
UCLA COMPUTER SCIENCE DEPARTMENT TECHNICAL REPORT 030038 1

The Role of Latin Square in Cipher Systems:
A Matrix Approach to Model Encryption Modes of Operation

Jiejun Kong
Computer Science Department

University of California, Los Angeles
jkong@cs.ucla.edu

Abstract

This paper studies the theoretic background of cryptographic modes of operation, in particular those modes
proposed to ensure message privacy. A novel algebraic model is presented as an archetype of encryption de-
sign. In the ideal case, encrypting multiple messages is treated as inductively applying the algebraic operation
F, an operation corresponding to block-by-block processing, on Latin Squares over a sequence of finite groups
{Zrn ,Zr2∗n ,Zr3∗n , · · ·, }. We further show that a Latin Square cipher is a newly discovered hard-core function for
any strong one-way length-preserving function. Based on the discovery, we propose a thesis that encryption modes of
operation should implement cryptographically strong pseudorandom generators in the ideal case, so that the random
oracle model can be used to justify the practice of replacing Latin Square ciphers with “good” implementations
(e.g., AES).

Finally we present a cryptanalysis of NIST’s standard modes of operation based on this work. The algebraic
model shows that, even when an ideally strong one-way function is used, none of NIST’s standard modes of operation
(OFB, CFB, CTR, CBC) can produce cryptographically strong pseudorandom ensembles based on the ideal one-way
function—the distinction of this work is to use formal method (rather than empirical attacks) to illustrate the design
flaws in the standard modes of operation. As numerous security protocols are using the flawed modes of operation,
we argue that these national standards should be repaired, and efficient repairs (double encryption) can be easily
achieved.

I. INTRODUCTION

A fundamental problem in cryptography is using a single secret key to process multiple messages in a cipher
system with finite domain and range. Assuming a reasonable key lifetime, applications like data encryption,
cryptographically strong hashing, timestamped multiple data signing demand a cipher system to maintain its security
strength even when the same secret key is used many times. In the real world, cryptographic modes of operation
have been widely used in practice to ensure privacy and integrity by reapplying the same secret key multiple times.
This paper focuses on privacy oriented modes of operation (e.g., CBC, CFB, OFB modes, but not CBC-MAC, OCB
modes etc.) and present an algebraic analysis of common modes of operation in use. Though some literatures [5][1]
have addressed the same problem by both empirical and theoretic analysis, none of them has followed the same
algebraic approach used in this work.

In our algebraic notations, realizing an ideal random oracle is equivalent to implementing a “good” one-way
function over the finite group Zrn . Then we define a novel operation “nominal construction F” that inductively
changes the base finite group to a sequence of finite groups {Zrn ,Zr2∗n ,Zr3∗n , · · ·, }. The operation F is a well-
defined algebraic operation on square matrices, and the induction is rendered on Latin Squares, which are specific
kind of square matrices corresponding to the concept of perfect system (or a collection of trapdoor permutations
with uniformly distributed key) [20].

By the algebraic model, using the ideal Latin Square random oracles to encrypt multiple blocks of data is
equivalent to performing a sequence of nominal constructions over the sequence of finite groups. We show that
Latin Squares with invariance properties can be used to construct a cryptographically strong pseudorandom generator
(CSPRG). The construction itself, though studied under ideal conditions in this paper, can be applied under random
oracle model[2] to justify encryption modes of operation design in the real world.

The applications of this algebraic model is demonstrated by related cryptanalysis against national standard modes
widely used in the real world. Even when an ideally strong one-way function is used, none of NIST’s standard

UCLA COMPUTER SCIENCE DEPARTMENT TECHNICAL REPORT 030038 2

modes of operation (OFB, CFB, CTR, CBC) can produce cryptographically strong pseudorandom ensembles based
on the ideal one-way function. As numerous security protocols are using the flawed modes of operation, we argue
that these national standards should be repaired, and we show at least two efficient repairs can be easily achieved.

The remaining of the paper is organized as follows: Section II explains the notations used in this paper, in
particular the algebraic encryption model, perfect system, and Latin Square ciphers. Then Section III introduces a
new operation “nominal construction”F and analyzes its algebraic properties. Based on the new notions, Section IV
defines the concept of pseudoperfect system. In Section V and VI we show how to construct cryptographically
strong pseudorandom generators from Latin Square ciphers. In Section VII we discuss the design flaws of NIST’s
standard modes of operation and the potential repairs. And finally Section VIII concludes the paper.

II. NOTATIONS

A. Common notations

Let Sq denote a finite set of size q. A function f : Sq 7→Sq maps an element in Sq to another element. Let Fq be
the set of all qq functions mapping Sq into Sq. Let Pq⊂Fq be the set of q! such functions that are permutations.
Let ∈U denote selecting an element from a set following uniform distribution, for example, x ∈U Sq.

We operate on specific finite sets known as “strings”. S2n = Zn2 denotes the set of all 2n binary strings of length
n, and Z+

2 denotes binary strings of any length (the symbol + denotes integer addition elsewhere, and the symbol ∗
or · denotes integer multiplication except in the notion of multiplicative group Z∗n). Similarly, let r be any positive
integer greater than 1. Srn = Znr denotes the set of all rn r-ary strings of length n (i.e., r is the radix), and Z+

r

denotes r-ary strings of any length.
An algebraic representation of Znr is Zrn , i.e., the set {0, 1, · · ·, rn− 1} as we can treat r as radix and strings as

numbers in position system. Hence the string comparison operator is defined as the integer comparison operator ≤
in r-ary position system1.

An (endomorphic) encryption/encipher function is denoted as
T : Sq×Sq 7→Sq.

That is, by using a key k∈Sq, a plaintext m∈Sq is encrypted into ciphertext e = T (k,m)∈Sq. Due to Curry’s
work [6], for any function f defined on a tuple type D1×D2 and with return type R,

f : (D1×D2)7→R
there is a high-order function F defined on the first domain that returns a function defined on the second domain
and with return type R:

F : D1 7→(D2 7→R).

The second function F is called the curried version of the first function f , and f is called the uncurried version
of F 2. Later we will write the function returned by F as fD1

.
We obtain the curried result of the encipher T . Intuitively, the first argument (i.e, the key) is written as a subscript,

Tk. In this notation, Tk : Sq 7→Sq may be thought of as a set of q functions indexed by key and is a subset of Fq.
Similarly, if we define its counterpart function T ′(m, k) = T (k,m) and obtain the curried result of the counterpart
T ′m : Sq 7→Sq , the result is a set of q functions indexed by plaintext.

The matrix representation of an encryption function T : Sq×Sq 7→Sq is a square matrix3 LT over Sq:
m = m1 m2 · · · mq

k = k1

k2

...
kq




e = ek1,m1
ek1,m2

· · · ek1,mq

ek2,m1
ek2,m2

· · · ek2,mq

...
...

. . .
...

ekq,m1
ekq,m2

· · · ekq,mq


 .

1Another algebraic representation of (an−1· · ·a1a0) ∈ Znr is a polynomial f(r) = an−1·rn−1 + · · · + a1·r + a0 where ai is from the
commutative ring Zr . Znr is a special polynomial ring Zr[x] with x = r.

2In this paper we introduce Curry’s work to avoid using the cumbersome notation of “collection of functions”, which is actually a function
uncurried on the collection index.

3Later in the paper we will use a cipher system T and the corresponding square matrix LT as synonyms.

UCLA COMPUTER SCIENCE DEPARTMENT TECHNICAL REPORT 030038 3

In a matrix L, let Lx,y denote the element at row by x and column indexed by y. In the matrix, distinct
keys ki∈Sq constitute the row indices, distinct plaintexts mj∈Sq constitute the column indices, and every ciphertext
eki,mj

= LTki,mj
= T (ki,mj)∈Sq. Note that the base set Sq of a cipher system sufficiently determines the dimensions

of the corresponding square matrix. Thus we do not explicitly specify the dimensions of a square matrix as in other
literatures.

The decryption/decipher function is denoted as T−1 with identical domain and range as T . For any k, there is a
k−1, such that T−1

k−1◦Tk = I where ◦ denotes function composition and I is the identity transformation I(x) = x.
The general model does not require k = k−1 or T = T−1:

• For public key schemes, there exists a polynomial-time algorithm that can obtain the encryption/verification/public
key k from the decryption/signing/private key k−1. But for sufficiently large q, there exists no polynomial-time
algorithm that can obtain the private key k−1 from the public key k (i.e., it is one-way).

• For symmetric key schemes, T = T−1, and there is a polynomial-time algorithm that can obtain k and k−1

from each other.

