to hide the fact that many
machines are sending large amounts of data of
similar size to each other quickly (different amount
of padding data could be added to change the size,
but this would often clog the network).  He can also
insert a random delay between a zombie’s receipt of
new code and when it is forwarded onward, but doing
so will slow code propagation, and still will not
completely conceal the signature of the transmission.

The existence of this pattern provides an opportunity
for defenders.  If a Midgard worm is known to have
been released, it may be possible to deploy
observation code at strategic points.  The observers
would look for the attack pattern and log the IP
addresses of the hosts involved.  This approach may
be one of the most promising for developing a
complete list of infected machines.  Unfortunately,
the defense may be too late because the attack will
already have arrived at many of the zombies before
any action can be taken.  Only if detection of the
second-wave attack and prevention of its propagation
is sufficiently fast to keep the attack from reaching a
critical mass of the zombies can this approach be
considered effective.

Tracing the Overlay
Each Midgard zombie must maintain some
information about the other zombies it connects to in
the overlay.  If that information can be extracted, then
perhaps the discovery of one zombie can lead to the
discovery of others.  They, in turn, can be examined
to find yet more zombies.  The more highly
interconnected the overlay is, the fewer zombies need
to be examined to trace the entire overlay.

There are two serious problems with this approach to
finding zombies.  First, any single defender will only
be able to look at a relatively small set of machines
that the he has explicit permission to access, since it
is generally illegal to examine someone else’s

infected machine for this information.  In most cases,
an attempt to trace the overlay will quickly lead to an
unexaminable point that terminates the trace.

Second, clever worm designers can obscure or even
encrypt information about their overlay.  Since the
information is only required at the time of second-
wave code dissemination, it can be hidden at other
times.  If it is encrypted, the key can be included as
part of the second-wave code, so defenders will be
unable to extract such information at any other time.

However, since untalented worm designers are less
likely to include such mechanisms and might well
code them badly even if they are included, the
information might not be obscured in all
circumstances, and thus this approach should not be
rejected a priori.

Having Owners Look for the Worm
Historically, the most effective way to discover
infected machines has been for their owners to
examine them.  That is likely to be equally true for
Midgard worms.  Unfortunately, it is difficult to
motivate large numbers of owners to perform the
necessary search and repair.

4.3 Zombie Disinfection
Cleaning the zombie machines that a worm has
infected is the preferable way to stop it from doing
further damage. Unfortunately, past experience
suggests that while many owners of infected
machines are eager to disinfect them as soon as the
problem is discovered or reported to them, a
significant number of them are either unaware of
their problem, unable to perform disinfection, or
unconcerned by the infection.  Since in general only
authorized people have the right to make the
alterations necessary to remove a worm from a
machine, zombies identified by unauthorized people
are less likely to be disinfected.  There are still large
numbers of machines infected with Code Red years
after its introduction to the Internet [Chun 03,
Costello 02].  Regardless of this problem, any
achievable degree of disinfection reduces the damage
a Midgard worm can do and is thus desirable.

The disinfection of a machine hosting a Midgard
zombie will be similar to cleaning out any other
noxious code.  The ease of disinfection will depend
primarily on the sophistication of the author at
concealing his changes and entwining his malicious
code into various parts of the system.  Since Midgard
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zombies might contain hints regarding the identity of
other zombies, it would be desirable to look for those
during disinfection, but otherwise the process will be
similar to handling other malicious code infections.

Some defenders have attempted to use worm
techniques to combat worms.  In essence, they have
sent a worm to kill a worm.  Since a Midgard worm
maintains an overlay network to distribute code, if
one could hijack that network, one could distribute
code that cleans out the worm and closes the door
behind itself as it moves on to the next zombie node.
While this idea is seductive, it has several serious
flaws – legal, ethical, and practical [Schneier 03].
Further, for Midgard worms, a sufficiently clever
worm author can make it infeasible to use his overlay
by deploying the same anti-tracing techniques
discussed in Section 4.2.  He can also require
authentication of any code passed through the
overlay, which will be hard or impossible for the
author of the anti-worm to provide.  On the whole,
this approach to cleaning up after a Midgard worm
seems infeasible.

