Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

MULTIPROCESSOR CACHE MEMORIES: SIMULATION
AND DESIGN

Y. Wu November 1993
CSD-930037

UNIVERSITY OF CALIFORNIA
Los Angeles

Multiprocessor Cache Memories:

Simulation and Design

A Dissertation Submitted in Partial Satisfaction of
the Requirements for the degree Doctor of Philosophy

in Computer Science
by

Yuguang Wu

1993

(©Copyright by Yuguang Wu, 1993
All Rights Reserved

The dissertation of Yuguang Wu is approved.

/Z/J;«/,hf

Milos Ercegovac

m%m

Arthur M. Geoffrion

A2 Pedaino o

Lawrence Mcnamee

/Z,//%

Richard R. Muntz Committee

Univesity of California, Los Angeles

1993

i

To my parents

1ii

Contents

1 Introduction

1.1 Cache Memories.
1.2 Stack Evaluation
1.3 Write-Back Caches
1.4 Maultiple Block-Size LRU Caches
[.5 Set-Associative Caches

1.5.1 LRU set-associative evaluation
1.6 Organization of the Thesis

2 Multiple Block-Size Write-Back Caches

2.1 Introduction L
2.2 Informal Description
2.3 Formal Description L
2.3.1 Correctness Discussion
232 Limitation
2.4 Simulation
241 TraceData 0.
2.4.2 Implementation 0L,
243 Results. L
25 Conclusion

3 Set-Associative Multiprocessor Caches

3.1 Imtroduction

v

10
11
13
16
17

3.2 Multiprocessor LRU Set-Associative Evaluation 42
3.2.1 Marker Splitting 43
3.2.2 Stack Updating, .. 46
3.2.3 Stack Distance Counting 49
3.24 Time Complexity 53

3.3 Simulation 54
3.3.1 TraceData 54
3.3.2 TImplementation, 55
3.3.3 Simulation Results 62

3.4 Summaryo, 70

All Set-Associative Evaluation (i

4.1 Introduction 77

4.2 All Set-Associativity Evaluation and LRU 78

4.3 SUMMATY e e 90

Multilevel Hierarchies 91

5.1 Inmtroduction 91

5.2 Multilevel with Arbitrary Stack Algorithm 94
5.2.1 Implementation 95
5.2.2 Properties, 100
.23 Evaluationo, 104

5.3 Summary 106

Multiprocessor Cache Analysis 107

6.1 Introduction 107

6.2 Independent Reference Model 110

6.3 Markov Chain Model 112

6.4 Bounds. 115

6.5 Steady State Analysisof LRU Stack 118

6.6 Sumumary 122

7 Tree Cache Directories

7.1 Introduction

7.2 Directory Schemes

7.3 Balanced Binary-Tree Directory

7.4 Discussion on Other Tree-Like Schemes

7.5 Suminary

8 Conclusions

8.1 Summary

8.2 Future Work

8.2.1

8.2.2
8.2.3
8.2.4

Bibliography

....................

....................

Simulation methodology,

Validity of multiprocessor trace simulation

Parallel stack simulation

Application paradigms

vi

123
124
126
131
143
146

147
147
149
149
150
150
151

151

List of Figures

1.1
1.2
1.3
1.4
1.5

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2
3.4
3.5
3.6
3.7
3.8
3.9

Memory Address 6
General Stack Updating 8
LRU Stack Updating 9
Block Number oL 14
Set-Associative Mapping: cache = §D, memory = SM, mapping

Ismod S, .. 15
Coding Tree 31
Miss ratio v.s. block size on UMIL1, UMIL2, and SPIC. 33
Miss ratio v.s. block size on MU10, MUL3, and MUL6. 34
Miss ratio v.s. block size on DEC0 and DECL. 36
Miss ratio v.s. block size on ALLC and PASC. 37
Miss ratio v.s. block size on FORL, IVEX, DIAQ, and LISP. . . . 38
Constructing fully associative LRU stack with marker(s) 44
Constructing set-associative LRU stack with marker splitting . . . 45
Counting of p(r),v(r) 52
Two-level hash table 56
Stack distance calculation 61
Miss ratio v.s. « for a cache of 128 64-byte blocks. 69
Optimal o v.s. Cache Size for 2-byte Blocks. 70
Optimal « v.s. Cache Size for 4-byte Blocks. 71
Optimal o v.s. Cache Size for 8 and 16-byte Blocks. 72

vil

3.10
3.11
3.12
3.13

5.1
5.2
5.3
5.4

6.1

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

Optimal & v.s. Cache Size for 32 and 64-byte Blocks. 73

Optimal & v.s. Cache Size for 128 and 256-byte Blocks. 74
Optimal & v.s. Cache Size for 512 and 1024-byte Blocks. 75
Optimal a v.s. Cache Size for 2048 and 4096-byte Blocks. 76
Multilevel Hierarchy Control, 94
M, Free List Updating 96
LRU Hierarchy Control 98
Level Contents v.s. Stack Contents 105
Shared-Memory Multiprocessor with Bus-Interconnection 108
Full-map Directories 128
Limited Directories 129
Chained Directories 130
Balanced Binary-Tree133
Node Addition: New Level 135
Node Addition: Common Parent 135
Node Addition: Distinct Parents. 136
List with Redundant Pointers, .. 144
Perfect Shuffle List 145

viii

List of Tables

21 TraceFiles. 29
2.2 Simulation Times oL 35
3.1 Simulation times on FFT (includingifo) 64
3.2 Simulation times on FFT (excludingifo) 65
3.3 Timeson Simple (inc. 1fo) o oL 66
3.4 Times on Weather (inc. 1fo) 67