B. Perfect System and Latin Square

Shannon [20] developed a mathematical theory for cryptography based on information theory. For random
variables K,M,E mapping into spaces K = M = E = Sq, respectively, the entropy difference A(M,E) =
H(M)−H(M |E) is the amount of information about M which the adversary obtains. A perfect system is one in
which A(M,E) is zero, i.e., H(M) = H(M |E). That is, if the secret key k is uniformly chosen from the key space
K, then an adversary with any ciphertext has no choice but to select the pre-image plaintext following uniform
distribution. Shannon also proved that H(E) = H(E|M) is a necessary and sufficient condition for A(M,E) = 0.
More formally, we define perfect system using random variables:

Definition 1: (Perfect System): Given a pair of functions T : Sq×Sq 7→Sq and T−1 : Sq×Sq 7→Sq,
the system 〈T, T−1〉 is a perfect system if the following conditions hold:

1) Identity transformation: For any k∈Sq, there exists k−1∈Sq, k−1 can be computed in polynomial time from
k. For any m∈Sq, T−1(k−1, (T (k,m))) = m.

2) Transitivity of uniform distribution: Let Uq be a random variables following uniform distribution over Sq.
Then both T (Uq,m) and T (m,Uq) are random variables following uniform distribution over Sq. Similarly,
both T−1(Uq,m) and T−1(m,Uq) are random variables following uniform distribution over Sq

3) Uniformly distributed key: k∈USq. That is, the key k is truly random. 2

An important property of perfect system is “transitivity of uniform distribution”, that is, given an arbitrary
plaintext m, a perfect system will uniformly map it into any possible ciphertext because of the uniformly selected
key. The correspondence between Latin Square and perfect system was also shown in the same reference [20]. In
this paper a perfect system is treated as a special Latin Square cipher with truly random keys. In other words, a
Latin Square cipher is a sub-perfect system operating on possibly non-truly random keys.

Definition 2: (Latin Square): A Latin Square over Sq is a q×q matrix L over Sq whose entries are taken from
Sq and which has the property that each symbol from Sq occurs exactly once in each row and exactly once in each
column of L. In formal notions, (1) Li1,j = Li2,j if and only if i1 = i2; (2) Li,j1 = Li,j2 if and only if j1 = j2. 2

In addition, if the base set Sq of a square matrix is a totally ordered set (e.g., Srn = Znr), then the matrix’s row
indices and column indices are totally ordered. If the square matrix is a Latin Square, it can be normalized/reduced.

Definition 3: (Normalized Latin Square): A normalized (or reduced) Latin Square over a totally ordered set
Sq has both its first row and first column ordered by the element comparison operation ≤ of the set. 2

Example 1: A normalized Latin Square over S22 = Z2
2 is:

UCLA COMPUTER SCIENCE DEPARTMENT TECHNICAL REPORT 030038 4

m = 00 01 10 11
k = 00

01
10
11




e = 00 01 10 11
01 00 11 10
10 11 00 01
11 10 01 00


 .

2

By the matrix representation of cipher systems, Latin Squares over Sq becomes a collection of permutations
indexed by either the key k or the plaintext m. Tk, the curried result of T , is the set of rows that are mappings
between plaintext m and ciphertext e. T ′m, the curried result of the counterpart T ′(m, k) = T (k,m), corresponds
to the set of columns that are mappings between ciphertext e and key k. It is important to point out that among q!
permutations in Pq, there are only q of them are qualified to be a row or a column in the Latin Square. They must
pairwisely map distinct plaintexts (or keys) into distinct ciphertexts. It is easy to verify that the bitwise exclusive-
OR operation “⊕” is an implementation of the Latin Square

[
0 1
1 0

]
over S21 = Z1

2, and the negation of ⊕ is an

implementation of the Latin Square
[

1 0
0 1

]
over Z1

2.

III. NOMINAL CONSTRUCTION

In this section we define a new operation F on matrices and then study its algebraic properties. In the next
section we will show the correspondence between this operation and empirical practice.

Definition 4: (Nominal Construction): Given a xa×ya matrix A over Znar and a xb×yb matrix B over Znbr , the
nominal construction F on A with B generates a (xa·xb)×(ya·yb) matrix C = AFB over Zna+nb

r :

1) Initialization: C has xb·yb sub-matrices of dimension xa×ya. Let C(i′, j′) denote the sub-matrix at i′-th row
and j′-th column at the granularity of sub-matrix. Each of the sub-matrix is initialized as A. In other words,
C(i′, j′)i,j = Ai,j and in shorthand C(i′, j′) = A.

2) Prefix: Each element of a sub-matrix is prefixed with the corresponding element in B. In other words, each
element in C(i, j) is prefixed with B’s element Bi,j .

An algebraic representation of the entire procedure is C(i′, j′)i,j = rna ·Bi′,j′ +Ai,j . More precisely, let x/y be the
quotient of integer division and x%y be the remainder of integer division,

Ci,j = rna ·Bi/xa,j/ya +Ai%xa,j%ya .

2

Note that each element in A,B,C is a string comprised of r-ary integers. A matrix element of length n is in
the set Znr⊂Z+

r .

Example 2: Here is an example of nominal construction on a 2× 2 matrix over Z1
2 with a 2× 3 matrix over Z1

2.
The result is a 4× 6 matrix over Z2

2.
[

0 1
1 0

]
F
[

0 1 0
1 0 1

]
=




00 01 00 10 11 10
01 00 01 11 10 11
10 11 10 00 01 00
11 10 11 01 00 01


 . 2

Theorem 5: Given a Latin Square A over Znar and a Latin Square B over Znbr , the nominal construction F on
A with B generates a new Latin Square C = AFB over Zna+nb

r .

Proof : Any two elements at C’s same row will be different following either of the two cases: (1) They are in
different sub-matrices, thus the prefix is different because B is a Latin Square; (2) They are in the same sub-matrix,
thus the initialized part is different because A is a Latin Square.

The same argument also applies to any two elements at same column. Thus C is a Latin Square.
Each element of C has na r-ary integers in its initialized part, and nb r-ary integers in its prefix part. It is a

string of r-ary integers in length na + nb.

Corollary 6: Given a normalized Latin Square A over Znar and a normalized Latin Square B over Znbr , the
nominal construction F on A with B generates a new normalized Latin Square C = AFB over Zna+nb

r .

Proof : By Theorem 5, C is a Latin Square over Zna+nb
r .

UCLA COMPUTER SCIENCE DEPARTMENT TECHNICAL REPORT 030038 5

The first row of C is ordered because: (1) the most significant nb r-ary integers of the row elements are ordered
because B is a normalized Latin Square; (2) the least significant na r-ary integers of the row elements are ordered
because A is a normalized Latin Square.

The same argument also applies to the first column. Thus C is a normalized Latin Square.

Given certain induction bases, nominal construction F can be used to construct algebraic structures.

Definition 7: (Binary 1-power Nominal Latin Squares): For all x≥1, a binary 1-power nominal Latin Square
L

(x)
2,1 is over the set Zx2 and constructed by mathematical induction in exactly x rounds:

• The generator L(1)
2,1 is either of the two Latin Squares over Z1

2, i.e.,
[

0 1
1 0

]
or
[

1 0
0 1

]
.

• L(x+1)
2,1 is constructed as the nominal construction on L(x)

2,1 with L(1)
2,1. That is,

L
(x+1)
2,1 = L

(x)
2,1FL

(1)
2,1.

In particular, the normalized binary 1-power nominal Latin Square LN(x)
2,1 is uniquely constructed from the normal-

ized one. 2

Any L
N(x)
2,1 is normalized by construction according to Corollary 6. For example, The simplest construction is

L
N(2)
2,1 =

[
00 01 10 11
01 00 11 10
10 11 00 01
11 10 01 00

]
. Later in this paper we will show the relation between stream ciphers and LN(x)

2,1 .

It is easy to verify that F forms an Abelian semigroup on binary 1-power nominal Latin Squares.

Theorem 8: 〈L2,1,F〉 forms an infinite Abelian semigroup on nominal Latin Squares L2,1 =
⋃∞
i=1 L

(i)
2,1.

Proof : Given any binary 1-power nominal Latin Square A = L
(na)
2,1 , and any binary 1-power nominal Latin Square

B = L
(nb)
2,1 . Their nominal construction Y = AFB is in the set

Y = L
(1)
2,1F· · ·FL

(1)
2,1︸ ︷︷ ︸

na

FL
(1)
2,1F· · ·FL

(1)
2,1︸ ︷︷ ︸

nb

= L
(na+nb)
2,1 ⊂L2,1.

AFB = L
(na+nb)
2,1 = L

(nb+na)
2,1 = BFA, so F is commutative.

For any binary 1-power nominal Latin Square C = L
(nc)
2,1 , (AFB)FC = AF(BFC) = L

(na+nb+nc)
2,1 . Thus F

is associative.

More generally, if the generator L(1)
2,1 of the semigroup L2,1 is substituted with an arbitrary Latin Square L(1)

r,n

over Znr , we have following definitions and theorems.

Definition 9: (r-ary n-power Nominal Latin Squares): An r-ary n-power nominal Latin Square L(x)
r,n is over

the set Zn·xr and constructed by mathematical induction in exactly x rounds:

• The generator L(1)
r,n is an arbitrary Latin Square over Znr .