4.4 Protecting Uninfected Machines
From Worm Zombies

Unless technologies for stopping the spread of worms
become extremely successful or the worldwide
culture of system administration changes
dramatically, we must expect that a well-designed
Midgard worm will be able to maintain a connected
army of zombies more or less indefinitely.  At any
moment, the owner of this army can release a new
piece of code into his overlay.  The unique problem
brought up by Midgard worms is that this arbitrary
code need not be limited to causing problems for the
infected machines.  In fact, it probably won’t cause
them problems.  Instead, it will most likely be
targeted at machines that are not infected with the
worm.

Minimizing the number of machines initially infected
and maximizing the number disinfected will lessen
but not eliminate the threat.  Having your own
machines protected from the widest array of attacks
possible will make it less likely that the Midgard
master’s new code can cause you trouble, but will not
protect against new attacks you don’t know about or
attacks that closely resemble your ordinary traffic.

If we assume that most or all of the zombies can be
identified, there is at least one other defense possible.
Since we cannot predict what the attacker will do

with his zombie army, those wishing to protect
themselves must assume that anything sent by a
known zombie node represents an attack, regardless
of its character or content.  Thus, any site worried
about the possible harm emanating from a known
Midgard overlay network can choose to shun all
traffic coming from any infected site by ignoring
every packet sent from that machine.  Packets can be
dropped at firewalls or other points in one’s network,
as convenient, but all such packets must be dropped
before they have a chance to do their mischief.  Of
course, if the real owner of the zombie machine is
also sending perfectly legitimate traffic to your
protected network, that traffic will also be dropped by
shunning.  One must choose between protection at
the cost of losing some legitimate traffic, or handling
legitimate traffic at the cost of losing protection.

Shunning in one’s local network is only somewhat
effective, since it must be based on observing the IP
address of the packets sent by a zombie.  If some
zombies remain unidentified, shunning will miss
packets sent by the unidentified ones.  If the attack is
of a class that can use IP spoofing to conceal the
identity of the sender, and indeed uses it, shunning
will provide no protection.  Shunning needs to be
used in conjunction with technologies that combat IP
spoofing [Li 02a, Park 01, Savage 00] or with
technologies that combat the classes of attacks that
can be made with spoofed packets [CERT CA-1996-
21, Mirkovic 02, Ferguson 00].  There are also issues
involved with dynamic IP addresses or NAT that
would need to be handled, which might well require
shunning entire blocks of addresses related to the
zombie’s observed address.  Unless a finer distinction
is possible to pinpoint the address in the block
currently assigned to the infected machine, many
might find this cure worse than the disease.

One could use shunning more selectively on packets
sent by known zombies.  Any packets deemed to be
particularly safe could be passed from such
addresses, or all such packets could be passed
through careful scrutiny of an automated security
system before they are delivered.  However, if the
attacker is exercising a zero-day vulnerability, there
is a possibility that these measures of extra care could
be insufficient.  Only shunning all of the zombie’s
traffic can provide maximum safety.

It is not trivial to enable nodes and subnetworks to
shun a Midgard worm’s zombie army.  Thus, we will
not discuss shunning techniques in detail here.
Shunning should be regarded as a possible research
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approach that might help handle the threat, rather
than a solution ready for deployment and use.  We
plan to examine the use of shunning to protect against
Midgard worms in future research.  Shunning could
be deployed either at the edges of the Internet or at its
core.  Edge deployments are easier to achieve, but
protect only the edge networks that deploy them, and
not the core at all.  Core deployments are much
harder to achieve, and face greater technical
difficulties, but provide wide coverage of many
systems for relatively few deployment and
maintenance points.  Both options should be
investigated.

5. Performance Analysis

A Midgard worm equips an attacker with a special
resilient overlay network for injecting arbitrary
exploit code to all the zombies on the overlay.  In this
section, we analyze how fast a Midgard worm can
disseminate exploit code, the resiliency of its overlay,
and the traffic volume required for Midgard worms to
function.

We have done a simulation study in which a Midgard
worm uses random scanning to infect new zombies,
and eventually every zombie will have exactly m
zombie parents.  Note that because of Midgard’s self-
upgrading capability, a Midgard worm can always
adopt the most efficient and/or resilient overlay,
implying that we may not know exactly what such an
overlay would look like from day to day.  Our results
thus should be regarded as only a lower bound on the
performance of Midgard.

5.1 Speed
In the following, we estimate the latency that
Midgard would take to deliver exploit code to a
zombie.  We assume every zombie has two parents
(m = 2) to receive exploit code, and will then forward
the code to another three child zombies.  (Every
zombie will then have a total of five neighbors.
“Five” here is a typical number; for example,
[Staniford 02] reports the average node degree to be
4~5.5 in a 1M worm network formed through
permutation scanning.)

