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Abstract

Multimedia information systems have emerged as an essential component of many applica-
tion domains ranging from library information systems to entertainment technology. However,
most implementations of these systems cannot support the continuous display of multimedia
objects and suffer from frequent disruptions and delays termed Aiccups. This is due to the low
I/O bandwidth of the current disk technology, the high bandwidth requirement of multimedia
objects, and the large size of these objects that almost always requires them to be disk resident.
One approach to resolve this limitation is to decluster a multimedia object across multiple disk
drives in order to employ the aggregate bandwidth of several disks to support the continuous
retrieval (and display) of objects. This paper describes staggered striping as a novel technique
to provide effective support for multiple users accessing the different objects in the database.
Detailed simulations confirm the superiority of staggered striping.

1 Introduction

During the past decade, information technology has evolved to store and retrieve multimedia data
(e.g., audio, video). Multimedia information systems utilize a variety of human senses to provide an
effective means of conveying information. Already, these systems play a major role in educational
applications, entertainment technology, and library information systems. A challenging task when
implementing these systems is to support a continuous retrieval of an object at the bandwidth re-
quired by its media type [MWS93, SAD*93, GRAQ91]. This is challenging because certain media

types, in particular video, require very high bandwidths. For example, the bandwidth required
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by NTSC! for “network-quality” video is about 45 megabits per second (mbps) [Has89]. Recom-
mendation 601 of the International Radio Consultative Committee (CCIR) calls for a 216 mbps
bandwidth for video objects. A video object based on the HDTV (High Definition TeleVision)
quality images requires approximately 800 mbps bandwidth. Future demands for even high band-
width are expected. These bandwidth requirements have to be compared with the typical 20 mbps
bandwidth of a magnetic disk drive?, which is not expected to increase significantly in the near
future [PGK88]. A standard technique to support a continuous display of multimedia objects is
to sacrifice the quality of data using a lossy compression technique (results in some loss of data).
While it is effective, there are applications that cannot tolerate loss of data (e.g., medical data, the
video signals collected from space by NASA [Doz92]). As an alternative, one may use a lossless
compression technique (e.g., Huffman, Lempel Ziv, etc.). While a good estimate for reduction in
size with these techniques is anywhere from a factor of 2 to 15, with lossy techniques it ranges from
a factor of 10 to 500 [Fox91]. In any case a range of bandwidth may be required in a system: from

a fraction of disk bandwidth to several times the bandwidth of a single disk.

In order to simplify the discussion, we assume a hierarchical storage architecture that consists of
a tertiary storage device accessible to a group of disk drives as our hardware platform. We assume
that the stations used to display objects are independent of both the tertiary storage device and
the disk drives. The database resides permanently on the tertiary storage device and its objects are
materialized on the disk drives on demand (and deleted from the disk drives when the disk storage
capacity is exhausted). In this study, we focus on the I/O bottleneck phenomena, and assume
that the bandwidth of both the network and the network device driver exceeds the bandwidth

requirement of an object. This assumption is justified considering the current technological trends.

Assuming a fixed bandwidth for each disk (Bpjsx) in the system, and a database consisting of
objects that belong to a single media type with bandwidth requirement Bpisplay, we must utilize
the aggregate bandwidth of at least M = [%—;ﬁﬂ] disk drives to support a continuous display of
an ohject3. This can be achieved by a method we call simple striping as follows. First, the D disk
drives in the system are organized into R = —Al% disk clusters. Next, each object in the database
(say X) is organized as a sequence of n equi-sized subobjects (X,Xy,...,An). Each subobject X;
represents a contiguous portion of X. When X is materialized from the tertiary storage device, its
subobjects are assigned to the clusters in a round-robin manner, starting with an available cluster.
In a cluster, a subobject is declustered [RE78, LKB87, GD90] into M pieces (termed fragments),

with each fragment assigned to a different disk drive in the cluster. When the system displays X,

!The US standard established by the National Television System Committee.

*The concepts described in this paper are applicable to other secondary storage devices.
*For simplicity our initial discussion assumes that the minimum bandwidth allocated to a request is Bp;.x. In a

later section we show how fractions of Bpi,x can be allocated.
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Figure 1: Fragment layout on disks

it starts by using the cluster that contains Xo (say C;) to display the first portion of X. Next, it
employs Ci11 mod r to display X;. The system iterates over the clusters until X is displayed in its

entirety, employing a single cluster at any given point in time.

To illustrate, assume that object X requires a 60 mbps bandwidth to support its continuous
display (Bpispiey(X )=60 mbps). Moreover, assume that the system consists of 9 disk drives, each
with a bandwidth of 20 mbps (Bp:;x=20 mbps). Thus, we need the aggregate bandwidth of 3
(M = %) disk drives to support the continuous display of X. Figure 1 demonstrates how the simple
striping technique organizes the subobjects of X. In this figures, the disk drives are partitioned into
3 clusters (L%J }, each consisting of 3 (M) disk drives. Each subobject of X (say X;) is declustered
into 3 fragments (denoted Xy, X1.1, X1.2). A request to retrieve object X results in the system
employing cluster 0 to display Xp. Subsequently, cluster 1 is employed to display X, etc. Hence,
the display of X employs only a single cluster at each time interval, enabling the system to support

three simultaneous displays.