• L(x+1)
r,n is constructed as the nominal construction on L(x)

r,n with L(1)
r,n. That is, L(x+1)

r,n = L
(x)
r,nFL(1)

r,n. 2

Theorem 10: 〈Lr,n,F〉 forms an infinite semigroup on Latin Squares Lr,n =
⋃∞
i=1 L

(i)
r,n.

Proof : The proof is identical to the proof of Theorem 8, except any occurrence of 2, 1 is replaced by r, n (which
means the term “bit” is replaced by “r-ary integer” and bit-length is not always 1).

Intuitively, the closure law of semigroup ensures that all members of this semigroup share system-level property
with its generator. And the associativity law of semigroup ensures the order of operations is trivial. These laws are
useful in constructing the pseudoperfect systems described below.

IV. PSEUDOPERFECT SYSTEM

A. Construction of Pseudoperfect System

We employ random oracle model [2] and assume the existence of an “ideal” implementation of Latin Square.
The random oracle is named as Latin Square Oracle and will be replaced by actual implementations following the
random oracle model.

UCLA COMPUTER SCIENCE DEPARTMENT TECHNICAL REPORT 030038 6

Definition 11: (Latin Square Oracle): An r-ary n-power Latin Square Oracle (LaSO) is a random oracle that
implements L(1)

r,n, i.e., an arbitrary Latin Square over Znr . 2

By the random oracle model we assume such a LaSO LT = L
(1)
r,n is realizable. Now we show that the empirical

method of processing data block-by-block actually corresponds to nominal construction F.

Definition 12: (Little-endian System): Let B0, B1, · · ·, Bx−1 denote a sequence of x blocks of bits (i.e., strings
from Z+

2), and bi(0), bi(1), · · ·, bi(n−1) denote the n bits of block Bi. A little-endian system stores the blocks from
left to right according to the order of block index, with the leftmost B0 as the least significant block and rightmost
Bx−1 as the most significant block. Within each block, the storage is implementation-defined, with bi(n−1) as the
most significant bit and bi(0) as the least significant bit.

If we replace each bit with r-ary integer, we obtain a little-endian system over Z+
r . 2

Such storage protocol is needed in computer systems to store multiple blocks of data and a block is normally
called a “byte”. For example, a hexadecimal bit sequence of multiple bytes “0x12345678” is stored as “78 56 34 12”
in little-endian systems4.

Definition 13: (Pseudoperfect System): Let x be a polynomial. An r-ary n-power nominal system of polynomial
degree is a cipher system that uses r-ary n-power LaSO to produce n·x long r-ary ciphertext from n·x long r-ary
plaintext and n·x long r-ary key. The encryption is accomplished in exactly x rounds: For all 1≤i≤x, the ciphertext
block EB i is produced by the LaSO LT from the plaintext block MB i and the key block KB i.

An r-ary n-power pseudoperfect system of polynomial degree is a nominal system of the same metrics, and the
n·x long r-ary key is generated from a n long r-ary truly random key by a pseudorandom generator (PRG). If the
PRG is cryptographically strong (i.e., CSPRG, so no Turing-complete algorithm can differentiate the pseudoran-
dom result from truly random integers with non-negligible probability), then the system is called r-ary n-power
cryptographically strong pseudoperfect system of polynomial degree. 2

Figure 1 depicts an r-ary n-power pseudoperfect system. Note that it is not allowed to change the implementation
of LaSO during the entire process, that is, the same LaSO is used to process all blocks. We prove that the “nominal
system”, the construction depicted inside the solid line in Figure 1, is a Latin Square.

Theorem 14: An r-ary n-power nominal system of degree x constitutes a Latin Square cipher over Zn·xr .

Proof : We prove the theorem by induction: (1) If x = 1, LT is a perfect system, the theorem is true by assumption;
(2) Suppose the theorem is true when x = l, we denote the corresponding perfect system and LaSO as T ′ and LT

′
,

respectively. For x = l + 1, the procedure adds a new most significant n bits to the plaintext, key, and ciphertext,
respectively. Let MB l denote the new block in the plaintext, KB l denote the new block in the key, and EB l denote
the new block in the ciphertext. Without loss of generality, the procedure is divided into two steps:

• We use the LaSO LT to produce EB l from MB l and KB l. In little-endian systems, this step produces the
most significant n bits of the ciphertext from the most significant n bits of the key and the plaintext. This is
equivalent to identifying a sub-Latin-Square from the rn·rn choices that in turn were created in the prefixing
step of nominal construction.

• We use the LaSO LT
′

to process the remaining least-significant l blocks as usual. In other words, no change is
made in processing the least significant n·l bits of ciphertext from the key and the plaintext. This is equivalent
to applying the Latin Square created in the initialization step of nominal construction.

According to Theorem 10, the closure law of 〈Lr,n,F〉 ensures the result is exactly the Latin Square L(x)
r,n. Like a

perfect system, a pseudoperfect system is also a Latin Square cipher. The difference between them is how the input
key is chosen: (1) For a perfect system, the n·x long r-ary key is truly random; (2) For a pseudoperfect system,
the input key is not truly random. But if the PRG generates a cryptographically strong pseudorandom ensemble,
then the n·x long r-ary key is a pseudorandom sequence that cannot be differentiated from truly random sequence

4The storage model is for the ease of presentation only. If we use “big-endian” systems (i.e., blocks are stored in reversed order), then
the prefix operation in Definition 4 should be changed to postfix operation, and the comparison operator ≤ should be re-defined.

UCLA COMPUTER SCIENCE DEPARTMENT TECHNICAL REPORT 030038 7

−ary integersr

(is a polynomial)x

−ary integersrn.x

−ary integersrn.x

−ary integersr

n x
rZ
.n x

rZ
. n x

rZ
.

x

−ary integersr
n

−ary integersr
n

−ary integersr
n

Z r
n Z r

n Z r
nx

K M

E

LaSO

−ary integersr
n

−ary integersr
n

Z r
n Z r

n Z r
nx

K M

E

LaSO

−ary integersr
n

−ary integersr
n

Z r
n Z r

n Z r
nx

K M

E

LaSO

−ary integersr
n

−ary integersr
n

−ary integersr
n

E=LaSO’ (K’,M)

seed key K

ciphertext E

plaintext M

keystream K’

. . .

. . .

. . .

. . .

Pseudoperfect System

n

n.x

Nominal System

PRG

Fig. 1. Construction of Pseudoperfect System

by any Turing-complete algorithm in polynomial time.

Cryptographically strong pseudoperfect system is the ideal case of encryption modes of operation. This algebraic
view of modes of operation is more general than the classic notion of one-time pad (OTP). In a pseudoperfect
system, LT is a Latin Square over Znr for any r and any n. The generator L(1)

2,1 (implemented by bitwise exclusive-OR
⊕) used in OTP is merely a special case.

• In OTP, r = 2 and n = 1. Given the cipher T and a known-plaintext m, Tm must be one-way to prevent the
adversary from discovering the key. However, there is no practical way to implement a one-way L(1)

2,1, which
is vulnerable to exhaustive search.

• In pseudoperfect system, r and n can be sufficiently but reasonably large. We will show below that a large
r-ary n-power one-way LaSO can be realized and can be replaced by some “good” implementations of one-
way function. For example, for DLP-based implementations, r is a large strong prime and n = 1; for RSA
and Rabin function, r is the product of two large primes and n = 1; for AES, r = 2 and n = 128. Breaking
the one-way property of these implementations equals to solving some computationally hard problems.

V. RELATION BETWEEN LASO AND ONE WAY FUNCTION

In this section we will firstly propose a slightly modified probabilistic polynomial time model based on well-
studied concepts in foundations of cryptography. Then we will propose useful concepts needed to construct
cryptographically strong pseudoperfect systems: (1) The composition of any Latin Square cipher and any one
way function is yet another one way function; (2) Some Latin Square ciphers are one-way functions that can be
used to realize pseudorandom generator.

UCLA COMPUTER SCIENCE DEPARTMENT TECHNICAL REPORT 030038 8

A. Generalized probabilistic computation model and One-way Function (OWF)

In our algebraic notations, realizing an ideal random oracle is equivalent to implementing a “good” one-way
function over the finite group Znr (i.e., Zrn). The concept of one-way function is defined on polynomial relation
between the input length and output length. Here we follow the common definition [11]:

Definition 15: (One-way Function): A function f : Z+
2 7→Z+

2 is a (strong) one-way function if the following two
conditions hold:

1) Easy to compute: There exists a deterministic polynomial-time algorithm A such that on input x it outputs
f(x), i.e., A(x) = f(x).