1X

ABSTRACT OF THE DISSERTATION
Multiprocessor Cache Memories:
Simulation and Design
by
Yuguang Wu
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1993
Professor Richard R. Muntz, Chair

This research concentrates on the efficient simulation and design of multipro-
cessor caches. We extend an efficient cache simulation technique, called stack
evaluation, which has mainly been used in simulation of uniprocessor least-
recently-used (LRU) caches, to that of multiprocessor LRU caches with any
invalidation-based cache coherence protocol. In a one-pass processing of CPU
reference traces, this method produces hit ratios for arbitrary cache size and set-
assoclative mapping. Compared to existing techniques, it achieves a magnitude
speed-up in simulation time. This simulation technique can also be applied to
the evaluation of I/O devices such as shared disks in database svstems. We show
that the LRU is the only stack algorithm that allows one-pass stack processing
for arbitrary set-associative mapping scheme, giving a formal proof to the com-
monly held but unproven belief. We propose a novel scheme of distributed cache
divectories for scalable large shared-memory multiprocessor computers. It has
overall better space and time complexities than existing directory schemes.

Two results regarding uniprocessor caches are also obtained: we extend the
stack simulation technique to LRU write-back caches for multiple block sizes,
getting hit ratios and write ratios for arbitrary block sizes in one-pass trace
processing; we demonstrate that the efficient stack evaluation techniques for two-
level memory hierarchies like cache memories can be applied to certain multilevel
memory hierarchies that use a same but arbitrary stack algorithn for replacement
on all levels, in which one-pass processing yields hit ratios and write ratios for

arbitrary configuration of a hierarchy.

xiii

No profit grows where is no pleasure ta’en; In brief, sir, study

what you most affect.

— Shakespeare, THE TAMING OF THE SHREW, 1.i.39

The whole secret of the study of nature lies in learning how to use
one’s eyes.

-— George Sand, Nouvelles lettres d’un voyageur [1869]

xiv

Chapter 1
Introduction

Abstract. This thesis studies multiprocessor cache memories in three aspects: analysis, de-
sign, and simulation. In analysis, we use probabilistic models to analyze the performance of
shared-memory multiprocessor caches. In design, we propose a new and optimal scheme of dis-
tributed cache directories for large and scalable shared-memory multiprocessor computers. In
simulation, we extend the efficient stack evaluation techniques in the simulation of uniprocessor
and multiprocessor cache memories. This chapter reviews existing work on stack evaluation
techniques of cache memories, which are methods for producing performance metrics for a range
of parameters with a one-pass evaluation of a CPU reference trace. We will huild on these pre-
vious results and extend stack evaluation techniques in the following ways: first, it extends
the one-pass write-back cache evaluation technique for LRU caches with multiple block sizes;
second, it extends the one-pass technique for uniprocessor caches with arbitrary set-associative
mapping schemes to multiprocessor LRU caches using an invalidation-based cache coherence

protocol. The chapter concludes with an outline of the remainder of the thesis.

1.1 Cache Memories

Memory hierarchies are composed of multiple levels of memory. A higher level
memory module has shorter response time to a memory access than a lower level

module, but generally has less capacity due to its high cost. In general the central

processing unit (CPU) directly accesses data from the top-most memory module.
The goal of a memory hierarchy is to provide average access tiime approximately
that of the highest level and a capacity and its cost per byte approximately that of
the lowest level. Cache memories can be considered two-level memory hierarchies
where the cache is on the first level and the main memory 1s on the second.
Although cache memory will be the focus of this thesis, it is a special case of a
more extensive hierarchy, to which some of our work still applies. The usefulness
of cache memories is demonstrated by the fact that they have appeared across a
wide spectrum of systems, from mainframes to microcomputers[Smith 82].
When the CPU requests a data that is not in the cache, it needs to be brought
in from the main memory. To reduce overhead, data transfer between the main
memory and the cache js usually carried out in fixed chunks of bytes called
blocks (or lines). When an absent block has to be moved into a full cache, a
currently resident block must be replaced; if the replaced block was written by
the CPU (dirty) and the main memory does not have the new data, then this
block must be written back to the main memory. The decision as to which
block to replace is called the replacement algorithm or policy. Commonly used
replacement algorithms include least-recently-used (LRU), least-frequently-used
(LFU), and first-in-first-out (FIFOQ). We study demand-fetching caches, where
the cache brings in an absent block from the main memory only when a data in
that block is requested by the CPU and the line is not already in the cache.
Efficient and accurate evaluation of cache memory designs plays an unportant
role in practice[Shoemaker 90, Roberts 90, Edenfield 90] and has been an active
research topic in the computer systems area[Smith 82]. It is especially crucial in
the design of on-chip caches where resources such as physical space are expensive
and must be prudently allocated among different processing units[Shoemaker 90].
There are mainly two methods of evaluation: simulation and analytic modeling.
Trace-driven simulation is the most widely used evaluation method for perfor-
mance studies of cache memories. It entails collecting a memory access trace dur-