The fragments of a subobject (say X;) are constructed using a round-robin assignment of its
blocks to each disk drive (see Figure 1), allowing the system to overlap the display of X; with
its retrieval from the disk drives (multi-input pipelining [GRAQ91, GR93]). This minimizes the
amount of memory required for buffering the data. However, in practice, some memory is needed

per disk drive to eliminate hiccups that may arise due to disk seeks incurred when the system



Parameter Definition

Bpisplay(X) Bandwidth required to display object X

tfr Transfer rate of a single disk drive

Bpisk Effective bandwidth of a single disk drive

BTertiary Bandwidth of the tertiary storage device

My Degree of declustering for object X, Mx = [%ﬁ”}@]

D Number of disk drives in the system

R Number of disk clusters in the system

Towitch The delay incurred when the system switches from one cluster to another
Tsector Time required by a disk to transfer a sector worth of data to memory
S(CY) Service time of a disk cluster per activation

size(fragment) | Size of a fragment

k The distance (number of disks) between X; ¢ and X;110

Table 1: List of parameters used repeatedly in this paper and their respective definitions

switches from one cluster to another {described further in Section 3).

This simple striping technique is already a significant improvement over the virtual replication
technique of [GS93]. As described in detail later, simple striping provides for more flexible allocation
of disk bandwidth and more efficient use of disk storage capacity. We further generalize the simple
striping scheme (and name it staggered striping) to support a database that consists of a mix
of multimedia objects, each with a different bandwidth requirement. The rest of this paper is
organized as follows. In Section 2, we survey work related to this study. Section 3 presents
both simple and staggered striping techniques. Section 4 presents simulation results that compare
staggered striping with an earlier technique termed virtual data replication. These reults verify the
superiority of staggered striping. Our conclusion and future research directions are contained in

Section 5.

2 Related Work

Striping [SGM86, PGKS88] and declustering [RE78, LKB87, GD90] are two popular techniques
employed by both general purpose multi-disk I/O subsystems (e.g., RAID [PGK88]) and parallel
database management systems (e.g., Gamma [DGS$190], Non-Stop SQL [Gro88], DBC/1012 [Ter83],
Bubba [BACT90], XPRS [SPO88]). Staggered striping extends these concepts to multimedia infor-
mation systems, and is novel because its design enables either a multi-disk or a parallel system to

guarantee a continuous retrieval of an object at the bandwidth required to support its display.

There are several proposals which led to the work reported in this paper. In [GRAQ91]



Degree of Declustering (My): the number of disk drives a subobject is declustered across;

B isploy X
Mx :[ DB;ssk( )]'

Fragment: unit of data transfered from a single disk drive. Constructed by declustering a
subobject (X;) across Mx disk drives.

Subobject: a stripe of an object. It represents a contiguous portion of the object. Its size
is defined as My x size(fragment).

Disk cluster: a group of disk drives that are accessed concurrently to retrieve a subobject
(X;) at a rate equivalent to Bpisplay(X).

Stride (k): the distance (i.e., number of disk drives) between the first fragment of subobject
X; and the first fragment of X, 4.

Table 2: Defining terms

and [GR93], the concept of declustering was extended to a parallel multimedia system hased on the
shared-nothing architecture [Sto86)]. In [GS93], an architecture was defined with a tertiary storage
device and described wvirtual data replication as a mechanism to support multiple users. Virtual
data replication partitions the D disk drives in the system into R = L%J disk clusters, and declus-
ters an object across the disk drives of a single cluster (i.e., assigns an object to a single cluster).
To avoid the cluster that contains a frequently accessed object from becoming the bottleneck for
the system, dynamic techniques were introduced to detect and replicate the frequently accessed
objects across multiple clusters. The staggered striping method is a major improvement because
it avoids formation of bottlenecks by striping an object across the clusters instead of replicating
it. This enhances the overall performance of the system by enabling a larger number of objects to

become disk resident. This observation is demonstrated further in Section 4.

3 Two Striping Techniques

For the two striping techniques described in this section, we assume the following:

e each object has a constant bandwidth requirement.



o the display stations have a limited amount of memory. This means that the data has to be

produced at approximately the same rate as its consumption rate at a display station.

¢ the network delivers the data to its destination both reliably and fast enough; consequently,

it is eliminated from further consideration by this paper.

e the bandwidth requirements of the objects exceeds the bandwidth of both the tertiary storage

device and a single disk drive. This assumption is relaxed in a later section.

We start by completing the description of the simple striping technique which was briefly intro-
duced in section 1. Next, we describe the limitations of this technique for a database that consists
of a mix of media types, and present staggered striping as a solution to these limitations. Subse-
quently, we describe how staggered striping materializes objects from the tertiary storage device
and supports rewind along with fast forward features. Other interesting features of the allocation

of disk bandwidth to requests are also discussed.

3.1 Simple Striping

Assuming that all the objects in the database belong to a single media type with a fixed bandwidth
requirement, section 1 described the simple striping technique. Figure 1 illustrates the placement
of object X with this technique. When the request service displays X, it employs a single cluster
at each time interval, However, when the system switches from one cluster (Cp) to another (Cy),
the disk drives that constitute C; incur the seek and latency times associated with repositioning
their heads to the location containing the referenced fragments. To eliminate hiccups that might
be attributed to this factor, simple striping computes the worst case delay (termed Tyyiin) for
C} to reposition its heads and, relative to the consumption rate of a display station, produces the
data such that a station is busy displaying Tyyiter Worth of data when the switch takes place (see
Figure 2).