2) Hard to invert: For every probabilistic polynomial-time algorithm A′, every positive polynomial P (·), and all
sufficiently large n,

Pr[A′(f(Un), 1n)∈f−1(f(Un))] <
1

P (n)

where Un denotes a random variable uniformly distributed over Zn2 , and the auxiliary input 1n gives the
length of the desired output n in unary notation. In particular, ∈ can be replaced by = if f is bijective, and
the auxiliary input 1n is redundant if the one-way function is endomorphic f : Zn2 7→Zn2 . 2

The existence of one-way functions is not proven. Yet a number of conjectured one-way functions are routinely
used in commerce and industry, such as Discrete Logarithm [8], RSA function [18], Rabin function [16], Feistel
structures [10], and Substitution-Permutation Networks. Most existing cryptanalysis on their one-way property is
based on binary system. If we replace 2 with arbitrary radix r, then we switch the study of one-way property from
Z+

2 to Z+
r . This can be simply justified by changing the alphabet used in the corresponding probabilistic Turing

Machines—we can replace the binary alphabet set Z2 = {0, 1} with the r-ary alphabet set Zr = {0, 1, . . . , r− 1},
and the new probabilistic Turing Machine tosses an r-face dice rather than a 2-face coin. The binary probabilistic
Turing Machine is a special case of this more general computation model with r = 2.

Definition 16: (r-ary Bounded-Probability Time, BPP): Let M(x) be the random variable denoting the output
of an r-ary probabilistic machine M . Let

Pr[M(x) = y] =
|{d∈ZtM (x)

r : Md(x) = y}|
rtM (x)

where d is an r-face dice throw, tM (x) is the number of dice throws made by M on input x, and Md(x) denotes
the output of M on input x when d is the outcome of its dice throws.

We say that L is recognized by the r-ary probabilistic polynomial-time Turing Machine M if
• for every x∈L it holds that Pr[M accepts x] ≥ 1

2 + 1
P (n) for every polynomial P (·).

• for every x6∈L it holds that Pr[M accepts x] ≤ 1
2 − 1

P (n) for every polynomial P (·).
BPP is the class of languages that can be recognized by an r-ary probabilistic polynomial time Turing Machine.
2

It is clear that the complexity classes of P,NP,PSPACE,NPSPACE are unchanged by choosing different
alphabets in Turing Machines. Moreover, the following theorem justifies the conclusion that the probabilistic
computation model BPP is also unchanged by radix conversion.

Theorem 17: Let random variable X denote the distribution of n1 long r1-ary string x = x1, x2, . . . , xn1
. If

xi∈UZr1 , then X can be reduced in polynomial time to a correspondence Y in r2-ary system such that the
distribution Y for r2-ary string y = y1, y2, . . . , yn2

satisfies yi∈UZr2 .

Proof : Firstly, we can treat X’s sample space as rn1

1 “pigeon holes”. The combinations of xi’s fill the holes once,
hence X is a uniform distribution on Zn1

r1 .
For any x∈UX , in a little-endian system we have x = xn1

·rn1−1
1 + . . . + x2·r1

1 + x1, then we change the
representation to be y = yn2

·rn2−1
2 + . . . + y2·r1

2 + y1. To obtain a truly random variable Y , we can apply the
“padding argument” and pad some truly random bits to x. The padding is equivalent to turning the number of
“pigeon holes” from rn1

1 to rn2

2 . Then the radix conversion procedure can be accomplished in polynomial time by
repetitively producing the remainder and quotient of x/r2.

UCLA COMPUTER SCIENCE DEPARTMENT TECHNICAL REPORT 030038 9

Finally, if ∃yi, yi 6∈UZr2 and w is the value not in the distribution, then there are
∏

0≤j<n2,j 6=i r2 = rn2−1
2 empty

“pigeon holes” caused by w, hence Y is not a uniform distribution over Zn2
r2 . This contradiction proves ∀yi, yi∈UZr2 .

An r1-ary probabilistic Turing Machine can be viewed as having two input tapes: (1) a real r1-ary input x of
length |x| and (2) a uniformly chosen d∈ZtM (x)

r1 playing the role of a possible outcome for a sequence of dice
throws. Then we can always convert the input tape x to its r2-ary equivalence with length |x|·d logr2 r1e and convert
the sequence on dice-throw tape to its r2-ary equivalence of length tM (x) · d logr2 r1e. Polynomial constraint on
input length is unchanged as P (tM (x) · d logr2 r1e) is always a polynomial if P (tM (x)) is a polynomial of |x|.

In particular, we can always convert an r-ary random input into the corresponding binary representation, then
run binary probabilistic Turing Machines to process the input, and if necessary convert the binary result back to the
r-ary representation. Therefore, from this point on we will discuss one-way functions and pseudorandom generators
in r-ary systems, where a single r-ary integer plays the role of a binary “bit”.

B. Composition of OWF and LaSO

The following theorem shows the relation between one-way functions and Latin Square ciphers.

Theorem 18: Function compositions of a bijective endomorphic one-way function f : Zn
r 7→Zn

r and a LaSO
{T, T−1} over Znr are one-way functions. That is, {f◦Tk, Tk◦f, f◦Tm, Tm◦f} and {f◦T−1

k−1 , T
−1
k−1◦f, f◦T−1

e , T−1
e ◦f}

are sets of one-way functions from Znr to Znr .

Proof : As any key assignment always returns permutation from a Latin Square cipher, we need to prove permutations
over Znr do not change the one-way property.

For f◦Tk, the proof is divided into three steps:
1) As a permutation on Un is also a uniform distribution, V = Tk(Un) is a random variable uniformly distributed

over Znr . Thus by one-way function’s definition, for every probabilistic polynomial-time algorithm A′, every
positive polynomial P (·), and all sufficiently large n

Pr[A′(f(V)) = f−1(f(V))] <
1

P (n)
.

2) Based on step 1, we need to prove for all sufficiently large n

Pr[A′(f(V)) = T−1
k−1(f−1(f(V)))] <

1

P (n)
.

T−1
k−1(f−1(f(V))) = T−1

k−1(V). Let random variable W denote A′(f(V)), then by Latin Square’s property,

∀x∈Znr ,Pr[V = x] = Pr[T−1
k−1(V) = x] =

1

2n
,

thus

Pr[W = V] =
∑

x,y

Pr[W = x]·Pr[V = y]·χ(x = y)

=
∑

x,y

Pr[W = x]·Pr[T−1
k−1(V) = y]·χ(x = y)

= Pr[W = T−1
k−1(V)] <

1

P (n)

3) Substitute the notations V and W by their origins.

Pr[A′(f◦Tk(Un)) = (f◦Tk)−1(f◦Tk(Un))] <
1

P (n)
.

The proof for Tk◦f is similar:
1) A′◦Tk is a polynomial-time algorithm. Thus by one-way function’s definition, for every such a probabilistic

polynomial-time algorithm A′◦Tk, every positive polynomial P (·), and all sufficiently large n

Pr[A′(Tk(f(Un))) = f−1(f(Un))] <
1

P (n)
.

2) Based on step 1,

Pr[A′(Tk(f(Un))) = f−1(f(Un))] =

Pr[A′(Tk(f(Un))) = f−1(T−1
k−1(Tk(f(Un))))] <

1

P (n)
.

UCLA COMPUTER SCIENCE DEPARTMENT TECHNICAL REPORT 030038 10

3) Therefore,
Pr[A′(Tk◦f(Un)) = (Tk◦f)−1(Tk◦f(Un))] <

1

P (n)
.

The cases for f◦Tm, Tm◦f as well as for the symmetric cases in T−1 {f◦T−1
k−1 , T

−1
k−1◦f, f◦T−1

e , T−1
e ◦f} can be

proved similarly.

Theorem 18 means that function composition on a LaSO does not change the one-way property of any strong one-
way function. This stable property implies that function composition ◦ can be integrated with nominal construction
F to realize a stable structure. That is, if a LaSO also implements one-way function, then (1) Shamir [19] proved
that the values returned by compositions of such one-way functions are indeed unpredictable; (2) More formally,
Yao [21, p.88] defined stable one-way function with invariance properties and also showed that any stable one-way
function f can be used to construct a cryptographically strong pseudorandom number generator.

Definition 19: (One-way Latin Square Oracle): For a Latin Square Oracle OWL that produces ciphertext
e = OWL(m, k) from plaintext m and key k, it is a one-way Latin Square Oracle (OWLaSO) if its curried result
OWLm is a one-way function. In other words, it is hard to obtain key k from a pair of known plaintext and
ciphertext (m, e). 2

Due to Kerckhoffs’ desiderata, the key possesses all secrecy in the system, thus cryptanalysts have no chance to
gain information of m by obtaining LTk from the key. As a result, for the counterpart function LT

′
(k,m) = LT (m, k),

the curried result LT
′

k is assumed to be safe. But for the curried result LTm, it should be a one-way function.
Here we use a commonly used one-way function based on DLP to demonstrate the existence of OWLaSO upon

the existence of OWF.