ing CPU operation; the collected trace is used to simulate different Memaory con-

Q]

figurations and compare their performance[Mattson 70, Thompson 89, Hill 89,
Wang 91, Chaiken 90]. Analytic modeling provides a mathematical (mostly
stochastic) model of memory systems, by making some assumptions on the char-
acteristics of the CPU’s memory access pattern, and deriving results for the
memory system performance[Agarwal 89, Tzelnic 82]. Provided that the input
trace 1s an accurate representation of the traced system, simulation tends to give
more precise prediction about the system than analytic modeling. As a practi-
cal tool, it can closely model the operation of a real system and provides good
approximate measures of performance on various designs. Due to the sheer size
of trace data, simulation requires large amounts of storage space and computing
time. Analytic modeling, on the other hand, is relatively inexpensive compared
with simulation, since the major work is in the analysis. However, to make anal-
ysis tractable, one usually has to make simplifying assumptions about the real
system under study, hence the results may not be accurate. Modeling is useful in
quickly and qualitatively providing an overall description of the entire system’s
performance,

A few useful metrics are used as criteria in performance evaluation of cache
memory designs. One such metric is the hit ratio: the percentage of the number
of times that a memory access from the CPU finds the sought-for data in cache.
A higher hit ratio means shorter response time to CPU read request, as more
data are provided directly from the faster cache without access to the slower
memory. Suppose the probability of a hit is p;, and response times of the cache
and the main memory are respectively Tj and T3, then the expected response
time of the cache memory is p1 77 + (1 — py)Ty = T3 — p1 (T2 — T}). Since usually
Ty <14, it is desirable to make p; as close to 1 as possible.

Another metric is the write ratio, which is the percentage of the number
of writes to memory against the total number of writes issued by the (‘PU
[Thompson 89]. The lower the ratio of memory writes to total writes, the less
traffic demand on the interconnection network between the cache and the main

memory. If every write issued by the CPU goes to both cache and memory, it

is called a write-through cache. For write-through, the write ratio is 100%. A
more interesting cache design is write-back: when a write is issued by the CPU,
it is directed to the data block in the cache (requiring a fetch from memory first,
if the data block is not already in the cache); the copy of the block in the main
memory is unchanged. The dirty data remains in the cache until it is replaced
to make room in the cache for newly referenced data. Write-back generally pro-
vides quicker response to a CPU write request and requires less interconnect
bandwidth than write-through, since it updates the main memory only when a
dirty block is replaced from the cache, while the latter updates the main memory
on every CPU write. If the dirty block stays in cache long enough to accommo-
date many writes, then the final update of consecutive bytes of the block in the
main memory is overall more efficient[Smith 82, Shoemaker 90]. The downside
of write-back is the more complex circuitry of hardware implementation, and it
can perform worse than write-through if dirty blocks are flushed after they take
only a few writes, when for example a task is switched[Shoemaker 90].

There are several key parameters that affect cache memory performance:
cache size, block size, block placement in the cache (also called set-associative
scheme, explained later), and as mentioned earlier, write handling (write-through
v.s. write-back) and block replacement policy. The bigger the cache size, the
higher its hit ratio, and in general thereto the better cache memory performance.
However, three constraints have to be considered in practice: cost, physical limi-
tations, and system interdependency[Smith 82]. Even though memories are get-
ting increasingly cheaper, fast cache memories are still expensive. To build an
on-chip cache, transistors have to be partitioned among all units including the
CPU. hence only a limited number of them can be used for the cache; for example,
on the 1486 microprocessor the largest cache size that could fit the overall chip
design was 8K bytes[Shoemaker 90]. Also, bigger cache requires more complex
circuitry and incurs longer delay, demanding a slower system clock rate.

Block size is another parameter. Simulation studies (see [Smith 82]) showed

that with the same cache size, moderately big blocks provide better hit ratios

than small blocks. The drawback with big blocks is the larger miss penalties
in terms of having to bring in (and take out) more bytes on miss. When the
initial latency is high but transfer time is low, then bigger block sizes are ap-
propriate. This depends on the interconnect between the cache and the main
memory[Shoemaker 90].

