Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

DESIGN ALTERNATIVES FOR RECURSIVE DIGITAL
FILTERS USING ON-LINE ARITHMETIC

J. S. Fernando November 1993
CSD-930040

UNIVERSITY OF CALIFORNIA
Los Angeles

Design Alternatives for Recursive Digital
Filters
Using On-Line Arithmetic

A dissertation submitted in partial satisfaction
of the requirements for the degree
Doctor of Philosophy in Computer Science

by

John Susantha Fernando

1993

© Copyright by
John Susantha Fernando
1993

TABLE OF CONTENTS

Introduction e 1
1.1 Problem Statemento 3
1.2 Research Objectives. 3
1.3 Dissertation Qutline 4
1.4 Related Work oo i e 5
1.5 Contributions« . o o e 6
Schemes Based on Multipliers, Recoders and Adders 8
2.1 MSDF Multiplication Algorithm, 9
22 RecoderDesignt 12
2.3 Separate Multiplier (SM) Scheme 15
2.4 Combined Multiplier (CM) Scheme 21
A Composite On-Line Scheme 24
3.1 Specification and Derivation of Recurrence 24
3.2 Expression for On-Line Delay 26
3.3 Second-Order Radix-4 Implementations 28
3.4 Performanceand Cost 31
Schemes Using On-Line Multiply-Add Modules 38
4.1 Designof MAModule 38
4.2 Implementation of MA Module 39
4.3 Performanceand Cost 40
Multi-Module Arrays v o o ot 44
5.1 Array of Composite Word Modules 44
5.2 Array of MA Word Moduleso 48
5.3 Array of Composite Digit Stages 48
5.4 Array of MA Digit Stages e 50
5.5 Performanceand Cost« e 51

iv

6 Algorithmic Transformations for Higher Performance. 56

6.1 Recursive Unfolding Method 56
6.2 Scattered Lookahead Method 58
6.3 Multi-Module Arrays with Lookahead 59
7 Limit Cycle Oscillations 64
7.1 Roundoff Error in On-Line Modules 64
7.2 Bound on Limit Cycle Amplitude 65
7.3 Comparison of Limit Cycle Amplitude Bounds 70
7.4 Theoretical Bounds and Simulation Results. 76
8 Dynamic Scaling Scheme for Eliminating Oscillations 81
81 BasisforDSScheme 81
8.2 Scaling Operations0o.... 84
8.3 The Dynamic Scaling Algorithm 86
8.4 Implementationof DS scheme 88
8.5 Performanceand Cost 88
9 Evaluation 96
9.1 Evaluation of Implementations 96
9.2 Previous Implementations 98
9.3 Non-Linear Oscillations: Bounds and Solutions 104
10 Conclusion and Further Research 105

A Conventional Design of a Second-Order ITR Section with Scat-

tered Lookahead 109
A.l1 Architecture of 4-Stage Multiply-Add 109
A2 Implementation 112
A.3 Performanceand Cost 114

B Frequency Responses of Filter Examples 119

References e e 128

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3
3.4

4.1
4.2

5.1
5.2

5.3
5.4
5.9

7.1

7.2

7.3

Li1sT oF FIGURES

Scheme Using On-Line Units
Recurrence for Multiplication
Multiplier Qutput (Z;) Computation
Multiplier Implementation Schemes
Recoder for [-3,9]to [-3,3} L.
Recoder for [9,9]t0 [-3,3)
Signed-Digit Adder Implementation Schemes
Separate Multiplier (SM) Scheme (§imp=7)
Combined Multiplier Scheme (6imp=6)

Composite 2-Stage On-Line Scheme (§imp=4)
Optimizing Composite On-Line Scheme
Optimized 2-Stage Composite On-Line Scheme (imp =4)
Optimized 3-Stage Composite On-Line Scheme (6imp =4)

Optimizing Multiply-Add (MA) Scheme
Optimized On-Line Multiply-Add (MA) Scheme (§imp = 4) .

Array of 2-Stage Composite Word Modules (d =8)

1/0 Timing for Array of 2-Stage Composite Word Modules (d = 8)
and for Array of Composite Digit Stages (d=35)

Array of MA Word Modules (d=8)
Array of Composite Digit Stages (d=5)
Array of MA Digit Stages (d=95)

Triangle of Stability and Region (shaded) of Complex Roots with
Reduced Limit Cycle Amplitude Bounds for SL.

Effect of SL on Limit Cycle Amplitude Bounds for F1 {a = —1.09,
Bm —0.9) o e e

Effect of SL on Limit Cycle Amplitude Bounds for F2 (a = —1.98,
B —0.99) .« i et

vi

8.1
8.2
8.3
8.4
8.5

8.6

9.1

10.1

Al
A2
A3
A4

B.1
B.2
B.3
B.4
B.5
B.6
B.7

Scaler Data Path for 8-digit On-line Operands 85

Block Diagram of DS Implementation 89
Exponent Unit Computations 93
Timing for DS Scheme 9
Amplitude Response for F1 (a = ~1.09, b = —0.9), amplitude=

loga(16-bit output) 95
Amplitude Response for F2 (a = —1.98, b = ~0.99), amplitude=

log2(16-bit output) 95
Comparison of On-line and Conventional Implementations (d = 8} 99

Suggestions for Future Research 108
IIR Computation with 2 Levels of Scattered Lookahead 115
Slice of 4-Stage Multiply-Add (16 bits) 116
(a)Carry-Save to Radix-4 Recoder (b) MSD Generator 117
Arrays for Reducing Partial Products 118
Frequency Response of F1 (a = —1.09, 5= -0.90) 121
Region A of Frequency Response of F1 (a = —1.09, b = —0.90) . . 122

Region B of Frequency Response of F1 (¢ = —1.09, 5= -0.90) . . 123
Region C of Frequency Response of F1 (¢ = —1.09, b= —-0.90) . . 124
Frequency Response of F2 (a = —1.98,5=-0.99) 125
Region D of Frequency Response of F2 (¢ = —1.98, b= —-0.99) . . 126

Frequency Response of F1 with Dynamic Scaling (a = —1.09, b =
=0.90) . . . e e 127

vil

2.1
2.2

3.1
3.2

4.1
4.2
4.3

5.1
9.2

6.1
6.2
6.3

7.1

8.1
8.2
8.3
8.4

9.1
9.2
9.3

Al
A2

B.1

LisT OoF TABLES

Variation of Multiplier Qutput Digit Z; 18
Variation of Combined Multiplier Qutput Z; 22
Variation of On-Line Delay 28
Performance/Cost for Composite Word Modules (d =8) 37
Variation of On-Line Delay for MA Module (s =3) 39
Performance/Cost for MA Modules (d =8) 43
Comparison of Performance/Cost of Word Modules (d =8) 43

Performance/Cost for Array of Composite Digit Stages (d =8) . . 50

Comparison of Performance/Cost of Arrays (d=8) 52
Latency of Modules for Lookahead Computation 60
Coefficient Ranges and Max. Rate for SLand RU 61
Comparison of Performance/Cost of IIR section with Lookahead

(@ =8) o v et e e 63

Limit Cycle Amplitudes: Theoretical Bounds and Simulation Results 78

Precision (bits) Required for DS and Precision Extension Schemes 84

Scaling Operations: Advance and Retard 86
Performance/Cost for DS Scheme (16-bit) 90
DS Scheme vs. Fixed Point Scheme 91
Parhi and Hatamian Design 100
Design by McNallyetal. 102
Comparison of On-Line MA Modules 103

Delays and Costs of Components of 4-Stage Multiply-Add 112

Performance/Cost for Conventional IIR Section (16 bits) with 2
levels of Scattered Lookahead 114

Deviation of Frequency Response duetoSL 120

viil

3 R
=
o

S Ry
':.-a.
Pl

I
c

R E
5

LIST OF SYMBOLS

coeflicients in linear expression

number of bits used to represent coefficients in 2’s complement
number of digits in input and output samples
number of fraction bits used in implementation
iteration or digit indices

sample number

order of recursion

radix (also used for magnitude of a complex number)
sum of maximum magnitudes of coefficients

FIR inputs

residual in digit-recurrence algorithm

sample values of input, output

bounds of Z;

absolute value of a complex number

recoder output digit

sum, carry

digits of words denoted z,y,u

multiplier output digit

transfer digit, sum digit

delay (ns) of fan-out buffer for digit multiplexers,
multiplexer delay (ns)

delay of a full adder (ns)

delay of a half adder (ns)

clock period (ns)

clock-to-output delay for flip-flops (ns)

set-up time for flip-flops (ns)

delay caused by 4-bit CPA

number of fraction bits used for digit selection
on-line delay (clocks)

latency (clocks) between y(n) and y(n — i), y(n) and y(n — j)
on-line delay of an implementation (clocks)

factor by which SL reduces the amplitude bound of
zero-input limit cycles

maximum rate of an array (Msamples/sec)
maximum value of a digit in a redundant number system
bounds of w[j] — ¥; or w(j] — D;r?"?

1x

CM
CPA
CSA
DS
FA
FIR
HA
IIR
LSD
MA
MSD
RU
SM
SL
WM

LIST OF ACRONYMS

Combined Multiplier

Carry Propagate Adder

Carry Save Adder or Carry Save Array
Digit Stage or Dynamic Scaling
Full Adder

Finite Impulse Response

Half Adder

Infinite Impulse Response
Least Significant Digit
Multiply-Add

Most Significant Digit
Recursive Unfolding

Separate Multiplier

Scattered Lookahead

Word Module

ACKNOWLEDGMENTS

I like to thank the numerous individuals and institutions for their contributions to
my education. I owe much to my parents for fostering a love for learning and for
the opportunities they provided. I am grateful to the dedicated staff of my high
school, St. Joseph’s, and also to the University of Sri Lanka for a state-funded
undergraduate education. I am also grateful to the University of California, Los
Angeles, for the educational opportunities it has provided.

For their encouragement and support I thank my friends and colleagues: Joe
Miro-Julia, Paul Tu, Raffi Dionysian, James Liu, Marianne Louie, John Harding,
Edwin Tisdale and Dinh Le. Thanks are also due to Prof. Tomas Lang, Verra

Morgan, and others too numerous to mention.

I take great pleasure in expressing my gratitude and thanks to my advisor
Prof. Miloé Ercegovac for many things. First, for introducing me to computer
arithmetic, on-line in particular, and to the dissertation topic. Second, for advice
and guidance in research. Third, for having me as a research assistant. Finally,
for being available for consultation, often without appointment, during working
hours.

I am deeply grateful and thankful to my wife Rasanjali for her patience and
encouragement, and for readily assuming much of the burden of supporting us
during this endeavor.

This research has been supported in part by NSF grant No. MIP-8813340
Composite Operations Using On-Line Arithmetic for Application-Specific Parallel
Architectures: Algorithms, Design and Ezperimental Studies and by the State of
California MICRO Program and Rockwell International.

X1

ViTA

1978 B.Sc. in Engineering (Honors)
University of Sri Lanka, Moratuwa
1983 M.S. in Electrical Engineering

University of Texas at Austin

PUBLICATIONS

John S. Fernando and Milo$ D. Ercegovac,

Conventional and On-Line Arithmetic Designs for High-Speed Recursive Digital
Filters, VLSI Signal Processing, V, IEEE Press, K. Yao, R. Jain, W. Przytula,
J. Rabaey Eds., 1992, pp. 81-90.

John S. Fernando and Milo§ D. Ercegovac,
On-Line Arithmetic Modules For Recursive Digital Filters, Proc. 26th Annual
Asilomar Conference on Signals, Systems and Computers, 1992, pp. 681-685.

xii

ABSTRACT OF THE DISSERTATION

Design Alternatives for Recursive Digital
Filters
Using On-Line Arithmetic

by

John Susantha Fernando
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1993

Professor Milo§ Ercegovac, Chair

Design alternatives for fixed-point recursive computations of a second-order di-
rect form filter using on-line arithmetic are analyzed. On-line implementations
consume inputs and produce outputs digit serially, beginning with the most sig-
nificant digit. Digit-level pipelining of on-line filters result in high sampling rates
independent of word length. Designs are implemented in a gate array technology
to compare performance and costs. Since technology, word length, and function
are identical for all designs, the impact of different arithmetic algorithms on per-
formance and cost is easily compared. On-line modules can be used unmeodified to
implement recursions with scattered lookahead (SL), a transformation that speeds
up both on-line and conventional designs. With 2 levels of SL, arrays composed
of on-line multiply-add modules implemented in a 0.7-micron gate array, deliver
128Msamples/second. For words exceeding 12 bits, such on-line arrays are faster
than a conventional design implemented in an identical gate array. For 16-bit
words, on-line arrays are 20% faster. Theoretical bounds derived show that un-
desirable limit cycle oscillations are reduced in amplitude for most useful filters
when SL is applied. The Dynamic Scaling (DS) scheme is proposed to eliminate
all undesirable oscillations. Implementation shows that the DS scheme is twice
as cost effective as the precision extension method of eliminating oscillations. For
single modules with 8-bit I/O words, the DS scheme has a rate 80% higher than
the precision extension method and is 13% smaller. The DS scheme requires no
modifications of on-line modules.

xiil

CHAPTER 1

Introduction

The usual method of speeding up a computation exploits inherent parallelism.
Thus, several computational units may be used, and each unit can be pipelined
to achieve high clock rates. For a recursive computation of a sequence of values,
the rate cannot be increased by simple pipelining, particularly when conventional
(right to left evaluation) arithmetic is used. To extract parallelism, and speed
up the solution of a general class of linear recurrence equations, a transforma-
tion technique called recursive doubling was used by Kogge [Kog73], [Kog8l].
The technique transforms a function into two subfunctions of equal complex-
ity, allowing parallel computation of the subfunctions. Successive application
of the transform doubles the number of subfunctions. Recursive doubling so-
lutions for second-order linear recurrences were known as early as 1853 to J.J.
Sylvester [Kog73). Two methods of increasing the throughput (rate) of recursive
and non-recursive digital filters were proposed by Hayashi et al. [HDSHS86]. For
a given transfer function, H(z), an N-fold rate increase is obtained by trans-
forming H(z) into component transfer functions. A similar transformation called
scattered lookahead (SL) was proposed by Parhi and Messerschmitt to speed-up
first-order and second-order transfer functions [PrMs87a)], [PrMs87b], [Ms88]. SL
allows limited pipelining of the recursive loop in conventional implementations
[PrHt88], [HtPr92]. The transformations referred to above achieve speed-up by
exposing parallelism at the algorithm level.

Independent of any algorithmic transformations, the rate of recursive com-
putations can be increased at the arithmetic level by using the on-line or most-
significant-digit-first (MSDF) method of computation [Erc84], [ErLn88], [ErLn89],
or by using the MSDF systolic array approach [KnMc88], [KnMc89], [KnMc90],
[KnMc91]. On-line implementations are described in [Bra89a] and [Bra89b].

On-line Arithmetic

On-line arithmetic algorithms, proposed by Trivedi and Ercegovac [TrEc77], are
a class of digit-serial algorithms that compute the most significant digit first
(MSDF). On-line algorithms have been developed for the basic operations like

addition, multiplication, division and square root [ErLn88], [Tu90]. On-line al-
gorithms have also been developed for more complex operations like computing
rotation factors, solving classes of linear equations, and singular value decompo-
sition [TuEr91].

Characteristics of on-line algorithms are summarized below.

o Inputs are consumed and outputs are produced, digit by digit, beginning
with the most significant.

o The output digits are selected from a redundant digit set. The input digits
are usually from the same digit set. This allows the cascading of on-line
units.

e The first output digit becomes available only after a few input digits have
been consumed. This delay is called the on-line delay and is an important
characteristic of an on-line algorithm.

e A systematic methodology exists for developing on-line algorithms [ErLn88].

Two essential components of an on-line algorithm are the residual recurrence
evaluation and the output digit selection. In each iteration, or step, input digits
are consumed, a new residual (an internal state) is computed and an output digit
is selected. To enable fast computation, the residual is usually maintained in
redundant form (carry-save or signed-digit). Benefits of on-line computation are:

¢ Digit-level parallelism, which allows the next computation to begin in an-
other module after the on-line delay.

¢ Low interconnection overhead, because routing between on-line units is on
a digit basis.
e Clock rate independent of word length.

e Variable precision operation: at step j, the on-line result produced corre-
sponds to the j most significant digits of the conventional result.

In general, due to digit-level parallelism, on-line algorithms can speed-up compu-
tations consisting of a sequence of basic operations. Since recursive computations
are an infinite sequence of a few basic operations, the on-line approach is well
suited for such computations.

1.1 Problem Statement

The central problem in this dissertation is how to use on-line arithmetic to speed-
up computation of a second-order linear recurrence given by (1.1) or (1.2). Con-
sidering second-order recurrences is sufficient because higher order filters are im-
plemented by compositions of second-order sections [PrMn88].

y(n) = a-yln—1)+b-y(n—-2)+c-z(n) (1.1)

y(n) = a-y(n—-1)+b-y(n—2)+u(n) (1.2)

The term u(n), also called the finite impulse response (FIR) term, is a non-
recursive linear function of z(n), z(n — 1), and z(n — 2). These expressions
correspond to direct form filter structures. The direct form filter structures have
been shown to be best suited for high sampling rates [Sam88]. Unfortunately, the
direct form filter suffers from undesirable non-linear oscillations. The oscillations
must be eliminated without compromising much of the sampling rate and with
minimum added cost.

1.2 Research Objectives

The few designs and implementations described in recent publications cannot be
compared because of differences in technology, word length, coefficient magnitude,
order of output function, and features like testability. Key questions remain:

1. Given a performance level or cost constraint, what is the most appropriate
architecture for implementing a second-order direct form recursive digital
filter?

2. At what word length does on-line arithmetic payoff, compared to conven-
tional?

3. How does the scattered lookahead transformation, used to increase sampling
rate, affect non-linear oscillations?

4. How can non-linear oscillations be eliminated from on-line implementa-
tions?

Currently, the only method of eliminating non-linear oscillations in on-line
modules is to extend working precision [Bra89b]. The method does not reduce
the clock rate, but requires a costly increase of working precision. A more cost-
effective solution is developed in Chapter 8.

1.3 Dissertation Qutline

The emphasis in this dissertation is on the recursive part of the computation, since
the FIR part of the computation is easily performed at the desired rate. Simple
schemes based on on-line multipliers, on-line adders, and on-line recoders, are
analyzed in Chapter 2. These schemes are easy to develop but have excessive on-
line delay. On-line composite modules [ErLn88], which perform the computation
as a whole, are developed in Chapter 3. An expression for the on-line delay is
derived for a N-order linear recurrence. Algorithms with small on-line delay are
implemented. Composite modules are more cost-effective and faster than the
simple schemes. On-line multiply-add (MA) modules, which can be cascaded to
realize (1.1) or (1.2), are developed in Chapter 4. MA modules are faster than
composite modules. Chapter 5 describes two types of multi-module maximum
rate arrays based on composite and MA modules. The rate of the array depends
on the clock rate of the basic module, and the size of the array depends mainly
on the word length.

Composite modules and MA modules with different digit sets and different
levels of pipelining are implemented in a LCA10000' Series Compacted Array?
[LSI87]. Schematic capture and simulation of designs was done using Workview®
CAD tools. Performance is measured by the fastest clock rates achievable in
simulation. The number of equivalent gates is used as a cost measure. Each
gate is considered to be equivalent to two n-channel and two p-channel transis-
tors. Arithmetic models and netlists of the on-line implementations are used for
functional simulation to verify results.

Chapter 6 discusses algorithmic transformations, sometimes called lookahead
schemes, that produce higher sampling rates. Applied to (1.1) or (1.2), such
transformations produce equivalent linear recurrences of higher order. Scattered
lookahead (SL) is one such transformation proposed to speed-up conventional
implementations [PrMs87a], [PrHt88]. Arrays of on-line modules using SL are
designed. A new conventional design with two levels of SL, described in appendix

1L CA10000 is a gate array using a 1.5-Micron HCMOS technology.
2Compacted Array is a trademark of LSI Logic Corporation.
3Workview is a trademark of VIEW logic Systems Inc..

A, is implemented to find the word length at which on-line implementations
outperform the conventional. The effect of SL on the frequency response of two
filters is shown in appendix B.

Chapters 7 and 8 investigate non-linear oscillations. Overflow oscillations are
caused by limited precision, and zero-input limit-cycle oscillations are caused by
roundoff errors [Sam88]. Absolute value bounds for the magnitude of zero-input
limit cycle oscillations, similar to [LnTr73], are derived for the SL transformation
in Chapter 7. It is shown that SL reduces the bound for the most useful filters.
Chapter 8 describes the proposed dynamic scaling scheme which eliminates os-
cillations in filters composed of on-line modules. Implementation shows that it
is twice as cost effective as the precision extension scheme. Chapter 9 compares
the designs developed here with others. The dissertation concludes with Chap-
ter 10 which discusses the applicability of the results to other technologies and
directions for further research.

1.4 Related Work

Recent publications have shown that digit-serial computation, using the most
significant digit first (MSDF), can produce high sampling rates for recursive dig-
ital filters. The MSDF approach reduces the recursive bottleneck form the word
level to the digit level. Lookahead transformations can be used for doubling or
quadrupling sampling rates. The related work is outlined below.

1. In an overview of on-line arithmetic, Ercegovac describes an on-line algo-
rithm computing y = az + b for solving an mth order linear recurrence

system [Erc84].

2. Ercegovac and Lang describe MSDF and on-line approaches for the design
of recursive digital filters [ErLn89).

3. Knowles et al. use a MSDF approach for digital filtering, implementing
a systolic array for a first-order and second-order recursions [KnMc88],
[KnMc89], {[KnMc90], [KnMc91].

4. Parhi and Hatamian describe a high speed conventional implementation
which uses two levels of scattered lookahead [PrHt88], [HtPr92].

5. Brackert et al. design and implement an on-line multiply-add (MA) module
and a direct form II filter composed of MA modules [Bra89a]. This is the
first application of on-line arithmetic to implement high speed filters.

6. Cha describes in detail a CMOS chip implementing a direct form II second-
order structure using four on-line MAs with programmable coefficients
[Cha9l]. The implementation uses the MA design described in [Bra89a).

7. McCanny et al. describe a 40MHz IIR filter chip for second-order recursions
using a MSDF systolic array architecture with one level of SL [KnMc91].
The architecture is similar to that proposed by Knowles et al. [KnMc88].

Recent implementations of recursive filters fall into three categories: on-
line, MSDF systolic arrays, and conventional. On-line designs are described
in [Bra89a], [Bra89b), {Cha91}], and [FnEr92b]. The MSDF systolic arrays are
described in [KnMc88], [KnMc90], [KnMc91] and [LFH90]. Conventional im-
plementations are described in [PrHt88], [HtPr92], and [FnEr92a]. Chapter 9
evaluates some of these implementations in more detail.

1.5 Contributions

Answers to the questions posed in Section 1.2 have been obtained. The main
contributions are:

1. Design and implementation of composite on-line modules. Composite on-
line modules compute the recursion expressed by (1.1) or (1.2) as a whole.
Composite modules have not been designed and implemented before.

2. Design and implementation of a MA module (much faster than {Bra89a)).
MA modules are used to implement the recursion as a series of multiply-

adds.

3. Development of word module arrays and digit stage arrays based on com-
posite modules and MA modules.

4. New conventional design to implement (1.2) with two levels of scattered
lookahead. The design uses a carry-free recursive loop to speed-up com-
putation. It is suited for multiplication of words of about 16 bits or more,
depending on the technology. Comparison shows that for precisions of more
than 12 bits, the on-line designs are faster.

5. Derivation of new absolute bounds for zero-input limit cycles for the scat-
tered lookahead case. For second-order recursions with distinct complex
roots, SL reduces the amplitude bound of zero-input limit cycle oscillations

for most recursions. The recursions for which the amplitude is reduced by
SL are those most used in practice. The bounds are verified by simulation.