Definition 20: Let p be a strong prime in the form of 2·p′ + 1 where p′ is a large prime. Let g be a generator
of the multiplicative group Z∗p. The one-way function “exponentiation modulo p” f : Z∗p 7→Z∗p is defined as f(x) =
gx mod p. 2

Let g be a generator of the multiplicative group Z∗p. By the function m·gk mod p used in El Gamal encryption5 [9],
the OWLaSO is comprised of permutations constructed from different plaintexts and different keys raised to the
generator (using Z∗5 as an example):

m = 1 2 3 4

k = 1
2
3
4




e = 1·g1 2·g1 3·g1 4·g1

1·g2 2·g2 3·g2 4·g2

1·g3 2·g3 3·g3 4·g3

1 2 3 4


 .

Elements at the same column are distinct due to the different powers raised to the generator. Any collision
contradicts the assumption that g is a generator. Elements at the same row are distinct because of the different
plaintexts. Any collision contradicts the uniqueness of multiplicative inverse. Thus the result is a Latin Square
(The last row is always the plaintext itself as gp−1≡1 mod p). In addition, key is not revealed given a known
plaintext-ciphertext pair due to the one-way property of DLP.

Not all one-way functions can realize a OWLaSO. Many Feistel structures and S-P Networks used in commercial
software are not collision-free. If different keys map same plaintext into same ciphertext, then the cipher is obviously
not a Latin Square. RSA function and Rabin function operate over multiplicative group Z∗p·q where p and q are
large primes. The square matrices corresponding to such encryptions are also not Latin Square (due to collisions
at the rows and columns corresponding to p or q’s multiples). However, for these two one-way functions, the
“imperfectness” is measurable so that we can predict how “bad” it is when nominal construction is applied on such
non-Latin square matrices. They are “good” enough approximation of OWLaSO when the measured imperfectness
is negligible for sufficiently large n.

C. Double one-way Latin Square Oracle (DOWLaSO)

In Definition 19, the curried result OWLaSOk is not necessarily a one-way function due to Kerchhoffs’ desiderata.
If we ignore Kerchhoffs’ desiderata and improve the OWLaSO design so that OWLaSOk is also a one-way function,

5If we define encryption as (m+ 1)·gk+1 mod p, then schemes based on Z∗p can be used to encrypt messages from Zp−1.

UCLA COMPUTER SCIENCE DEPARTMENT TECHNICAL REPORT 030038 11

then we obtain double one-way Latin Square Oracle (DOWLaSO).

Definition 21: (Double one-way Latin Square Oracle): For a Latin Square Oracle OWL that produces ciphertext
e = OWL(m, k) from plaintext m and key k, it is a double one-way Latin Square Oracle (DOWLaSO) if its curried
results OWLm and OWLk are one-way functions. In other words, it is hard to obtain key k from a pair of known
plaintext and ciphertext (m, e), or to obtain plaintext m from a pair of known key and ciphertext (k, e). 2

In a DOWLaSO, knowing the cipher key cannot decrypt the ciphertext into plaintext. Thus DOWLaSO cannot
be directly used in symmetric key encryption schemes. It can be directly applied in other scenarios. One example is
from zero-knowledge protocols [4]. For instance, “gm+k mod p” is a good candidate for constructing a DOWLaSO.
For a strong prime p and generator g selected in multiplicative group Z∗p, “gm·gk = gm+k mod p” forms a Latin
Square. It is hard to obtain k from any known pair (m, e), or to obtain m from any known pair (k, e). Thus the
constructed Latin Square is a DOWLaSO if DLP realizes a “good” one-way function.

Another example is the one-way function “(gx)y = gx·y mod p” used in Diffie-Hellman key exchange protocol.
For a strong prime p and generator g selected in multiplicative group Z∗p, if the plaintext is not p − 1, that is,
∀m∈(Z∗p − {p − 1}), then g′ = (gm mod p) is yet another generator of Z∗p. Thus “gm·k mod p” forms a Latin
Square over the set (Z∗p − {p− 1}). The Latin Square can be used to do key exchange over the set Zp−2.

Encryption modes of operation is also a potential application for DOWLaSO. In stream cipher modes of operation,
pseudorandom keystream is needed in encryption and decryption. In Section VII we will show that flawed NIST’s
modes of operation can be fixed by substituting OWLaSO with DOWLaSO. This repair is necessary due to the
fact that Feistel Structures and S-P Networks are not “good” implementation of DOWLaSO. Given a known pair
(k, e), it is always easy to obtain the corresponding plaintext m.

D. Depiction of LaSO, OWLaSO, and DOWLaSO

Later in this paper we will use the following depictions to denote LaSO, OWLaSO, and DOWLaSO in modes
of operation design, where they are considered ideal random oracles that can be replaced by “good” enough
implementations like Feistel structures and S-P networks.

Z r
n Z r

nZ r
nx Z r

n Z r
nZ r

nxZ r
n Z r

nZ r
nx

M

K

E

M

K

E

M

K

LaSO

E

OWLaSO DOWLaSO

Fig. 2. Depiction of LaSO, OWLaSO, and DOWLaSO over Znr

VI. PSEUDORANDOM GENERATOR

This section discusses how to implement the pseudorandom generator (PRG) depicted in Figure 1. More specifi-
cally, we discuss how to realize cryptographically strong pseudorandom generator (CSPRG) on top of Latin Square
ciphers.

A. LaSO as hard-core function

For a one way function f , it is unjustified that f(x) will not leak any information about any bit in x. However,
some specific bits in x or in some efficient function h(x) may remain hidden, even if f(x) and h are given. Such a
bit/function is considered a hard-core for f , and can be used to construct pseudorandom generators. For example,
in a binary system, suppose f is a one-way function and H is a set of boolean functions such that for h∈H ,
h(x) is unpredictable given f(x), h. Intuitively, by the following procedure we can produce a random sequence

UCLA COMPUTER SCIENCE DEPARTMENT TECHNICAL REPORT 030038 12

h(x0), h(x1), . . . , h(xm) that is unpredictable in polynomial time. (1) Choose a random h, a random x0 and output
h(x0); (2) Update xi+1 = f(xi) and output h(xi) and repeat this step for i = 0, 1, . . . ,m; (3) Publish h.

For a single bit, the hard-core b is called “hard-core predicate”, which is discovered by Blum and Micali [3]. Such
b(x) cannot be efficiently predicted given only f(x), thus can be used to construct pseudorandom bit generators. In
particular, if predicate b(x, r) is defined as the inner product mod 2 of the binary vector x and r, then the predicate
b is a hard-core of any one-way function f .

Definition 22: (Hard-core predicate): A polynomial-time-computable predicate B : Zn2×Zn2 7→Z2 is called a
hard-core of a one-way function f : Zn2 7→Zn2 if for every probabilistic polynomial-time algorithm A′, every positive
polynomial P (·), and all sufficiently large n’s,

Pr[A′(f(Xn), Rn) = B(Rn, f(Xn))] <
1

2
+

1

P (n)

where Xn and Rn are two independent and uniformly chosen random variables over Zn2 .

Goldreich and Levin [12] proved that B is a hard-core predicate of any one-way function if B is defined as
inner product mod 2. Hard-core functions are similarly defined and discovered. Here we applied a restriction of
endomorphism (i.e., f is length-preserving on finite integer groups), since our cryptanalysis on encryption modes
of operation is performed on endomorphic one-way functions.

Definition 23: (Hard-core function): Let f : Zn2 7→Zn2 be an endomorphic one-way function. Let H : Zn2×Zn2 7→Zm2
be a polynomial-time-computable function, where m≤n and each curried h∈H is also a polynomial-time-computable
function h : Zn2 7→Zm2 . An ε(n)-oracle for H is a probabilistic polynomial-time algorithm A′ such that

Pr[A′(f(Xn), Rn) = H(Rn, f(Xn))] ≥ 2−m + ε(n)

where Xn, Rn are two independent and uniform distributions over Zn2 . H is called a hard-core function for f if no
ε(n)-oracle exists for non-negligible ε(n). When m = 1, the hard-core function is called hard-core predicate. 2

In our cryptanalysis on encryption modes of operation design, we are interested in the case when m = n.

Theorem 24: A LaSO T over Znr is a hard-core function of any one-way endomorphic function f : Zn
r 7→Zn

r .

Proof : At first we can always do radix conversion and convert a LaSO T over Znr to another equivalent LaSO T ′

over Zn′2 . This can be done by extending the corresponding Latin Square to 2n
′

wide, where n′ = ndlog2 re. A
LaSO T ′ over Zn′2 is a sampleable collection of 2n

′
functions. We need to prove the case

Pr[A′(f(Xn′), Rn′) = T ′(Rn′ , f(Xn′))] < 2−n
′
+

1

P (n′)

for every probabilistic polynomial-time algorithm A′, every positive polynomial P (·), and all sufficiently large n′’s.
Because the key follows the uniform distribution Rn′ , the LaSO constitutes a perfect system. Thus T ′(Rn′ , f(Xn′))

also follows uniform distribution due to perfect system’s second property (Definition 1). The output of T ′(Rn′ , f(Xn′))
can only be predicted with 1

2n′
< 1

2n′
+ 1

P (n′) probability. The polynomial relation on length is not affected if we
change n′ to be n by going back to the r-ary system.