Assuming some memory is allocated for each disk drive, the protocol for this paradigm is as
folows. Upon activation of the disk drives in a cluster, each disk drive performs the following two
steps:

1. Each disk repositions its head (this takes between 0 to Tsyiter, seconds)

2. Each disk starts reading its fragment (it takes Tyector Seconds to read each sector)

3. When all disks have read at least one sector, the synchronized transmitting of data to the

display stations is started
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Figure 2: Fragment layout on disks

4. Disks continue reading of the complete fragment overlapped with transmission to the display

station

Tewiteh Tepresents the maximum duration of the first step. Tyector is the time required to read a
sector into memory. The minimum amount of required memory is a function of these two times

and is defined as:

Bdisk X (Tswitch + Tsector) (1)

Simple striping splits time into fixed length intervals. A time interval is the time required for
a disk drive to perform its four steps, and constitutes the service time of a cluster (denoted 5(C})).
The duration of a time interval is dependent on the physical characteristics of the secondary storage

device (its seek and latency times, and transfer rate), and the size of the fragments.

To illustrate, recall the physical layout of X in Figure 1. Once a request references X, the
system reads and displays X (using Cp) during the first time interval. The display of the object
starts at step 3 of this time interval. During the second time interval, the system reads and displays
X, (using C1). The display time of the cached data eclipses the seek and latency time incurred by
C (step 1), providing for a continuous retrieval of X (see Figure 2). This process is repeated until

all subobjects of X are displayed.

Figure 3 further illustrates this object delivery scheme for three requests referencing three
different disk resident objects: X, Y, and Z. This figure demonstrates the scheduling of clusters
at midpoint of retrieval. Subobject X, is the last subobject of X. Thus, disk cluster 0 does
not read a subobject during both time intervals 3 and 6, while disk clusters 1 and 2 do not read
subobjects during time intervals 4 and 5, respectively. If a request were to arrive before time
interval 3 referencing an object whose first subobject resides on cluster 0, then these idle time

intervals would be used to service the new request.



CLUSTER O CLUSTER 1 CLUSTER 2
t read Z{k+1) read X(i+1) read Y(j+1)
Iil read Y(j+2) read Z{k+2) read X(i+2)
© idle read Y(j+3) read Z(k+3)
1 read Z(k+4) idle read Y(j+4)

read Y(j+5) read Z(k+5) idle

idle read Y(j+6) read Z(k+6)

Figure 3: Standard striping with 3 clusters

The fragment size is a parameter that has to be decided at system configuration time. The
larger the chosen fragment size, the greater the effective disk bandwidth. This is because after the
initial delay overhead to position the read heads (Tuitch), there is little additional overhead no
matter how much data is read. More formally if ¢ fr is the transfer rate of a single disk, then the

effective disk bandwidth By;,; can be computed as:

size( fragment)

B isk = 1 T
disk = LI X size( fragment) + (Tyuitch * 1f7)

There is also a tradeoff between the effective disk bandwidth and the time to initiate the display of
an object. At the instant of arrival of a new request referencing an object X, the cluster containing
X might be busy servicing another request while the other clusters areidle. In this case, the request
has to wait until the cluster holding X, becomes available. For example, if a system consists of
R disks clusters and is almost completely utilized servicing R — 1 requests, then in the worst case
the latency time for a new request is (R — 1) * §(C;). In summary, as one increases the size of
a fragment, the display latency time increases (undesirable) while the effective disk bandwidth

increases (desirable).

To illustrate, a typical 1.2 gigabyte disk drive [Sab%0] consists of 1635 cylinders, each with
a capacity of 756000 bytes. Its peak transfer rate is 24.19 mbps. Its minimum, average, and
maximum disk seek times are 4, 15, and 35 milliseconds respectively. Its average and maximum
disk latency times are 8.33 and 16.83 milliseconds respectively. Typically a cylinder can be read
with an overhead of one seek and one latency. Thus the time to read one cylinder is 250 milliseconds,
while the highest overhead due to seeks and latency is 16.83 + 35 = 51.83 milliseconds. If the size
of a subobject is chosen such that each of its fragments are one cylinder in size (i.e., size(subobject)
= My * size(eylinder)) then S(C;)= 301.83 msec. Thus, on the average, 17.2 percentage of disk

bandwidth is wasted due to the seek and latency times. If two consecutive cylinders are transfered,



S(C;) = 555.83 and the wasted bandwidth will be only about 10 percent. In a typical system of 90
disks divided into 30 clusters of 3 disks, the worst case transfer initiation delay would be about 9

seconds in the case of 1 cylinder transfers and 16 seconds in the case of 2 cylinder transfers.

Without loss of generality, and in order to simplify the discussion, for the rest of this paper
we assume that the size of a fragment for each object ¢ is two cylinders (size(subobject)=M; * 2
* size(cylinder)). This is a reasonable assumption because: 1)} it wastes only about 10% of the
disk bandwidth, and 2) the advantages of transfering more than 2 cylinder from each disk drive is

marginal because of diminishing gains in effective disk bandwidth beyond 2 cylinders.