6. The dynamic scaling (DS) scheme for on-line designs is proposed and im-
plemented. The DS scheme eliminates overflow oscillations and zero-input
limit cycle oscillations at half the cost of the precision extension method
proposed by Brackert [Bra89b). Moreover, the DS scheme requires no mod-
ification of on-line modules used in the computation.

The contributions can be summarized as follows. Given word length and other
constraints, this research shows how to determine the appropriate design: i.e.,
conventional or on-line, type of on-line module or array, whether to use DS. In
addition, theoretical bounds are derived for the absolute bound on limit cycles
for second-order sections with SL. '

CHAPTER 2

Schemes Based on Multipliers, Recoders and
Adders

This chapter describes two simple schemes for realizing Equation (1.1) using a
most-significant-digit-first (MSDF) multiplication algorithm described in [Erc87).
This algorithm produces the product in a 2’s complement form without using a
carry propagate adder and without extra delay. Analysis of these simple schemes
provides the insight and the motivation for faster designs described in later chap-
ters.

The first section of this chapter describes the multiplication algorithm, the ba-
sis for all modules described in this dissertation. Section 2.2 develops a recurrence-
based recoder to convert the over-redundant digit produced by the multiplication.
The Separate Mutiplier (SM) scheme and the Combined Multiplier (CM) scheme
are described in Sections 2.3 and 2.4. Performance (sampling rate) estimates
for each scheme show how performance is influenced by the design, the range of
coeflicients and the choice of radix and digit sets.

The SM scheme, described in Section 2.3, is the most intuitive implementation
of (1.1). The scheme uses three separate MSDF sequential multipliers and two
on-line adders as shown in Figure 2.1. This scheme is a result of directly mapping
simple arithmetic operations to units which execute these operations in a MSDF
manner. The recoders shown in Figure 2.1 convert the output of the multipliers
into a digit-set acceptable to the adders. The choice of this scheme as the starting
point of the analysis is also justified by the following. First, the use of dedicated
units for multiplication, recoding and adding contributes to efficient and fast
designs for each unit. Second, having chosen the scheme, a delay analysis reveals
the modifications necessary for improved designs.

The CM scheme, described in Section 2.4, combines the three multipliers
and computes in fewer clocks than the SM scheme. The combining of the three
multiplications into one carry-save adder array eliminates the delays caused by
the addition required when the mutipliers are separate. The combining also
lowers the hardware required for the CM scheme. However, the larger carry-save
adder array reduces the clock rate of the CM scheme.

" Y;(n-2)
Z;
| ON-LINE ADDER b
bec b
Ris R;
. " Y (n-1)
I o Zi1 Z
a
ON-LINE ADDER .
Digit Register
—F— Word bus
SO S — Digitbus

Yis(n) Recoder delay = On-Line Adder delay

Figure 2.1: Scheme Using On-Line Units
2.1 MSDF Multiplication Algorithm

The selected multiplier uses a MSDF residual recurrence algorithm described in
[Erc87]. All multiplicationsin (1.1) have a constant coefficient as the multiplicand.
The multiplier is in an on-line form. The essential features of the multiplication
algorithm are summarized below.

o The residual recurrence uses the digits of the multiplier from left to right,
producing the most significant digit of the result first. This is well suited
to the filter application, because the computation of y(n + 1) may begin in
another module as soon as the most significant digit of y(n) is produced.

e The partial product is maintained as a signed-digit integer part and a carry-
save fraction part. The carry-save form enables a fast recurrence step be-
cause carry propagation is avoided in the recurrence loop. However, each
iteration produces an over-redundant signed-digit as the output of the mul-
tiplier.

¢ It is assumed, without loss of generality, that the mutiplicand is represented
in two’s complement, and that the multiplier is represented in a radix-
4 signed-digit system with the digit set {—p,...,p} where p € {2,3}. The
algorithm is easily modified for a different radix and digit set. Changing the
radix or the digit set produces implementations with different performance
and cost.

e The mutiplicands in all three multipliers are constant coeflicients, a, b, ¢, as
defined in (1.1). This allows multiples of the coefficients to be precomputed,
permitting the use of digit sets with p > 2. Stability of the second-order
filter requires |a| < 2 and {4] < 1 [PrMn88].

Residual Recurrence for Multiplication

Consider the multiplication z - y, where the multiplicand z is represented in 2’s
complement and the multiplier ¥ is represented in radix-4 signed-digit form (x
and y are used here in a generic sense and do not refer to Equation (1.1)). The
values z and y can be expressed as follows.

m=—2
z = —2X.+ Y X277, Xic{0,1}, |z| <2 (2.1)
i=0
d-1)
y = Y Y47, Yie{—p,...,p}, lyl<1 (2.2)

i=0
The multiplication algorithm uses a recurrence which produces the sequence
of over-redundant signed-digits Z; and partial products w[j] specified by:

wf0] = 0 (2.3)
w[f +1] = 4fraction(w[j] +2Y;), 7=0,...,d—1 (2.4)
Z; = integer(w[j] + zY)) (2.5)

A fast implemention of this recurrence maintains the partial product w(j]
in carry-save form, as shown below. The carry-save form allows the use of a
carry-save adder which eliminates carry propagation in the recurrence loop.

wlj] = S+l (2.6)
wlj] 2 0 (2.7)

Figure 2.2 shows the residual recurrence step, and Figure 2.3 shows how
Z; ¢ {~4,...,10} is computed by a small CPA for r = 4 and p = 2. The
range of Z; for different radices, digit sets and coefficient bounds are discussed
later (Table 2.1).

10

IRREE
Y, _/—é__lvwx
3
X
m+1 4 ki w24 w2y
i 1 L
CSA
S,5,5,
C,C,Cy
14 3f m-24 m-24"
\ ¥ S0l y Clil
CPA S Register C Register
1
Z;

Figure 2.2: Recurrence for Multiplication

0O0XX.X..X00 48(j]
0OO0XX.X..X00 4Cf-1]
SS XX.X. XXX xY
§8,5,8-X. XXX S
0GCG-X..XX0 CI)
XXXX. yA

]

Figure 2.3: Multiplier Output (Z;) Computation

Implementation Schemes for Multiplication

The critical path of the second-order filter shown in Figure 2.1 consists of a
multiplier, a recoder, and an on-line adder. Except for the multiplier, all other
units can be pipelined further. Speed of multiplication is limited by the the
residual recurrence loop which cannot be pipelined. Therefore, the first stage of
the filter is the slowest stage. The radix and the digit-set chosen for the multiplier
influence cost and performance of the filter.

The three multiplication schemes shown in Figure 2.4 illustrate the cost and
performance trade-offs. Scheme M1 has the minimum clock period because the
CPA for producing Z; is included in the second stage. Scheme M2 has one stage
and the slowest clock period. Scheme M3 is a compromise where the CPA for
producing Z; is pipelined into two stages with balanced delays. Scheme M3 1s
useful only if the CPA delay is larger than the delay for the residual recurrence.
The delays t1my and 2.4, for the first stage of schemes M1 and M2, are:

t]-mul = tbuf + tmuz + tfa + tcle + tSCt

11

tzmul = tbuj + tmuz + tfa. + tcpa + tcle + taet

where

tsuy Delay of fan-out buffer for the digit multiplexers,
tmuz Multiplexer delay,

t;a Delay caused by a full adder,

targ Clock-to-output delay for flip-flops,

tsee Set-up time for flip-flops.

tepa Delay caused by 4-bit CPA; topa = tmuz + t1a + the

The speed of the multiplier decreases with the size of the digit set, since
larger multiplexers have larger values of t,,,.. For small radices, 2 or 4, the
change in ¢,,,, caused by the digit set is small and depends on the technology.
For example, in LCA10000 technology, the delays for the first five components
listed above are (in same order), 1.5ns, 2.5ns, 2.3ns, 1.70s and 0.8ns [LSI87]. If
the 5-to-1 multiplexer is replaced by a 3-to-1 multiplexer, required for a radix-2
scheme, the multiplexer delay drops from 2.5ns to 1.3ns. This represents a speed-
up of 13.6% with respect to the radix-4 scheme. Note that delays associated with
wire lengths were not included, since such delays depend on the layout. If wire
length delays are included, the difference between radix-4 and radix-2 speeds may
be smaller.

2.2 Recoder Design

For a computation that produces an over-redundant result, a recoder is required
to represent the result in an acceptable digit set. The multiplication algorithm
described previously and the addition of signed-digits are examples of such com-
putations. Recoding can be performed in two ways:

1. A series of successive recodings, producing intermediate digit sets that be-
come smaller. Each recoder reduces the digit set by a relatively small
amount. An example of such a recoder is shown in Figure 2.5. The re-
coding table shows the transfer digits ¢; and the sum digits s; for possible
values of the input digit. The residual in this implicit recurrence is s;.

12

smaez | — |

Scheme M2

STAGE 1

STAGE2

Scheme M3

Figure 2.4: Multiplier Implementation Schemes

2. An explicit recurrence that produces output digits in the desired range
without intermediate digits.

The design of a recoder using an explicit recurrence is described next.

The recoder is specified by:

e The radix r.

o The range of the over-redundant input integer Z; (2’s complement}, z <
Z; < Z.

¢ The digit set, {—p,...,p}, of the output digit Y;.

13

¢ The minimum precision, N, in digits, required for the recurrence. Conse-
quently, the recoding delay is N — 1 clocks. The value of N depends on the
other specifications.

The recurrence for the recoder is given by
i +1) = rolf]- YV)+ 25, o0 =0, j=0,1,2,... (28)

All values in the recurrence are integers. A recoder for r =4 and N =3 is
shown as part of a module in Figure 2.9. It illustrates the recurrence step and the
selection of the output digit, ¥;, based on the residual v[;]. In the j** iteration,
the over-redundant value Z; is added to v[j] — ¥;rV~! to form v[j +1].

An expression for the delay is obtained by considering the bounds on the
shifted residual. Let the range of the shifted residual be defined by: £ < v[j] -
Y;rN~1 < £. Since v[j+ 1] must be contained in N digits for all values of residuals
and all values Z;, consider the case of the maximum residual and maximum Z;.
This is expressed by (2.9). Similarly, expression (2.10) considers the case of the
minimum residual and minimum Z;.

24+ < pr¥ 148 (2.9)
z4rE > —pr¥ 14 (2.10)

Now consider the selection function to obtain expressions for £ and §. For a
rounding selection function & and ¢ are given by (2.11) and (2.12). A rounding
selection function selects an output digit by rounding the residual to the nearest
integer.

{ = %r“"‘—l (2.11)
¢ = —%rN_l (2.12)

Two values of N are obtained: Equations (2.9) and (2.11) give one, and
Equations (2.10) and (2.12) give the other. The larger value of N satisfies both

bounds and is expressed by:

(2.13)

N = 1+[logr2max(z+lwr,—g)-‘

2p+1—-7r
The recoding delay, N — 1, is defined as the number of clocks between a input
digit and the output digit of identical weight. Given the radix, the input digit

range, and the output digit set, the precision of the residual can be calculated to
complete the design of the recoder.

14

2.3 Separate Multiplier (SM) Scheme

Figure 2.1 shows, the SM scheme to evaluate (1.1). The multiplier was discussed
in Section 2.1. This section describes the recoder, the signed-digit adder and the
performance of the scheme. Performance is measured by the sampling rate, given
by the clock period times the number of clocks required for the critical loop. The
critical loop consists of the multiplication a - y(n — 1), the recoding of the output
of the multiplication and the addition of R?"’c. The clock period is determined by
the multiplier (Section 2.1). The number of clocks is determined primarily by the
recoder and signed-digit adder. Given a digit set, the magnitude of the range of
Z; affects delays of the recoder and the adder, as described next.

Recoding Multiplier Output Z;

The recoder converts the over-redundant integer Z; into a smaller digit set ac-
ceptable to the input of the adder. The recoder described here uses a recoding
table.

Figure 2.5 shows the recoding table for [-3,9] to [-3,3]. The table is imple-
mented by a simple combinational network specified in Figure 2.5. Each digit,
Z;, input to the recoder, is converted to a transfer digit ¢;-; and a sum digit s;.
The recoded digit R,_; is produced by adding the current transfer digit ¢;; to
the previous sum digit s;_;.

The transfer digit ¢;_, depends only on the value of Z;. Thus, the on-line
delay for recoding, called the recoding delay, is one clock. Since the recoded
value must be registered after recoding (Figure 2.5), the total delay caused by
inserting the recoder is two clocks.

As Table 2.1 shows, for a coefficient |z| < 1, the digit set [-3,3] has the
minimum recoding delay. For |z| < 2, radices 4 and 8 cause less recoding delay
than radix-2. The choice of radix-4 results in faster recoding, since radix-8 takes
a longer clock period. Figure 2.6 shows the scheme for recoding from a digit set of
[-9,9] to a digit set of [-3,3]. The recoding delay is three clocks. The signed-digit
adder is considered next.

Signed-Digit Adder

Figure 2.7 shows two schemes for adding the recoded digits. The recoder outputs
R, Rg, and RS, are added and recoded again to produce Y; in the appropriate
digit set. The choice of radix-4 leads to fewer clocks for the addition. Equation

15

Zj € [-3.9]

4.{’Z 23222120
AN
ZJ_]
Ww=2,® Z, sFZ
u=2Z, ® 7,7, s‘:;z:
(-2=ZJ_(22 @ Zl)
|
LV ¢ 21’
SXX
0X X
SXX CPA
Rj—l
Register
Z 3-2-10123456789
tthh-1 0 00011112222
s; 1 2-101-2-101-2-101

Figure 2.5: Recoder for {-3,9] to [-3,3]

(2.13) indicates that a digit set of [-2,2] incurs a larger recoding delay in the adder
than a digit set of [-3,3]. Thus a digit set of [-3,3] is chosen to reduce the delay
for the entire module.

Scheme A1, shown in Figure 2.7, uses two adders, each adding two digits. For
a digit set of {-3,3] both adders are identical, producing a digit in range [-3,3]
(i.e., recoding from [-6,6] to [-3,3]) with a recoding delay of 1 clock. The total
delay is four clocks as shown in Figure 2.7.

16

MM

4
Z,€1-99] 31
[| I |
Compute t Compute t Computc s Compute s
for Z,>=0 for Zj <0 for Z; »=0 for Z; <0

== = =

—/ Sign of Z Sign of Z;

NN NN Register

3

Z, 9-87-6-54-3-2-10123456789
7z so|th 222-1-1-1-1000011112222
M=Uls .10 1-2-101-2-1012-101-2-101

ty 2-2-2-2-1-1-1-1 00001111222
Z;y<0
o S 10 12-1012-1012-1012-101

Figure 2.6: Recoder for [-9,9] to [-3,3]

17

Table 2.1: Variation of Multiplier Qutput Digit Z;

Z; Radiz | Digit Set | |Coefficient] | Recoding Delay
1,3 2 [-1,1] <1 2
[—2,4] 2 [-1,1] <2 3
2,8 | ¢ | [-2.2] <1 2
[—4,10] | 4 [-2,2] <2 2
[—3,9] 4 [-3,3] <1 1
[-6,12] | 4 [-3,3] <2 2
[—4,18] | 8 [—4,4] <1 2
[-8,22] 8 [—4,4] <2 2

18

Scheme A2 adds all three digits in one stage, then recodes in the second and
third stages. Scheme A2 requires a larger clock period due to the larger adder.
Figure 2.6 shows the table for recoding from a digit set of [-9,9] to a digit set of
[-3,3].

Performance

Figure 2.8 shows the block diagram of the radix-4 filter with digits in the set
[-3,3] and coefficients with absolute value less than 2. The total delay is 9 clocks.

The estimated clock period for an implementation in a LCA10000 Array
[LSI87) is 10ns. The maximum rate for this computation is determined by the
delay of the critical loop. The critical loop consists of the path from the input
y(n — 1) to the output y(n). The critical loop delay is 7 clocks, for coefficients
with magnitude < 2, because the two registers before the final adder can be elim-
inated. Thus, the estimated maximum rate is 14.3 Msamples/sec. The relatively
low performance of this design is caused by excessive recoding delays. The next
section describes a scheme which reduces the recoding delay.

[b
R; R
3 34
§ S SXX
AJ S S SXX
§ §sSXX
X X X X X| SUM
X X X X 0]CARRY
5
k RECODER
[-9,9] TO [-3,3]
DELAY =2
{3.3] Y, ,€ [33]
RN Register
Scheme Al (Delay =4) Scheme A2 (Delay =4)

Figure 2.7: Signed-Digit Adder Implementation Schemes

19

Ya(n-1)

MUX

Y Y ¥ |

ﬁ

MUX MUX
X (n) Y (n-1)
Yy 9 f ; i
| CSA I CSA
P. CPA
ch-z Z?.z
RECODER RECODER
Delay =2 Delay =2
o P
3% 3y
] Y
Ccpa 1 A
'J__/

T

3

Yo ()

Register
X)) Y, Ry ¢(33]
lal, Ihl, led < 2

Figure 2.8: Separate Multiplier (SM) Scheme (§imp = T)

20

2.4 Combined Multiplier (CM) Scheme

The implementation outlined in Figure 2.8 shows that the on-line addition of
the three signed digits R, R? and Rf, takes 4 clocks. This section describes an
implementation which performs the multiplication and addition in one carry-save
adder array. The scheme has a delay of 6 clocks and requires fewer registers than
the SM scheme. The combined multiply-add recurrence is derived by combining
the three separate multiplication recurrences. The over-redundant digit produced
by the multiply-add is recoded to obtain the output digit.

The Combined Multiply-Add Recurrence

The scheme shown in Figure 2.8 has three separate multipliers based on the
recurrence defined by Equations (2.3) through (2.5). The three muitiplication
recurrences are given below.

w?0] = 0
w[j +1] = 4fraction(w®(j] +a¥j(n—1)), 7=0,...,d=1
Z? = integer(w®{j]+a¥j(n - 1))

w'0] = 0
wj+1] = 4fraction(w’j}+bY;(n~2)), 7=0,...,d—1
Z: = integer(w®[j] + bY;(n — 2))

w0] = 0
wilf +1] = 4fraction(w’(j}+cX;(n)), j=0,...,d -1
Z; = integer(wj] + cX;(n))

The three recurrences shown above are combined to produce a single recur-

rence:
w[0] = 0 (2.14)
w[j +1] = 4fraction(w[j] +a¥;(n - 1)+
bY;(n — 2) +«<Xj(n)), j=0,...,d -1 (2.15)
Z; = integer(w[j]+ a¥;(n—1))+
bY;(n — 2} + ¢X;(n)) (2.16)

21

This recurrence is implemented by maintaining the partial product w[j] in
carry-save form, shown below, to allow the use of a carry-save adder.

wlf] = S+ CYl (2.17)
w[j] 2 0 (2.18)

Figure 2.9 shows the combined multiplier and the recoder. The range of the
output digit of the combined multiplier, Z;, is greater than for the case where
the multipliers were separate. Table 2.2 shows the range of values of Z;, and
the resulting recoding delays, for different ranges of coefficients. The coefficients’
ranges are expressed by s, defined as the sum of the maximum magnitudes of the
coefficients. For example, s = 4 for |a] < 2, |b] < 1 and |c| < 1, and s = 5 for
la} < 2, [b] <1 and |¢| < 2. The delay of the recoder is obtained from expression
(2.13). Table 2.2 shows that the minimum recoding delay is obtained for radix-4
with digit set [-3,3].

Table 2.2: Variation of Combined Multiplier Output Z;

Radiz | Digit Set | s Z; Recoding Delay
2 [1,0] [4] [46] 4
2 (L 15| 5.7 4
4 2,2 |4 [-814] 3
4 [2,2] 5] [-10,16] 3
4 [-3,3] 1{41[12,18] 2
4 3,3 |51 [15,21] 2

Performance

The total delay is 6 clocks for s = 4 and s = 5. The clock period is determined
by the first stage. For a LCA10000 Array [LSI87] the first stage takes 14ns. The
CM scheme shown in Figure 2.9 may be pipelined at the first stage, i.e., the
multiples ¢ - X;(n) and b- Y;(n — 2) are generated in the first stage. The second
stage generates a- Y;(n — 1) and reduces 5 rows to 2. The clock period is reduced

22

to 11ns and the maximum rate remains at 1 sample every 6 clocks, a sampling
rate of 15Msamples/second.

The maximum rate of the CM scheme is about the same as that of the SM
scheme. However, the CM scheme has a lower cost due to the fewer registers
required for sum and carry.

bl < 1 XXXXXX.X.XXX aY®l)

tal, lel < 2 XXXXXX.X..XXX bY@

X¥%el33] XXXXXX.X.XXX cX®
0O000XX.X..X00 4S[l]l o
DO00O0XX.X..X00 4C[j1]

Z, €-15,21] 1 (5, 2) Reduction

D55, § 55,51 X X X X |s{51] |
1 €,C,C, G CGHX . X X OCl1]

Zj RECODER

1-Bit Sign AS SXXXXX] 4(v[j-3]-16%,)
Extension %R, R,R,R RO 0. —a————32

'
C 5-bit CPA)

y 'i-2l

RGRSRA R3R2R1R .

fe——m—em— e mmmmmm——r————— ===

Y€ [33]

Figure 2.9: Combined Multiplier Scheme (§;mp = 6)

23

CHAPTER 3

A Composite On-Line Scheme

The schemes analyzed in Chapter 2 were composed of separate on-line units. The
CM scheme described in Section 2.4 is an example. The scheme has long on-line
delays caused by recoding stages. This chapter begins with a development of a
composite on-line scheme based on a digit recurrence, similar to {Bra89a]. The
entire computation expressed by (1.1) is carried out as a single operation in the
composite on-line scheme.

An expression for the on-line delay of the composite scheme is derived for
a N-order linear recurrence in Section 3.1. Section 3.3 describes how the pa-
rameters and architecture for a fast implementation of a second-order recurrence
are selected. Performance and cost comparisons for four second-order radix-4
implementations are presented in Section 3.4.

3.1 Specification and Derivation of Recurrence

The notation used to specify a linear recurrence is introduced first. Expressions
for input and output are derived in terms of the input digits, the on-line delay
and the output digits. These expressions are used in the derivation of the digit
recurrence. The notation adopted is as follows.

e Output expression for a linear N-order recurrence is given by
y(n) = cz(n) + a1y(n — 1) + asy(n —2) + ... + any({n — N)
¢ Radix, r.

Digit set {—p,...,p}, for input, X;, and output, Y;.

Number of radix-r digits per word, d.

On-line delay for the recurrence, 6.

e Sum of the maximum absolute values of coeflicients a; and ¢ denoted by s.

24

Definition 1 (§) The on-line delay, §, of a digit recurrence algorithm is the
delay measured in recurrence steps (or clocks), between an input digit and the
output digit of identical weight.