Example 3: Näslund[13] shows that all bits in “a·x + b mod p” is hard when p is a prime and a, b∈Zp. More
formally, let one way function f be length-preserving and n = |x| = |f(x)| be the security parameter of f , let Pk
denote the set of primes of length n/k (k < n). The set of functions

Hk
2 = {h(x) = a·x+ b mod p | p∈UPk, a∈UZp, b∈UZp}

is a hard-core function for any one-way function. Here the function h∈UHk
2 .

For each specific p∈Pk, h(x) = a·x + b mod p constitutes the following Latin Square (the “mod p” part is
omitted in the matrix for ease of presentation):

UCLA COMPUTER SCIENCE DEPARTMENT TECHNICAL REPORT 030038 13

a = 0 1 · · · p− 1

b = 0
1
...
p− 1




h(x) = 0 x · · · (p− 1)·x
1 x+ 1 · · · (p− 1)·x+ 1
...

...
. . .

...
p− 1 x+ (p− 1) · · · (p− 1)·x+ (p− 1)




(1)

It is clear that elements per column are distinct. When x mod p 6= 0, x has a unique multiplicative inverse, thus
elements per row are also distinct.

A straight-forward view of Näslund’s result is to treat the input sequence {xi} as a huge number with hybrid
radixes. Let a sequence of uniformly selected p1, p2, . . . , pm′∈UPk denote the sequence of primes applied on the
input α = x1, x2, . . . , xm (i.e., pi is used in h for xi, and truly random pi is padded if m′ < m). In Näslund’s work
α∈UZn·m2 . Using a method similar to Theorem 17, we firstly convert the representation of x to hybrid radixes: in
a little-endian system we treat the input x as the integer α = xm·2(m−1)·n + . . .+x2·21·n +x1, then we change the
radixes. x is represented as α′ = x′m′ ·pm

′−1
m′ + . . .+x′2·p1

2 +x′1. This procedure can be accomplished in polynomial
time by padding some truly random bits to α and by repetitively producing the remainder and quotient of α/pi for
all 1≤i≤m′. Now we have x′i∈UZpi , thus h(x′i)∈UZpi due to perfect system’s property (i.e., in Latin Square (1),
when h(·) is always a Latin Square over Zpi and a, b∈UZpi , the result h(·)∈UZpi). In other words, the output is a
sequence of truly random pi-ary integers.

However, Näslund’s process is slightly different from the above one. Instead of splitting the entire input into
flexible “blocks” in the form of pi-ary integers, the process is applied on fixed n-bit “blocks”. That is, each xi is
an n-bit integer. Nevertheless, this change does not invalidate the hard-core conclusion.
• Case I: For any xi mod pi 6= 0 (i.e., xi has a multiplicative inverse in Zpi), nothing changes (note “mod pi”

is omitted in Latin Square (1) for ease of presentation).
• Case II: Otherwise (i.e., xi mod pi = 0), it is easy to verify that the probability of selecting such xi is only

k
2n <

n
2n , where n = |x| is the security parameter of the one-way function f . This is also a negligible quantity

for sufficiently large n’s. 2

We can use the above analysis to prove Näslund’s Theorem in terms of perfect system.

Theorem 25: (Näslund’s Theorem): For a (strong) one-way function f , every bit generated from Hk
2 is hard.

Proof : Näslund has already proven this theorem in [13]. The sketch previously described in Case I and II will
obtain the same result. In the proof we only use the fact that the set Hk

2 always returns Latin Square in Case I,
and the probability that Hk

2 fails to return Latin Square is negligible (Case II).
• For Case I, no matter what xi is, as long as xi mod pi 6= 0, we always have a perfect system constituted

by a Latin Square and its uniformly distributed inputs a, b∈UZpi . Each output h(xi) is a truly random pi-ary
integer. Thus for every probabilistic polynomial-time algorithm A′, every positive polynomial P ′(·), and all
sufficiently large n′ > dlog2 pie,

Pr[A′(f(Xn′), Rn′) = h(Rn′ , f(Xn′))] < 2−n
′
+

1

P (n′)
.

• For Case II, in the worst case, let’s assume that a polynomial time algorithm A′ can always differentiate truly
random pi-ary integers from the ones returned by h(x). This event happens with probability < n′

2n′
for the

uniform distribution Xn′ .
Combining these two quantities, we have

Pr[A′(f(Xn′), Rn′) = h(Rn′ , f(Xn′))] < 2−n
′
+

1

P (n′)
+

n′

2n′
= 2−n

′
+

1

P ′(n′)
.

Due to L’Hospital’s rule, the quantity n′

2n′
is less than 1

P ′′(n) for any polynomial P ′′(·) and all sufficiently large n.

Then we can find a polynomial P ′ such that 1
P (n′) + 1

P ′′(n′) = 1
P ′(n′) .

UCLA COMPUTER SCIENCE DEPARTMENT TECHNICAL REPORT 030038 14

Theorem 26: (Generalized Näslund’s Theorem): Näslund’s Theorem is true if we use another collection of
Latin Squares to replace the collection of Latin Squares corresponding to “a·x+ b mod p” (i.e., collection of Latin
Square (1) actualized on argument x).

Proof : The proof is based on the previous one since we don’t care about other mathematical properties of “a·x+
b mod p” as long as it constitutes a collection of Latin Squares. The theorem generalizes Näslund’s result. For
example, there is no need to add the condition p∈UPk, a prime constant p∈Pk will not affect the validity of the
theorem. In addition, either a, or b, but not both, can be a fixed constant ∈U Zp.

B. Cryptographically strong pseudorandom generator

Cryptographically strong pseudorandom generators can be constructed upon hard-cores of a one-way function
f . The following construction is based on Blum-Micali pseudorandom generator [3], except that the hard-core
predicate is substituted with a hard-core function.

Definition 27: (Blum-Micali pseudorandom generator): Let f be an endormorphic one-way function f :
Zn2×Zn2 7→ Zn2 . Let b : Zn2×Zn2 7→ Zm2 be a polynomial-time-computable hard-core function of f , and let P (·) be an
arbitrary polynomial satisfying P (n) > n. Given a truly random inputs s, x, y∈UZn2 , the pseudorandom generator
G is defined as G(s) = σ1σ1 · · ·σP (n), where s0

def
=s, and for every 1≤i≤P (n) it holds that σi = b(x, si−1) and

si = f(y, si−1). That is, the algorithm G proceeds as follows:

1) Uniformly choose s0∈UZn2 .
2) For i = 1 to P (n) do σi←b(x, si−1) and si←f(y, si−1), where x, y∈UZn2 .
3) Output σ1σ1 · · ·σP (n).

G is a cryptographically strong pseudorandom generator. 2

The essential structure of Blum-Micali pseudorandom generator is depicted in Figure 3. In this paper we conjecture
that a valid encryption mode of operation design must be a cryptographically strong pseudorandom generator
(CSPRG), and in particular such CSPRG can be reduced to Blum-Micali pseudorandom generator.

s0 s1 s2

σ1 σ2

f

b

f f

b b

sp(n)

σp(n)

f

b

G

.

Fig. 3. Blum-Micali pseudorandom generator (A binary cryptographically strong pseudorandom generator)

Proposition 28: (Design thesis of encryption modes of operation): An encryption mode of operation design
should be proven to be equivalent to Blum-Micali pseudorandom generator. 2

C. Cryptographically strong pseudoperfect system

By the help of ideal oracles like LaSO, OWLaSO, and DOWLaSO, we can construct cryptographically strong
pseudoperfect systems that are equivalent to Blum-Micali pseudorandom generators. Figure 4 and 5 show two
equivalent cryptographically strong pseudoperfect systems with key, plaintext, ciphertext depicted in details (they
are equivalent due to the symmetric nature of DOWLaSO). In the construction DOWLaSO is used in places of
one-way function f , and LaSO is used in places of hard-core function b. In both figures, y, s, x is instantiated on
random seed key k, random seed vector v, and random plaintext m, respectively.

UCLA COMPUTER SCIENCE DEPARTMENT TECHNICAL REPORT 030038 15

Z r
n Z r

n Z r
nx

K

E

M

LaSO

Zr
n x. Zr

n x. Zr
n x.x

Z r
n Z r

n Z r
nx

K

E

M

LaSO
Z r

n Z r
n Z r

nx

K

E

M

LaSO

E1 E2 Ex

Ur,n

Ur,n Ur,n Ur,n

−ary integersrn x.

−ary integersrn

(is a polynomial)x

Ur,n

Z r
n Z r

n Z r
nx

E

M
K

DOWLaSO
Z r

n Z r
n Z r

nx
E

M
K

DOWLaSO
Z r

n Z r
n Z r

nx
E

M
K

DOWLaSO

−ary integersrn

−ary integersrn

. . .