When the database consists of a mix of media types each with a different bandwidth require-
ment, the design of simple striping should be extended to minimize the percentage of wasted disk
bandwidth. To illustrate, assume that the database consists of two video objects: Y and Z. The
bandwidth requirement of Y is 120 mbps (My = 6) and that of Z is 60 mbps {Mz = 3). A naive
approach to support these objects might be to construct the disk clusters based on the media type
that has the highest bandwidth requirement, resulting in 6 disks per cluster (assuming Bpix =
20 mbps). This would cause the system to employ a fraction of disks in a cluster when servicing
a request that references object Z, sacrificing 50% of the available disk bandwidth. Staggered
striping, described in the next section, is a superior alternative as it minimizes the percentage of
disk bandwidth that is wasted.

3.2 Staggered Striping

Staggered striping is a generalization of simple striping. It constructs the disk clusters logically
(instead of physically) and removes the constraint that the assignment of two consecutive subobjects
of X (say X; and X;41) be on non-overlapping disks. Instead, it assigns the subobjects such that
the disk containing the first fragment of X;4; (i.e., Xi4+1.0) is k disks (modulo the total number of
disks) apart from the disk drive that contains the first fragment of X; (i.e., Xiq). The distance
between X; o and X;,1p is termed stride. If a database consists of a single media type (with a
degree of declustering M, ) and D is a multiple of M, then staggered striping can implement simple

striping by setting the stride to equal to the degree of declustering of an object* (k = Mx).

Figure 4 illustrates both the logical and physical assignment of the subobjects of X with stag-
gered striping (with stride k=1). As compared with simple striping, the display of X with staggered
striping differs in one way: after each time interval, the disks employed by a request shift £ to the
right (instead of Mx with simple striping). When the database consists of a mix of media types,
the objects of each media type are assigned to the disk drives independently but all with the same

*Virtual data replication can be implemented by k = D.
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13 X13.0 X131 X13.2
14 X14.0 X14.1 X142
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{a) Logical disk layout (b) Physical disk layout

Figure 4: Staggered striping with 8 disks

stride. Figure 5 demonstrates the assignment of objects Z, X, and Y with bandwidth requirement
of 40, 60, and 80 mbps, respectively (Mz=2, Mx =3, My =4). The stride of each object is 1. In
order to display object X, the system locates the Mx logically adjacent disk drives that contain
its first subobject (disks 4, 5, and 6). If these disk drives are idle, they are employed during the
first time interval to retrieve and display X,. During the second time interval, the next My disk

drives are employed by shifting k disks to the right.

With staggered striping, it is easy to accomodate objects of different display bandwidths with
little loss of disk bandwidth. The degree of declustering of objects varies depending on their media
type. However, the size of a fragment (i.e., unit of transfer from each disk drive) is the same for all
objects, regardless of their media type. Consequently, the duration of a time interval is constant for
all multimedia objects. For example, in Figure 5, the size of subobject Y; is twice that of subobject
Z; because Y requires twice the bandwidth of object Z. However, their fragment size is identical

because Y; is declustered across twice as many disks as Z;.

When displaying an object, staggered striping uses the ideal number of disk drives per display
during each time interval and thereby does not waste the bandwidth of the employed disks. How-
ever, it may cause a fraction of the disk drives to remain idle even though there are requests waiting
to be serviced. This occurs when the idle disk drives are not adjacent due to the display of other

ohjects. This limitation is termed time fragmentation. To illustrate, consider the assignment of X,

10
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Figure 5: Staggered striping with 12 disks

Y, and Z in Figure 5. Assume an additional object (say W) with the same bandwidth requirement
as object Y is disk resident (My = 4). Suppose the placement of Wy starts with disk 4 (Wo.o
is stored on the same disk drive containing Xgg). If the system is busy servicing three displays
referencing objects X, Y, and Z, then there are three disk drives that are idle. Assume that a new
request arrives referencing object W, It would have to wait because the number of idle disks (3)
is less that its required number of disk drives (4). If the display of object X now completes then
there would be a total of six disks available. However, the system is still unable to display object
W because the available disk drives are not adjacent to each other (they are in groups of three
separated by the display of Y and Z). The system cannot service displays requiring more than
three disks until the display of either ¥ or Z completes.

It is interesting to note that the allocation of disk resources to satisfy requests now has frag-
mentation problems similar to those of dynamic memory allocation. In the remaining subsections,
we discuss the time fragmentation problem as well as other design parameters and how to provide

other functionality such as fast forward and rewind.

3.2.1 Fragmentation

Time fragmentation can be alleviated by careful scheduling of jobs, but cannot be completely
eliminated. However, with additional memory for buffer space and additional network capacity,
the time fragmentation problem can be solved. To accomplish this, assume that a fragment can
be read from the disk into a buffer in one time interval and, in a subsequent time interval, the

same processor node can concurrently transmit to the network both (a) the previously buffered

11
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fragment, and (b) a disk resident fragment (using the pipelining scheme outlined earlier). In this

section, we show how to use buffers to utilize a set of disks that are not adjacent to deliver an

object. We also show how to dynamically coalesce time fragmented disks as intervening busy disks

become available.

Figure 6 illustrates an example of how our approach works. In the figure, the white reqions

indicate which disks were available for serving new requests while the shaded regions are disks busy

t time 0 for an object X with a degree of declustering

ives a

ther requests. A request arr

serving o

t X0 is stored on disks

jec

tial subob

ini

equal to 2. Further the stride is 1 in this example and the

there are 2 intervening busy disks.