Definition 2 (s) The sum of the bounds of the magnitude of coefficients in a
digit recurrence is defined as:

N
s = Y A+C, lal <A, ld<C (3.1)

=1

The bounds on coefficient magnitudes are defined by stability criteria for re-
cursive filters [PrMn88]. For a stable linear time-invariant system, the output,
y(n), must be bounded for every bounded input z(n). Without loss of general-
ity, z(n) is assumed to be < 1. The stability of (1.1) and (3.1) is assured for
coefficients inside the triangle shown in Figure 7.1. For a composite module im-
plementing (1.1), with |a| < 2 and |b] < 1 for stability, s = C'+3. To derive a digit
recurrence for the composite on-line scheme, the ouput and input values must be
expressed in terms of their digits and the on-line delay. Consider first the output
of the on-line computation. The output contains § leading zeros. Expressed as a
full-precision scaled result, the output is given by:

N
y(n) = r(cz(n)+) ay(n - k)) (3.2)

=1

The input values z(n) and y(n — k) are expressed in terms of their digits as

follows.
d46—1 _
z(n) = Y. Xjn)yr™?, X;=0for j2d (3.3)
=0
d+é—1 .
yn—k) = > Yin—k)r7, Yin—k)=0 for 24 (3.4)
—

Note that d + é digits of z(n) and y(n — k) are required to produce é zeros
and d digits of y(n). Consequently § zero digits have to be appended after the
least significant input digit. At the end of the j** iteration, j + 1 of the most
significant digits of each input term have been consumed. The values of the
inputs, represented by the j + 1 most significant digits, are given by:

w@l] = 2l - 1]+ X (n), z(n)[~1]=0 (3.5)
y(n -k} = yr-kl-1+r7Y(r—k), y[-1]=0 (3.6)

25

Deriving a Recurrence

At the end of each iteration, one output digit Y; is produced based on the value
of the scaled residual w(j]. The scaled residual at the end of the 7% iteration is
defined as the difference between the scaled actual sum (obtained by using the
7 + 1 most significant digits of the inputs) and the scaled computed sum (based
on the j output digits produced thus far). The scaled residual is expressed as
follows.

w[-1] = 0 (3.7)
N
wlj] = r{r~(cz(n)[j] + kZ_} axy(n — k)[j])
—ym)j -1}, j=0,1,2... (3.8)

Using Equations (3.5), (3.6) and (3.8), a recurrence in terms of the residual
wlj] 1s formed.

w{—-1} = 0 (3.9)
wli] = r{wlj—1-Yja(n)} +
N
r={cX;(n) + Y _aY;(n—k)}, j=0,1,2... (3.10)
k=1

Digit Selection and Residual Bounds

The output digit ¥; is selected based on the value of w(j], i.e., ¥; = sel(w]j]).
The selection function maps w{j] into the digit set {—p,...,p} such that the
residual is bounded as follows.

£ < (wlj]-Yi(n) <€ (3.11)

The values of £ and € depend on the representation of the residual and the
selection function. In general £ # —¢. For a rounding selection function with a
non-redundant representation of the residual, £ = -£.

3.2 Expression for On-Line Delay

The on-line delay is obtained from (3.10) by calculating the maximum and min-
imum values of w[j], which guarantee a bounded residual. The maximum value
of w(j] occurs when the maximum residual is added to the maximum values of

the coefficients’ multiples. The minimum value of w[j} occurs when the minimum
residual is added to the minimum values of the coefficients’ multiples. The max-

imum and minimum value cases may be expressed as follows, using the bounds
specified in (3.11) and the definition of s in (3.1).

E+p = rE+sprt (3.12)
E—p = tE—spr™ (3.13)

To obtain an expression for §, £ and £ must be evaluated by considering the
residual and the selection function. The residual w(j] is maintained in carry-save
form for a fast recurrence step. To reduce € and —¢, and perform digit selection,
the integer part and 3 fraction bits of the sum and carry words (representing
w[j]) are added by a CPA. Thus w(;] is represented in the partial carry-save form
shown below.

B

et S,
0O00.00..0X X..X
XX X.XX..XXX..X

If rounding selection is based on this partial carry-save representation of w(7],

then £ and £ are given by (3.14) and (3.15).

= 05+27 +¢ (3.14)
= —05 (3.15)

Wy I

The small value ¢ depends on the precision of the partial carry-save form. If
f is the number of fraction bits in the partial carry-save form, ¢ = =277,

Consider the maximum values of the two sides of (3.10):
max(wfj]) < max(r{w[j —1] = Yia(m)}) +

N
max(r~* {cX;(n) + ,; arY;(n —k)}) (3.16)

The maximum values in (3.16) can be substituted using (3.11) and (3.14) to
get:

05+2 P +p+e < r(054+2F +e)+r%sp (3.17)

Solving 3.14 yields an expression for 4:

sp

6 = [lc’g' p—(r— 105 +2 7+ s)] (3.18)

27

A slightly different expression for é can be derived by considering the minimum
values of (3.10) and Equations (3.11) and (3.15). This value of § may not satisfy

the maximum bound on the residual.

Thus § may be calculated using Equation (3.18) given the digit set, the radix,
the filter expression and 3. For a second-order recurrence, Table 3.1 shows the
on-line delays for different maximum magnitudes of coefficients, radices and digit
sets. The minimum value of § is obtained when f is infinite, which requires all
fraction bits to be included in the CPA. A higher value of § may result if 8
is small. Thus A is chosen to minimize the clock period, by making a suitable
compromise between CPA length and §. For a given digit set and radix, the
on-line delay is decremented once every time s is scaled down by the radix. This
trade-off between coefficient magnitudes and § is seen in (3.18).

Table 3.1: Variation of On-Line Delay

s 4 5 6|4 5 6({4 5 6(4 5 6i4 5 6|4 5 6
Radiz 2 4 4 8 8 8

i 1 2 3 4 5 6

B 2 3 3|3 4 4|23 3|5 6 6(3 3 3|2 2 2

) 4 3 2 2 2 2

3.3 Second-Order Radix-4 Implementations

This section outlines four implementations based on design parameters selected
from Table 3.1. The problem of selecting the architecture that yields the fastest
rate is discussed first. Circuit-level improvements that minimize critical path
delay and reduce the number of gates are described later. The on-line delay of
an implementation, §;,, is defined next.

Definition 3 (§;mp) For a digit recurrence implementation, b;y,, is the minimum
number of clocks between an input digit and the output digit of identical weight.
For any digit recurrence implementation, bimp > 1 + 6.

For the architectures described here, 8y, = 6 + 2. The 2 added to § corre-
sponds to the number of stages: one for implementing the digit recurrence and

28

one for latching the selected output digit.

Choosing a Maximum Rate Architecture

A maximum rate architecture minimizes 8;;ytcx. Since &imp is the sum of § and
the number of stages, digit recurrence parameters must be chosen to minimize ¢
and ;. In addition, the architecture must be designed to minimize ¢ and the
number of stages. The choice of parameters is discussed first and the architecture
is discussed next.

The parameters of the recurrence are expressed in (3.18). Given s, the task is
to determine §, 3, r and p such that f. is minimized. The value of ¢,y increases
with » and p. Large values of 3 also increase .. Table 3.1 shows the design
space for small 7. The choice between radix-4 and radix-8 is clear, since § is 2 and
radix-4 results in lower t4%. The choice between radix-2 and radix-4 depends on
the technology. As discussed in Section 2.1, the radix-4 implementation is about
13% slower than the radix-2 implementation. However, the radix-2 scheme has
a larger 8 which more than offsets the faster clock rate. Thus the radix-4 design
with p = 3 is the best choice for maximum rate in LCA10000 Array technology
[LSI87]. The choice of p = 3 requires precomputing and storing the coeflicient
multiples of 3. To quantify the maximum rate differences between p = 3 and
p = 2, designs for both digit sets are implemented.

Choosing the architecture consists mainly of determining the number of stages
in the pipeline. Since the digit recurrence requires feedback, the number of stages
in the pipeline cannot be increased arbitrarily. The number of stages that min-
imize iyt is determined by a delay analysis. Consider a 2-stage design. The
first stage implements multiplication and addition to compute w[;], and the sec-
ond stage implements digit selection. The first stage takes 14ns and the second
6ns. Thus {qx = 14, and the total delay is 56ns. For a single stage design,
tax ~ 20ns (i.e., 14+6), and é;mp = 3, giving a total delay of 60ns. Thus a
2-stage design is faster than a single stage one. The first stage can be pipelined
further to obtain a faster clock. This is discussed later in the chapter.

For designs with different number of stages with the same total delay, the
cost-effective choice is the design with the faster clock. For example, consider a
2-stage design with ¢, = 15 and §;mp = 4, and a 3-stage design with ¢4 = 12 and
Simp = 5. Both have a total delay of 60ns. The number of modules required to
achieve the maximum rate is given by [i"i] With § = 2 and d = 8, the number
of modules required for maximum rate is 3 for the 2- stage design, and 2 for the
3-stage design. The following sections consider 2-stage and 3-stage designs.

29

Circuit-Level Optimizations

Figure 3.1 shows a 2-stage design, for p = 3 and s = 6, and Figure 3.2 shows two
optimizations that reduce the number of gates and minimize potential critical
path delay. The first optimization includes the rounding selection in the CSA ar-
ray. The second optimization reduces the number of gates by optimizing the sign
extension required by 2’s complement. The rounding optimization is discussed
next.

As Equation (3.10) shows, the selected digit ¥j_; must be subtracted from
the residual w[j — 1] in each iteration. For a rounding selection function, the
integer part produced by the CPA is incremented by the leading fraction bit to
produce the selected digit. Figure 3.1 shows the selection step based on the four
most significant bits produced by the CPA.

The selection may be optimized by eliminating the separate increment step
and including the increment in the CSA array. The selection optimization, along
with additional logic simplification, is shown in Figure 3.2. Adding 3 to the
residual produces the correct digit for rounding selection. To compensate for
the addition, the scaled residual must be reduced by 2 in the next iteration. As
shown in Figure 3.2, this is accomplished by adding —2 to the scaled residual
(the 110.1X ... term). A side effect of this addition is that a —2 output digit is
produced, instead of a 0 digit, immediately after the sum and carry registers are
cleared. This is remedied by clearing the output digit register a clock later.

Figure 3.3 shows the optimized 2-stage scheme chosen for implementation.
The critical path consists of the buffers which fan out the digit to the multiplexers,
the 7-input multiplexes which select the coefficient multiple, and the 5-to-2 CSA
tree. The critical path can be shortened by:

1. Selecting a small digit set, i.e., p = 2.

2. Introducing another stage for multiplexing the coefficients of digits Y;(n—2)
and X;(n) as shown in Figure 3.4. This stage does not reduce the maximum
rate because the delay incurred by Y;(n — 1) is still the same.

Consequently, four designs are considered for implementation:

1. 2-stage design with p = 3 and &y = 4.
2. 3-stage design with p = 3 and d;,p = 4.

3. 2-stage design with p = 2 and é;mp = 5.

30

4. 3-stage design with p = 2 and &;mp = 5.

The designs are implemented in LSI Logic Corporation’s LCA 10000 Series
Compacted Array Technology [LSI87]. The implementations do not include the
I1/0 buffers and pads. The next section compares the performance and cost of
the implementations.

3.4 Performance and Cost

This section compares the performance (number of samples per second) and cost
(number of gates), based on the simulation results obtained from the implementa-
tions. Comparisons are meaningful only when the following factors are identical
for all implementations.

1. Technology.
2. Sum of coefficient bounds, s, defined in (3.1).

3. Number of digits, d, per word of input and output.

4. Number of bits, m, used in the implementation to represent coefficient in
2’s complement.

Typically, m or d is specified and the number of fraction bits required in
the implementation, f, must be determined. For the radix-4 implementations
described, the three values are related as follows.

m = 2d (3.19)
Ffo= m+26-1) (3.20)

The cost measures derived from the simulation are the number of gates used
for the most significant part of the module and the number of gates per fraction
bit slice. The most significant part includes the integer bits, a few fraction bits
(typically B) and the selection logic. The number of gates used for a similar
implementation with f fraction bits are given by the following expressions.

31

XXX .XXXX XXX a¥el) labild<2
XXX.XXXX. XXX bY@ Xe¥in(33l
XXX .XXXX. XXX cXin

O0O0.00XX.XO0O0
a(wij-11- ¥,
X,X,X, X,X X X... X 0 of * AU %0=

Sum
Carry

> P
s
B
b
»oe
»os

6-bit CPA

|

Y
(XX Xo. X X X

4-bit SEL

¥
I Register

h’; n

Figure 3.1: Composite 2-Stage On-Line Scheme (§imp = 4)

32

111.1 XXX.XXX aY;(n-1)
s
111,11 XXX.XXX bYj(n-2)
5
111.1 XXX.XXX cX{n)
5,
110.1XXX..X00 .
X 4G Yy)
0XX ,XXX.X00
Simplif;
1mputy lal bl < 2
X;Y;in [3,3)

000.§ XXX.XXX aY@l)
000 .5, XXX.XXX bYm2
000.FXXX.XXX coXm
101 .0XXX.X00

a(wlj-1}-
OXX, X,XXX.X00 ‘*U FY)

Simplify
000.§ XXX.XXX aYj))
0CO.§,XXX..XXX bYn2
000.§5XXX..XXX cXfn)
1 X,0.0XXX..X00 .
< 4wli-11- Y,)
0xX, X,XXX..X00]

Figure 3.2: Optimizing Composite On-Line Scheme

33

% c2 dct-2e-3 0 b2b3b-b-2b-3b 0 ala3a-a-2a-3a

X;m) Y (n-2) Y, (n-1)
000.5, XXX..XXX aY@l) lal, Ib, kel <2
000.5,XXX..XXX bY®2) X;.Y, in [-33]

000.5; XXX..XXX cX{n)
1 X,0.0XXX..X00 _
0XX, X,XXX..X00 AWG11Y) -

wii)

5-t0-2 CSA

 J
XXX XXX|PX.. XXX] Sum
XXX XXXHX. . XXX] Cary

Y
s
6-bit CPA }

[

[XX X X, XX 5 I

[

Y; () I Register

Figure 3.3: Optimized 2-Stage Composite On-Line Scheme (§;m, = 4)

34

@ c23c-2¢-3¢c 0 b2b3b-b-2b-3b

X;(n) Y (n-2)

Y \
000.5,XXX.. XXX]| X
000.5, XXX.. XXX] bY@2

] lal, Ibl, ic! <2
0 a2la-a-2a-3a XY in [-3,3)

000.5XXX.XXX aY@D

J
1 .0XXX.X00
)
Yy ¥ l
5+40-2CSA

.X,XXX..X00 AGTHYr)

U
XXX.XXXHHX..XXX] Sum
XXX.XXXHX.XXX{ Camy

)
—
6-bit CPA }

1
I xlxl Xb‘ xl x'lxl i
—

‘ —

Y (n) Register

Figure 3.4: Optimized 3-Stage Composite On-Line Scheme (bimp = 4)

35

Composite 2-stage (p = 2): Gatespmodue = 372 + 89f
Composite 2-stage (p = 3): Gatesmodue = 336 + 125f
Composite 3-stage (p = 2): Gatesmodule = 390 + 109 f

Composite 3-stage (p = 3): Gatesmodue = 354 + 145f

Expressions for three performance measures are given below. The maximum
rate and the rate of a single module are obtained by finding the minimum clock
period, to; (ns), at which the implementations can be properly simulated. The
minimum clock period increases very little with higher precision. The increase is
purely due to the larger fan-out caused by the increased number of digit multi-
plexers.

1. Rate of a single module (Msample/s) = ; ,:?‘;)Ed)
2. Maximum Rate (Msamples/s) = 1 ,lfﬁo
elkVimp
3. Number of modules for Maximum Rate = [gﬂ
imp

Table 3.2 shows the performance and cost for four implementations with I/O
words of 16 bits (d = 8) and s = 6. The fastest design has 3 stages and uses
a digit set of {—3,...,3}. The latency of the 3-stage modules from the z(n) or
the y(n — 2) input is 5 clocks. However, the maximum rate is determined by
the latency from the y(n — 1) input, §;mp, which is 4 clocks. The maximum rate
of 1 sample per 4 clocks can be achieved using three modules. The number of
Gates/Array is the total number of gates for as many modules as required to
produce the maximum rate. Arrays are described in Chapter 5.

36

Table 3.2: Performance/Cost for Composite Word Modules (d = 8)

Module Type p | 8imp | Gates | tax | Maz. Rate | Gales
/Mod. | ns | (MSmp./s) | fArray
Composite 2-stage | 2 | § 2152 |14 | 14.3 5976
Composite 2-stage | 3 | 4 2586 |14 | 17.8 6798
Composite 3-stage [2| 5 2570 | 11 | 18.8 7230
Composite 3-stage | 3 | 4 2064 |11 |22.7 7932

37

CHAPTER 4
Schemes Using On-Line Multiply-Add Modules

The Multiply-Add (MA) module is a useful building block in realizing conven-
tional (bit parallel) FIR and IIR filters. The on-line MA module has a similar
usefulness in building on-line filters, IIR in particular [Bra89a). Sections 4.1 and
4.2 describe the design and implementation of an on-line MA module that is less
pipelined but much faster than the implementation described in [Bra89a]. The
design choices and decisions are similar to those faced in implementing a com-
posite on-line module described in the previous chapter. Section 4.3 discusses
performance and costs of two MA modules. It also compares the performance
and cost of MA module implementations that compute (1.1) with the composite
module implementations described in the previous chapter.

4.1 Design of MA Module

The computation performed by the on-line MA module is generically expressed
by y = cx + u, where z, y and u are on-line forms. Since the computation is
a specific instance of Equation (1.1), with b = 0 and @ = 1, the problem of
designing a fast MA module is similar to that of designing a composite medule
which implements (1.1). The recurrence for the MA, an instance of (3.10), is

given by:
w[-1] = 0 (4.1)
wlj] = r{wlj -1 -Yja(r)}+
r¢{cX;(n) + U;j(n)}, §=0,1,2... (4.2)

To achieve a fast implementation of the recurrence, the following parameters
have to be selected.

o On-line delay 6 and module delay 6;mp.
e Radix r and digit set {—p,...,p} for X, Y and U.

e Number of fraction bits required for selection, 8.

38

The stability limit for second-order filters requires that |¢| < 2. Consequently,
s = 3 for an MA module. Equation (3.18) can be used to select appropriate
parameters. Table 4.1 shows the variation of § and 8 for radices 2, 4 and 8.
The lowest on-line delay is obtained with a digit set of {-6, ..., 6} for a radix-
8 implementation. The advantage of lower on-line delay is offset by the longer
clock period required for the larger digit set. Similarly, the radix-2 design has a
slightly shorter clock period which is more than offset by the larger on-line delay.
This leaves the radix-4 designs for implementation. The implementations and
circuit-level optimizations for the radix-4 designs are discussed next.

Table 4.1: Variation of On-Line Delay for MA Module (s = 3)

Radiz | 2|4|4|8(8[8]8
o |1]2|3(4|5]6}7
8 13|5]2|5|3|5]3
§ |3l22l2i2|1]1

4.2 Implementation of MA Module

The implementation of the radix-4 MA modules is similar to the 2-stage composite
module shown in Figure 3.1. The differences are in the number of terms and the
length of the CPA. Figure 4.1 shows the the circuit-level optimizations for the MA
modules. Two of these optimizations, performing rounding selection in the CSA
and logic minimization, were discussed in Section 3.3 for the composite module.
The third optimization replaces a 4-2 CSA with a 3-2 CSA, as shown in Figure
4.1. This is accomplished by observing the following.

1. The U;(n) term requires only 4 fraction bits.

2. The shifted Partial Carry-Save form has 3 — 2 zeros in the most significant
fraction part due to the CPA.

3. If B is taken to be 6, instead of 5 as shown in Table 4.1, then U;(n) can be
fitted into the position occupied by the zeros in the partial carry-save form
(Section 3.2).

39

Thus a 3-2 CSA can be used instead of a 4-2 CSA, reducing the critical path
delay by as much as #,, if the longer CPA does not become the new critical path.
For the radix-4 case with p = 2, the CPA is extended by only 1 bit.

Simulation shows that the CPA is not the critical path and the optimization
increases the clock rate. Figure 4.2 shows the block diagram for a radix-4 (p = 2)
optimized MA module. The performance and costs of MA modules and word
modules using MA modules are discussed next.

4.3 Performance and Cost

Much of the discussion on the performance and costs of composite modules apply
to word modules composed of MA modules. A word module is a module that
produces all digits of an output word at the same digit output. As mentioned
earlier, the simulations provide the minimum clock period for each design. The
cost figures obtained from the implementation are the total number of gates for
each design and the number of gates for a bit-slice of the fraction part.

Table 4.2 summarizes the results for the two MA modules (d = 8), imple-
mented in a LCA10000 Array [LSI87]. The table shows that the module with a
digit set of {-2, ..., 2} achieves a higher clock rate using a smaller number of
gates. The following expressions give the number of gates as a function of the
number of fraction bits used in the implementation. Equations (3.19) and (3.20)

apply.

MA Module (p =2): Gatesmodule = 373 +45f

MA Module (p = 3): Gatesmoaule = 374 + 54f

A word module to realize Equation (1.1) can be implemented using three
MA modules. Table 4.3 compares the performance and costs of word modules
composed of MA modules with the composite modules described in Chapter 3.
For all schemes shown in the table the coefficient precision, m, is 16 bits, and the
I/0 word length, d, is 8 digits. The gate counts for the arrays assumes one set
of coefficient latches.

40

111.1§XXX.. XXX cX®m
S
1165,.55000..000 U
S

2
110.1000X..X00

4wii1)-Y,)
0 X,X,. X; X, X;X;X..X 0O

Simplify lcl<2
I-}j; st Yj' in ['2l 2]

000.5§8§XXX.. XXX cX®m

175, 5,.5 85U UX.XXX | \U®,

0 X, X, X, X, XsXsX..X 0 0 | 4(wlj-1]-Y;y)

Figure 4.1: Optimizing Multiply-Add (MA) Scheme

41

c2 ¢c-20

lel<2
Xj(n) Uj. x_i, ‘G in [-2, 2]

000.FTSXXX..XXX cXm

1 §I550 UK X x| !
0 X, X;o X,X,XXX..X 0 O |} awl-1]- Y, ;)

Yy
3-10-2 CSA
y'o]
XX X.XXXXXXE. .XXXF Sum
XXX XXXXX X XX XF§ Cary
L
9.bit CPA }
— -
|

XX XK X, XX XXX]
‘.v_./

:
+ Y (n)

Register

Figure 4.2: Optimized On-Line Multiply-Add (MA) Scheme (éip, = 4)

42

Conclusions

The fastest design is the array of word modules composed of MA modules with
p = 2. This array is the most modular design, the best choice for custom im-
plementation. The most cost-effective design is the composite 3-stage module
with p = 3. Among the composite modules, the 3-stage designs are faster and
more cost-effective than the 2-stage designs. The smaller digit set does not yield
higher maximum rates for composite modules due to the larger on-line delay. The
maximum rate can be produced by an array of modules, as discussed in Chapter
5. Table 4.3 shows the number of modules required to produce the maximum
rate as Modules/Array, and the total number of gates taken by these modules as
Gates/Array.

Table 4.2: Performance/Cost for MA Modules (d = 8)

Module Type | p | bimp | Gates per | tax Gates per
Module | (ns) | frac. bit-slice
MA 21 4 1183 9 45

MA 3| 4 1346 10 54

Table 4.3; Comparison of Performance/Cost of Word Modules (d = 8)

Module Type pl imp| Gates | tar | Maz. Rate Gates | Modules
per WM | (ns) | (MSmp./s) | /Array | /Array
Comp. 2-stage | 2] o 2152 14 14.3 5976 3
Comp. 2-stage | 3| 4 2586 14 17.8 6798 3
Comp. 3-stage {2 | 5 2570 11 18.8 7230 3
Comp. 3-stage | 3| 4 2964 11 22.7 7932 3
MA-based 21 4 3549 9 27.8 10167 9
MA-based 3| 4 4038 10 25.0 11154 9

43

CHAPTER 5
Multi-Module Arrays

This chapter describes the structure, synchronization, performance, and cost of
multi-module arrays composed of modules developed in previous chapters. The
arrays compute the second-order recurrence specified by Equation (1.1}). The
sampling rate of the multi-module array is determined by the type of module
composing the array. Four types of arrays are discussed:

1. Array of Composite Word Modules
2. Array of MA Word Modules

3. Array of Composite Digit Stages
4. Array of MA Digit Stages

Word Modules and Digit Stages

Arrays are classified as word module or digit stage arrays [ErLn89]. A word
module has one digit-serial output that produces all digits of a specific word. All
designs developed in previous chapters are word modules. One carry-save adder
stage is used for all iterations. As Figure 3.3 shows, the current residual is fed
back as a shifted residual for the next iteration.