. . .

. . .

. . .

ciphertext

plaintext

E=LaSO’

seed vector

seed key repetition

Fig. 4. Using LaSO and DOWLaSO to implement Blum-Micali pseudorandom generator (An rn-ary cryptographically strong
pseudoperfect system)

Z r
n Z r

n Z r
nx

K

E

M

LaSO

Zr
n x. Zr

n x. Zr
n x.x

Z r
n Z r

n Z r
nx

K

E

M

LaSO
Z r

n Z r
n Z r

nx

K

E

M

LaSO

E1 E2 Ex

Ur,n

Ur,n Ur,n Ur,n

−ary integersrn x.

−ary integersrn

−ary integersrn

(is a polynomial)x

Ur,n

Z r
n Z r

n Z r
nx

E

M
K

DOWLaSO
Z r

n Z r
n Z r

nx
E

M
K

DOWLaSO
Z r

n Z r
n Z r

nx
E

M
K

DOWLaSO

−ary integersrn

. . .

. . .

. . .

. . .

ciphertext

plaintext

E=LaSO’

seed vector

seed key repetition

Fig. 5. An equivalence of Figure 4

If DOWLaSO is unavailable, for instance, when Feistel structures and S-P networks are used as one-way functions,
OWLaSO must be used to construct cryptographically strong pseudoperfect systems. Figure 6 shows the OWLaSO-
based cryptographically strong pseudoperfect systems. Figure 7 and 8 demonstrate two possible mistakes in the
construction:

1) The only difference between Figure 6 and Figure 7 is the switch between K and M ports at the top-level.
As OWLaSO is not a symmetric structure, the one depicted in Figure 7 is not a cryptographically strong
pseudorandom generator since we cannot find a one-way function composition chain at all.

2) The only difference between Figure 6 and Figure 8 is that OWLaSO at bottom-level is replaced by invertible
LaSO. Thus the keystream fed into next function composition could be revealed by a known-plaintext attack.
Then the cryptanalyst can reveal the seed key upon the knowledge (i.e., deduce M from K and E. The
DOWLaSO-based system in Figure 5 is not vulnerable to this attack).

UCLA COMPUTER SCIENCE DEPARTMENT TECHNICAL REPORT 030038 16

Z r
n Z r

n Z r
nx

K

E

OWLaSO

M

Zr
n x. Zr

n x. Zr
n x.x

Z r
n Z r

n Z r
nx

K

E

OWLaSO

M

Z r
n Z r

n Z r
nx

K

E

OWLaSO

M

E1 E2 Ex

Ur,n

Ur,n

Ur,n Ur,n

−ary integersrn x.

−ary integersrn

−ary integersrn

(is a polynomial)x

Ur,n

Z r
n Z r

n Z r
nx

K

E

OWLaSO

M

Z r
n Z r

n Z r
nx

K

E

OWLaSO

M

Z r
n Z r

n Z r
nx

K

E

OWLaSO

M

−ary integersrn

. . .

. . .

. . .

. . .

ciphertext

plaintext

E=LaSO’

seed vector

seed key repetition

Fig. 6. Using OWLaSO to implement Blum-Micali pseudorandom generator (An rn-ary cryptographically strong pseudoperfect system)

Z r
n Z r

n Z r
nx

K

E

OWLaSO

M

Zr
n x. Zr

n x. Zr
n x.x

Z r
n Z r

n Z r
nx

K

E

OWLaSO

M

Z r
n Z r

n Z r
nx

K

E

OWLaSO

M

E1 E2 Ex

Ur,n

Ur,n

Ur,n Ur,n

−ary integersrn x.

−ary integersrn

(is a polynomial)x

Ur,n

Z r
n Z r

n Z r
nx

K

E

OWLaSO

M

Z r
n Z r

n Z r
nx

K

E

OWLaSO

M

Z r
n Z r

n Z r
nx

K

E

OWLaSO

M

−ary integersrn

−ary integersrn

. . .

. . .

. . .

. . .

ciphertext

plaintext

E=LaSO’

seed vector

seed key repetition

Fig. 7. Not a valid equivalence of Figure 6

VII. APPLYING THE PSEUDOPERFECT SYSTEM MODEL IN PRACTICE

A. NIST’s standard modes of operation

The pseudoperfect system model proposed in this work can be used to analyze standard encryption modes of
operation (OFB,CFB,CTR,CBC) [14], [15] published by National Institute of Standards and Technology (NIST).
We will proceed according to the following order: Output-Feedback mode (OFB), Cipher-Feedback mode (CFB),
Counter mode (CTR), and Cipher-Block-Chaining mode (CBC).

Cipher FeedBack (CFB) mode, Output Feedback (OFB) mode, and Counter (CTR) mode are stream ciphers based
on standard block ciphers. A stream cipher is in general a pseudoperfect system following the diagrams depicted in
Figure 4 and Figure 5. The implementation of the invertible LaSO is the bitwise exclusive-OR operation ⊕. Note
that a cryptographically strong stream cipher is not operating on L

N(1)
2,1 . Instead, it operates on L

N(1)
2,n where n is

the output length of the one-way function it employs. The length is determined by cryptographic parameters used

UCLA COMPUTER SCIENCE DEPARTMENT TECHNICAL REPORT 030038 17

Z r
n Z r

n Z r
nx

K

E

OWLaSO

M

Zr
n x. Zr

n x. Zr
n x.x

Z r
n Z r

n Z r
nx

K

E

OWLaSO

M

Z r
n Z r

n Z r
nx

K

E

OWLaSO

M

E1 E2 Ex

Ur,n

Ur,n

Ur,n Ur,n

−ary integersrn x.

−ary integersrn

−ary integersrn

(is a polynomial)x

Ur,n

−ary integersrn

Z r
n Z r

n Z r
nx

K

E

M
LaSO

Z r
n Z r

n Z r
nx

K

E

M
LaSO

Z r
n Z r

n Z r
nx

K

E

M
LaSO

. . .

. . .

. . .

. . .

ciphertext

plaintext

E=LaSO’

seed vector

seed key repetition

Fig. 8. Pseudoperfect system not robust against known-plaintext attack

MxM2M1

E1 E2 Ex

K’1 K’2 K’x

K

Ex−1

K K

−ary integersrn

Z r
n Z r

n Z r
nx

K

E

OWLaSO

M

Z r
n Z r

n Z r
nx

K

E

M

LaSO

(is a polynomial)x

−ary integersrn x.

−ary integersrn

−ary integersrn x.

−ary integersrn x.

Zr
n x. Zr

n x. Zr
n x.x

Z r
n Z r

n Z r
nx

K

E

OWLaSO

M

Z r
n Z r

n Z r
nx

K

E

OWLaSO

M

Z r
n Z r

n Z r
nx

K

E

M

LaSO
Z r

n Z r
n Z r

nx

K

E

M

LaSO

ciphertext E

E=LaSO’ (K’,M)

plaintext M

keystream K’

V

seed key K

seed vector V . . .

. . .

. . .

. . .

Fig. 9. Pseudoperfect system corresponding to CFB mode (r = 2, not a valid 2n-ary cryptographically strong pseudoperfect system)

in a real implementation, such as the block size in block cipher based stream ciphers, or the register length in shift
register based stream ciphers.

Unfortunately, Feistel structures and S-P networks implement OWLaSO rather than DOWLaSO. When DES and
AES are used, OFB mode corresponds to the system depicted in Figure 7. It implements a pseudoperfect system,
but not a cryptographically strong pseudoperfect system. For CFB mode, it corresponds to the system depicted
in Figure 9. Again we cannot find a one-way function composition chain needed in CSPRG. CFB mode is not a
cryptographically strong pseudoperfect system.

CTR mode corresponds to the system depicted in Figure 9, where r = 2, n is the block cipher’s block size, the
top-level LaSO is constituted by the Latin Square cipher e = (k+m+ 1) mod 2n over the set Zn2 , the bottom-level
LaSO is LN(1)

2,n , and the mid-level OWLaSO is DES or AES. Again we cannot find a one-way function composition
chain needed by Blum-Micali pseudorandom generator. CTR mode is not a cryptographically strong pseudoperfect
system.

UCLA COMPUTER SCIENCE DEPARTMENT TECHNICAL REPORT 030038 18

MxM2M1

E1 E2 Ex

M’1 M’2 M’x

Z r
n Z r

n Z r
nx

K

E

M

LaSO

Z r
n Z r

n Z r
nxZ r

n Z r
n Z r

nx

K

E

OWLaSO

M

Z r
n Z r

n Z r
nx

K

E

M

LaSO
Z r

n Z r
n Z r

nx

K

E

M

LaSO
Z r

n Z r
n Z r

nx

K

E

M

LaSO

Z r
n Z r

n Z r
nxZ r

n Z r
n Z r

nx

K

E

OWLaSO

M

Z r
n Z r

n Z r
nxZ r

n Z r
n Z r

nx

K

E

OWLaSO

M

Z r
n Z r

n Z r
nx

K

E

M

LaSO
Z r

n Z r
n Z r

nx

K

E

M

LaSO

−ary integersr

x(is a polynomial)

−ary integersrn x.