Midgard’s dissemination of exploit code can be
divided into three basic latency components: the
processing and queuing delay at each hop, the
transmission delay of crossing the wire, and the
kernel-space-crossing delay.  (Note that a large
amount of exploit code or a densely connected

Midgard overlay could cause congestion effects and
slow down the dissemination.)

Initially, we assume that the exploit code can be
encapsulated in a single packet.

First, because the exploit code is delivered hop by
hop on an overlay,

Average delivery latency = average latency per hop *
average delivery hop count (1)

Second, denote W as the average wire
communication latency per overlay hop, P as the
average processing delay at a zombie, and K as the
average kernel-space-crossing delay.  Then

Average latency per hop = W + P + K  (2)

W is actually the point-to-point transmission delay
over the Internet.  One could conservatively assume
that it would take less than 250 ms to deliver a packet
across the Internet [Fei 98, Biagioni 00, Internetpulse
03].  Thus,

W < 250 ms (3)

Further, we have measured P and K in our test bed,
where each machine is equipped with an AMD
Thunderbird 1.333 GHz CPU, 1.5GB SDRAM, and a
100 Mbps Ethernet interface.  With three nodes to
reach, we have empirically found that with 95%
confidence,

P = 1.30 ms (4)

K = 0.67 ms (5)

From (2)-(5),

Average latency per hop < 250+1.30+0.67ª252 ms (6)

Third, we analyze the delivery hop count.  Figure 1
shows that the maximum hop count between any two
zombies closely follows a logarithmic trend with
respect to the number of zombies.  If we extend the
trend to the scale of one millions zombies, we will
obtain a value of 35 hops.  Thus,

Average delivery hop count <= 35 (7)

From (1), (6), (7), for our worst-case,

Average delivery latency < 8820 ms ª 8.8 secs (8)

If the exploit code is large, it will require multiple
packets.  A 1-megabyte exploit would need about 700
IP packets (MTU=1500 bytes).  Noting that the
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dissemination can be pipelined (a zombie can
immediately start transmitting the next physical
packet after the previous one goes to the wire), from
(3) and (8),

Average delivery latency <
8820 ms + (700-1)*250 ms ª 3.1 minutes (9)

Congestion caused by large amount of exploit code in
transit, however, could happen in some cases and
slow down the exploit code delivery.  For instance, if
a zombie receives a 1-megabyte exploit from two
parents, a and b, the worst case is when receiving
700 packets from each parent in the order of
following:

a1, b1, a2, b2,  . . . . , ai, bi, . . . . , a700, b700

(ai, bi  are the ith packet from a and b, respectively).

The zombie will not have a complete copy of the
exploit until it receives a700, the 1399th packets in the
sequence, resulting in an almost doubled delivery
latency.  If this happens at every hop, (9) will become

Average delivery latency <
8820 ms + (700-1)*500 ms ª 6.0 minutes (10)

This is still very fast!  But one can imagine that if
every zombie has dozens or hundreds of parents and
receives exploits from all of them simultaneously, the
latency can become very high. Midgard can introduce
congestion avoidance schemes to solve this problem.
An easy one would be for the parent of a zombie to
send an "I have the update" message rather than the
update itself.  That way, the zombie could just
request the update from a single parent, minimizing
congestion while only slightly increasing latency.

In the above extremely conservative analysis, the
dissemination time is well under ten minutes.  Even if
a Midgard worm spreads an order of magnitude
slower than we calculated, a new exploit can still be
activated in under an hour, particularly since a
Midgard worm does not much care about how long it
takes to reach every last zombie.  It only needs to get
to enough zombies to do harm, which is certain to
take less time than the above estimate.

5.2 Resiliency
Given a zombie overlay with N nodes, our simulation
study of the resiliency of a Midgard overlay aims to
answer the following questions:

(1) For a given zombie overlay, if x nodes are
randomly disinfected,2 what percentage of
remaining nodes will remain connected?
Here, we assume that the Midgard worm
does not attempt to reconnect any nodes after
the disinfection phase.

(2) What is the impact of a Midgard overlay’s
size on its resiliency?