Y

0 and 1. There are 2 free disks, but they are not consecutive

Disk 1 is free and

in

tion to read fragment X0.1, but disk 6 which is also free will not be

15 1n posi

position to read fragment X0.0 until time interval 2. In order to support time fragmented delivery

of object X, disk 1 can keep fragment X0.1 in memory until time 2 when it can be delivered along

lined directly from disk 0 to the network,

is pipe

while node 1 transmits fragment X0.1 from its buffers (while disk 1 is concurrently servicing another

with fragment X0.0. Thus at time 2, fragment X0.0

request). Similarly disk 2 reads fragment X1.1 at time 1, and buffers it until time interval 3 when

12



both X1.0 and X1.1 can be delivered.

Figure 6 also illustrates how time fragmented requests can be dynamically coalesced. Suppose
at time interval 5, the 2 intervening disks have completed their service and become free. At that
point, the time fragmented request can be completely coalesced so that the disks supporting the
transmission of object X are adjacent (depending on how many disks become free, a time fragmented
request may be only partially coalesced). By the start of time interval 5, fragments X3.1 and X4.1
are already buffered, and have to be delivered before reading recommences. During time intervals
5 and 6, fragments X3.1 and X4.1 are delivered from buffers while fragments X3.0 and X4.0 are
delivered directly from disk. Starting at time 7, the coalescing has been completed and the 2

consecutive disks pipeline the fragments directly from the disk to the network.

In the rest of this section, algorithms are given for supporting fragmented requests and the
dynamic coalescing of fragments. These algorithms are given for a specified virtual disk. To
simplify the specification of these algorithms we introduce the notion of a virtual disk. A virtual
disk i at time interval ¢ is defined as physical disk (i — kt) mod D where k is the stride. A virtual
disk reads the same fragment of each subobject and shifts in time with the stride of the staggering.
Thus the virtual disk that reads the first fragment of a subobject at one time interval would read

the first fragment of the next consecutive subobject in the next time interval.

Two algorithms are given, one algorithm is for a single virtual disk supporting time fragmented
requests, but without supporting dynamic coalescing. The second algorithm handles dynamic
coalescing, but for simplicity handles only the delivery of buffered blocks to the network. There is
an analogous algorithm that handles reading of disk blocks into buffers.

Algorithm 1

Let X be an object with n subobjects, each subobject having My fragments. Assume that the
initial subobject of X, X0, is stored on physical disks p, p+1, p+2, ..., p+Mx-1. Let 25, 21, ...,
ZMy—1 be the indices of the virtual disks chosen to support object X. Assume the existence of a
function physical(z;) which gives the physical disk currently occupied by virtual disk z;. Finally,

assume that all arithmetic is to be done modulo D, the number of disks in the system.

The first algorithm given is the simple case where there is no coalescing during the delivery
of the object. This algorithm is given below and handles both the reading of disk blocks and the
delivery of buiffers to the network.

The parameters on line 1 are (1) X, the object to be delivered, (2} n, the number of subobjects
of X, (3) p, the physical disk that stores the first fragment of subobject Xo, and (4) i, the subobject
fragment that this process is supporting. Line 2 sets w_offset to be the number of time intervals

that a fragment needs to be buffered before being delivered. Line 3 waits until virtual disk 2; is
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simple_combined_algorithm(X,n,p,i) {
w_offset = z; — z9 — ¢;
wait until physical(z;) = p+i;
for (t = 0;t < n + woffset; t++) {
if t < n initiate_read(X};);
if t > w_offset initiate_output{ X¢—w_ofsset.i);

el S

at the physical disk storing fragment Xg;. Lines 4-7 form the main part of the procedure. The
variable t represents the time interval. Each time t is incremented (for w_offset < ¢t < n), one disk
block is read into a buffer, and a (different) buffer is delivered to the network. While 0 < ¢ < n,
blocks are being read in and buffered, but none are being delivered. While n < ¢t < n 4w_offset,

blocks are being delivered to the network, but none are being read from disk.
Algorithm 2

To dynamically coalesce time fragments, a virtual disk must receive a new subobject fragment
number. The function coalesce.request() is assumed to provide this functionality. To make the
algorithm simpler, a new coalesce request can only arrive after a previous coalescing has completed.
Only the part of the algorithm supporting the writing of buffered blocks is given; the algorithm for

reading from the disks is similar. The algorithm is given below.

Lines 1-5 are similar to the previous algorithm. Line 6 is the procedure call to see if the time
fragment containing virtual disk z; can be coalesced. Line 6 is the procedure call to check if this
virtual disk needs to participate in a coalescing. If i’ # —1, then ¢’ is the new subobject fragment
number that this virtual disk will be reading. Before reading and delivering the i’ fragments, the
backlog of buffered fragments must be delivered and then a period with no block transmissions is
entered. The length of the backlog is computed in the variable backlog while the length of the quiet
period is computed in skip_write. Lines 12-19 handle the system clearing the backlog of buffered
blocks. When the buffered blocks are all transmitted, lines 15-19 indicate that the second phase
(i.e. the quiet phase) of coalescing can begin. The second phase (lines 20-22) consist of waiting
for the companion read process to read ahead the correct number of buffers. Finally line 23 is the

normal operation of the program where a buffer is delivered to the network.