Set-associativity restricts the number of places a block can reside in the cache,
reducing cache response time while normally yielding lower hit ratios and has
more hardware complexity[Shoemaker 90)].

Cache simulation was initially done on a per configuration basis. One simu-
lation was run for each cache configuration to get precise performance result on
that cache size, line size, etc. Typically runs were done on a few selected cache
sizes, and the whole curve was approximated by extrapolation. The discovery of
the stack evaluation (stack processing) technique for demand-fetched two-level
memory hierarchies[Mattson 70] has made simulation a much more efficient eval-
uation approach and extended its applicability. Stack evaluation techniques aim
at obtaining cache hit ratios for a range of parameters in one pass over the ref-

erence frace.

1.2 Stack Evaluation

Let X' = 21, 2,,...,27 be a memory access trace, where each x, for 1 <i{1 <L
is a n-bit binary address for a byte. The entire address space of 2" bytes is
partitioned into 2% blocks, k being a fixed number, as shown in Figure 1.1. Each
block has 2% addressable bytes. As data movement between the cache and the
main memory is carried out in blocks, it is equivalent to study the corresponding
block trace X* = ¥, 0% ... 2% with a¥ = 2,/2"*. The superscript is omitted
when the context is clear.

A cache block replacement algorithm is called a stack algorithm if, when being
used, the cache contents in a demand-fetched two-level hierarchy always satisfies

an tnclusion property; namely, the contents of a smaller cache is always a subset

Block Number | Displacement

- k — n-k —

Figure 1.1: Memory Address

of that of a larger cache, for any CPU access sequence. Common replacement
algorithms including the LRU, LFU, and the longest forward distance (MIN, the
next access is the farthest into the future) are stack algorithms. FIFO is not a
stack algorithm; its cache content does not always obey the inclusion property.
Stack algorithms permit efficient one-pass evaluation of traces, as we will see
below,

There is a more convenient criterion to decide whether a replacement al-
gorithm is a stack algorithm. A priority-based replacement algorithm is a re-
placement algorithm which has, at any time ¢, a linear ordering P; of previously
accessed data blocks 21, @2,...,2_, called the priority list. A priority-based
algorithm makes replacement decisions according to the priority list; if a replace-
ment is required at time ¢, among all blocks in the cache, the block with the
lowest priority of P, is picked. The priority list P, must be independent of the
cache capacity, although it may change with time ¢. It can be shown[Mattson 70]
that (a) every priority-based replacement algorithm is a stack algorithm, and (b)
every stack algorithm is equivalent to a priority-based algorithm. So a necessary
and sufficient condition for a replacement algorithm to be a stack algorithm is
that, at any time ¢, there is a priority list P, of previously accessed data blocks
which is not a function of cache size. For example, LRU’s priority list is a list
of previously accessed data blocks ordered by the decreasing time of their most
recent access; LI'U’s priority list contains previously accessed data blocks ordered

by the decreasing frequency of their past usage.

Let A be a stack algorithm under consideration. Due to the inclusion property,
after each access time £ (i.e., the CPU access to z, has been fulfilled), the content
of any cache can be represented succinctly by a list S; = [s,(1), ..., 8:(r¢)], where
each s¢(7) is a distinct block and r; is the number of distinct blocks referenced by
time ¢ (r, < t). The content of a C-block cache, after access time ¢, is the first
C entries of Sy [s4(1),...,5,(C)]. S; is called the stack of A.

Let z, be the block accessed at time ¢. The stack distance A, is the position
of block x; in the stack S;_;, i.e., z; = 5t-1(A¢). Ay is set to oo if x4 is not in
Si—1- An access to z, is a hit for a cache of size C if and only if A, < (. The
percentage of stack distances that are less than or equal to C for the whole trace
X is the hit ratio for a cache of size C' with reference string X. Let n(d) be a
counter for the number of times that the referenced block is at stack distance d
in the entire trace. Then the total number of times an accessed block is found in

cache with a capacity of C block frames is

C
N(C) = _n(d)

d=1

and the hit ratio is

P (C) = N(C)/L

After each access r;, the stack S;_; is updated to S, to reflect the change
in the contents for all cache sizes. Stack updating, depicted in Figure 1.2, is
done using the priority list P; as follows: Denote s,_;(1) by y,(1). First compare
yi(1) = s;1(1) with s,_1(2); the one with higher P, priority becomes s,(2).
the other is denoted by y:(2). Secondly, compare y,(2) with s;_1(3); the one
with higher P, priority becomes s,(3), the other is denoted by y,(3). Generally,
compare y;(z) with s,_;({ + 1); the one with higher P, priority becomes s,(7 -+ 1),
the other is denoted by y:(i + 1). This process continues until s,_4(d) = z, is
found, or the end of the stack S,_; is reached. If x; is found at the d-th entry
si—1(d) of S;_1, y:(d — 1) becomes s,(d), and s,_,(j) becomes s,(j) for all j > d.

In both cases, z, becomes s,(1).