A digit stage array is derived from a word module by executing each iteration
in a separate stage called a digit stage. Each digit stage accepts specific input
digits and produces a specific output digit. The residual is passed from one stage
to the next. Consequently, the width of a stage is one digit less than that of the
previous stage. Arrays of digit stages are discussed in Sections 5.3 and 5.4.

5.1 Array of Composite Word Modules

This section discusses the structure, synchronization, performance, and cost of
arrays of composite word modules. Table 3.2 summarizes the performance and

44

cost of composite word modules developed in Chapter 3. Arrays may be based
on any of the modules in Table 3.2.

Figure 5.1 shows the structure of an array of composite word modules with
6imp = 4 and d = 8. The number of modules required for maximum rate is given
by [ﬁ]. The topology of the array is a ring, though drawn as a linear array for
convenience. Three digit inputs accept z(n), z(n + 1), and z(n + 2), and three
digit outputs produce y(n), y(n + 1), and y(n +2).

Each module produces all digits of a word: module 1 produces y(n), y(n +4),
y(n + 8) -+, module 2 produces y(n + 1), y(n + 5), y(r + 9) ---, and so on.
The inputs to the array are shown relative to a time scale at the top of Figure
5.2. The y inputs are omitted from the figure for clarity. The inputs are skewed
by &imp clocks. Input words flowing into a given module are separated by four
zeros. If each module is fully utilized, input words are separated only by two
zeros. Full utilization is achieved when & + d is an integer multiple of &;m,. Since
8imp = 4, four digit registers are required to synchronize the delayed y input (i.e.,
the y(n — 2) input in (1.1)).

An array of 3-stage composite word modules, with §in, = 4, is almost iden-
tical to the array of 2-stage composite word modules shown in Figure 5.1. The
difference is due to the latency of 5 clocks from inputs z(n) or y(n — 2) to the
output y(n). Due to the higher latency of 3-stage composite word modules, z(n)
is supplied one clock in advance, and three digit registers are used instead of four
for synchronization.

The number of gates required for the array is reduced slightly if redundant
coefficient latches are omitted. Table 3.2 shows the gate counts of arrays without
redundant coeflicient latches.

45

Yi4q (n-3)
Yia (0-2)— P i >§E~§§—

XJH(H‘I)_P'
¥(n2) l—o-

yent—ee| 1 —e-§RRR—

Xj(n) e
Y: 4(n-1) .
j- 4
Y, o) e 142 ~3N88
Xj_4(n+l)——b-

General Interconnection -

1
> >IN
Xj(n) —
—’ -~ —
X 4(D41) cmmme]
i
. o 3

o

Digil Register X g(n+2) ——=

i Word Module

Array for d=8

Figure 5.1: Array of 2-Stage Composite Word Modules (d = 8)

46

XX, wordn X, n

waser § LT

Xpme1) word n+l

i
e ARRRRRRERRE

Xpey word n+2

et |

/O TIMING FOR WORD MODULES (dw8)

X} 0 0 O0Xgmel) 0 0 OXmw 0 0 0Xgm3) 0 0 ees
X 0 0 0X@DO0 0 OXmd0 0 OXmHo 0 eoe
X@ 0 0 0XmD o 0 0XmHO 0 0XmH)o 0 eee
X,m 0 0 O0Xgm) 0 0 O0Xmed 0 0 OXymH o 0 esw
X@ 0 0 O0XmhHOo 0 0XmnHo 0 OXmHo o ees

INFUT DIGITS

Yo} 0 0 OV 0 0 0V 0 0 0 YmHo 0 eee
Y 8 0 0V 0 0 0¥ 0 0 OYm)Ho o0 eee¢
Y@ 0 0 OVml) 0 0 0Ym2) 0 0 O0YVmD O o0 eee
Y@ 0 0 OYVml) 0 0 OYymd 0 0 O0Y,mdH 0 0 eee
Y@ 0 0 0YmDO 0 O0Yml0 0 OYmhHo 0 e

/O TIMING FOR DIGIT STAGES (d=5) OUTFUT DIGITS

1 i L] 1 i }
T T T ¥) T

L [[1 L o
¥ T T T ¥ -

TIME

Figure 5.2: I/0 Timing for Array of 2-Stage Composite Word Modules (d = 8)
and for Array of Composite Digit Stages (d = 5)

47

5.2 Array of MA Word Modules

An array of MA word modules is derived from an array of composite word modules
by substituting each composite word module with three MA word modules. MA
modules were developed in Chapter 4, for p = 2 and p = 3. For both modules
6imp = 4. This section discusses the structure, synchronization, performance, and
cost of arrays of MA word modules.

Figure 5.3 shows an array of MA word modules for d = 8. The structure of
the array is a ring, though drawn as a mesh for convenience. The ring has three
sets of MA modules, each set having three MA modules. The number of modules
required for maximum rate is given by 3[%1. The maximum utilization is
obtained when d + 6 is an integer multiple of &;,. The array has three digit
inputs and three digit outputs, similar to the array of composite word modules
(Figure 5.1).

The synchronization of the MA modules in the array is illustrated in Figure
5.3 by the arrows and the time scale. The digit inputs and outputs are marked
by arrows. The relative time is found by reading the time scale corresponding to
the arrow tips. Input and output digits are skewed by four clocks (8;mp), similar
to the array of composite modules. The latency of the MA word module array is
higher than that of the composite word module array, 12 clocks compared to 4.

Table 4.3 compares the performance and costs of arrays of MA word Modules
and composite word modules for d = 8. The MA module array with p = 2
has the highest rate, with fewer gates than the array composed of MA modules
with p = 3. The array of MA word modules is more regular than the array of
composite word modules. It has a larger number of smaller modules and has no
synchronizing digit registers.

5.3 Array of Composite Digit Stages

An array of digit stages is obtained by executing in separate stages, the iterations
performed in a single stage of a word module. Each stage is dedicated to specific
input and output digits. The number of stages is the same as the number of
iterations. The structure, synchronization, performance, and cost of arrays of
composite digit stages are described next.

48

Structure

Figure 5.4 shows the block diagram of a single digit stage. This digit stage
performs the same computation as the composite word module shown in Figure
3.3. The only difference is that the residual is not fed back, but passed down
to the next digit stage. The input and output of a digit stage are dedicated to
specific digits of the input word and output word.

Several digit stages connected in a chain form an array of digit stages. Figure
5.4 shows an array for d = 5, § = 2 and 6;mp = 4. The digit stages are numbered
according to the iteration number or the input digit number, both denoted by 7,
where j = 0,1,2,...,8 +d— 1. To produce d significant digits of output requires
& + d iterations.

The precision, or width, of the digit stages need not be identical. Significant
savings result when each stage has only the minimum number of fraction digits
required to produce d digits of significant outputs. Thus, if digit stage 0 requires
f fraction bits, then digit stage 1 requires f —2 fraction bits, digit stage 2 requires
f — 4 fraction bits, and the last digit stage requires 0 fraction bits. Figure 5.4
indicates the number of fraction bits for each digit stage for an array for d = 3.

Synchronization

The synchronization of digits at inputs, outputs, and within the array, is shown
by the arrows and the time scale in Figure 5.4. The timing of each digit is found
by reading the time scale at the position of the arrow tip.

The first significant output digit, Yo(n), appears four clocks after Xo(n), since
8imp = 4. As soon as the first digit appears, the computation of Y5(n + 1) begins.
The four cascaded digit registers provide the delay between Y;{n—1) and ¥;(n—2).
The input and output digits of the array are in skew-parallel form as illustrated
at the bottom of Figure 5.2.

A digit-stage array based on a 3-stage composite module is slightly different
from the array of digit stages based on 2-stage composite modules. The only
structural modification required is the removal of one digit register from each
cascade of four.

Performance and Cost

As Figure 5.2 shows, each digit stage is utilized only once every four clocks. The
clock period is identical to the composite module from which the digit stage array

49

is derived. The rate is the same as the corresponding array of word modules.

The costs of the digit stage arrays are estimated from the implementation of
the composite word modules. The results are shown in Table 5.1, for d = 8 and
coefficients with magnitude < 2.

Table 5.1: Performance/Cost for Array of Composite Digit Stages (d = 8)

Array Type p | bimp | tax | Maz. Rate | Gates
ns | (MSmp./s) | /Array
Composite 2-stage |2 | 5 | 14 14.3 12640
Composite 2-stage | 3| 4 | 14 17.8 12662
Composite 3-stage | 2| 5 | 11 18.8 15038
Composite 3-stage | 3| 4 | 11 22.7 14642

5.4 Array of MA Digit Stages

The previous section described how an array of composite digit stages is derived
from a composite word module. With an MA word module, a similar derivation
results in an array of MA digit stages. Such an array performs a multiply-add.
To implement Equation (1.1), three MA digit stage arrays have to be connected
to form a larger array. This section discusses the structure, synchronization,
performance, and cost of an array of MA Digit Stages.

The MA word module from which the array is derived is shown in Figure 4.2.
With 8;mp = 4 for the MA modules, and d = 5, the array of MA digit stages
has a topology similar to the array of composite digit stages shown in Figure 5.4.
The arrays have similar timing for the input and output digits, as shown at the
bottom of Figure 5.2. The differences between the arrays are listed below.

1. Each MA digit stage has only 2 digit inputs, X and U.
2. The output of each MA digit stage produces cz + u.

3. No synchronizing digit registers are required for the array of MA digit
stages.

50

4. The clock rate of the MA digit stages is higher because the MA recurrence
is faster (compare clock rates in Table 4.3).

Figure 5.5 shows an array which is a cascade of three MA digit stage arrays.
The arrays are connected with a skew of 8. The utilization of each MA digit stage
is 0.25, evident from the timing diagram at the bottom of Figure 5.2. The latency
is 12 clocks, identical to the array of MA word modules developed in Section 5.3.

A regular array is obtained if all the digit stages are identical. Having identical
arrays requires a larger number of gates, but does not change the topology or
timing of the array. Regularity may be sacrificed to achieve a design with fewer
gates. The number of gates is reduced as follows.

1. The coefficient latches are omitted from all but the three D50 digit stages.

2. Each digit stage has a different width, diminishing by 2 down the diagonal
(Figure 5.5).

3. The first two digit stages do not require a full CPA because the output digit
is zero.

4. The last two digit stages do not require the multiplication selectors because
the input digits are zero. Like the first two stages, full CPAs are not required
since some fraction bits are zero.

The performance and cost of the array of MA digit stages for p = 2 is given
in Table 5.2. The next section compares the arrays.

5.5 Performance and Cost

The performance and costs of the arrays described in preceeding sections of this
chapter are summarized in Table 5.2. The gate counts for all arrays assume only
one set of coefficient latches. In addition, the gate counts for the digit stage
arrays include the reductions listed in the previous section.

The rate and number of gates for the arrays are based on the implementations
of the composite word modules in LCA10000 Array technology [LSI87]. The
maximum clock rates of the digit stage arrays are the same as the clock rate for
the corresponding word module, because the critical paths for the digit stages
are the same as the critical paths in the single stage of the word module.

To estimate the number of gates for the arrays of digit stages requires the
gate counts for:

51

Word modules, for a specific number of fraction slices

Each fraction slice

e CPA

Coeflicient latches

o Digit register.

Table 5.2 compares arrays for d = 8, with coefficient magnitudes < 2, and
based on modules with &;,, = 4. The rates for the word module arrays and
the corresponding digit stage arrays are identical. The arrays of word modules
are smaller than the digit stage arrays. However, utilization of the arrays of
digit stages is only 0.25. The next chapter shows how scattered lookahead and
recursive doubling techniques improve the utilization and rate of the digit stage
arrays.

Table 5.2: Comparison of Performance/Cost of Arrays (d = 8)

Array Type p | bimp | tax | Maz. Rate | Gates

(ns) | (MSmp./s) | /Array
Composite 2-stage WM | 3 | 4 14 17.8 6798
Composite 3-stage WM | 3 | 4 11 22.7 7932
MA WM 2| 4 9 27.8 10167
Composite 2-stage DS |3 | 4 14 17.8 12662
Composite 3-stage DS [3| 4 11 22.7 14642
MA DS 2] 4 9 27.8 21054

52

X,(n) ~-6§>———-' rin e =Y

Ui(n) -

Schematic of MA Module (y=u+cx)

Xi(n+2 c] [,
S MA MA ':=|_m_]-<'-‘5("+2)

o1
IS

@

—

[*]
—
-
B

Figure 5.3: Array of MA Word Modules (d = 8)

33

5102 o Y (n)
Y, (02) —o | auction gx] ’
Y; (n-1) —
(wlil- Y;(n))
Digit-Stage j \
0] Sum and
3
b Registers
Xotmy ~—smet DSO)
Yolu-l) -1 (012 =0 n
_@— Yoad) = B Digit
— Register

X(m) —= DS§1 0
Yy(n-l)—={ - q
) (@-1) f=10 Cascade of 4

_@—- Y, @) —= | P Digit Registers

Xy —w| DS2
Yy —a] g [Yolot

O

Xyto) —ami DS3
Yyin-1) =] r_g

Xln) —o] DS4
Yy(o-1) = ooy - Yy (n)

-R— v — :

Y (o)

Ly |
o—a{ D85
o= 2 ™ B
o —
0—p] DS6
0= 0 Yy
0 —1
—_—
1 3 5 7 9 11 TIME

Figure 5.4: Array of Composite Digit Stages (d = 5)

o4

x,e—w] D52 L psoP
o] =8 Ltz | oo
DS 3 L DS1
Xy {n)——]
0] =5 -] =10 -0 ?
L Ds4 L DS2 L pso®
X,q () —ee] " LI- "
0.,rL=f=s - 12 | o
DS 5 Ds3 |[' DS1
0 —
0] = ol =6 Lol =0 L g
oo |l |
0—=
o—wl 0 [f-l: - f=ls = Y
DSS ‘: DS 3
0o—p]
D '?6 Y,
=
0 t=0 f=4
0] - Yo (o)
o DS 5
0—= T. —
DS 6
0—
o 0 | @l v@
4 : + 4 + } + t 4 t + } { } 4 } } 4 -
1 3 5 7] 1l 13 15 17 TIME

Figure 5.5: Array of MA Digit Stages (d = 5)

59

CHAPTER 6

Algorithmic Transformations for Higher
Performance

The previous chapters described on-line schemes that implement expression (1.1).
This chapter describes two transformations, the Recursive Unfolding (RU) method
[Kog81] in Section 6.1 and the Scattered Lookahead (SL) method [PrMs87a] in
Section 6.2. The performance and cost of on-line arrays using the superior SL
method are described in Section 6.3. The arrays are composed of modules devel-
oped in previous chapters. Section 6.3 also compares the on-line implementations
with a conventional implementation using SL (Appendix A). The descriptions of
the methods and the implementations focus primarily on the IR component of
the computation.

Both RU and SL transform the difference Equation (1.1) to produce an equiv-
alent expression that allows higher performance. The higher performance is
achieved by removing the dependency of y(n) on the immediately preceeding
output y(n —1). An important factor to be considered in a transformation is the
stability of the resulting expression. Since stability discussions consider the poles
of the corresponding transfer functions, the difference Equation (1.1) is shown as
a transfer function in (6.1).

H(z) = :

1—az—t —bz? (6-1)

6.1 Recursive Unfolding Method

Recursive unfolding (RU) is a method somewhat similar to recursive doubling
[Kog73]. It is also referred to as back-up [Kog8l] or lookahead. This section
describes the RU method and the stability of the resulting expressions. Perfor-
mance and cost of the RU method is compared to the SL method in Section
6.3.

To perform RU on Equation (1.1), y(n — 1) is substituted in terms of y(n —2)
and y(n — 3) using expression (1.1):

yn—1) = a-yn=-2)+b-y(n—3)+c-z(n-1) (6.2)

56

As a result of the substitution, y(n) is independent of y(n — 1) and depends
on y(n —2) and y(n — 3) as (6.3) shows. The z(n —1) terms in (6.3) are denoted
by the FIR expression fi(n).

y(n) = (@ +b)-y(n—2)+ab-y(n-3)+ filn) (6.3)

Expression (6.3) is obtained after applying I level of RU. Using (6.3) instead of
(1.1) enables simultaneous computation of two values, y(n) and y(n—1), doubling
the potential maximum rate.

Second and Third Levels of RU

The RU process can be performed again on (6.3) to remove the dependency on
the y(n — 2) term. After the second level of RU, y(n) depends on y(n — 3) and
previous values of y. To obtain an expression that potentially quadruples the
rate of (1.1), the second and third level of RU are applied to (1.1) as follows.

1. Substitute y(n —2) in (6.3), expressing y(n — 2) using (6.3).

2. Substitute y(n — 3) in (6.3), expressing y(n — 3) using (6.2).

The resulting expression is (6.4), and f3(n) denotes an FIR expression includ-
ing terms z{n), (n — 1), ..., z(n — 3). If the numerator of (6.1) is second-order,
the FIR term will include z(n — 4) and z(n — 5) terms as well. If step 2 above
expressed y(n — 3) using (6.3), then the terms y(n — 4), y(n — 5) and y(n — 6)
appear in the resulting expression. Computing an expression with three y terms
on the right hand side is slower and costlier than computing one with two terms.

y(n) = (a*+3d’b+8") y(n—4)
+(a% + 2ab*) - y(n - 5) + fa(n) (6.4)

Stability of RU

To discuss stability of expressions obtained by applying RU, the poles of the corre-
sponding transfer functions must be determined. The first level of RU introduces
a cancelling pole-zero pair to (6.1) as shown in (6.5).

c(l+az™h)

Hz) = (1—az™'—bz72)(1 + az7!)

(6.5)

57

The second and third levels of RU introduce pole-zero pairs expressed by:

e(1 + az7' + (a? + b)z7% + (a® + 2ab)z73)
(1 = az"! —bz72)(1 + az=t + (a? + b)2=2 + (a® + 2ab)273)

H(z) = (6.6)

The stability of the original transfer function (6.1) is guaranteed when the
coeflicients are within the stability triangle as shown in Figure 7.1. Thus, |a| < 2
and |b| < 1. The pole introduced by the first level of RU is inside the unit circle
in the z-plane when |a| < 1. Thus, for @ > 1 the pole is unstable. The poles
introduced by the second and third levels of RU can be found if @ and b are
known. The next section describes the scattered lookahead method which has
superior stability characteristics.

6.2 Scattered Lookahead Method

The scattered lookahead (SL) method, due to Parhi and Messerschmitt, was
originally intended to allow pipelining of conventional implementations of IIR
filters [PrMs87a]. The SL transformation is useful for on-line implementations
as well. Potential throughput is doubled with each level of scattered lookahead.
The advantage over RU is the stability of the poles introduced in the process.
With SL, the output depends on previous values scattered in time. The following
description is based on [PrHt88].

First Level of SL

The SL method is based on adding cancelling pole-zero pairs to the original
transfer function (6.1). The poles of the original transfer function are assumed
to be complex conjugates, given by Re’’ and Re™7?. Substituting 2Rcosf = a
and R? = -b, the original transfer function is written as:

[
1 —2Rcos8z"1t + R?2-2

H(z) = (6.7)

For the first level of SL, two canceling pole-zero pairs, (1 + 2R cos8z~! +
R?27?), are added. The transformed expression is given by (6.8), and the cor-
responding difference equation by (6.9). The FIR terms in (6.9) are denoted by
'U1(n).

c(l +2Rcosz7! + R?27%) (6.8)
1~ 2R?cos20z72% + Rtz |
y(n) = 2R%*cos20-y(n—2) — R* y(n —4) + vi(n) (6.9)

58

Second Level of SL

The second level of SL is applied by adding the pole-zero pairs (14+2R?cos 2022+
R*z~*%) to (6.8). The resulting transfer function is given by (6.10), and the cor-
responding difference equation is shown in (6.11).

¢(1 +2Rcos 8z + R227%)(1 + 2R? cos 20272 + Riz™Y) (6.1

H(z) = 1 — 2R4cosd46z~* + RBz78 0)
y(n) = 2R'cos46-y(n—4) — R®-y(n —8) + va(n) (6.11)
The FIR expression vy(n) consists of terms z(n), {n ~ 1), ..., z(n —6). If

(6.1) had a second-order numerator (two zeros outside the origin), z(n —T7) and
z(n — 8) terms will be included in the FIR expression. The expressions for v1(n)
and v,(n) for the case ¢ = 1 can be derived from (B.2) and (B.3) in Appendix B.
The next section compares the stability of the SL method with that of the RU
method.

Stability Comparison

The main difference between the RU method and the SL method is in the magni-
tude of the added poles. In the SL method, both levels add poles with magnitude
R. Thus, the added poles are no more sensitive (not closer to unit circle) than
the original poles.

With respect to the difference equations, stability is reflected in the range of
values of the coefficients. With SL, coefficients of the recent y term (i.e., the
closest term to the one computed) are always in the range {-2,2], and coefficients
of the distant y term are in the region {-1,1]. With 1 level of RU the added pole
has magnitude |a|. Thus the pole is stable for |a| < 1. Table 6.2 shows the
ranges of the coefficients for both methods. The next section compares the two
methods and gives performance and cost estimates for arrays of on-line modules
using lookahead.

6.3 Multi-Module Arrays with Lookahead

The application of lookahead produces arrays that deliver two to four times the
performance of arrays without lookahead. This section discusses the performance
and cost of arrays that deliver maximum performance. The arrays described here
are based on modules and arrays developed in Chapters 3,4 and 5. The arrays
are restricted to the computation of the IIR portion of the transfer function and

59

assume that d=8. A reference point for the cost and the performance of on-line
arrays is provided by including performance and cost figures for a conventional
implementation using scattered lookahead (Appendix A).

Maximum Throughput for General Lookahead

As the previous sections of this chapter showed, applying different levels of RU
and SL produce different expressions. To find the maximum througput for such
expressions, computed by modules with different 6;n;, a general formula is written
as follows.

e General recursive expression is
y(n) = a;i-y(n—i)+a;-y(n—7)+u(n) (6.12)

o Latencies of the module are: §; clocks from y(n — ¢) to y(r), and é; clocks
from y(n —) to y(n).

e Minimum clock period for the module is £, ns.

¢ Maximum rate of the module is x Msamples/sec.

The maximum rate is:

|'-a.

_ 1000 (i
#o= telk b’

) (6.13)

S

The values of i and j depend on the expression. Table 6.1 characterizes some
modules described previously, in terms of fu, é;, and é;.

Table 6.1: Latency of Modules for Lookahead Computation

Module Type p | tax(ns) | & | &;
Composite 3-stage | 3 11 4 |5
MA 2 9 418
MA 3 10 4|8

60

Reduction of Potential Maximum Rate of RU

Section 6.1 showed that 1 level of RU doubles the potential rate and that 3 levels of
RU quadruples it. The actual rate obtained from RU is less, due to the increased
coefficient range and the low value of j, as defined in (6.13). With 1 level of
RU the coefficient ranges are [-1,3] and [-2,2]. Table 6.2 indicates the coefficient
ranges for SL and RU.

The increased coefficient range does not allow the use of some modules. For
example, the MA module with p = 2 cannot accomodate coefficients with a range
of [-1,3]. As Table 6.2 shows, higher levels of RU require even larger coefficients,
reducing the gap between actual and potential rates further.

Another cause of rate reduction with RU is the relatively low value of j, as
Table 6.2 shows. For 1 level of RU, as (6.13) indicates, the relative rate increase
with MA modules is only a factor of 1.5.