In the following, we use the word “overlay” and
“graph” interchangeably.  We use standard graph
terminology: two nodes (zombies) are reachable
from each other if there is an undirected path between
them.  A graph is connected if any node is reachable
from any other; otherwise, the graph consists of

                                                  
2 Ideally, the defenders would choose an optimal set of nodes to

disinfect.  However, we believe that finding the optimal set is NP-
hard.  Also, the defenders are likely to disinfect every node they
can, rather than wasting time choosing a subset, so random
disinfection is more reflective of reality.

y = 2.0534Ln(x) + 6.2133

R2 = 0.9546
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Fig. 1. Maximum hop counts between zombies on a Midgard overlay (confidence level 95%).
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several partitions, with each partition a connected
sub-graph.  Finally, a graph’s maximal reachability is
the number of nodes that belong to the largest
partition of the graph; we express this as a percentage
of the total number of nodes.

Clearly, if the exploit code injection point is in the
largest partition, the maximal reachability of a
Midgard overlay indicates the percentage of zombies
that are reachable by the attacker, and thus is a good
metric for measuring the resiliency level of a
Midgard overlay.  If the maximal reachability is
large, it is also very probable that the injection point
will be in that partition.  (Note that in reality the
attacker is not limited to a single injection point, so
that even if the overlay has been partitioned, the
exploit could be inserted into multiple partitions.)

To answer question (1), in our simulation we
randomly cut a certain number of nodes from a graph
and then remeasured the maximum reachability of the
new graph. This emulates the disinfection of zombie
nodes.  Here, we denote x as the number of nodes that
were cut from the graph.

For every different value of m , we tested twenty
10000-node graphs; for every graph, we tested
different values of x; and ten different random cuts
were measured for each value of x.  Figure 2 shows
the maximum reachabilities for those graphs with x
nodes cut.  For example, when 1024 nodes are
randomly cut from a 10000-node Midgard overlay
where every zombie has one parent, the maximum
reachability will decrease from 100% to roughly
43.30%; but if every zombie has two parents, the

maximum reachability will only drop from 100% to
99.80%.  (In these tests, we assumed that exploits
could also be delivered from a child to a parent if
necessary.)

While it is clear that a higher value of m leads to a
higher maximum reachability, Figure 2 further shows
that a small value of m  can already lead to high
reachability, and thus resiliency, in a Midgard
overlay.  The most cost-effective value of m  is
probably 2, especially if the worm author expects that
at most one-third of the zombie nodes might be
disinfected.  Given that a real Midgard worm could
reconnect itself over time, having two zombie parents
per zombie clearly already implies a frightening level
of resiliency.

Figure 2 also shows that if an attempt to disassemble
a Midgard worm’s overlay is to succeed, more than
70% of its nodes must be disinfected when every
zombie has two parents and more than 80%
disinfected when there are three parents – a
challenging task for any defender.  Even worse, with
five parents per zombie, disinfecting 80% of the
zombie nodes still leaves about 1400 zombies
connected.

To answer question (2), we also studied the impact
on resiliency of the size of a Midgard overlay and
found that it is minimal.  Specifically, we tested
Midgard overlays with a constant value of m (m=3)
but different size N , where N=1024 to 16384 in
powers of two.  Furthermore, for each N, we tested
twenty overlays; for each overlay, we examined a
different percentage of cut nodes; and for each

Fig. 2.  Maximum reachability decrease vs. zombie node disinfection (confidence level 95%).
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percentage, we measured ten different random cuts.
The results are shown in Figure 3 in five curves,
where each curve corresponds to a different overlay
size and shows the maximum reachability of a graph
versus the percentage of nodes cut from the initial
graph.  These curves are almost the same, indicating
the low impact of overlay size. This implies that even
Midgard worms that infect a relative modest number
of nodes, say 1000, can still build overlays that are
extremely hard to disconnect.

In summary, the overlay of a Midgard worm can be
easily created using random scanning, but can still
achieve high resiliency as well as full connectivity
when every zombie has more than one parent.  We
also found that the size of an overlay has minimal
impact on the resiliency.

5.3 Traffic Generated by a Midgard
Worm

There are several types of traffic costs that a Midgard
worm incurs: the volume of disseminated exploit
code (dissemination volume), the volume needed for
a zombie to join (join volume), and the ongoing
volume for maintaining the overlay network
(maintenance volume).  The designer of the Midgard
worm does not directly care about traffic costs, since
he isn’t paying for the bandwidth he is using and
cares little about any undesirable effect that
bandwidth consumption may have on his zombies or
the networks they attach to.  However, heavy use of
bandwidth is at least a signal of his worm’s activities,
and gross overuse might cause congestion that
actually slows dissemination of the attack code.  So a

Midgard worm designer is likely to pay only modest
attention to bandwidth requirements.