St-1 St St1 f St

5.,(1) s 5,01 5(1)
by L lml) ‘
5.02) 8(2) 5.,(2) 5,(2)
(2 ¥ (2)
$.(3) = S(3) §.(3) [S(3)
¥,(3) %(3)
S.(4) 5(4) 5.,(4) = §(4)
% (4) % {4)
. ; Yt (d-z) L] . i y[(d-2)]
S, @1y —= S$d-1) 5. @1 = 8(d-1)
X, ¥,(d-1) ¥, (d-1)
= 8,(d) — 8(d) §.q(d) — §(d)
y(d)
8.1 (@+]) [————=| S(d+1) S, (@+1) ——*O—- S(@+1)
ARG
. : : . bt(ﬁ.r‘ .
81 (hy? 51 §,() _"O——’ S/A0)
Yol Ty
8(1,)
A. B

Figure 1.2: General Stack Updating

A zyisin S;_1; B. 2y isnot in Sy,

Stack updating for LRU replacement is quite simple: if z; is found in the
stack, then z, is pulled to the top of stack while entries previously above it are
shifted down by one position; if #, is absent, then =, is appended to the stack
head, as depicted in Figure 1.3. This is because the priority of each block is equal
to its stack position.

Many extensions to the original stack evaluation techniques have been made
by various researchers. Traiger and Slutz extended stack evaluation to multiple
block sizes and multilevel hierarchies for LRU algorithm[Traiger 71]. Muntz and

Opderbeck extended it to two-level directly addressable memmory hierarchies for

|7 2]
-
=
o

|7 7]
ko
—

.

o
-

san | s(1) S(1) \ S(1)
5.1(2) \\ §(2) 5.,(2) \ S(2)
5.1(3) | 5(3) S () \ 5(3)
Sp(4) \s S(4) §.1(4) \ 5(4)

S, (d-1) \\ S4d-1) SINCEN s S(d-1)
x, > | S (d) ﬁ\ S(d) 5.,(d) \ $(d)
S la) = sgds1) S, (@) \ S (d+1)

Sy (T s(T) 54T s S(T,.)
s(L)

A. B.

Figure 1.3: LRU Stack Updating

A zyisin S,_q: B. 2, is not in $;_1.

an arbitrary stack algorithm where a memory access can by-pass the first level
cache to go directly to the second storage|Muntz 74]. Gecsei made extensions
to more general multilevel hierarchies where the top-most level has an arhitrary
stack replacement algorithm and every lower level has its replacement algorithm
dependent upon the immediately higher level replacement algorithm[Gecsei 74].
Thompson and Smith extended stack evaluation of a general stack algorithm to
write-back caches and sector caches[Thompson 87, Thompson 89]. Wang and
Baer extended write-back techniques to arbitrary set-associative caches for the

LRU algorithm{Wang 89, Wang 91].

In the following sections we review some of these extensions. Some of the
results reported in this thesis are related to or based on this previous work.

Later chapters will assume familiarity with these sections.

1.3 Write-Back Caches

Initial work on stack evaluation techniques ignored write operations. It did not
distinguish between reads & writes or equivalently, assumed all accesses were
reads. In the case of cache memories, when the CPU writes to some memory
address, the data can he written to cache only, or to both cache and memory.
The former, termed write-back, provides better response time to the CPU, as
writes to memory are done in asynchronous fashion and write requests usually
only take cache delays. The dirty data is not written to the main memory until
its block is replaced from the cache, at which time the whole dirty block is written
out to the main memory. Evaluation of write-back caches requires study of the
number of actual write operations made (in blocks) from the cache to the main
memory. Thompson and Smith[Thompson 89] found a clever way to evaluate
write-back cache memories within the general framework of stack evaluation.
They noticed that if a dirty data block is written again while it is still in the
cache, then the write-back of the previous write is avoided. In other words, if
the cache size is greater than or equal to the longest stack distance, called dirty
level, that a dirty data block has achieved since it was last written, and now the
CPU issues another write to that block, then there will not be any write-back for
the previous write. The number of write-backs is inversely proportional to the
cache size: the bigger the cache, the fewer the number of write-backs. If a block
1s dirty in a smaller cache, it has not been replaced since last time it was written;
by the definition of stack algorithm, it must also have resided in a larger cache
since it was last written, l.e., it must also be dirty in a larger cache.

In the Thompson & Smith algorithm, each block is augmented with a dirty

level value dl. A block never written has its dirty level set to infinity. When a

10

block is accessed, its dirty level is updated by taking the maximum of its current
stack distance and its previous dirty level. If the current access is write, then a
counter ws(dl) is incremented, and the block’s dl is reset to zero. For a cache
with ' block frames, the number of writes (to the main memory) saved by is

C

S(C)y =" ws(d)

d=1

If there are W (< L) writes out of the L accesses, the write ratio is given by
Por(C) =1 = S(C)/W

fraction of writes that actually cause memory writes.