3.2.2 Stride

The choice of a value for the stride (k) must be determined at system configuration time. It may

vary in value from 1 to D since a value (say i) greater than D is equivalent to ¢ modulo D. The
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write_thread(X,n,p,i) {

roffset = 0; w_oflset = z; — z9 — ¢;
w_coalesce = w_coalesce2 = FALSE;
wait until physical(z;) = p+i;
for (t = 0; t < n + w_offset; t++) {
if ((i’ = coalesce_request()) != -1) {
w_coalesce = TRUE;
skip.write = zy — z; — i’ + 4;
backlog = w_offset - r_offset;
r_offset += i’ — i;;
1
if w_coalesce {
backlog——;
initiate_output{Xe—y_of fset.i )i
if (backlog == 0) {
w_coalesce = FALSE;
i=1%
w_coalesce2 = TRUE;
}
} else if w_coalesce2 {
skip-write——;
if (skip.write == 0) w_coalesce2 = FALSE;
}if t > w.offset initiate_output( Xy v offset i);
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choice of k and D is important as particular combinations of values for k and D can result in very

skewed load on the disks, both storage capacity and bandwidth capacity.

We illustrate the above points by first considering the two extreme values for k£ (1 and D).
Assume a system with 10 disk drives (D=10) and a large object X consisting of hundreds of
cylinders worth of data. Assume that the degree of declustering for each subobject of X is 4
(Mx=4). If k=1, then the number of unique disks employed is 10 (D), 4 at a time and for S(C3)
duration before moving to a new set of 4 disks. If k=D, then all subobjects of X are assigned to
the same disk drive. Hence, the number of unique disks employed to display X is My, each for the
entire display time of X (-B;:;f:!%). Assume requests for objects X and ¥ arrive to both systems
(one system with k=1 and the other with k=D) and where X0 and Yoo reside on the same disk.
Assume that the requests arrive in the following order: X followed by Y. In this case, with k=1,
Y observes a delay equivalent to S(C;) (typically less than a second). With k=D, Y observes a
delay equivalent to the display time of X which is very much larger and generally unacceptable.
To prevent data skew, the subobject size of every object in the system must be a multiple of the
GCD (Greatest Common Divisor) of D, the total number of disks, and k, the stride. In particular,
a stride of 1 guarantees no data skew. Similarly, any choice of D and k such that D and k are

relatively prime guarantees no data skew.

Note that with k=D, the display of each object is very efficient because the system can cluster
the different subobjects of X on adjacent cylinders in order to minimize the percentage of disk
bandwidth that is wasted (saves of less than 10% of the disk bandwidth). Section 4 demonstrates
the tradeoffs between these two alternative values for k. The results show that saving of less than

10% of the disk bandwidth as compared to the high probability of collisions is not beneficial.

When k ranges in value between 1 and D, the size of an object X determines the number of disk
drives employed to display X because the size of each fragment is fixed (a cylinder in our case). To
{llustrate, assume D=100 and an object X consist of 100 cylinders (Mx = 4). With k = My (i.e.,
simple striping), X is spread across all the D disk drives. However, with k=1, X is spread across

28 disk drives. In this case, the expected display latency with & = 1 is higher than with k = Mx.

3.2.3 Low Bandwidth Objects

There are object types for which Bp;splay < Bpisk- These might include certain types of audio or
slow scan video. Similarly, there are objects whose bandwidth requirement is not an exact multiple
of Bpisk. In these cases there will be wasted disk bandwidth due to the request to use an integral
number of disks. For example, an object requiring 30 mbps when Bp;s = 20 would waste 25

percent of the bandwidth of the two disks used per interval. Staggered striping can be used to
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Figure 7: Staggered striping with low bandwidth objects

more efficiently support these low bandwidth objects at a cost of some additional buffer space.
To efficiently use disk space and disk bandwidth, we propose that subobjects of 2 or more low
bandwidth objects be read and delivered in a single time interval. Consider two subobjects X; and
Y;, each of which has Bpjspiay = 1/2 Bpisk, and which are to be read during the same time interval.
The data in subobject X; needs to be delivered during the entire time interval including the time
when Y; is being read. An additional buffer can be used to store part of X; while subobject ¥;
is being read. Similarly, part of Y; needs to be buffered while X;;, is being read during the next
time interval. Note that we are agian assuming that a node can concurrently transmit from a main

memory buffer and from a disk using the pipelining scheme.

Figure 7 illustrates how this is accomplished. During the first half of the first time interval
subobject X is read, and the first half of X (represented as X0a} is transmitted using pipelining.
The second half of subobject Xg, X0b, is buffered for transmission during the second half of the
time interval. In the second half of the first time interval, subobject Yy is read and both Y0a and
X0b (from the buffer) are transmitted. YOb now needs to be buffered for transmission during the

first half of the second time interval. This process continues until the objects complete transmission.