Our analysis makes the reasonable assumption that
every node has five parents.

Dissemination volume . In a single round of
dissemination, the inbound dissemination volume per
zombie is the size of the exploit code multiplied by
the number of parents that forward the exploit.  The
total amount of volume produced by a Midgard worm
is then the volume per zombie multiplied by the total
number of zombies.  For example, if the payload is 1
kilobyte, every zombie has five parents for
forwarding the exploit code, and there are 1 million
zombies in all, the total amount of data to be
disseminated across the network will be 5 gigabytes.
Given that the traffic would be distributed across the
entire Internet, this is large but tolerable.

Join volume.  A child-initiated three-way handshake
normally requires less than 100 bytes of payload.
Supposing that a zombie becomes a child of five
parents through five successful child-initiated three-
way handshakes, then the total join volume for that
child is less than 500 bytes.  A million nodes would
then generate 500 megabytes of aggregate join
traffic.  Unless all the zombies join within a very
short time, the join volume is insignificant.

Maintenance volume.  If heartbeat messages are used,
if every zombie has five parents, and if every
heartbeat is 100 bytes, an overlay with 1 million
nodes will then incur 500 megabytes per period,
which doubles if the heartbeat is bidirectional (1
gigabyte).  Since zombies are scattered all across the
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network and are likely to spread their heartbeat traffic
over time, unless the period is very short the 500
megabytes will be sufficiently spread both temporally
and topologically as to cause little trouble for anyone.
Nevertheless, this quantity of data may be sufficient
to allow observation of the worm’s behavior.
Remember, however, that Midgard worms might not
need heartbeats at all, in which case there is no
maintenance traffic.

6. Existing Worms and Other
Related Systems

Many worms and other malicious programs have
already been released that exhibit some of the
features of a Midgard worm.  This observation
suggests that building a Midgard worm is merely a
matter of some attacker putting all the pieces
together.  We show here that many of the
components of a workable Midgard worm have
already been seen “in the wild,” and thus it is only a
matter of time until a true Midgard worm appears.

A Midgard worm propagates just as any other worm.
It can propagate at the same high speed as the
Slammer worm [Moore 03] or a Warhol worm
[Staniford 02].  But after a Midgard worm builds its
own overlay network during propagation, it can
disseminate second-wave attack exploit code even
faster, since the code does not have to be executed
right away and every zombie can simply forward the
code to its children without scanning.

Although numerous worms have caused many kinds
of damage, most worms still employ relatively simple
approaches for infection and propagation, often hard-
coded with predefined attacks.  For instance, the
Blaster worm [CERT CA-2003-20] and Code-Red
[CERT CA-2001-19] both tried to launch DDoS
attacks toward well-known web sites (Microsoft’s
windowsupdate.com and www1.whitehouse.gov).,
Midgard worms can be designed for flexibility;
unlike the current crop of worms, they will also be
able to upgrade themselves by disseminating
improved versions of themselves to zombie nodes.

A few worms have shown some sophistication.
CodeRedII [CERT IN-2001-09] installs a backdoor
on every infected machine to allow root-level control
on individual computers.  The Nachi worm
[Symantec 03] attempts to download the Blaster
worm patch from Microsoft's windows update web
site.  Sobig.F provides 20 sites for zombies to
download arbitrary exploit code.  [Staniford 02] also

talks about self-coordinated scanning to infect new
machines.  Midgard worms will display a greater
level of sophistication.  While zombies from earlier
worms are often self-contained, Midgard zombies
will self-organize themselves into a resilient overlay,
a fundamental change in allowing sophisticated
zombie coordination.  Compared to CodeRedII, a
Midgard controller will not have to log on to every
zombie as root to attack the machine, but instead
insert the new code at a single node, with automated
dissemination to the entire army. In addition to the
advantages of parallelism, the controller need not
know the identity of all the zombies that will receive
the update code.  Sobig.F only used 20 specific nodes
for code dissemination points, but Midgard worms
will allow injection at any point in the network.
Defenders stopped Sobig.F’s update dissemination by
shutting down 20 sites.  A Midgard worm’s resilient
overlay will effectively deliver code even if
thousands of its zombies are shut down.