1.4 Multiple Block-Size LRU Caches

The block size of 2"~*-byte has so far been considered a constant for any single
simulation run. From the system designers’ point of view, there are up to n + 1
ways to partition the 27-byte address space into blocks of sizes ranging from 2°
to 2. Assume that &k is between v and w, 0 < v < w < n. When the block
size 2" *-byte is changed with k, one normally has to repeat stack evaluation
on the block trace X* = ek, 28, ... 2k, For LRU replacement, however, it is
possible to do stack evaluation on the minimum-sized block stack S using the
corresponding block trace XV = z¥ a¥,...,z¥ and obtain stack distances AF
for all the &’s in v <k < w at once[Traiger 71].

Let Sf and S? be the LRU stacks for blocks of 27~ byte and 2" byte,
respectively, after accessing byte z,. S? is the list of 2°~2-byte hlocks ordered by
their most recent access, while S} that of 2*~*-byte blocks. If 2°~¢ evenly divides
27=% each 2"~*-byte block contains integral number of 2"%-byte blocks; an access
to {some byte in) some block of 2"7® bytes is also an access to a unique block
of 27" bytes. Hence S? can be obtained from $2 by orderly taking, from stack
head to stack tail, its entries (2"~ %-byte blocks) which represent distinct 2"%-

byte blocks; i.e., 57 is embedded in S¢. By the block partition scheme in Figure

11

1.1, the division of block sizes is 2" /2n-v = 2wk 5 9n=w_hyte block evenly
divides a 2"~*-byte block. Any LRU stack S¥ of 2*~*-byte blocks is embedded in
stack S¥. SF could be constructed from S’ by choosing, going from head to tail
of the stack, all entries in S} that have distinct k-bit prefixes, i.e., throwing out
all lower entries in the stack that match the k-bit prefix of a higher stack entry.

To find the stack distance Af for 2"~*-byte blocks, we need to count, in stack
5S¢ 1, the number of entries with distinct k-bit prefixes, from the stack head down
to the first entry whose k-bit prefix equals zf = 2 /2%, To decide whether an
entry has a distinct k-bit prefix, define a left match function LM(z,y) between
two block addresses x and y as the number of consecutive high order bits that
match. For example, LM(0111,0100) = 2. Blocks = and y have the same &-bit
prefix if and only if LM (2, y) > k. For each entry s ,(j) in S}, attach a variable

MLM ;, which is the maximum value of the left match functions between s ()

and all entries s}’ ,(7) above it (1 <7 < 3)

0 =1

MLM . =
" mazicigIMsE,(G), 24 (6))] 5> 1

For each k between v and w, entry s ,(j) has a distinct k-bit prefix (i.e., no
entry above it has the same &-bit prefix) if and only if MLM; < k. As stack S
is being searched for 2}, the stack distance variable A¥ is incremented at each
entry s;” (7} if and only if MLM; < k.

When an entry s}, (d) with s} ,(d)/2¥~% = z¥/2*~* is encountered in the
stack, A} will not be incremented further, which means z* is found. Another vari-
able LIM is used to remember the minimum value of k such that 2% has not been
found in the stack. LIM is initialized to v, and is set to max[LM(2¥,s¥ (7)) +
1, LIM] at every stack entry s¥ | () that is being searched. Stack searching stops
when 2} is found or 5}, is exhausted.

There is a simple way to count the stack distance A¥. Let 3(r) be a set of
counters initialized to zero before processing each access x;, and let n*(A*), for

each k. be a counter for the number of times that stack distance A* is found

12

among the entire trace for 2°~*-byte blocks. When searching the jth stack entry,
counter 3(max[LIM, MLM; + 1]} is incremented by one. At the end of stack

searching for z:, the stack distance is expressed by

k
ab =3 8(r) (1.1)

for v < k < LIM, and Af = oo for LIM < k < w. After each access a;, the

stack distance counter n*(A¥) is incremented by one for each block size 2*~%,
When stack S}*, is updated to S, the MLM values of its entries are updated

as well. For entries in S}*, that are below z¥, their MLM’s remain the same; for

each j-th entry above x}, after it is searched, its MLM is changed to
MLM; = maz[MLM;, LM (2}, s ,(5)))

5.1(J) now becomes the (7 + 1)-th entry s¥(; + 1) in S¥.
Finally, the total number of times an access is found in a cache of ' hytes
(C/27* blocks of 2°=% bytes) is

cjan-k

NECY= 3 n(d)

d=1
and its hit ratio is

P (C) = N*(O)/L.

1.5 Set-Associative Caches

In the cache organizations considered thus far we have assumed that a data block
can occupy any block frame in the cache memory; the mapping of data blocks in
the cache is unconstrained. This is usually called fully associative mapping. This
unconstrained mapping has the disadvantage of having to search the entire cache
each time a block is to be located, causing slow response to CPU’s access request.
A constrained mapping, called set-associative mapping, is used in practice to
reduce the search time, whereby each block is restricted to a subset of the cache

block frames.