This scheme effectively divides each disk into two logical disks of approximately one half the
bandwidth of the original disk. This scheme can also be beneficial in reducing the overhead due to
use of an integral number of disks. In effect, the request is now that an integral number of logical
disks be allocated to a request. For example, an object that has Bpisplay = 3/2 Bpisk can be
exactly accomodated with no loss due to rounding up the number of disks. In general, the waste

due to rounding is reduced.
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3.2.4 Materializing Objects from Tertiary Store

This study assumes that the bandwidth of tertiary store is lower than the bandwidth required
to display an object. When materializing an object X, the tertiary device cannot produce an
. . . + . . . H Brertiar
entire subobject during each time interval to write to a disk cluster (it produces szztﬁylj X
size(subobject)). If an object is stored in a sequential manner on the tertiary store, then the
bandwidth of both the disk and the tertiary store will be wasted. This is due to the layout
mismatch between the organization of data on tertiary store and that on the disk drives: the
organization of an object on the disk drives is not sequential. When materializing object X, this

. . .. Brertiar . . . .
mismatch will cause the system to write mﬂx—j of subohject Xg to Mx idle disk drives in the
first time interval. In the second time interval, the system moves k disks to the right, requiring

. . Brertiar . . . .
the tertiary device to produce m of X;. This would require the tertiary store to reposition
its disk head. This reposition time is typically very high for tertiary storage devices and may
exceed the duration of a time interval. In this case, the system would be required to materialize a
different subobject every other time interval with the tertiary spending a major fraction of its time

repositioning its head (wasteful work) instead of producing data (useful work).

One approach to resolve the mismatch between the tertiary store and the disks is to write the
data on the tape in the same order as it is expected to be delivered to the disks. To illustrate,
assume an object X with bandwidth requirement of 80 mbps. If the bandwidth of the tertiary store
is 40 mpbs and the bandwidth of each disk drive is 20 mbps, then the fragments of X could be
stored on the tertiary based on the organization of the fragments across the disk drives: Xo.o, Xo1,
X110, X114, X2.0, X2.1, etc. The materialization of object X would employ two disk drives in each
time cycle. During the first time cycle it writes the first two fragments of the subobject Xp (Xo.0,
and Xo.1), while during the second time cycle, it moves k disks to the right and materialized the
first two fragments of X; (X1, and X, ;) without repositioning its head. This process is repeated
until X is materialized in its entirety. This organization is advantageous because it wastes neither
the disk bandwidth nor the bandwidth of the tertiary storage device. However, if the bandwidth
of a disk relative to the tertiary store were to change, then all the data on the tertiary would have

to be re-recorded,

3.2.5 Rewind and Fast-Forward Features

Thus far, we have described the delivery of an object at a constant bandwidth ( Bpispley). Other
features such as rewind, fast-forward, and fast-forward with scan may also be desirable. Rewinding
or fast-forwarding to any spot in the data can be accomplished by waiting for the set of disks ser-
vicing the request to advance to the appropriate position. Alternatively, if the appropriate number

of disks that contain the referenced location in an object are idle, then the system can employ them
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to service the request immediately. Even though there is a bandwidth/layout mismatch, the user

will not observe hiccups since the system displays no data.

Fast-forward with scanning is more complicated because there is 2 bandwidth/layout mismatch
and images need to be displayed. This is because the data is laid out for normal speed delivery,
but there is an occasional demand for fast delivery of only a fraction of the data. For example,
typical fast forward scans of VIIS video display approximately every sixteenth frame. In order to
provide this functionality, our approach stores a fast forward replica object for each object in the
system. This replica would be a small fraction of the size of a subobject. When fast forward scan
is invoked, the system uses this replica to support the display instead of the normal speed object
data. When a request for the fast forward replica arrives, disks at (or close to) the correct point
in the fast forward replica can start displaying the replica instead of the normal speed object. If
excess bandwidth is not available, the system may incur a transfer initiation delay when switching
to the fast forward replica (and back to the normal speed replica). This should not be a serious
problem because exact synchronous delivery is not expected when switching between normal speed

delivery and fast forward scanning.

4 Performance Evaluation

We have implemented staggered striping using the CSIM [Sch85] simulation language. In this
section we compare simple striping (special case of staggered striping, implemented by setting
k=Myx) with an earlier introduced technique termed virtual data replication [GS93] (described
in Section 2). We start by describing the simulation model employed for both strategies and
their parameters. Next, we summarize the performance results obtained. These results clearly

demonstrate the superiority of staggered striping.

4.1 Simulation Model

The simulation model consists of four main modules: the Display Station, Centralized Scheduler,
Disk, and Tertiary Storage. Each Display Station consists of a terminal that generates the workload
of the system. FEach Disk provides a 20 megabit per second bandwidth (Bp;s;x=20 mbps) and
consists of 3000 cylinders, each with a capacity of 1.512 megabytes. Thus, the capacity of each
disk drive is 4.5 gigabyte®. The Tertiary Storage device provides a 40 mbps bandwidth. The

Centralized Scheduler implements an Qbject Manager, a Disk Manager, and a Tertiary Manager.

5 At the time of this writing, 4 gigabyte disk drives are commercially available (e.g., Acropolis Systems Inc.) at a

cost of $0.82/megabyte of storage.
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Disk Parameters
Storage Capacity 4.54 gigabyte
Number of Cylinders 3000
Storage Capacity of a Cylinder 1.512 megabyte
Average Latency Time 8.33 msec
Maximum Latency Time 16.83 msec
Bpisk 20 mbyps
Minimum Seek Time 4 msec
Maximum Seek Time 35 msec
Average Seek Time 15 msec

Database Parameters
Number of objects 2000
Number of Subobjects/object 3000
BDisplay 100 mbps
Degree of Declustering (M) 5
System Parameters

Number of Disks (D) 1000
Number of Tertiary Devices 1
Stride (k) 5
BTertiary 40 mbPS

Table 3: Important simulation parameters

The Object Manager maintains the availability of different objects on the disk drives. Once the
storage capacity of the disk drives is exhausted and a request references an object that is tertiary
resident, it implements a replacement policy that removes the least frequently accessed object with
the referenced object. The Disk Manager keeps track of the different disks and their status (busy
or idle) for each time interval. The simulation model was configured to consist of 1000 disks. The
Tertiary Manager maintains a queue of requests waiting to be serviced by the tertiary storage

device.