Table 6.2: Coefficient Ranges and Max. Rate for SL and RU

Expression | Ranges of |1, | Relative Potential

Coeflicients Max. Rate
Original [-2,2], [-1,1] | 1,2 1
1 Level SL | [-2,2], [[1,1] | 2,4 2

2 Level SL | [-2,2], [-1,1] | 4, 8
1 Level RU | [-1,3], [-2,2] | 2, 3
3 Level RU | [0,5], [-4,4] | 4,5

P SR

Comparison of Performance and Cost

Table 6.3 shows the performance and costs for different arrays with 1 or 2 levels
of lookahead. The maximum rates are based on the maximum clock rates of the
individual modules. Cost is estimated by the number of gates required for these
modules. All numbers for performance and costs are based on implementation of
modules in a LCA10000 Array [LSI8T]. '

61

Table 6.3 indicates the following.

1. Scattered Lookahead produces the highest rate for any level.

2. The most cost-effective on-line arrays are based on the 3-stage Composite
Module.

3. The most cost effective, overall, is the conventional implementation.
4. The on-line MA digit stage array (p = 2) produces the highest rate.

5. The total cost is dominated by the FIR portion of the computation, par-
ticularly with 2 levels of lookahead. The number of FIR terms shown is for
a general second-order transfer function with 2 zeros outside the origin.

Note that the computation performed by the arrays is given by (6.12). The
3-stage Composite module was developed to compute expression (1.1). Conse-
quently, the number of gates shown in Table 6.3 is an estimate based on the
actual design for computing (1.2), which is an instance of (6.12).

The digit stage arrays are more cost effective with 2 levels of lookahead. The
array of on-line MA digit stages for d=8 is similar to the array shown in Figure
5.5 for d=5. The utilization of the array is only 0.25, without lookahead, as
Figure 5.2 shows. With each level of lookahead the array utilization doubles, and
full utilization is achieved with 2 levels of SL.

The implementations shown in the table vary in degree of modularity. The
most modular design is the MA word module array for 1 level of SL. The most
irregular design is the conventional implementation (Appendix A}. Since silicon
area is a more appropriate cost measure than the number of gates, modularity
must also be considered in estimating the cost.

62

Table 6.3: Comparison of Performance/Cost of IIR section with Lookahead

(d=28)
Type of Array p| Typeof | tuaxr | Max. Rate | Gates | FIR Terms
Lookahead | (ns) | Msamples/s
MA WM 2 SL-1 9 55.5 13396 5
MA DS 2 SL-1 9 55.5 14036 5
Comp. 3-Stage WM | 3 SL-1 11 454 12732 5
Comp. 3-Stage DS | 3 SL-1 11 45.4 12192 5
MA WM 3 RU-1 10 37.5 14552 4
MA DS 3 RU-1 10 37.5 15136 4
Comp. 3-Stage WM | 3 RU-1 11 454 12732 4
Comp. 3-Stage DS |3 RU-1 11 454 12192 4
MA DS 2 SL-2 9 111 14036 9
Comp. 3-Stage DS |3 SL-2 11 91 12192 9
Conventional - SL-2 11 91 11796 9

63

CHAPTER 7

Limit Cycle Oscillations

This chapter analyzes limit cycle oscillations resulting from roundoff errors in
conventional and on-line fixed-point recursive filters. Roundoff errors in filters
are introduced when double-precision results from multiplication are reduced to
single-precision. Limit cycle oscillations are caused by roundoff errors and appear
as small-amplitude periodic oscillations in the output. Several bounds have been
derived for the amplitude of limit cycles in second-order sections [DSP2]. The
analysis in this chapter proves that when scattered lookahead (SL) is applied, the
limit cycle amplitude bound decreases, a result contrary to intuition.

This chapter is arranged as follows. Section 7.1 quantifies roundoff errors in
on-line composite and on-line MA modules. Section 7.2 derives a bound for the
maximum amplitude of zero-input limit cycles in a second-order section with SL.
In Section 7.3 the bound for the SL case is shown to be less than the bound
without SL. Section 7.4 compares, for two on-line filters, the derived bounds with
simulation results.

7.1 Roundoff Error in On-Line Modules

Conventional multiplication of single-precision values produces a double-precision
result. Due to the finite precision of the hardware, results must be reduced
to single-precision by rounding. An advantage of on-line multiplication is that
it produces only the required digits, beginning at the most significant. Thus,
a separate rounding step is not required. The roundoff error, in conventional
or on-line multiplication, is the difference between the full-precision result and
the single-precision output. For on-line multiplication the roundoff error is the
residual after the least significant output digit is produced. Roundoff error is
introduced at each point where precision is reduced. On-line or conventional MA
modules introduce roundoff error after each multiplication. On-line composite
modules introduce roundoff error once every two or three multiplications.

In radix-r on-line modules the roundoff error is r=4(w{d + § — 1] — Yuy5-1),
the value of the residual after d digits have been produced. The scaled value of

64

the residual is in the range [£,£], where £ and £ are defined by (3.14) and (3.15).
The roundoff error in the composite module and MA module is bounded by

1 1
""'2"7'_d < ema < (§ + 2"6) r (7'1)
—%r'd < eem < (% + 2-3) r¢ (7.2)

where r = 4 and d is the number of fraction digits in the output. For a cascade of
MA modules, the roundoff error is the sum of errors produced by each MA mod-
ule. The additive rule holds because the errors are independent random values.
As (7.1) and (7.2) show, the positive roundoff error bounds differ slightly from
the perfect rounding case. The roundoff error for the cascaded pair computing a
second-order recursion is given by {7.3).

—r % < ey < (1+2'5)r'd (7.3)

7.2 Bound on Limit Cycle Amplitude

Limit cycles are small-amplitude oscillations that corrupt the output of recursive
digital filters. They are caused by roundoff error and may occur with zero or
non-zero input. Limit cycles are a significant problem in fixed-point direct-form
recursive filters. The forced limit cycle oscillation occurs with simple non-zero
inputs such as constant or alternating sequences. For complex inputs the forced
limit cycle oscillation appears as noise and is not much of a problem [Sam88]. The
more serious non-linear effect is the zero-input limit cycle oscillation, the focus
of discussion in this chapter. Various types of non-linear effects are discussed in
[Sam38].

Zero-input limit cycles have been studied extensively for second-order recur-
sive filters [DSP2]. Bounds have been derived for the maximum amplitude of the
limit cycle. Two such bounds are the absolute bound by Long and Trick [LnTr73]
and the RMS bound by Sandberg and Kaiser [SnKs72]. The basic approach of
increasing working precision of on-line recursive filters was used by Brackert to
eliminate all zero-input and forced nonlinear oscillations without affecting sam-
pling rate [Bra89b)]. Knowing the maximum possible amplitude of the limit cycle
allows the filter precision to be increased by the fewest number of bits necessary
to contain the entire oscillation.

65

Absolute Bound for Limit Cycles in a Second-Order Recursion

The following is a summary of the derivation, by Long and Trick [LnTr73], of
a bound for the maximum amplitude of periodic limit cycles in a second-order
direct-form recursion. In the first part of their derivation, Long and Trick derive
an expression for the maximum amplitude of a linear N th_order recursion in terms
of the impulse response and limit cycle period. In the second part, the general
result is used to derive the bound for a second-order recursion. The summary
follows.

Consider the Nt*.order non-linear difference equation (7.4), where [-], denotes
the rounding function, and the input or forcing term is zero for all n.

N

y(n) = 3 ley(n—j) (7.4)
i=1
The derivation assumes the following:
1. Rounding is done after each multiplication.
2. Equation without rounding is asymptotically stable.

3. Coefficients and y(n) values are fixed-point numbers.

4. Limit cycles are periodic.

Let e;(n) be the error due to rounding [a;y(n — j)},. Thus (7.4) can be
converted to a linear equation:

N
y(n) = g(ajy(ﬂ —7) +¢€(n)) (7.5)
Defining a single error term e(n), (7.5) can be expressed as (7.7).
N
n) = Y eiln) (7.6)
'
y(n) = Z:: a;y(n - j) + e(n) (7.7)

To simplify the derivation, without loss of generality, the quantization error
is assumed to be 1. Thus, for perfect rounding le;(r)| < ;. Since the errors are
uncorrelated random values, e(n) is given by:

el = 5 (7.8

66

For the on-line MA module le(n)| < N¢ and for the on-line composite module
le(r)| < .

For a periodic limit cycle with period M,

e(k) = e(k+M) (1.9)

for all k. Considering the error term e(n) to be an input to the linear system
with an impulse response A(n), the output is given by the convolution sum:

ym) = 3 hln—Ke(k) (7.10)

k=—oco

Expressing (7.10) as a double summation gives

o0 n=iM

ym) = > { > hn- k)e(k)] (7.11)
=0 | k=n~(i+1)M+1

where the terms are in groups of M each. Letting p = n—iM —k, equation (7.11)

can be written:

o [M-1
y(n) = > |:Z hip+iM)e(n — M — p)] (7.12)

=0 { p=0

Substituting e(n — p) for e(n — iM — p) and interchanging the summations,
(7.12) can be written:

y(n) = > e Zh +1iM) (7.13)

p=0 1=0

The bound for the absolute value of the amplitude of the limit cycle of period
M is given by (7.14) for all n.

M-1
() e = a3

p=0

Zh p+zM)} (7.14)

=0

Thus, given an explicit form of k(p), {7.14) can be used to derive an expression
for |y(n)|maz- To obtain an expression for h(p), the inverse z-transform, given by
(7.15), must be evaluated. The evaluation can be done using the residue theorem
or by using the simpler partial-fraction expansion method [PrMn88].

hip) = 2_:;]- § Hz)20Vdz (7.15)

67

The partial-fraction expansion method is used here to derive the same bound
obtained in [LnTr73]. For a second-order recursion defined by (7.16), the corre-
sponding partial product form for distinct roots (i.e., ¢ # 0) is given by (7.17).

2

z
H(z) 1 (a2+ 4 az — ¢)
ik 2 A - 7.17
z 2 \z—(az+q) z-(az—q) (7.17)
a; ¥ g (7.18)
2
g & (g) +b (7.19)

Once h(p) is obtained by using the transform relation T;Ff & p*, then
h(p + ¢ M) follows.

1 1
h(p) = 5;(02 +q)"* — 2—q(az — g (7.20)
, 1 a1 ,.
Bp+iM) = glaat g™ - S(a— gt (12

Finally, %2, h(p+iM) is obtained, and, using (7.14) with N = 2, the desired
bound is also obtained.

3 ‘ _ 14 (et q)P+! B (az — q)P*!
;h(P-HM) Y {1 — (a2 + M 1_(a2_q)M] (7.22)
1 "2 (et gt (az — q)P*!
ly(7)lmez = 24| :E% @+ 1= (a—a)™ (7.23)

The bound derived is for distinct roots, the case for useful second-order filter
sections. The bound for coincident roots is given by (7.24). The derivation is
simpler than for the distinct root case and is omitted for brevity.

M-1 aM _
e = 3 Jot [+ D)

Given the filter coefficients a and b, the bound can be calculated for any
desired period M. Since the period is not known in advance, the bound has to
be computed for all values of M.

68

Absolute Bound for Second-Order Recursion with SL

This section extends the Long and Trick method to derive the absolute bound
for a second-order recursion transformed by scattered lookahead. This bound can
then be compared with the bound without SL to determine the effect SL has on
zero-input limit cycles. The derivation begins with the transformed expression
(7.25). The two zeros introduced by the SL transformation are omitted from
(7.25) because the input is zero. The partial-fraction expansion of Hgr(z) for
distinct roots {gq # 0) is shown in (7.26).

24

Hslz) = G n@ta=b) (7.25)
Hsp(z) _ 1 | (a2t ¢ (a—g)
z 4qa |z —(az+9q) z—(az—q)
_{~az+q)? (—e2 — g)°]
Ca+d T (a9 (7:29

Note that a, and ¢ are defined by (7.18) and (7.19). Applying the inverse
z-transform to (7.26) produces hsg(p), from which hsp(p + iM) is obtained.

hse(p) = Z}ﬁ (a2 +)7 = (a2 — g)?**
—(—az + ¢ + (—a2 = 9)*?] (7.27)
hsp(p+iM) = Zc% [(a2 + q)PHM _ (a, — g)PratiM
—(—az+ QM 4 (—ap — M| (1.28)

To obtain the bound, the expression for hsy(p + iM) is substituted in (7.14)
and summed over ¢ to give (7.29).

1 [(a2 +)"+ (a2 — g)**?

4qa [1 ~(az+ M 1—(a2—)M

__(zaatqp*? (—aq — g)°**
1—(~az+ g™ " 1—(~a2— M

fj hsi(p+iM) =

1=0

(7.29)

The bound |ysp(n}|maez 1s now reduced to a single summation over M, as
shown in (7.30). Given M and the filter coefficients, (7.30) can be used to find

69

the bound for the limit cycle for distinct roots.

sz ()| 1 & (et (a2 g
goritlimes = Yaga] S [T—(as+ g™~ 1~ (az =)™
— p+2 e — P2
1-(~az+ g 1-(-a2-9)
If the filter coefficients satisfy a® = —4b, then the roots are coincident and

(7.30) cannot be used. For coincident roots, the partial-fraction expansion is
given by (7.31). The derivation is easier than the distinct root case and proceeds
similarly. Only the main steps are outlined below.

ot F (7.31)

k4 z

Hsc(z) 3

. 1 - Q. M .
hsp(p+iM) = §(—az)”+‘M+—a’2’+M+ (P__‘iL> (-—ag)p""M

2 4
_ (P +43M) a;21+sM (732)
M-1 —aq ¥ az)?
lyse(n)lmez = % 2 (p+2) [1 —((—i)M 1 —((a)z)M]

M [[(—az)” (a2)"] (7.33)

L= (—ag)MP (1= (a)™)?

The amplitude bound of the limit cycle for the coincident root case is given

by (7.33).

7.3 Comparison of Limit Cycle Amplitude Bounds

The amplitude bounds given by expressions (7.30} and (7.23), have to be com-
pared to find how SL affects zero-input limit cycle amplitude. The comparison is
made for the case where roots of the second-order recursion are distinct, which
includes all useful second-order filter sections. Expressions (7.30) and (7.23) give
the bounds for the recursion with and without SL. The comparison shows that the
amplitude bound of limit cycles with SL is less than the bound for the recursion
without SL when |a| > 0.74. The result is obtained by proving four theorems.

70

Theorem 1 For large periods, scattered lookahead reduces the amplitude bound

of limit cycles in recursions with distinct roots by a factor ~y.
|ySL(n)lM—>oo < %Iy(n)lM—»oo
def la|(1+|aj+]b
7= 1+7B]

Proof
Consider the bound for the distinct root case with SL given by (7.30). For large
M, (a; £ ¢)M <« 1 since | + a; £ ¢| < 1. Thus, for large M (7.30) reduces to:
1 M-1
2. |(02 +q)P*? = (a2 - ¢)"**
(7.34)

l4qal p=0
~(—az + Q" + (a2 — "]

[?JSL(”)IM—-QO

(7.35)

For odd values of p the terms in the summation are zero, leaving only the
M-1

terms for even values of p. This simplifies the bound to:
1 pt+2 pt2
Y (a2 +)7 (a2 — 0"V

Ysc(n){M—roo ™7
| ()l 12(](1! p=0,even
Using the following notation for brevity,
v e+ q (7.36)
v & a,—g¢ (7.37)
w E w (7.38)
(7.39)

the summation in (7.35) can be expanded to give
1
s ()lmee = 5 (0?4 [w] + Jo®l + .+ f™]
[2¢al
where M is assumed, without loss of generality, to be a large odd value.

Now consider (7.23), the bound for the second-order recursion without SL.
(7.40)

For large M the bound reduces to:
M-1
> |(az + 9)"*! = (a2 — @)™ |

Iy(n)lM—voo

71

The summation in (7.40) expressed in terms of w gives the following.
1
|24]

Comparing the two series (7.39) and (7.41), it is clear that all terms in the
former are included in the latter, except the last term when M is odd-valued. As
M becomes large the last term vanishes. It is possible to express one in terms of
the other by proceeding as follows. A simple factorization shows that

1y(n) 310 [l + fw?| + [w?] + ... + Jw™]] (7.41)

wPt' = aw’ + bw! (7.42)
which gives the following inequality.

[Pt + [BlwP™!] = |allw?| (7.43)

Evaluating (7.43) with p = 2,4,6,..., and adding each side of the inequality
produces the following,

[l0®] + fw®| + [w”] +...] + 18] [l + [w’] + fo®l +...] > a] [?] +
+]w®| + ..]
(7.44)
and, adding |w| to the left hand side of 7.44 gives 7.45.

(1 18]) [jwl + ol 4+ [fl -] > Jal [lw?] +] +]+]
(7.45)

Using this result, the series [lw|+|w?|+|w®|+. .] can be replaced by T-{I%]lb'luwz"{'
|w?| + |w8] + ...} in (7.41). The latter series itself can be expressed in terms of
lysz(n){mr—co- These substitutions give (7.46), a relationship between the bounds
for large M.

() Moo [Ial(1 + laf + [0])

1+ 5]
Substituting the definition of y given earlier yields the desired relationship.

] lyse(n)|m—oo (7.46)

O
The region in which SL reduces the bound includes all useful filters with

la] > 0.74 and is shown in Figure 7.1. The value of v is bounded by 4 >y 21
in the shaded region in Figure 7.1.

72

Theorem 2 For the distinct root case with scatiered lookahead, the asymptotic
bound (M — o) is at least as large as the bound for any finite period of the limit
cycle.

lysz{n) M=o = lysc(n)|m

Proof

Consider the bound for distinct roots with SL given by (7.30). For even-valued M
the bound simplifies to (7.47), where all terms in the summation are zero when
p is odd-valued. For odd-valued M the bound simplifies to (7.48).

1 M2 | (a2 +gP*? (a2 — g)P**
N)llmar = 5.7 -
lysz(n)] [2¢d] ngm 1—(az+ q)M 1—{a;— q)M
(7.47)
M-1 +2 +2
az +g)? (a2 — ¢)?
M) mexr =
lysL(n)| |4qa| pgﬂ I—(az+ ™ 1—(a;— g™
(—az + ¢ | (—as—@)"*
- , M=odd
LT (-0 I (aat |
(7.48)

Consider the bound for odd-valued M. The summation in (7.48) can be
simplified by considering separately the terms for odd-valued p and even-valued
p. This allows the first and last terms in (7.48) to be combined. The second and
third terms can also be combined to give the following equivalent expression.

P.(p), p=even

lysL(n)lmaz

bl

|4qa| »=0 | P,(p), p=odd
(7.49)

where P,(p) and P,(p) are given by the following.

P.(p) l Aoz +) Aaz— g
: L—(az+¢)*™ 1 —(ar—q)*M
2ag +)M 2(ap — g)PTMH
PO) = T (™ " 1= (e — ™

73

The powers in the numerators consist of the even numbers in the range 2 to
2M — 2. Thus the summation limit can be modified to give (7.50), a simpler

expression.

a 1 M -2 (a2 + q)p+2 (a2 — q)p+2
R p=Z I—(az+ ™M 1-(az—q)™™

Q,even

(7.50)

Compare (7.47) and (7.50), the bounds for even-valued M and odd-valued M.
Since M is an arbitrary value, M in (7.47) can be replaced by 2M. Thus (7.47)
and (7.50) are equivalent, and the proof applies to odd and even M.

Adopting the v and v notation for simplicity, (7.50) can be expanded to give

lyse(n)] 1 u? v? ud vt
se(n = — _
y mer [2ga| ||1 —u?™ 1 —ou?M 1 —utM 1 — oM
u® i Yt M L1+M
+ 1 — u2M] — p2M +...+ 1 — u2M] — 2™
UM o3+M y5+M oS+M
+ 1 — u2M] — M 1 — uzM [— 2M
uTHM THM M p2M

4.+

+

|

(7.51)

1—u?™ 1 —y2M 1—utM 1 — 2™

To produce a sum of infinite series, the denominator terms are replaced by

their equivalent infinite series.
1

1= = 14 u®™ M M (7.52)
: _1sz = 14 0™M 4ot M (7.53)
For convenience in representation, each | - | term in (7.51) is replaced by an
infinite series in terms of w using (7.52) and (7.53).
lysz(?)|maz = L?%ﬂ “wz 4 w?MAT M M2 L |

+ wt + w2M+4 + w4M+4 + M+ +... I

6
+lw +w2M+s+w4M+6+weM+6+___|

+ wM +w2M+2M + wiM+2IM +w6M+2M+ ”

(7.54)

74

TT T T[T T

1.5 2

U TR T N N W T A I R O |

-2 -15 -1

WERNEENENE RN < EEEN NN

rrrrjpriruri

[

Figure 7.1: Triangle of Stability and Region (shaded) of Complex Roots with
Reduced Limit Cycle Amplitude Bounds for SL

The asymptotic bound for the SL case is given by (7.39) which is written in
terms of w for comparison.

lysc(n)|M—o = F):;—all|w2[+|w4‘+|w6|+...] (7.55)

Comparing (7.54) and (7.55) it is clear that all terms in (7.54) are included in
(7.55) and vice versa. The difference is in taking the absolute values. Generalizing
the inequality |a| + |b] > |a + 8], it is obvious that |ysr(n)|M—s 2 lysz(n)lm-

Theorem 3 For the distinct root case without scattered lookahead, the asymp-
totic bound (i.e., as M — o0 is at least as large as the bound for any finite period
of the limit cycle.

[y ()| Mmoo 2 |y(n)Im
The proof is similar to Theorem 2.

a

Theorem 4 For all even-valued periods, scattered lookahead reduces the ampli-
tude bound of limit cycles by a factor of {a| in recursions with distinct roots.

lysL(n)|maz < ~|-}‘—||y(n)|,,mz for all even-valued M

73

Proof

Consider the amplitude bound for the SL case, given by (7.47), when M is even-
valued. Compare this finite series containing -“5”— terms with (7.23), the bound
without SL in the distinct root case. All terms in (7.47) are contained in (7.23)
which has double the number of terms as (7.47). Therefore, for all even-valued

M, [ys2(n)lmes < 13(n)lmas-

SL Reduces Amplitude Bound

Given that the period of the limit cycle is not predictable, the worst-case bound
must be used. Theorems 2 and 3 show that the asymptotic values are the worst-
case values of the bounds for any period. Theorem 1 establishes the relationship
between the amplitude bounds for the asymptotic values with and without SL.
Therefore, applying SL to a asymptotically stable second-order recursion with
laf > 0.74 and with distinct roots reduces the amplitude bound of the zero-input
limit cycle by 7. The shaded region in Figure 7.1 shows where SL reduces the
bound for useful filters.

The result implies that on-line modules with increased precision to contain
limit cycles in filters without SL can also be used with SL, without further in-
creasing precision to contain the limit cycle. The disadvantage in the conventional
case is that the implementations with and without SL are different, regardless of
limit cycle considerations.

7.4 Theoretical Bounds and Simulation Results

This section compares the amplitude bounds of limit cycles derived in the previous
section with simulation results. Limit cycle amplitude bounds for two filters,
with and without SL, are calculated and plotted for varying periods. Two on-line
modules, MA and composite, are used to obtain actual limit cycle amplitudes for
the same filters. As expected, the actual limit cycle amplitudes are within the
theoretical bounds. The effect of limit cycles on the frequency response of F1
and F2 is shown in Appendix B.

76

Comparison of Theoretical Bounds

For the distinct root case, the theoretical bound with SL, given by (7.30), is
compared against the theoretical bound without SL given by (7.23). The values
of the two expressions are computed for periods from 1 to 100 for two filters. The
filters are defined as follows.

F1 Filter with coefficients a = —1.09 and b = 0.90.

F2 Filter with coefficients a = —1.98 and b5 = 0.99.

The coefficients of F1 were chosen to correspond to an example in [LnTr73].
Coefficients of F2 were chosen to produce large limit cycles. The limit cycles
worsen as |a| and b approach 2 and -1 respectively.