13

=— (k - alpha) bits »t«— alpha bits —

block prefix set no.

k bits

Figure 1.4: Block Number

The most common type of set associative mapping is the two’s power con-
gruence mapping, or congruence mapping[Mattson 70]. A congruence mapping
is to partition the 2% blocks into 2* disjoint sets of equal cardinalities, numbered
from 0 to 2% — 1. Each set has 25~ blocks. Blocks with equal a lower-order bits
in block address belong to the same set. The set that a block belongs to is de-
termined by the « lower-order bits of block’s address, i.e., by operation mod 2,
as shown in Figure 1.4. We call o the set length, with 0 < o < k.

A congruence-mapping set-associative cache usually allocates an equal num-
ber of block frames, say D, for each set. For set length «, the cache’s total
capacity is (' = 2%- [} blocks. Such a cache is called D-way set associative cache;
when [} =1 {a = log C), it is called direct-mapped cache, where each block has
only one possible frame in which it can reside in the cache; see Figure 1.5. When
a block z is accessed, only the D block frames of its set need to be searched. If it
1s not there, and if all D block frames are occupied, a block replacement decision
is made to remove one of these) blocks from the cache.

Since the sets are disjoint, the cache can be treated as a collection of 2°
independent caches, one for each set. The two-level cache-main memory hierarchy
can also be viewed as a collection of 2% independent cache-memory hierarchies,
each with a cache size of D frames. They can be handled separately using stack
evaluation techniques.

For a general stack algorithm, stack evaluation must be applied individually
to each value of the set length a. A total of k + 1 passes of trace evaluation

are needed for all values of a between 0 and k. Alternatively. one can maintain

14

blk. no. Cache Main Memory blk. no.

0 0
D-1
D 5-1
: b
S+1
2D-1
28-1
28
(S-1)D
SD-1
M-1)8-1
(M-1)S
(M-1)8+1

Figure 1.5: Set-Associative Mapping: cache = SD, memory = §M, mapping is

mod 5.

k + 1 groups of stacks, where each group is composed of stacks for a particular
set length, and update all of them for each access z;. Denote by S;_1(r,a) the
“sub”-stack of the ith set for set length a, and A¥ the stack distance of 2y
in the sub-stack Si_i{z; mod 2%,a). For each set length o, we get w,'s stack
distance A{ from the sub-stack S,_;(2, mod 2%, «), which in turn is updated
to Si{x; mod 2%, a) according to the stack algorithms’ priority list P,. Other
sub-stacks are unchanged: Si(j,a) = S;_1(J,a), j # ¢ (mod 27).

Denote the stack distance counter for distance d of set length o by n(a,d).
For a D-way set associative cache with a total capacity of ¢ = 2% - D blocks,

after processing L accesses, the number of times an access is found in the cache

15

is

D
N(e,2°D) =Y n(a,d)

d=1
The hit ratio is

Pr{a,2°D) = N(a,C}/L.

1.5.1 LRU set-associative evaluation

The LRU algorithm has the nice property that each sub-stack S,(7,) is em-
bedded in the global stack S,[Mattson 70]. S,(:,«) is the list of all previously
accessed blocks that are in the ith set for set length ei, ordered by most recent
reference; S; is the list of all previously accessed blocks ordered by most recent
reference; the former can be recovered from the latter by picking up all the en-
tries that are in the ith set for set length a. Stack searching of S; amounts to
simultaneous searching of all sub-stacks S;(i,e),0<i <2 -1, 0<a <k
Suppose the current referenced block is zy, and the jth entry s,_;(7) of the
global stack 5;_; is being searched. Define the right match function RM(a, b) as
the number of consecutive low-order matching bits in @, b. For example, RM(1010,
0110) = 2, RM(1000, 1001) = 0. Obviously block s,_y(7) is in the same set with
x; for some set length « if and only if RM(zy, 5;..1(j)) > o. Let {pu(r)} be a set of
counters initialized to zero for 0 < < & before the processing of each access x;.
To determine {Af} for all «, we just search the global stack S,_; and increment
counter g(RM(z,, s,-1(7)) at each stack entry. Searching stops when 2; is found,
and the new global stack S, is obtained by pulling x; to the stack head. The

stack distance A is given as

A =3 ar) (1.2)

for o =0,..., k. If z; is not found in S;_;, A? is set to oo for every a. Then the
stack distance counter n(a, A¥) is incremented by one, for each o =0, ..., k.
After the entire trace is processed, these counters n(a,d) (0 < a < £,0 <

d < oo0) contain the stack distance distributions for each set length o.