−ary integersrn x.

−ary integersrn x.

Zr
n x. Zr

n x. Zr
n x.

. . .

. . .

. . .

. . .00 0

K K K

V−1

counter plaintext stream M’

plaintext M

seed counter V

seed key K

E=LaSO’ (K’,M)
x

ciphertext E

n

Fig. 10. Pseudoperfect system corresponding to CTR mode (Not a valid rn-ary cryptographically strong pseudoperfect system)

k = 0 1 2 · · · 2n − 1

m = 0
1
2
...
2n − 1




e = 1 2 3 · · · 0
2 3 4 · · · 1
3 4 5 · · · 2
...

...
...

. . .
...

0 1 2 · · · 2n − 1




CBC mode corresponds to the system depicted in Figure 11. Like the previous stream cipher modes, it is not a
cryptographically strong pseudoperfect system due to lack of one-way function composition chain.

E1

M’1

M1

E2

M2

Ex−1 Ex

Mx

M’2 M’x

Z r
n Z r

n Z r
nx

K

E

M

LaSO

Z r
n Z r

n Z r
nx

K

E

OWLaSO

M

Z r
n Z r

n Z r
nx

K

E

M

LaSO

Z r
n Z r

n Z r
nx

K

E

OWLaSO

M

Z r
n Z r

n Z r
nx

K

E

M

LaSO

Z r
n Z r

n Z r
nx

K

E

OWLaSO

M

(is a polynomial)x

−ary integersr

−ary integersr

−ary integersrn x.

−ary integersrn x.

−ary integersrn x.

Zr
n x. Zr

n x. Zr
n x.x

K K

. . .

K

. . .

. . .

. . .

seed key K

seed vector V

plaintext M

plaintext stream M’

ciphertext E

n

n

E=LaSO’ (K,M’)

Fig. 11. Pseudoperfect system corresponding to CBC mode (Not an rn-ary cryptographically strong pseudorandom generator)

In a nutshell, none of the NIST’s standard modes of operation is a cryptographically strong pseudorandom
generator or a cryptographically strong pseudoperfect system. They should be replaced by efficient designs that are
cryptographically strong pseudoperfect systems.

UCLA COMPUTER SCIENCE DEPARTMENT TECHNICAL REPORT 030038 19

B. Exemplary repairs

Efficient repairs for the standard modes of operation are available. Figure 6 is a valid design. Let’s denote it by
key-encryption-transform (KET). Compared to ECB mode, KET encrypts the seed key before an AES encryption.

E1 E2 Ex

Z r
n Z r

n Z r
nx

K

E

OWLaSO

M

Z r
n Z r

n Z r
nx

K

E

OWLaSO

M

Z r
n Z r

n Z r
nx

K

E

OWLaSO

M

Ur,n Ur,n

Z r
n Z r

n Z r
nx

K

E

M
LaSO

Ur,n

Z r
n Z r

n Z r
nx

K

E

M
LaSO

Z r
n Z r

n Z r
nx

K

E

M
LaSO

Z r
n Z r

n Z r
nx

K

E

OWLaSO

M

Z r
n Z r

n Z r
nx

K

E

OWLaSO

M

Z r
n Z r

n Z r
nx

K

E

OWLaSO

M
Ur,n

−ary integersrn
seed key repetition

Ur,n

Ur,n Ur,n

Ur,n Ur,n

−ary integersrn

−ary integersrn
plaintext

−ary integersrn x.

Zr
n x. Zr

n x. Zr
n x.x

(is a polynomial)x

. . .

. . .

. . .

. . .

. . .

seed vector repitition

E=LaSO’

ciphertext

Fig. 12. Pseudoperfect system corresponding to AONT

Figure 12 shows Rivest’s All-Or-Nothing-Transform (AONT) [17][7]. Intuitively, AONT encrypts the plaintext
twice. It is another valid design: (1) The top-level constitutes a one-way function composition chain needed by
Blum-Micali CSPRG; (2) Given a shared seed key K and seed vector V , the decryptor can always recover the M
at bottom-level and E at top-level, then recover the plaintext at the mid-level; (3) The double encryptions at top
and bottom levels protect the the K and M used at the mid-level. This avoids the chosen-plaintext discussed in
Figure 8; (4) M fed into the bottom-level OWLaSO is already a cryptographically strong pseudorandom ensemble.
OWLaSOk is a permutation that won’t affect the pseudorandomness of this ensemble.

VIII. CONCLUSION

This work presents an algebraic model for privacy-oriented cryptographic modes of operation. The proposed model
extensively explore various roles of Latin Square cipher in formal cryptanalysis. We show the relation between Latin
Square ciphers and following issues: (a) block-by-block encryption modes of operation design, (2) composition with
one-way function, (3) hard-core function of one-way function, and finally (4) how to construct cryptographically
strong pseudorandom generators from Latin Square based random oracles. As a result, Latin Square ciphers with
invariance properties can be used to construct a cryptographically strong pseudorandom generator (CSPRG), and
thus a cryptographically strong pseudoperfect system that are treated as the ideal case of encryption modes of
operation design.

When the random oracles in the ideal case is replaced by “good” implementations like AES, the security of real
world modes of operation design can be analyzed and challenged. We find design flaws in NIST’s standard modes
of operation and show that efficient repairs are easily achievable.

UCLA COMPUTER SCIENCE DEPARTMENT TECHNICAL REPORT 030038 20

REFERENCES

[1] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A Concrete Security Treatment of Symmetric Encryption: Analysis of the DES
Modes of Operation. In Symposium on Foundations of Computer Science (FOCS), pages 394–403, 1997.

[2] M. Bellare and P. Rogaway. Random Oracles are Practical: a Paradigm for Designing Efficient Protocols. In 1st ACM conference on
Computer and Communications Security (CCS), pages 62–73, 1993.

[3] M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo-Random Bits. Society for Industrial and
Applied Mathematics (SIAM) Journal on Computing, 13(4):850–864, 1984.

[4] D. Chaum and T. Pedersen. Wallet Database with Observers. In CRYPTO, pages 89–105, 1993.
[5] D. Coppersmith, D. Johnson, and S. Matyas. Triple DES Cipher Block Chaining with Output Feedback Masking. IBM Research and

Development Journal, 40(2):253–261, 1996.
[6] H. B. Curry and R. Feys. Combinatory Logic. North-Holland, 1958.
[7] A. Desai. The Security of All-or-Nothing Encryption: Protecting against Exhaustive Key Search. In M. Bellare, editor, CRYPTO’00,

Lecture Notes in Computer Science, pages 359–375, 2000.
[8] W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Transactions on Information Theory, 22(6):644–654, 1976.
[9] T. El-Gamal. A Public-key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. In Advances in Cryptology–

EUROCRYPT, pages 10–18, 1984.
[10] H. Feistel. Cryptography and Computer Privacy. Scientific American, 228(5):15–23, 1973.
[11] O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press, 2001.
[12] O. Goldreich and L. A. Levin. A Hard-Core Predicate for all One-Way Functions. In Symposium on the Theory of Computation

(STOC), pages 25–32, 1989.
[13] M. Näslund. All Bits in ax+ b mod p are Hard. In N. Koblitz, editor, CRYPTO’96, Lecture Notes in Computer Science 1109, pages

144–128, 1996.
[14] National Institute of Standards and Technology. FIPS PUB 81: DES Modes of Operation. http://www.itl.nist.gov/

fipspubs/fip81.htm, 1980.
[15] National Institute of Standards and Technology. Recommendation for Block Cipher Modes of Operation. http://csrc.nist.

gov/publications/nistpubs/800-38a/sp800-38a.pdf, December 2001.
[16] M. O. Rabin. Digital Signatures and Public Key Functions as Intractable as Factorization. Technical Report TM-212, Laboratory of

Computer Science, Massachusett Institute of Technology, 1979.
[17] R. L. Rivest. All-or-Nothing Encryption and the Package Transform. In E. Biham, editor, FSE’97, Lecture Notes in Computer Science

1267, pages 210–218, 1997.
[18] R. L. Rivest, A. Shamir, and L. M. Adleman. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems. CACM,

21(2):120–126, 1978.
[19] A. Shamir. On the Generation of Cryptographically Strong Pseudo-Random Sequences. In S. Even and O. Kariv, editors, International

Colloquium on Automata, Languages and Programming (ICALP’81), Lecture Notes in Computer Science 115, pages 544–550, 1981.
[20] C. Shannon. Communication Theory of Secrecy Systems. Bell System Technical Journal, 28(4):656–715, 1949.
[21] A. C.-C. Yao. Theory and Applications of Trapdoor Functions (Extended Abstract). In Symposium on Foundations of Computer Science

(FOCS), pages 80–91, 1982.