Figure 7.2 shows the amplitude bound for F1 obtained from (7.23) and (7.30).
All theorems can be illustrated using the plot. The asymptotic nature of the
bound is evident as the period exceeds about 80. The asymptotic bound with SL
is 0.46 times the bound without SL, which is within Theorem 1’s prediction of
0.58. The asymptotic value is also the highest value of the bound as Theorems
2 and 3 suggest. For all even-valued periods, the bound for SL is lower than the
bound without SL as predicted by Theorem 4. The minimum ratio of the bounds
for the data set plotted is 0.49, which is within the 0.92 predicted by Theorem
4. Also note that for certain odd-valued periods, 61 and 63 for example, the
bound with SL is higher than the bound without SL. For design purposes, the
asymptotic value must be used since the period of the limit cycle is not known.

Figure 7.3 shows the amplitude bound for F'2 obtained from (7.23) and (7.30).
Since the coefficients are extreme, the limit cycle amplitudes are much higher
than for F1 and asymptotic behavior is not observed till the period exceeds
approximately 500. The ratio of the asymptotic values is 0.23, identical to the
predicted ratio.

Theoretical Bounds and Simulation Results

The theoretical asymptotic bounds given by (7.23) and (7.30) are compared in
Table 7.1 to the normalized limit cycle amplitudes obtained by simulating F1 and
F2, using four on-line implementations. The implementations are based on the
MA and composite on-line modules. Each module is used in two configurations,
with and without SL. Both on-line modules are radix-4, with digit sets of [-2,2]
for the MA module and [-3,3] for the composite module.

77

As expected, the simulation results are within the bounds. The observed limit
cycles amplitudes are not always symmetric in terms of positive and negative
amplitudes. For example, the MA module filter for F1 has a positive amplitude
of 10 and a negative amplitude of 8. In some cases limit cycles are composed
of more than one frequency. For example, the composite/SL filter for F2 has
two dominant frequencies, a short period of 2 and a longer period of about 50,
while the composite filter for F2 oscillates with a perfectly symmetrical period
of 2. The discrepancy between the simulated values and the theoretical values is
much larger for the sharper filter F2. The discrepancy may be reduced by using a
tighter bound than Long and Trick’s. Theoretical bounds must be developed for
the SL case using the tighter bound. For example, the bound given in [UnAb75]
is particularly suited for sharp filters. The frequency response of F1 and F2 is
shown in Appendix B.

Table 7.1: Limit Cycle Amplitudes: Theoretical Bounds and Simulation Results

Filter On-Line Amplitude from | Theoretical
Module Simulation Bound

F1 MA 10 15.5
MA/SL 4 7.1

Composite 6 7.8
Composite/SL 2 3.6

F2 MA 99 1272
MA/SL 54 321

Composite 99 636
Composite/SL 26 161

8

20

18
16 00 00000 0000
o ©4 .0 o &%%O%Q&&PW
14 Orre-22
o YOoodoVl
A o o 0" without SL
r}l)l 12 T o ©
1 o 0°
i 10 O“U
t
e L0 D
d 8 59 5
© I it e L el
6 Ok** * * _k ** *k ¥
*0 0# ** * With SL
T
O¢ *
2 155
ﬁ*
0 Il|”II”””””HII|l”lllll”“|Illllllllllllllll“””l|||””””lllll’"”Illlllllllllllll””]
1 20 40 60 80 100
Period

Figure 7.2: Effect of SL on Limit Cycle Amplitude Bounds for F1 (¢ = —1.09,
b= -0.9)

79

1400

1200

1000

800

600

400

200

o without SL
* with SL o o 0®

Oc :w # #***
OOOOOOOOOC‘DOWDOO@ i H o
(o) *****’&; “‘**********

[a) *
0 —EME************

1 20 40 60 80 100
Period

Figure 7.3: Effect of SL on Limit Cycle Amplitude Bounds for F2 (a = —1.98,
b= —-0.99)

80

CHAPTER 8

Dynamic Scaling Scheme for Eliminating
Oscillations

The direct form filter structure, unmatched in speed, suffers from inherent non-
linear oscillations [Sam88). An implementation of the structure that eliminates
such oscillations without compromising speed is highly desirable, especially when
the added cost is small. An on-line multiply-add (MA) module that eliminates
all oscillations by extending working precision is described in [Bra89a, Bra89b).
The method is simple, but requires a working precision about 2.5 times the de-
sired precision. Unlike in conventional arithmetic, the clock period in on-line
arithmetic is independent of the precision. Thus, this solution preserves the
maximum sampling rate of the implementation. However, the increase in cost is
significant.

This chapter describes the Dynamic Scaling (DS) scheme, a far more at-
tractive solution than simple extension of precision. It is based on an internal
floating point representation, adapted to the recurrence expressed by (1.2), while
the 1/O remains fixed point. The DS scheme is similar to the Block Floating
Point scheme for conventional arithmetic used to improve the signal/noise ratio
[Opp70]. However, the DS scheme is proposed primarily to eliminate oscilla-
tions in a second-order direct form section in a cost effective manner. Section
8.1 describes the basis for the DS scheme, Section 8.2 describes the two basic
scaling operations, Section 8.3 describes the DS algorithm, Section 8.4 describes
the implementation, and Section 8.5 discusses cost and performance results for a
second-order implementation based on two MA modules shown in Figure 4.2.

8.1 Basis for DS Scheme

The DS scheme can be described briefly as follows. With a suitable extension of
working precision, the output y(n) can be guaranteed to have a zero value for the
most significant digit during zero-input limit cycle oscillations. This allows the
output to be left-shifted by 1 digit for the next iteration provided an exponent
is introduced to track the shifts. By induction, the shifting can be done until

81

the exponent is decremented to the point at which the output is zero for a given
precision. Overflow of y(n) is accomodated by incrementing the exponent and
right-shifting the output. Thus, for a given precision, all overflow oscillations
and limit-cycle oscillations can be eliminated from the output. Previous results
necessary to derive the working precision required for the DS scheme are reviewed
next.

Previous Results

The method of extending working precision to eliminate oscillations is described
by Brackert [Bra89b]. He derives the number of bits required to eliminate overflow
oscillations and limit cycle oscillations. The same notation is used here and is
specified next.

m Number of fraction bits used to represent coefficients
bp Number of desired output bits
br, Number of additional least significant bits required to

eliminate limit cycles from the desired output
bo Number of additional most significant bits required to
eliminate overflow oscillations from the desired output
bw Working precision in bits
E Maximum normalized quantization error due to multiplication
LC ez Maximum limit cycle amplitude

Using the limit cycle amplitude bound derived in [UnAb75], Brackert shows
that the limit cycle amplitude bound is given by 8.1.

LCpez = 2E (f) o1-5m (8.1)

T

Using (8.1) and E = 0.5, due to rounding, the following equations were derived
[Bra89b].

8E
by = 1+ [1.5m + logg(—w-)] (8.2)
bw = bo+bp+bL

Note that equations (8.1), (8.2) and (8.3) are for second-order functions with
an FIR term (numerator of the transfer function) given by u(n) = z(n). The
original equations, (6.3), (6.5) and (6.6) in [Bra89b], are for second-order func-
tions with an FIR term given by u(n) = z(n) + dz(r — 1) + ez(n — 2). The
maximum magnitude of the latter FIR term is 4. Therefore, the modifications
that produce (8.2), (8.3), and (8.4) from the original equations are: reduction of
LC,.az by a factor of 4, and subtracting 2 from by, and bo. Equation (8.3) as-
sumes fractional inputs. Equation (8.4) gives the total number of bits required to
eliminate oscillations by simple increase of working precision as illustrated below.

bo b b
YY .- YYYY .. YYYY . - YY
bw

Precision Required For DS

The dynamic scaling scheme requires the leading digit to be zero for worst-case
zero-input limit cycle oscillations. The requirement, for radix-4 digits, is illus-
trated below, where bs is the minimum necessary working precision in bits for

the DS scheme.

Therefore,
bs = br+2 (8.5)

and the number of bits needed in addition to bp, the desired number of I/O bits,
is b, + 2 — bp. Given m, bs can be calculated from (8.2) and (8.5). The number
of bits required for the DS scheme and the simple precision extension scheme for
various values of m is shown in Table 8.1. The number of bits required for the
precision extension scheme is calculated assuming bp = m.

83

The exponent used in the DS scheme, E,, must be large enough to accomodate
overflow. The range of E,, sufficient to accomodate overflow and eliminate limit
cycles from the output, is given by (8.6) and (8.7) for radix-4 digits. Thus the
DS scheme is capable of guaranteeing an output free of overflow and limit cycle
oscillations.

Emez = [329] (8.6)
e = -[%] o

The working precision for the precision extension scheme is about 2.5 times
that required for the DS scheme as Table 8.1 shows. Cost savings result, as
shown later in this chapter, because the cost of introducing an exponent into the
computation is less than that for precision extension according to (8.4).

Table 8.1: Precision (bits) Required for DS and Precision Extension Schemes

Coefl. frac. bits (m) 8 1101214116 |18 2022 | 24 | 26
Bits for DS (bs) 16119 (2212528313437 40 | 43
Bits for Prec. Ext. (bw) {36 | 44 | 52 | GO | 68 | 76 | 84 | 92 | 100 | 108

8.2 Scaling Operations

The dynamic scaling algorithm is based on two scaling operations, aedvance and
retard. The advance operation performs a 1-digit left shift of the mantissa and
also decrements the exponent. The retard operation performs an n-digit right
shift and increments the exponent by n. Table 8.2 illustrates these operations
performed on operand y with digits Y.

Figure 8.1 shows the data path of the scaler for executing the scaling opera-
tions on an on-line input of 8 digits. The scaler operates as follows. It is assumed
that the most significant digit, Yo, is at the digit input in clock-0. If n = 0 and
ADV = 0 the digits take the normal path through the first digit register (at
left of Figure 8.1), via the 4-input multiplexer and the 2-input multiplexer, and

84

to the output digit register. The delay for the normal path is two clocks. If
ADV = 1, the digit stream is advanced, because the delay through the scaler is
reduced by 1. The retard operation can be described by considering the cases
n<4,4<n <8, and n =8, where n is the number of digits retarded. For
n < 4, selecting inputs to the 4-input multiplexer based on the two least signif-
icant bits of n accomplishes the required delay. For example, if n = 3 the digit
input selected is the output of the last digit register in the cascade of four. The
controller that controls the scaler asserts Z = 0 for clocks 1,2 and 3, to insert
three zero digits. The controller also asserts R = 0.

Now consider the case 4 < n < 8. Rather than extend the structure to
a cascade of 8 digit registers with an 8-input multiplexer, a cascade of 4 digit
registers is used with feedback as shown. A cascade of 4 digit registers is sufficient
because the 4 LSDs can be discarded when n > 4. Immediately after clock-4, the
4 MSDs remain stored in the digit registers. The required delay can be achieved
by asserting R = 1 in clock-4. Thus the most significant digits are fedback and
selected similar to the n < 4 case. To introduce n leading zero digits, Z = 0 from

clock-0 to clock-n. For n =8, Z = 0 is asserted for all clocks.

Output Digit
Register

Digit

Input R ADV CLD

Figure 8.1: Scaler Data Path for §-digit On-line Operands

85

Table 8.2: Scaling Operations: Advance and Retard

Operation Input Qutput

mantissa exponent mantissa exponent
Advance | 0Y Y --- Y Y E, YY . --YYO0 | E, -1
Retard 2 YY ...Y E, 00Y --- Y E,+2

8.3 The Dynamic Scaling Algorithm

The DS algorithm is a low-cost floating point scheme designed for the on-line
computation of the recurrence specified by (1.2). The DS algorithm is based
on the scaling operations defined in the previous section. The variables used in
specifying the algorithm are introduced next.

U

¥, th, Y2
Eu, Ey
E,

ADV

&

Y1z

Y2z

normalized u(n)

y(n), y(n — 1), y(n — 2)

Exponent of u, Exponent of y; and 2

Exponent of ¥ and new exponent of y;

ADV =1 signals advance operation

Magnitude of shift, in digits, for retard on u
Magnitude of shift, in digits, for retard on y; and y;
Magnitude of shift, in digits, caused by overflow in y,
from previous computation; R, ¢ {0,2}

Y1z =1 if leading fraction digit of y; is 0

Y2z =1 if leading fraction digit of y, is 0

386

DS Algorithm

Begin
Step 0: Inmitially B, =0,y =0,y2=0
Step 1: Compute retard value for y; and ¥,
R, = maz(E, — Ey,R,); Ry >0
Step 2: Find ADV (boolean value)
ADV = (R, = 0)(Y12)(Y22)(Ey < E)(Ey > Enin)
Step 3: Compute retard value for u
' E,—-E,—-1 ifADV =1
R,={ E,—-E,+R, ifADV=0and R, 2 E, - E,

0 otherwise

\

Step 4: Compute new exponent
E =E,+ Ry— ADV
Step 5: Retard/Advance u, y1, y2
Step 6: Execute on-line fixed point computation
y=u-+ay + by
Step 7: E, « E|
Step 8: Go to Step 1
End
Step 1 of the DS algorithm indicates the two conditions that cause y; and y2
to be retarded. One condition is the increase of F, relative to Ey, and the other
is overflow of y, the result of the previous iteration. The conditions may occur
simultaneously, requiring the maximum retard value to be chosen. Step 2 specifies

the conditions for advance: i.e., no overflow, leading fraction digits of u, y and
y, must be zero, and the exponent must be greater than the minimum value.

87

As Step 3 indicates, the retard value of u is different because u is normalized.
Normalization is convenient because u needs no advance subsequently. Also,
advance by more than 1 adds to complexity and delay of the DS unit. Step 5
scales the on-line operands which are input to the on-line fixed point computation
in Step 6.

8.4 Implementation of DS scheme

Figure 8.2 shows the block diagram of the DS scheme. Three scalers and a single
exponent unit are connected to a module that computes the on-line fixed point
recurrence ¥y = u + ayy + byz. The block diagram of the scaler was discussed
in Section 8.2. The scalers are slightly different. The scaler for u performs only
retard operations since u is already normalized. The scalers for y; and y, produce
Y1z and Y2z, indicating whether the leading fraction digits are zero or not. The
scaler for y, also detects overflow and signals the condition with R,. Overflow
can affect one or two integer digits. In either case, the retard value is 2, allowing
R, to be represented by one bit.

The exponent unit computes the retard values and advance signal as shown
by the graph in Figure 8.3. Signal timing is shown in Figure 8.4. For 8-digit I/0,
the computation cycle consists of 12 clocks, C0,C1,...,C11. The exponent unit
begins computation in C10, when inputs Ey, F,, R,, Y1z and Y2z are gated
by GATE. Since ADV, R, and R, have to be stable in C1, the first subtractor
shown in Figure 8.3 uses carry select for speed-up. Computation of E is not
critical because the value is not needed for the current iteration. In C0, the most
significant fraction digits are available at the inputs of the scalers shown in Figure
8.2. Since the scalers have a delay of 2 clocks, the scaled outputs are available
in C2. The signal CLD clears the digit registers of the scalers. CLZ clears the
flip-flop that outputs Z in the scalers. The delays shown in Figure 8.2 are for
fixed point computation by cascaded MA modules.

8.5 Performance and Cost

This section discusses the sampling rate and cost of the DS scheme implemented
in LCA10000 technology. The implementation is compared to the precision ex-
tension method for eliminating oscillations. Two examples are used to illustrate
the elimination of limit cycles. Fixed point computation is performed by two
cascaded MA modules with r = 4 and p = 2.

88

DYNAMIC SCALING UNIT

u(n) '
—g NORMALIZER

SCALER

A oA

CLD CLZ

SCALER

Qy,

Ao

CLD CILZ

|

|

I

|
Y2z |1
— |
|

|

SCALER

QE>L£|_>
| FIXED-

| TATION
]

Ao

CLD CLZ

POINT —-
COMPU-

EXPONENT
UNIT

— Radix-4 Digit Path

Figure 8.2: Block Diagram of DS Implementation

Rate and Cost of DS Implementation

Table 8.3 describes the clock rates of the components of the DS implementation
for 1/O words of 8 radix-4 digits (16-bits) with Epnin = —15 and Epe: = 15. A
large range for the exponent was chosen to show that the clock rate of the DS
Unit is not critical even for large values of m and bp. As the table shows, the
MA modules are the slowest components. The clock rate of the whole design is
slower because the wirelength delays, based on the size of the whole design, are
larger. The gate count of 4437 for the DS scheme includes the digit delays shown
in Figure 8.2.

Table 8.3: Performance/Cost for DS Scheme (16-bit)

Component Gates | tux (ns)
DS Unit 1179 9.4
Normalizer 426 <9.4

Cascaded MAs 2424 10
Whole DS Scheme | 4437 11.2

Rate/Cost Comparison of Schemes

To compare the DS scheme requires finding the working precision bw of the
equivalent fixed point scheme. Table 8.1 shows that for m = 8 the required
precision for the DS scheme is 16 bits. Selecting bp = 8, and using equations
(8.2), (8.3) and (8.4), the working precision for the fixed point scheme described
in [Bra89b] is given by by = 14 4+ 8 4+ 14 = 36. The exponent range required
for the DS scheme is —4 < E, < 7. Thus the DS scheme must be compared
to a fixed point scheme with 36-bit working precision. The two implementations
are compared in Table 8.4. The clock rates are approximately equal because the
clock rates of on-line implementations do not change with precision. The fixed
point scheme is 16% larger than the DS scheme. Yet, the rate/gate ratio for the
DS scheme is twice that for the fixed point scheme.

The cost of a maximum rate word module array with DS can be estimated as
follows. First consider the DS scheme for 16-bit I/O. The fixed point computation
requires 4 word modules in an array similar to Figure 5.3. Only one DS unit is

90

required. The DS unit is placed in front of one word module and overflow in the
other three word modules is accomodated by a 3-digit extension of precision. The
normalizer is required to perform block normalization of 4 independent inputs
u(n) through u(n + 3). Block normalization produces 4 on-line inputs with a
single exponent E,. Block normalization is equivalent to performing 4 separate
normalization operations, selecting the maximum exponent as E., and retarding
the other on-line inputs appropriately. The cost of the array with DS is estimated
as follows.

Block Normalizer ~1,000
8 MA modules (22-bit I/0) 11,856
DS Unit 1,179

Array with DS ~14,000

With fixed point precision extension, each word module requires a precision
of 36 bits. This requires 6 word modules, or, 12 MA modules. The number of
gates required is 28,260 (= 6 x 4710). Thus, the fixed point scheme is twice
as large as the DS scheme for maximum rate arrays. The theoretical maximum
rate of the DS scheme may be slightly less than the rate of the fixed point array,
due to the 2-clock latency of the DS unit. The maximum rate for an array
without DS is given by Maz Rate = %-%-. With DS, the maximum rate is given

el 5imp
by MazRateps = ;c—lrs'.l;i%_q;z—), where Npg = [6"“ zitd“] The additional
Ds

precision required to absorb overflow in the word modules without a DS unit is
dsys. For the example considered, d=8, doys=3,6 =2, and éimp = 4. Thus
MazRateps is 88% of Maz Rate, assuming the clock period is identical for both

Table 8.4: DS Scheme vs. Fixed Point Scheme

Scheme Gates Rate teik Rate/Gate
(Msamples/s) | (ns) | (Msamples/s/gate)

DS Scheme | 4437 7.44 11.2ns 0.00167

Fixed Point | 5130 4.13 11.0ns 0.00081

91

arrays. Overall, the array with DS has a rate/cost ratio almost twice that of the
fixed point array.

Comparison of Limit Cycles

Both the DS scheme and the fixed point precision extension scheme eliminate
limit cycles from the desired output (without affecting the sampling rate). This is
illustrated in Figures 8.5 and 8.6, for two 2-pole filters F1 and F2. The DS scheme
is compared to a 22-bit fixed point scheme. The 22-bit scheme is equivalent to
the 36-bit scheme without the 14-bit precision extension for overflow oscillations.
A 16-bit fixed point scheme is also included for reference. The plots are obtained
by plotting log,(amplitude) against the sample number of the output in response
to an initial impulse of 0.0625. As the plots show, the 16-bit fixed point scheme
suffers from zero input limit cycles. Also, the response of the DS scheme dies out a
little earlier than the 22-bit fixed point scheme. Thus the scheme performs slightly
better than the fixed point scheme. This is expected since the full precision of
the DS scheme is used until the exponent is reduced to a minimum. In contrast,
the number of non-zero digits reduces with time in the fixed point scheme.

Conclusion

The Dynamic Scaling scheme eliminates limit cycles oscillations and overflow
oscillations in on-line implementations of direct form structures. The two main
components of the scheme are the DS unit and the module for performing fixed
point computations. For a DS scheme using one word module, the sampling rate
is about 80% higher than for the fixed point precision extension alternative. In
addition, the DS scheme is about 13% smaller. For maximum rate arrays, the DS
scheme is slightly slower but only half the size of the alternative. In both cases
rate/cost ratio is doubled. In addition to eliminating oscillations, the DS scheme
eliminates the need for scaling between second-order sections in cascade.

92

u y
Ey> -15 Sig,n E,- Ey, 5
R,=0| Y1z Y2z[7
BARRY R,
(anDp) COMPAR. INVERT
ADV + Ey- Ey>= R, Ey- E,-115
L

Figure 8.3: Exponent Unit Computations

93

o c10 ci1 Co c1 2
ot A A AA
wTTTN T T
czy N 3 A i
GATE._| / N :
E,, £, A TTTTINTX > T®
R, T ITHT T T TS 5
1722 T T F T FF T TR B} (T o
E———
Ry, Ry, i
Yy Y2D(0 JAOVE Digit; XOVF Digité AMsD i X E A
Qu,Qy,,Qb;:X LSD X 0 X 0 X 0 X 0 gXMSD
’ E E i 5 | i

[]
SN Unstable

Figure 8.4: Timing for DS Scheme

94

o Dynamic Scaling

é ~ %fg* o
QR

Time

Figure 8.5: Amplitude Response for F1 (a = —1.09, b = —0.9), amplitude=
loga(16-bit output)

o Dynamic Scaling
o%z * 22-bit fixed-point
* 2 — 16-bit fixed point

ALt m—gE

mmmvmmmmﬂmﬂqﬁﬂmﬂwm
1400 1600 1800 2060

Time

Figure 8.6: Amplitude Response for F2 (¢ = —1.98, b = —0.99), amplitude=
log,(16-bit output)

95

CHAPTER 9

Evaluation

The previous chapters discussed on-line implementations that compute the second-
order recursions given by (1.1) or (1.2). Three types of basic modules were an-
alyzed: simple schemes composed of separate on-line units, composite modules,
and schemes based on MA modules. Using these basic modules, word module ar-
rays and digit stage arrays were developed to achieve maximum sampling rate. In
Chapter 6, two lookahead transformations were applied to achieve higher rates
with arrays derived from the same basic modules. The performance and cost
of these on-line arrays were compared to a conventional implementation with 2
levels of SL. Chapter 8 described the DS scheme, a cost-effective method of elim-
inating non-linear oscillations in on-line designs. The scheme uses the basic word
modules without modification.

The first section of this chapter evaluates the most cost-effective implementa-
tions, including lookahead schemes. Section 9.2 reviews previous implementations
described in recent publications, and Section 9.3 reviews solutions to the problem
of non-linear oscillations.