Other malicious attacks show some control
sophistication.  For example, the trinoo distributed
denial-of-service attack tool builds a simple three-
layer trinoo network [CERT IN-99-07] on which the
attacker(s) control one or more “master” servers,
each master controls many “daemons,” and the
daemons are all instructed to coordinate a packet-
based attack against one or more victim systems.
Though similar to Midgard’s zombie overlay
network, a trinoo network is used for a special-
purpose attack (DDoS) and does not offer the
resiliency that a Midgard overlay provides.

Midgard worms also share some features with
legitimate distribution mechanisms, such as
broadcasting, multicasting, content-delivery
networks, event notification, virus signature
distribution, automatic update facilities, etc.  Midgard
worms are especially similar to legitimate delivery
services that are based on overlay networks.  There
are tree-structured overlays for delivery service, often
regarded as application-level multicast, such as Yoid
[Francis 00], ALMI [Pendarakis 01], End System
Multicast [Chu 00], Scattercast [Chawathe 00],
Bayeux [Zhuang 01], Overcast [Jannotti 00], etc.
There are also non-tree-structured overlays; for
example, Bullet [Kostic 03] provides high-bandwidth
data dissemination through an overlay mesh, and
Revere [Li 02b] supports large-scale security update
delivery through resilient self-organized overlay
networks.  Although the overlay of a Midgard worm
could be organized as a tree, for resiliency reasons
this would be a poor choice: as in Bullet or Revere,
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every node can have multiple parents.  However,
unlike Bullet and Revere, which assume that the
delivery overlay has a root (often the dissemination
source), a Midgard worm can try to inject exploit
code from any arbitrary point and typically adopts a
different approach for its overlay’s resiliency.

7. Conclusions

So far, the Internet community has been fortunate
that worms have not been more malicious and
dangerous.  However, our luck is likely to run out
very soon.  As hackers and criminals discover the
advantages of having large multipurpose armies of
zombie machines, we can be sure worms will be
created to enlist such armies.  This paper
demonstrates for the first time how trivial it would be
for a zombie army to be directed to new targets using
new attacks.  We have shown that within six minutes,
the general of a zombie army can realign them to a
new purpose and use them for whatever malice he
has in mind.

As our results also show, once the resilient overlay
for carrying orders to such an army has been
established, disconnecting it is extremely difficult.
With a perfectly reasonable connectivity of five
parents per zombie node, cleaning up over 80% of a
10,000-node zombie army still leaves the general
with a connected overlay of 1400 zombies. Anything
far short of 100% disinfection will allow the
remaining zombies to work in concert.  If the original
army contained 1 million zombies, 80% disinfection
leaves a useful connected army of 140,000 zombies,
easily enough to perpetrate a DDoS attack on almost
any site, generate enough spam to drown the Internet,
or launch a new penetration attack on almost every
node in the Internet before human beings have time
to respond or even notice.

Since Midgard worms are, at the initial infection
stage, just like any other worm, the community’s
primary line of defense against them will depend on
creating better mechanisms to detect the appearance
of new worms early in their life cycle and slowing
the spread of worms that have been detected.  This
research merely reinforces the absolute necessity of
finding better methods of detecting, slowing, and
ultimately stopping worms.  Any efforts spent on
disinfection through normal or newly discovered
methods will at least cut down on the size of the
zombie army, even if they don’t prevent surviving
zombies from receiving new instructions.

But nothing suggests we can change the existing
culture that allows many infected machines to go
unpatched and remain infected for years.  So we must
assume that sooner or later some attacker will build a
large Midgard worm overlay and that we will have to
live with the consequences for the foreseeable future.
Those consequences are that the owner of this
overlay can enlist large numbers of machines to
execute arbitrary code intended to perform as-yet-
unknown malice against targets of his choice.  The
extortion potential is staggering.

So something must be done.  Barring near-perfect
defense mechanisms to stop the spread of worms and
a highly unlikely worldwide enlightenment of
computer users to aggressively patch and disinfect
machines, our best defense seems to be to detect
which nodes are infected and prevent them from
spewing their arbitrary poison on the rest of the
network.  Doing so will not be easy, but we
recommend an immediate research program into the
feasibility of such an approach, applied both to edge
networks that wish to protect themselves and core
networks in a position to protect the entire
community.  If this research is not initiated soon, we
will suffer the damaging effects of a Midgard worm
before any effective defense is available.
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