The database consists of a single media type. The bandwidth requirement of this media type
is 100 megabits per second (Bpispay = 100 mbps, M=5). All objects are equi-sized and each
consists of 3000 subobjects. The size of each fragment is equivalent to the size of a cylinder
(size(subobject) = 5 x size(cylinder)). Hence, the display time of each object is 1814 seconds (30
minutes and 14 seconds). The size of the database is approximately ten times the available disk

storage capacity.

Both simple striping and virtual data replication construct 200 disk clusters (%) Virtual data
replication assigns an object to a single disk cluster. With the chosen simulation parameters, at
most one object can be assigned to a cluster (the storage capacity of the cluster is exhausted by

one object). The simulation was configured to detect and replicate the frequently accessed objects
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Figure 8: Obtained results

in order to avoid the formation of bottlenecks®. Simple striping also allows 200 objects to become

disk resident, however, it stripes each object over all the available clusters.

A user employs a display station to request an object. We assume that a display station can
display only one object at a time. In our experiments, we varied the number of display stations
from 1 to 256 in order to vary the system load. We assumed a closed system where once a display
station issues a request, it does not issue another until the first one is serviced. We also assume
a zero think time between the requests. This parameter was chosen in order to stress the system

and compare striping with virtual data replication in the worst case scenario.

We varied the distribution of access to the objects from uniform to skewed in order to analyze
the performance of the different techniques with various working set sizes. In each case the object
reference probabilities were modeled by a (truncated) geometric distribution. The mean was varied
to model different reference patterns from highly skewed to more uniform. We analyzed three
different values for the mean: 10, 20, and 43.5 (resulting in approximately 100, 200, and 400 unique

objects to be referenced, respectively).

4,2 Performance Results

Figure 8 presents the performance of both virtual data replication and simple striping for various
system loads, with the results for each distribution appearing in a different graph. In general, as
the distribution of access to the objects becomes more uniform, the throughput of the system with
both techniques decreases. This is because the probability of a request referencing an object that is

not disk resident (and incurring the overhead of materializing the object from the tertiary storage

®It was configured with the Minimum Response Time (MRTY) state transition diagram [GS93].

21



# Display Distribution of Access
Stations | 10 (highly skewed) 20 (skewed) 43.5 (uniform)
16 5.10% 2.15% 114.75%
64 11.06% 131.86% 508.79%
128 52.67% 350.73% 469.94%
256 126.10% 602.49% 413.10%

Table 4: Percentage improvement in throughput (number of displays per hour) with simple striping
as compared to virtual data replication.

device) increases.

For a low number of display stations (one or two), both techniques provide approximately
the same throughput. However, as the system load increases, simple striping outperforms virtual
data replication by a wider margin. Table 4 shows the percentage improvement in throughput with
simple striping. With a skewed distribution of access to the objects (see Figure 8.a}, simple striping
outperforms virtual data replication because by striping it prevents a frequently accessed object
from causing a cluster to become the bottleneck for the system (virtual data replication detects and
resolves hottlenecks by replicating the frequently accessed objects). When the distribution of access
becomes more uniform, simple striping continues to provide a superior performance because it allows
a larger number of unique objects to become disk resident (by replicating the frequently accessed

objects, virtual data replication reduces the number of unique objects that are disk resident).

As the distribution of access becomes more uniform (Figure 8.b), the tertiary storage device
starts to become the bottleneck and determines the overall processing capability of the system.

This reduces the percentage improvement observed with simple striping.

5 Conclusion and Future Research

We have shown that stagpered striping is a very efficient way of delivering multiple objects with
different bandwidth demands to multiple display stations. Given a single media type (i.e., band-
width requirement), there are never any problems with some jobs waiting while disk bandwidth
resources remain idle. This is because objects are no longer statically tied to a single cluster of
disks. This means that on average, more objects will be transmitted concurrently. For the same
reasons, there is never any need to replicate an object. Eliminating the need for replicated objects
saves disk space and means that more objects can become disk resident. Caching more objects

on disk means fewer reads from tertiary store which delays servicing of requests and wastes disk
bandwidth.
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Staggered striping allows objects of different sizes and different bandwidths. Disk space frag-

mentation, which is a big problem with virtual replicas since virtual replicas assumes contiguous

data on disk, is easily facilitated with staggered striping. Staggered striping also uses disk band-

width more efficiently when reading from tertiary storage.

Future work includes:

¢ How can this scheme actually be implemented? Most of the problems seem to be with the

networking, in particular, getting real-time networking at high speeds. In a system of 100

disks, aggregate bandwidth is approximately 1 gigabit per second.

e How can we avoid using the maximum seek and latency times? We need simulation or

analytical results that show how much we can increase our effective bandwidth by having

moderate sized buffering of a cylinder or so.

¢ How do we schedule multiple requests fairly? Should a small request have priority? Should

requests for existing objects on disk have priority over requests for objects on tertiary store?

Some of these questions have analogues in the area of memory management, but it is not

clear if the solutions are identical.
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