9.1 Evaluation of Implementations

The basic word modules were developed by choosing the radix and digit set that
minimized the on-line delay of the digit recurrence algorithm. For LCA10000
technology [LSI87], the radix-4 designs with § = 2 were shown to provide the
highest performance for composite modules and MA modules. The implemen-
tations have two or three stages with §;mp, = 4. Word module arrays and digit
stage arrays were derived from basic composite modules and MA modules. To
facilitate discussion, the arrays are named with acronyms which are deciphered
as follows:

96

Array name: < basic.module > [< array.type >< p >]/[< SL level >)

£
Conv conventional

MA on-line multiply-add module
basic.module 1

$2C on-line 2-stage composite module

L S3C on-line 3-stage composite module

WM word module array
array-type

DS digit stage array

7 2o0r3 digit set of basic module is {—p, ..., o}

SL_level SL1 or SL2 Level of SL used if any

For example, MAWM?2 is an on-line word module array composed of MA
modules with digit set of {=2,...,2}. Figure 9.1 shows the performance and
cost of several arrays. The graph plots the maximum rate against the number of
gates required per array for d = 8. The bottom of the plot shows three arrays,
S2CWM3, S3CWM3 and MAWM?2, that compute expression (1.1) without looka-
head. The array with the lowest rate and fewest gates is S2CWM3, an array of
three composite word modules with p = 3. The 3-stage composite word module
is used in S3CWMS3 to achieve a faster rate at lower cost than S2CWM3. The
fastest and most modular array is MAWM2, composed of 9 MA word modules
with p = 2.

Scattered lookahead, applied to the transfer function corresponding to (1.1),
eliminates the dependency of y(r) on y(n — 1) and doubles the sampling rate.
The IIR part of the transformed expression, given by (1.2), is computed by an
array of word modules or digit stages. The FIR part of the expression, u(n),
can be computed easily, using an on-line or conventional approach, and is not
discussed here. The gate count of composite modules computing expression (1.2)
is estimated from the gate count of the corresponding composite module com-
puting (1.1). Clock rates of corresponding composite modules are the same since
the critical paths are identical. Figure 9.1 shows three arrays, S3CWM3/SL1,
S3CDS3/SL1 and MAWM2/SL1, computing the IIR part for one level of scat-

97

tered lookahead. S3CWM3/SL1 is an array of 3-stage composite word modules
with p = 3. S3CDS3/SL1 is the corresponding digit stage array with the same
rate but requiring fewer gates than S3CWM3/SL1. MAWM2/SL1 is a word mod-
ule array composed of 12 MA word modules with p = 2. It is the fastest and
most modular of the arrays for one level of scattered lookahead.

For two levels of scattered lookahead, digit stage arrays are more cost effective
than word module arrays. Two on-line schemes, MADS2/SL2 and S3CDS3/5L2,
and one conventional implementation, Conv/SL2, are shown in Figure 9.1. Array
S3CDS3/SL2 is the same array as S3CDS3/SL1. The higher rate is obtained by
doubling the utilization of the array. MADS2/SL2 is a cascade of two digit
stage arrays based on the MA module with p = 2. Conv/SL2 is a conventional
implementation for two levels of scattered lookahead. Radix-4 recoding is used
for the multiplier. The design has the same precision of d = 8 as the on-line
schemes.

The DS scheme eliminates all non-linear oscillations without compromising
the sampling rate, except in a maximum rate array of word modules. In such an
array, the sampling rate achievable is slightly less than maximum. The advantage
of the DS scheme is that the cost of realizing a given sampling rate is about half
that of using Brackert’s precision extension scheme [Bra89b].

9.2 Previous Implementations

Several implementations of [IR filters have been reported in recent papers. This
section compares the performance and cost of these implementations which fall
into three categories. The first category consists of schemes using conventional
multiply-add units (LSB first, bit-parallel). The second category consists of sys-
tolic arrays using signed-digit representations to allow most-significant-digit-first
operation. Input and output words in such arrays are in skew-parallel form. The
third category is the on-line or residual recurrence schemes investigated in this
dissertation, and in [Bra89a] and [Bra89b).

The implementations referred here give the number of transistors required as
the cost measure. To compare these designs to those developed in this disserta-
tion, critical paths and sampling periods are expressed in terms of gate delays,
and the number of gates are converted to the equivalent number of transistors.
Based on [LSI86], the number of transistors to a gate is taken to be four (i.e.,
two P transistors and two N transistors are equivalent to one gate). The criteria
for comparing designs were described in Section 3.4.

98

120

Rate
Msamples/sec.
. *
MADS2/SL2
100 -
Conv/SL2
- * K
$3CDS3/SL2
80 ~
60 MAWM?2/SL1
*
i $3CDS3/SL1
* *
S3CWM3/SL1
40 -
| o
o MAWM2
20 o S3CWM3
S2CWM3
0 1 T T | T T T T T T T T T T T]
0 2K 4K 6K 8K 10K 12K 14K 16K
Number of Gates
Key

S2: 2-stage, 53: 3-stage
* Equation (1.1), ©® Equation (1.2)

Figure 9.1: Comparison of On-line and Conventional Implementations (d=8)

99

Conventional Schemes

Conventional designs use multiply-add units which compute from LSB to MSB
with carry-propagation. The inputs and outputs are in bit-parallel form. The
main disadvantages of such designs are:

¢ Slower than on-line or MSDF designs, especially with increasing precision.
In conventional designs, the recursive part of the computation cannot be
pipelined unless lookahead is used. With one level of scattered lookahead
the critical multiplication can be pipelined into two stages, and with two
levels of scattered lookahead four stages can be used [PrMs87al.

¢ Techniques for limiting nonlinear oscillations introduce delays in the recur-
sive part of the loop [MtLw81].

e Speed reduces as word precision increases.

Lookahead techniques increase the rate of conventional and on-line implemen-
tations. In general, lookahead techniques introduce the possibility of imperfect
pole-zero cancellation in the passband of the filter. No evidence of this was found
in the case of two filters examined in Appendix B. Nevertheless, the frequency
response of a filter using SL can differ significantly from the ideal in some cases

[BIChY1].

A high speed implementation of a fourth-order filter, composed of two cas-
caded second-order sections, using two levels of scattered lookahead is presented
in [PrHt88]. The details of their implementation are given in Table 9.1. The im-
plementation illustrates the scattered lookahead and decomposition techniques
proposed by Parhi et al. [PrMs87al.

Table 9.1: Parhi and Hatamian Design

Sampling | Transistors | Technology | Coefficient | Precision
Rate Range (bits)
100MHz | 77,600 | 0.9z (AT&T)| [-4,4] 10

This is the fastest conventional design reported and consists of 17 multiply-add
units. The multiply-add units used in this design are based on regular carry-save

100

arrays with carry-ripple addition. No recoding is used. The design is sensitive to
increase in word length because of carry ripple. The main purpose of the design is
to demonstrate the high-speed achieved by SL. Non-linear effects due to scattered
lookahead are not considered.

The conventional design described in this dissertation cannot be compared
with the Parhi and Hatamian design due to differences in technology and preci-
sion. The conventional design presented in Appendix A reduces the product into
carry-save form using trees of full adders. The carry-save product is recoded into
a radix-4 signed-digit representation, before being used as the multiplier in the
next iteration. Since recoding takes constant time, and carry propagation time
increases with precision, the speed of this multiplier is less sensitive to increase
in word length. The disadvantages are the irregular nature of the reduction trees
and the larger number of gates.

MSDF and On-line Arrays

Most-significant-digit-first (MSDF) and on-line arrays use signed-digit arithmetic
in combination with regular carry-save representations. First-order radix-2 IR
filters with MSDF systolic array architecture are described by Knowles, McCanny,
McNally and Woods [KnMc88], [KnMc90}. A simple extension of this scheme to
radix-4 is described in [LFH90]. However, first-order sections are not useful in
practice [Bra89b]. The development of the MSDF systolic arrays in [KnMc88],
[KnMc89], [KnMc90], [LFH90] and [KnMc91] is not as systematic as the MSDF
and on-line arithmetic approaches described in {ErLn89]. The latest implementa-
tion by McNally et al. is a 40MSample/sec second-order IIR filter chip using the
MSDPF systolic array architecture developed for the first-order filters [KnMc91].
The features of this architecture are described next.

The systolic array designs have the output, y(r), and the recursive input,
y(n — 1), in skew-parallel form, where each digit is delayed by one clock and
produced or consumed MSD first. These designs are very similar to the digit-
stage scheme presented in {ErLn89]. The difference is that the FIR term is fed
as an initial value in bit-parallel form in the MSDF systolic arrays. This requires
deskewing and converting the output to 2’s complement representation to conform
to the input form required for the next section in the cascade. In the digit stage
schemes presented in this dissertation, the FIR term is in on-line form. Table 9.2
summarizes the filter described in [KnMc91].

The filter is packaged in a 84-pin chip and represents a complete design with
scan paths for testability. The 1-clock latency (6imp = 1) of this design is achieved

101

by using 1 level of SL and combining three digit stages into one. Thus the radix-
2 signed digits are produced in groups of three. The design includes saturation
logic to handle overflows and a scaling constant for each second-order section.
The saturation logic mitigates the effects of overflow by clamping the output to
+1. The hardware overhead is small and the critical path is extended by two
gate delays [MnMc90]. Limited scaling is achieved by shifting the FIR input of
each second-order section by 0, 1, 2 or 3 digits, providing scale factors of 1, 0.5,
0.25 and 0.125 [KnMc91]. Further scaling may reduce the S/N ratio.

The DS scheme by comparison, provides a complete solution to the limit cycle
and overflow problems, while improving the S/N ratio with dynamic scaling. Of
course, the hardware cost is higher than for implementing saturation logic and
limited scaling. In addition, the DS scheme does not require changes in the
fixed-point modules as the MSDF array does.

Table 9.2: Design by McNally et al.

Sampling | Transistors | Technology | Digit | Coefficient | Precision
Rate Set Range (bits)
40MHz 60,000 1.5u [-1,1] 2 12

On-Line MA Modules

A 3-stage design of an on-line MA module is described by Brackert in {Bra89a]
and [Bra89b]. The design described in this dissertation has two stages. Using
four on-line MA modules, identical in design to Brackert’s, a second-order direct-
form II filter with programmable coefficients was implemented by Cha [Cha91].
The first two rows of Table 9.3 summarize the implementations by Brackert and
Cha respectively. The third row summarizes the implementation described in
Chapter 4. The higher rate of the design described in Chapter 4 is due to the
fewer number of stages and the faster technology. Timing models used by the
simulators may also differ.

102

Table 9.3: Comparison of On-Line MA Modules

Sampling | Transistors | Technology | Digit | Coeff. Precision
Rate Set | Range | (bits)
7.14MHz | 4778 15u (VID) | [22]| 2 16
5.88MHz - 21 (MOSIS) | [-2,2] 2 -
27.TMHz 4732 1.5p (LST) | [-2,2] 2 16
32.7MHz | 4732 0.72 (LSD) | [-22]| 2 16

The last row of Table 9.3 shows the performance and cost of a MA module with
16-bit I/O implemented in a LCA200K® gate array [FnEr92b]. The architecture
of the MA module is identical to that described in Chapter 4. The timing shown
in Table 9.3 for LCA200K is for a worst-case commercial environment. With 2
levels of SL, this MA module can be used to achieve a maximum sampling rate
of 128MSamples/sec.

To compare the designs developed here with others implemented in different
technologies, critical paths and sampling periods are expressed in terms of gate
delays. For the MA module described here, Simp = 4 and the critical path is
approximately 12 gate delays. Thus the sampling period of this MA module
without SL is 48. The radix-4 on-line MA module described Brackert et al. is
much slower: &;,, = 5 and the critical path is approximately 14 gate delays
[Bra89a). The main reason for the difference is that their design has one more
stage than the MA module described here. For the McNally et al. design, the
critical path is 28 gate delays and the latency is two clocks without SL. Thus
the sampling period is 56 gate delays, slightly greater than that for the module
described here.

Conventional Designs

The conventional design described in Appendix A can be compared to the im-
plementation by Parhi and Hatamian [PrHt88]. Their 100MHz design demon-
strated the scattered lookahead method described in [PrMs87a]. The design is a
fourth-order filter, with 2 levels of SL for 10-bit 1/O and 15-bit working precision,

1LCA200K is 0.7 HCMOS gate array [LSI192].

103

implemented in a 0.9x custom CMOS technology. The critical path is about 24
gate delays. The multiplication in their design uses a ripple carry adder in the
critical loop. This produces a more regular design, compromising speed at longer
wordlengths. The conventional design described in Appendix A allows 16-bit I/O
words, uses radix-4 recoding and eliminates the CPA from the critical loop. It
has a critical path of about 16 gate delays, two thirds of the Parhi and Hatamian
implementation.

9.3 Non-Linear Oscillations: Bounds and Solutions

Chapter 7 derives new absolute bounds for zero-input limit cycle oscillations that
occur in recursions transformed by SL. Four theorems are proven to show that the
worst-case limit cycle amplitude decreases for filters using one level of SL with
coefficients in the region shown in Figure 7.1. The coefficients of sharp filters
would be well within this region. Thus, a filter that eliminates limit cycles from
its output without SL will do so with SL as well.

The dynamic scaling scheme described in Chapter 8 eliminates all non-linear
oscillations from its output. The scheme is twice as cost-effective as Brackert’s
precision extension scheme. The DS scheme provides the high sampling rate of
the direct form structure without its inherent oscillations. In addition, the DS
scheme improves the signal/noise ratio because it performs automatic scaling
similar to a floating point scheme.

104

CHAPTER 10

Conclusion and Further Research

This chapter concludes the dissertation, summarizing the main contributions and
suggesting ways of extending this research. The research analyzes VLSI imple-
mentations for computing second-order recursions using on-line arithmetic.

The main contributions of this dissertation are:

1. Analysis of the design space of on-line implementations, especially for gate
arrays, for computing second-order linear recursions. The best designs were
implemented as basic modules.

2. Design of maximum rate arrays using basic modules.

3. A fast conventional implementation for second-order linear recursions with

SL.

4. Derivation of absolute bounds for zero-input limit cycles in recursions trans-
formed by SL.

5. Design and implementation of the DS scheme: a new algorithm for cost-
effective elimination of non-linear oscillations and improving S/N ratio.

As a result of 1 and 2 above, the appropriate on-line architecture for a given
sampling rate is known. Also known, due to 3, is the cross-over word length,
i.e., the word length at which on-line implementations become faster than con-
ventional ones. The results depend on the technology. The results and their
applicability to other technologies is discussed later.

Optimal designs were obtained by selecting radix and digit set that maximized
sampling rate for implementations in LCA10000 technology [LSI87]. An I/O word
length of 16 bits was chosen for comparison with a conventional implementation.
The architecture that provides the fastest rates for this technology has a 2-stage
or 3-stage pipeline with 6impy = 4, producing one sample every four clocks.

The following conclusions may be drawn from the analysis of the designs and
implementations in LCA technology.

105

1. With no lookahead, word module arrays provide the same performance at
a lower cost, compared to digit stage arrays. With one level of scattered
lookahead, digit stage arrays become as cost-efficient as word module arrays.
With two levels of lookahead, digit-stage arrays are more cost-effective.

2. The arrays based on MA modules with p = 2 provide the highest perfor-
mance, with or without lookahead.

3. The digit stage array based on the MA module with p = 2 is faster than the
conventional implementation computing the IIR part of the recursion with
2 levels of scattered lookahead for 16 bit I/O words. Thus, the cross-over
point between on-line and conventional is about 12 or 14 bits for LCA10000
technology.

Applicability of Results to Other Technologies

The actual performance and cost will be different for other technologies. The
change in the relative positions of the designs in Figure 9.1 depends on how
different the relative speeds and relative costs of similar cells are. The relative
positions will also depend on the variety and level of cells that are available to
the designer. For LCA10000 technology, the cells provided are at the level of full
adders, half adders, and multiplexers [LSI87].

The relative clock rates of the designs depend on the relative delays of the
critical paths. For the on-line architectures considered, the relative delays of the
critical paths may not change much. For example, in any technology, a 3-to-2
reduction is faster than a 5-to-2 reduction. Thus, an MA module will be faster
than a 3-stage composite module, and the latter will be faster than a 2-stage
composite module. Similarly, a smaller digit set will permit faster multiplication
regardless of technology.

It is difficult to compare the MA digit stage array and the conventional im-
plementation in another technology using simple critical path analysis. This is
especially so for large designs, where regularity is crucial for fast clocking and
compact layout. Therefore, the cross-over point between on-line and conven-
tional implementations in a different technology may occur at a different word
length.

The relevant cost measure in most technologies is the area, which depends on
the number of transistors and the regularity of the design. For example, consider
the array of MA word modules with one level of a scattered lookahead, and the
array of 3-stage composite word modules. In a custom design, the greater regu-

106

larity of the array of MA word modules would very probably result in widening
the performance gap and closing the cost difference between these two arrays.

A better comparison of performance and costs must include measures other
than those considered here. For example, design complexity, power consumption,
and number of I/O pins are important cost factors. The performance measures
not considered in this dissertation include the ease of eliminating non-linear os-
cillations, dynamic range and noise. These performance factors are especially
important in comparing on-line implementations with conventional ones, and
evaluating the usefulness of lookahead methods.

Suggestions for Further Research

Suggestions for future research in developing on-line and conventional arithmetic
algorithms for application-specific requirements are outlined in this closing sec-
tion. Most of the research in this dissertation has focussed on design alternatives
for high-speed cost-effective implementations for computing linear recurrences in
a gate array technology. Figure 10.1 shows this research in a broader context of
computations, optimized characteristics, technology, and applications. Motivated
by application, different paths in the figure outline related areas of research.

For example, a FPGA (Field Programmable Gate Array) implementation re-
quires minimum-area algorithms and structures, where speed is compromised for
compactness. Bit-serial arithmetic has been shown to produce area-time efficient
implementations of DSP algorithms in FPGAs [GrTn92]. With inherently low
communication overhead, on-line algorithms are appropriate for such implemen-
tations. Minimum-area implementations are also useful where several functions
are implemented on a chip. Algorithms that consume minimum power for a
given computation rate are useful in several limited-power applications. Such
algorithms are also required to reduce operating temperatures in large chips.

As shown here and elsewhere, choosing the optimum algorithm and design for
a given application yields appreciable performance /cost benefits. For the problem
considered in this research, the optimum design was chosen by individual analysis
of several algorithms. It is highly desirable to develop a rapid method for selecting
the optimum algorithm.

107

Computation of Computations Using

Linear Recurrences Basic Modules

Example: IIR Filters Examples: FFT, FIR
Designs using

On-Line Arithmetic Conventional Arithmetic

Oplimized for

Minimum
Power

Implemented in

Application in

Examples: Single-Chip Solutions
High-Speed, Real-Time Applications
Low-Power, Limited-Power Devices

- This Research
Future Research

Figure 10.1: Suggestions for Future Research

108

APPENDIX A

Conventional Design of a Second-Order IIR
Section with Scattered Lookahead

The design described here uses conventional arithmetic (bit parallel, least signifi-
cant bit first) to implement a second-order IIR section with two levels of scattered
lookahead. The original implementation by Parhi and Hatamian [PrHt88] can-
not serve as a basis for comparing on-line schemes, due to the differences in word
length and technology. The 16-bit design described here is implemented in a
LCA10000 [LSI87] gate array, the same gate array used for the on-line implemen-
tations. The design introduces a method of recoding the multiplier, represented
in carry-save form, into higher radix signed digits. The method is suited for
conventional high speed recursive multiplication with long word lengths.

Figure A.la shows the IIR computation, the sampling rate of which is deter-
mined by the 4-stage multiply-add. The goal is to minimize the clock period of
the 4-stage multiply-add. Section A.l describes the architecture of the 4-stage
multiplier. Section A.2 describes the implementation and Section A.3 summarizes
performance and cost of the design.

A.1 Architecture of 4-Stage Multiply-Add

Figure A.la shows the delays introduced by two levels of scattered lookahead,
that allow 4-stage pipelining of the critical inner loop. The outer loop has 8
delays and the inner loop has only 4, making the inner loop critical. The delays
can be distributed to allow pipelined multiplication and addition. Figure A.lb
shows the distribution used in the implementation described here. The inner
loop is a 4-stage multiply-add. The outer loop is a 7-stage multiplier, sharing one
stage with the 4-stage multiply-add unit. The 4-stage multiply-add multiplies
its input by the coefficient and adds the output of the 7-stage multiplier and the
FIR term.

The specifications of the multiply-add unit are as follows.

1. The computation, using generic notation, is : y(n) = c-y(n - 4) + ui{n) +

109

uz(n), where ¢ is a constant and u; and uz are the terms to be added.
2. A 4-stage design.

3. Multiplicand and multiplier are 16-bit words. In this design the multipli-
cand is constant.

4. LCA10000 technology [LSIS7].

The factors that affect the clock rate, besides the technology, are the limited
number of stages (4) and the number of bits (16) of the multiplier and multipli-
cand. The difference between this set of specifications and that of the Parhi and
Hatamian design is in the technology and the 10-bit precision of the multiplier
and multiplicand. An architecture appropriate for a higher precision recursive
multiply-add in LCA10000 [LSI87] technology is described next.

Architectural Options

Architectural choices are made at the algorithmic level and at the component/layout
level. At the component/layout level, the decision is whether to use a conven-
tional array or Wallace Trees (n-to-2 counters) to reduce the partial products.
At the algorithmic level, the following have to be considered.

1. Decide whether the constant is assigned to be the multiplicand or the mul-
tiplier.

2. Recoding the multiplier into higher radix signed digits, to produce fewer
partial products.

3. Carry-save representation of result to avoid CPA .

The Parhi and Hatamian design does not use recoding [PrHt88]. Speed is
achieved at the component/layout level by exploiting the regularity of the con-
ventional array. A carry-ripple adder, taking 2 of the 4 stages, is used to produce
the result. As precision increases, this approach suffers increased delays.

The number of partial products can be reduced by recoding the multiplier
into higher radix signed digits. Tree structures can also be used to speed up
the reduction of partial products. The CPA can be entirely eliminated by us-
ing the carry-save representation of the result as described by Kleine and Noll
[KINo88}. In the Kleine and Noll Scheme, the coefficient is recoded into the digit

110

set {—2,—1,0,1,2}. The advantage of their scheme is that recoding costs noth-
ing. The disadvantage is that the number of partial products remain the same;
the number of partial products is doubled by the carry-save representation, and
recoding reduces that by half. A larger digit set cannot be used with the Kleine
and Noll Scheme because the generation of higher multiples of the variable input
is difficult.

The scheme developed here recodes the carry-save representation of the mul-
tiplier. Since the multiplicand is constant, multiples of the multiplicand can be
pre-stored, allowing the use of larger digit sets and higher radices. The recoded
multiplier can be used by both multipliers. With radix-4, the number of partial
products is reduced from 16 to 8. The disadvantage of recoding delay is offset by
having fewer partial products.

Multiplication Scheme

The multiplicand is represented in 2’s complement and the multiplier is taken to
be a 2’s complement value in carry-save representation. The multiplier, without
loss of generality, is considered to be a fraction. The 2's complement multiplica-
tion scheme consists of three steps: recoding the carry-save form of the multiplier
into a signed-digit representation, producing partial products, and reducing the
partial products into carry-save form. The reduction is done in the usual manner
with an array of Wallace Trees. The recoding and the partial product generation
steps are summarized next.

1. The multiplier is represented by
m-1 m-1 m-1
Y o2+ Y 527 = —Xot+ Y X2
=0 =0 =1

2. To recode multiplier, add bits of same weight and produce transfer digits,
t;, and sum digits, s;:

tmr = 0 (A.1)
i, = [Qi?s—f—lj Le{0,1),i=1,2...,m—1 (A2)
so = {Co+ Ss)mod2, soe{0,1} (A.3)
5; = Ci+Si—2iq,8¢{-1,0},:=12,....m—1 (A.4)
3. Recoded form of multiplier is ¥ 75" D;27¢, where
D; = si+1t;, D;ie{-1,0,1},i=1,2,...,m—1 (A.5)
Dy = (so+to) mod 2, Doe{0,1} (A.6)

111

4. Partial product generation for all digits except the MSD is done in the usual
manner: partial product = 27*D; - Multiplicand. For the most significant
digit, the partial product is obtained as follows.

4

0 if Do=0

partial product = ¢ Multiplicand if Do=1and ¥, D27 <0

—Multiplicand otherwise
Higher radix digits are formed by grouping and recoding the corresponding
radix-2 digits. The recoded digit set has minimum redundancy.

A.2 Implementation

The first step in implementing the scheme is to decide on the radix for recoding
the multiplier. Higher radices incur larger recoding delays and larger partial
product generation delays. The advantage of higher radix is that fewer partial
products are generated. Table A.1 shows an estimate of the delays (excluding
set-up and hold delays) for radices 2,4 and 8. The table also gives the number
of FAs and HAs for the array. The total number of gates must also take into
account the recoding, partial product generation and registers and latches.

Table A.1: Delays and Costs of Components of 4-Stage Multiply-Add

Radix-2 | Radix-4 | Radix-8
Number of FA levels 9 7 5
Number of FAs 231 126 80
Number of HAs 80 67 42
Recode Delay (ns) 2.2 3.1 5.4
Product Gen. Delay (ns) 2.5 4.0 4.4
Total Delay (ns) 24.5 21.5 20.8

The table shows that the radix-2 design is slightly slower and much larger than
the other designs. The radix-8 design has a slightly lower total delay than the

112

radix-4 design. However, the radix-8 design has a larger recode delay, requiring
an entire stage for the recoder. This leaves only three stages for partial product
generation and reduction. The critical stage would then have 3 FAs, with a delay
of 6.6ns. The radix-4 design also has a critical stage with 3 FAs. Thus, the two
designs have similar speeds. The costs are also similar, because the advantage of
fewer product terms is offset by larger recoding logic and larger product generat-
ing multiplexers. The radix-4 scheme is chosen because the shorter delays make
it easier to balance delays in all stages.

Figure A.2 shows a slice of the 4-stage recursive multiply-add, with the CPA
eliminated from the critical loop. The FIR term and the output of the 7-stage
multiplier constitute the add inputs. The output of the multiply-add is recoded
into radix-4 signed digits. The recoded multiplier is also an input to the 7-stage
multiplier. The recoder, the MSD partial product generator, and the array are
described next.

A digit slice of the recoder is shown in Figure A.3a. The recoder input is
the 16-bit carry-save form. The input is divided into 8 groups. Each group,
consisting of adjacent sum bits and the corresponding carry bits, is recoded into
one radix-4 digit D;, D; € {-2,-1,0,1,2,3} and Dg € {0,1,2,3}. Figure A.3b
shows the MSD generator. To produce the partial product of the MSD, the sign
of the value represented by the other digits must be determined. Then the sign
of the MSD is changed, if necessary, and the partial product is obtained as usual.
Due to the delay in finding the MSD, the partial product of the MSD is available
only at the third stage of the reduction (Figure A.2).

Each partial product of 18 bits is generated by 18 6-input multiplexers. The
data inputs of the multiplexers are fed by coefficient multiples. The pre-stored
multiples of the coefficient, ¢, are: ¢, —c and 3c. The 8 partial products and
the two add inputs are reduced by the array of FAs and HAs shown in Figure
A.da. To obtain 16-bit precision, an 18-bit carry-save result is produced and the
2 Isb positions are used for rounding. Thus, as Figure A.4a shows, only part of
the array is implemented. The full array needs to be implemented only if proper
rounding is done, based on the CPA result of the least significant 16 bits. Since
a CPA in the recursive loop reduces the sampling rate, approximate rounding is
performed based on the 18-bit carry-save result.

The design of the 7-stage multiplier is similar to the 4-stage multipier. A stage
is considered to be the network between two registers. The 7-stage multiplier is
composed of three stages that generate and reduce the 8 partial products to a
carry-save form and a 4-stage CPA that produces a 2's complement 16-bit result.
It receives a recoded multiplier as an input from the 4-stage multiply-add unit.

113

The multiplicand is a constant coefficient. Five levels of FAs and HAs reduce 8
partial products to a carry-save form, as shown in Figure A.4b.

A.3 Performance and Cost

The entire IIR section consists of the 4-stage multiply-add, the 7-stage multiplier
and a CPA to form the output of the IIR section. A simple carry ripple adder
may be used to add the carry-save result and produce a 2’s complement output.
However, for convenience, an instance of the 4-stage adder designed for the 7-
stage multiplier is used. The gate count and clock period for the IIR section is
given in Table A.2 for an LCA10000 [LSI87] implementation.

Table A.2: Performance/Cost for Conventional IIR Section (16 bits) with 2 levels
of Scattered Lookahead

Component Gates | Tk

4-stage multiply-add | 5345 | 1lns

T-stage multiplier 5349 | llns
CPA (4-stage) 1102 | 8ns
Entire IIR section 11796 | 11lns

114

r-_ ‘7-sla_gc Mullipgr - L
¥ N]
0§80

L] e e e m—m e e e wm— o me e—— et S e e—

N
O Combinational Network Register

%) Delays Distributed for Pipelin

Figure A.1: IIR Computation with 2 Levels of Scattered Lookahead

115

To 7-Stage
SREaISTER XN Multiplier
Coeflicient -
Multiples 4
PARTIAL PRODUCT | MSD
GENERATOR GENERATOR
7

PA

1 Y
Y SN
1

L2
¥ i

!
NI BN N
FIR Term 1| o et '

PARTIAL PRODUCT
GENERATOR

Figure A.2: Slice of 4-Stage Multiply-Add (16 bits)

116

4

") O A B C
R | [xoR] FA
tiz S
AND XOR
dy g do Di= dady do
{a) Recoder
Dy D; D, D, Do D,
3 3 3 3 3
$=d;
A2 2 2 2 2 2 Z=di+dg
S.Z
Sw.Z, S;
A2 A2 ! 12 Ozzo
Z=Z,+ Z,
&'ﬁ S $=8,Z; + S4Z,
A2 S.Z
s.Z
2 2 b.=4d
0™ o
dl'do b1= 1
3 3 by= Sdydy+ dyd,
MSD G Dy bz’b:-bo

Figure A.3: (a)Carry-Save to Radix-4 Recoder (b) MSD Generator

117

IMPLEMENTED
PART OF ARRAY

000RH1I111
O0OHHHHEHIL11
OHEHEHHHHHB
OHHHHHHHRH
111111111
111111111
111111111

222221

N T = =
H B oD R E N
= = I U N
N el = e
e = R = T e
L S I R N L
o o m mom ok e
o o o Imom o
o o0 o o m T =
o o0 o o m
o o0 o0 o o

2
1
1
1
1
H
H

= - I =
Lo o R R o B <= IR D

(a) Array of Adders for 4-Stage Multiply-Add

IMPLEMENTED
PART OF ARRAY

0O0O0OHH11111122222222222
O0OHHHHH11111111111111
OHHHHHHHH11111111111
CHHHEHHHHHH1HE1111111
1111111111111111118BHHEHH

o oJN < N« o I S S
mmDm e =
[N I« s I« S
o o m ;o=
o O O mom
O O o o
o O 0O o o
[EN =N o B oI o

(b) Array of Adders for 7-Stage Multiplier

Key: 0 No Adder
H Half Adder
1 Single Full Adder
2 Two Full Adders

Figure A.4: Arrays for Reducing Partial Products

118

o O o O O O O
o O o O O O O

APPENDIX B

Frequency Responses of Filter Examples

This section compares the effects of scattered lookahead (SL) and dynamic scaling
on the frequency response of two second-order filters, F1 and F2. These filters
serve as examples elsewhere in this work. The expression for a second-order filter
with two zeros at the origin and two complex conjugate poles is given by (B.1).
Applying one or two levels of SL transforms (B.1) to (B.2) or (B.3).

y(n) = z(n)+ay{n—1)+by(n-2) (B.1)
y(n) = z(n)+azx(n—1)—bz(n-2)
+ (a® + 2b)y(n — 2) — b'y(n — 4) (B.2)

y(n) = z(n)+az{(n—-1)+ (a® + b)z(n — 2) + a(a® + 2b)z(n — 3)
— b(a® + b)z(n — 4) + ab’z(n — 5) — bz(n —6)
+ (a* + 4a%b + 26%)y(n — 4) — b'y(n — 8) (B.3)

The frequency response is obtained by Fourier Transform of the output of
the filter response to an impulse of magnitude 0.0625. This magnitude is an
arbitrarily chosen value, small enough not to cause overflow. The number of
samples in the response is 1024 for F1 and 2048 for F2. The filter model uses
MA modules with I/O words of 16 bits.

Figure B.1 shows the responses of F1 with 0,1, and 2 levels of SL. The re-
sponses deviate from each other only in the regions A, B, and C. These deviations
are due to limit cycle oscillations. The regions are shown on a magnified scale
in Figures B.2, B.3 and B.4. The largest deviation due to limit cycles, shown in
Figure B.3, occurs when no SL is used. Table B.1 shows the largest percentage
deviations with respect to a freqency response obtained by direct double precision
computation.

Figure B.5 shows the frequency responses of F'2 with 0,1, and 2 levels of SL.
The responses are almost identical except in region D, shown magnified in Figure
B.6. As in the case for F1, the deviations are due to limit cycle oscillations. As
Table B.1 shows, the worst deviation occurs when no 5L is used. The reduction

119

is limit cycle oscillations for the filters using SL is in accordance with Theorem 1
of Chapter 7. The best response, shown in Figure B.7, is obtained from the filter
using dynamic scaling.

The examples used here show that the frequency response, particularly in the
pass band, is not appreciably affected by SL for filters F1 and F2 with 16-bit
I/0. The same is true in the case of a elliptic low pass MSDF systolic array filter
using 1 level of SL and 12-bit I/O [KnMc91]. The effect of SL on noise gain,
relative to the filter without SL, is studied rigorously in [BICh91]. This paper
shows that the noise gain increases near the origin (in z-plane) but depends on the
pole angle near the unit circle. Some pole positions near the unit circle tend to
increase the noise gain drastically while others decrease it. Overall, the numerical
performance of SL is reported to be good [BICh91].

Table B.1: Deviation of Frequency Response due to SL

Filter | Level of SL | Maz. % Deviation | Frequency
F1 0 12.5 0.33496
F1 1 9.5 0.15136
F1 2 8.3 0.83008
F2 0 26.1 0.49975
F2 1 3.8 0.01562
F2 2 8.1 0.01810

120

0.8 1

0.7 1

YN Tt =11

0.6 -

0.5

0.4

0.3 4

0.2 ~

0.1 -

L=

040]]||1|Illlll'lI11|||||Illlfllll"l|]]]ll||||||||||||l|l|IIll[[illllllllllll]]llIllllllllllllllilllllll
0 0.1 0.2 0.3 0.4 0.5
Normalized Frequency

Figure B.1: Frequency Response of F1 (a = —1.09, b = —0.90)

121

0.06

M
a
g
n
1
t
u
d
e
0.05
0.04 —
—— No SL
— 1 Level of SL
= 2 Levels of SL
0.03 T T T T |
0.07 0.09 0.11 0.13 0.15 0.17

Normalized Frequency

Figure B.2: Region A of Frequency Response of F1 (a = —1.09, b = —0.90)

122

0.7 7

0.6 -

0.5

0.4 5

T ERET

— No SL
—— 1 Level of SL
= 2 Levels of SL

0.3
0.33

7
0.34 0.35 0.36 0.37

Normalized Frequency

Figure B.3: Region B of Frequency Response of F1 (a = —1.09, b= -0.90)

0.08

—— No SL
0.07 —— 1 Level of SL
= 2 Levels of SL
0.06 —
0.05 -
0.04 —
0.03 4
0.02 1 T T 1 1
0.41 0.42 0.43 0.44 0.45 0.46

Normalized Frequency

Figure B.4: Region C of Frequency Response of F1 (a = —1.09, b = —0.90)

124

707

60 -

50 ~

40

30

20 -

10

oos e — B Z

0
45

l‘llll|1|||Ill|||!i|I]]llllllllITIlllillllllll!'l‘]l||ITI]]'I|lll|||III[[Illll’lillllllllllllillll
46 AT A48 49
Normalized Frequency

Figure B.5: Frequency Response of F2 (a = —1.98, b= —0.99)

125

L |

%)

10.0

9.5

—— No SL
9.0 1 —— 1 Level of SL
wae 2 Levels of SL

8.5

8.0

7.5

7.0

oo er - Doup <

6.5

6.0 -

9.5

5.0

4.5

490 492 494 496 498 5

Normalized Frequency

Figure B.6: Region D of Frequency Response of F2 (a = —1.98, b = —0.99)

126

0.8 1

0.7 1

L Y-A=E ol =1 T

0.6

0.5 -

0.4 -

0.3 A

0.2

0.1

0.0 II]llllllllllll”IIIlIlllIlIll[llilllll11111lTll]llIIIIlIllllllIIIIII|lllllllIli!lllllllllllll'lllIf[

0 0.1 0.2 0.3 0.4 0.5

Normalized Frequency

Figure B.7: Frequency Response of F1 with Dynamic Scaling (¢ = —1.09,
b = —0.90)

127

[Av61]

{BaWn92]

[BICh92]

(BICh91]

[Bra89a]

[Bra89b]

[Chadl]

[DSP2]

[Erc84]

[Erc77]

REFERENCES

Avizienis, A., Signed-Digit Number Representation for Fast Par-
allel Arithmetic, IEEE Trans. Electronic Computers, Vol. EC-10,
pp. 389-400, 1961.

P.H. Baur and Jie Wang, The Effect of Various Floating Point For-
mats On The Absolute Error Bound In Recursive Filtering, Proc.

1992 Int. Conf. on Acoustics, Speech and Signal Processing, vol. 4,
pp. 413-416.

W. Bliss and K. Chang, Roundoff and Coefficient Quantization Noise
of Pipelined Scattered-Look-Ahead Fillers with Decomposition, Proc.
1992 Int. Conf. on Acoustics, Speech and Signal Processing, vol. 4,
pp. 433-436.

W.G. Bliss and K.-H. Chang, Roundoff Noise of Pipelined Scattered
Look-ahead 1IR Digital Filters, Proc. 25th Annual Asilomar Con-
ference on Signals, Systems and Computers, Vol. 2, pp. 1026-1030,
1991.

Ralph H. Brackert, Jr., M.D. Ercegovac, and Alan N. Wilson, Jr.,
Design of an On-Line Multiply-Add Module for Recursive Digital
Filters, Proc. of 9th Symposium on Computer Arithmetic, pp. 34-
41, 1989.

Ralph H. Brackert, Jr., Design and Implementation of a High-Speed
Recursive Digital Filter Using On-Line Arithmetic, Ph.D. disserta-
tion, University of California, Los Angeles, 1989.

Lloyd C. Cha, A Recursive Digital Filter Using On-Line Arithmetic,
Masters thesis, University of California, Los Angeles, 1991.

Edited by Digital Signal Processing Committee, IEEE Acoustics,
Speech and Signal Processing Society, Selected Papers in Digital Sig-
nal Processing, II, IEEE Press, pp. 412-451, 1976.

Milos D. Ercegovac, On-line Arithmetic: An Overview SPIE Vol.
495 Real-Time Signal Processing VII, pp. 86-93, 1984.

Milos D. Ercegovac, A General Hardware-Oriented Method for Eval-
uation of Functions and Computations in a Digital Computer, IEEE
Transactions on Computers, C-26(7), pp. 667-680, July 1977.

128

[ErLn87)

[ErLn88]

[ErLn89]

[ErLn92]

[FnEr92a)

[FnEr92b)

[GrTn92)

[HDSHS6]

[KINo88)]

[KnMc88)

Milos D. Ercegovac and Tomas Lang, Radiz-§ Multiplication with-
out Carry-Propagate Addition, Proc. of The International Conf. on
Computer Design: VLSI in Computers & Processors, 1987.

Milos D. Ercegovac and Tomas Lang, On-Line Arithmetic: A Design
Methodology and Applications, VLSI Signal Processing III, IEEE
Press, R.W. Broderson and H.S. Moscovitz Eds., pp. 252-263, 1988.

Milos D. Ercegovac and Tomas Lang, Most-Significant-Digit-First
and On-Line Arithmetic Approaches for the Design of Recursive Fil-
ters, Proc. 23rd Annual Asilomar Conference on Signals, Systems
and Computers, pp. 7-11, 1989.

Milos D. Ercegovac and Tomas Lang, Fast Arithmetic for Recursive
Computations, VLSI Signal Processing V, IEEE Press, K. Yao, R.
Jain, W. Przytula, J. Rabaey Eds., pp. 14-28, 1992.

John S. Fernando and Milos D. Ercegovac, On-Line Arithmetic Mod-
ules for Recursive Digital Filters, Proc. 26th Annual Asilomar Con-
ference on Signals, Systems and Computers, pp. 681-685, 1992.

John §. Fernando and Milos D. Ercegovac, Conventional and On-
Line Arithmetic Designs For High-Speed Recursive Digital Filters,
VLSI Signal Processing V, IEEE Press, K. Yao, R. Jain, W. Przy-
tula, J. Rabaey Eds., pp. 81-90, 1992.

P.J. Graumann, L.E. Turner, Implementing Digital Signal Process-
ing Algorithms using Pipelined Bit-Serial Arithmetic and Field Pro-
grammable Gate Arrays, Proc. 1992 ACM First International Work-
shop on Field-Programmable Gate Arrays, Feb. 1992.

K. Hayashi, K. Dhar, K. Sugahara, K. Hirano, Design of High-Speed
Digital Filters Suitable for Multi-DSP Implementation, IEEE Trans.
on Circuits and Systems, Vol. CAS-33, No. 2, pp. 202-217, Feb.
1986.

U. Kleine and T.G. Noll, Wave Digital Filters Using Carry-Save
Arithmetic, Proc. 1988 IEEE International Symposium on Circuits
and Systems, pp. 1757-1762.

Simon C. Knowles, John G. McWhirter, An Improved Bit-Level Sys-
tolic Architecture For IIR Filtering, Proc. 1988 Int. Conf. on Systolic
Arrays, pp. 205-214.

129

[KnMc89]

[MnMc90]

[KnMc90]

[KnMc91]

[KogT73]

[Kog81]

[KRD92]

[LFH90]

[LnTr73)

(LSI86]

S.C. Knowles, J.G. McWhirter, R.F. Woods, J.V. McCanny, Bit-
Level Systolic Architectures for High Performance IIR Filtering,
Journal of VLSI Signal Processing, Kluwer Academic Publishers,
Vol. 1, No. 1, August 1989, pp 9-24.

0.C. McNally, J.V. McCanny, R.F. Woods, Optimised Bit Level Ar-
chitectures For IIR Filtering, Proc. 1990 IEEE International Con-

ference on Computer Design: VLSI in Computers & Processors,
pp. 302-306.

R.F. Woods, J.V. McCanny, S.C. Knowles, 0.C. McNally, A High
Performance IIR Digital Filter Chip, Proc. 1990 IEEE International
Symposium on Circuits and Systems, Vol. 2, pp. 1410-1414.

0.C. McNally, J.V. McCanny, R.F. Woods, A 40 Megasample 1IR
Filter Chip, Proc. International Conference on Application Specific
Array Processors, IEEE Press, pp. 416-430, 1991.

P.M.Kogge and H.S. Stone, A Parallel Algorithm for the Efficient
Solution of a General Class of Recurrence Equations, IEEE Trans.
on Computers, Vol. C-22; No.§8, pp. 786-793, August 1973.

Kogge Peter M., The Architecture of Pipelined Computers, McGraw-
Hill, 1981.

Janusz Konrad, Jan Radecki and Eric Dubois, On The Design of
Finite Wordlength IIR Filters for Video Applications, Proc. 1992 Int.
Conf. on Acoustics, Speech and Signal Processing, vol. 4, pp. 341-
344.

Marcel Lapointe, Paul Fortier, and Huu Tué Huynh, A New Faster
and Simpler Systolic Structure For IIR Filters, Proc. 1990 IEEE
International Symposium on Circuits and Systems, Vol. 2, pp. 1227-
1231.

James L. Long and Timothy N. Trick, An Absolute Bound on Limit
Cycles Due to Roundoff Errors in Digital Filters, IEEE Trans. Audio
and Electroacoust., vol. AU-21, pp. 27-30, Feb. 1973.

LSI Logic Corporation, Macrocells, Macrofunctions Databook and
Design Manual, Oct. 1986.

130

[LSI8T]

[LSI92]

[OppT70]

[HtPr92]

[MtLw81]

[PrH!88]

[PrMn88]

[Ms88]

[PrMs87a]

[PrMs87b]

[Sam88]

LSI Logic Corporation, 1.5-Micron Compacted ArrayT™ Technology
Databook, July 1987.

LSI Logic Corporation, 0.7-Micron Array-Based Products Databook,
April 1992.

Alan V. Oppenheim, Realization of Digital Filters Using Block-
Floating-Point Arithmetic, IEEE Trans. Audio and Electroacoustics,
vol. AU-18, pp. 130-136, June 1970.

Mehdi Hatamian and K. K. Parhi, An 85MHz Fourth-Order Pro-
grammable IIR Digital Filter Chip, IEEE Journal of Solid-State Cir-
cuits, vol. 27, No. 2, pp. 175-183, Feb. 1992.

D. Mitra and V.B. Lawrence, Controlled Rounding Arithmetics, for
Second-Order Direct-Form Digital Filters, that Eliminate All Self-
Sustaining Oscillations, IEEE Trans. on Circuits and Systems, Vol,
CAS-28, pp. 894-905, Sept. 1981.

Keshab K. Parhi and Mehdi Hatamian, A High Sample Rate Recur-
sive Digital Filter Chip, Chapter 1, Part 1, VLSI Signal Processing,
I11, IEEE Press, pp. 3-14, 1988.

John G. Proakis and Dimitris G. Manolakis, Introduction to Digital
Signal Processing, Macmillan, 1988.

D.G. Messerschmitt, Breaking the Recursive Bottleneck, Perfor-
mance Limits in Communication Theory and Practice, NATO ASI
Series, Vol. 142, J.K. Skwirzynski, Ed., Kluwer Academic Publishers,
pp. 319, 1988.

Keshab Kumar Parhi and David G. Messerschmitt, Look-Ahead
Computation: Improving the [teration Bound in Linear Recursions,
Proc. 1987 Int. Conf. on Acoustics, Speech and Signal Processing,
vol. 3, pp. 1855-1858.

Keshab Kumar Parhi and David G. Messerschmitt, Concurrent Cel-
lular VLSI Adaptive Filter Architectures, IEEE Trans. on Circuits
and Systems, Vol. CAS-34, No.10, pp. 1141-1150, October 1987.

H. Samueli, Thu-ji Lin and Willen S. Lao, A Comparison of Recur-
sive Digital Filter Structures Suitable For High-Speed Custom VLSI

131

[SnKs72]

[TrEc77)

[Tu90]

[TuEr91]

[UnAb75]

Implementation, Proc. 21st Asilomar Conference on Signals, Systems
and Computers, pp. 23-27.

J.W. Sandberg and J.F. Kaiser, A Bound on Limit Cycles in Fized-
Point Implementations of Digital Filters, IEEE Trans. Audio and
Electroacoustics, vol. AU-20, pp. 110-112, June 1972.

Kishor S. Trivedi and Milos D. Ercegovac, On-line Algorithms for
Division and Multiplication IEEE Transactions on Computers, C-
26(7), pp. 681-687, July 1977.

Paul K.-G. Tu, On-Line Arithmetic Algorithms for Efficient I'm-
plementations, Ph.D. Thesis, University of California, Los Angeles
1990.

Paul K.-G. Tu and Miloed D. Ercegovac, Application of On-Line
Avithmetic Algorithms to SVD Computation: Preliminary Results,
Proc. of 10th IEEE Symposium on Computer Arithmetic, pp. 246-
255, June 1991.

Z. Unver and K. Abdullah, A Tighter Practical Bound on Quantiza-
tion Errors in Second-Ovrder Digital Filters With Complez Conjugate
Poles, IEEE Trans. Circuits and Systems, vol. CAS-22, pp. 632-633,
July 1975.

132