16

1.6 Organization of the Thesis

This research will make new extensions to stack evaluation in the following ways:
first, it extends the one-pass write-back techniques to LRU caches with multi-
ple block sizes, getting hit ratios and write ratios for multiple block sizes in one
pass; second, it extends the one-pass techniques for uniprocessor caches to mul-
tiprocessor LRU caches with any invalidation-based coherence protocol, getting
hit ratios for multiple set-associative mappings in one pass; third, we show that
the LRU is the only stack algorithm that allows one-pass stack processing for
all set-associative mappings, giving a formal proof of a commonly held but un-
proven belief; forth, we demonstrate that the efficient evaluation techniques for
two-level memory hierarchies (cache memories) can also be applied to certain
multilevel memory hierarchies (staging hierarchies) as well, which use a same
but arbitrary stack algorithm for block replacement on all levels. In analysis, we
present an analytic model for the performance of multiprocessor caches that use
an invalidation-based coherence protocol. While the bulk of this thesis is focused
on cache memory evaluation through either simulation or analysis, we provide, in
the area of cache system design a novel scheme of distributed cache directories for
scalable large shared-memory multiprocessor computers; it has provably optimal

space and time complexities among all scalable directory schemes.

17

Chapter 2

Multiple Block-Size Write-Back
Caches

Abstract. There exist one-pass evaluation techniques for read-only LRU cache memories with
multiple block-sizes and for write-back LRU caches with a fixed block size. By exploring an
useful property of LRU, we extend these techniques to evaluate write-back LRU caches for
multiple block-sizes. Using a vector of dirty levels, we give a simple method that produces hit
ratios and write ratios of write-back LRU caches for a range of block-sizes in a one-pass trace

evaluation.

2.1 Introduction

It 1s known that for read-only memory hierarchies using LRU replacement algo-
rithm, the hit ratios can be evaluated for multiple block-sizes in a single pass over
a memory reference trace. It is also known that for write-back caches with a fixed
block size, the write ratios can be evaluated in a single pass. We extend these
techniques, showing that for write-back cache memories using LRU replacement,
the hit ratios and write ratios can both be evaluated for multiple block-sizes in
a single pass over the reference trace.

The enormous amount of disk space needed for storing CPU trace data is a

18

costly problem in trace-driven simulation of cache memories. One way to solve
this problem is through on-the-fly simulation, which evaluates trace data as they
are being collected. Since trace data do not need to be saved anymore, on-the-fly
simulation solves the storage problem. As a one-pass algorithm, the method of
write-back evaluation for multiple block-sizes is a good candidate for on-the-fly
trace-driven simulation.

This chapter presents this new technique. It combines the stack evaluation
technique for multiple block-size read-only LRU caches with the technique for
fixed block-size write-back caches. Its correctness is proved by a method of loop-

mvariance, and is empirically verified by simulation results on real trace data.

2.2 Informal Description

We use the same framework as in [Traiger 71] for read-only multiple block-size
LRU stack evaluation to handle write-backs. For a specific block size of 2%
bytes, it 1s easy to calculate its hit ratio and write ratio by using one dirty level
variable, since the required stack S¥ is implicitly embedded in the minimum block
size LRU stack S}, and the method of {Thompson 89] can be readily applied. To
calculate the write ratio for each £ = v,...,w, it is natural to use an array of
dirty level variables, one for each block size (equivalently, each &-bit block prefix
of the n-bit address). We call the dirty level variable for 2"~*-bvte blocks a k-bit
dirty level. Together they compose a dirty level vector of w — v + 1 elements
Dirty-level vectors have been used for stack simulation of set-associative cache
memories in [Wang 91], where evaluation of multiple set-associativities with a
fixed block size was studied. The problem there is a bit simpler, where the block
size is fixed, and the dirty level variable for each set-associativity is associated
with some stack entry. As we will see below, this is not the case for multiple
block-sizes, where a dirty level variable has to be moved between stack entries.
Since there may be multiple entries in 5} with identical &-bit prefixes, there

is the question of which will store the k-th bit dirty level. We will store the dirty

19

level in the top-most one among these entries. In other words, let = be a stack S}*
entry that is written, then we keep its k-th bit dirty level on the top-most entry
s:(f) of stack S that has the same k bit prefix as 2. We denote this top-most
stack entry by a special symbol [xz,]*:

[xt]k < se(f)

where

f=min{i|s(i)/2¥ % = 2/2v°%)

This ensures that, whenever z, is found, the dirty level of z; for every block size
has been found. This eliminates the need to search the entire stack for all relevant
dirty levels, and conforms to the traditional stack searching method that stops
whenever the current 2*~*-byte block number z; is found.

Our algorithm works as follows: for each block access x,, search the stack
577, until x; is found or the stack end is reached. During the searching, k-th bit
stack distances Af are accumulated in some auxiliary counters /(7). as explained
in section 1.4. The k-th bit dirty level of z, is collected in the k-th element pdi*
of a temporary vector pdl = [pdl”,. .., pdl™”] (previous dirty levels). When the
searching is done, the current block z; is put on the top of the new stack. Stack

distances are computed as usual by Equation 1.1 in section 1.4: namely

k
A =32 B(r) (2.1)
For each k, pd!* is updated by
pdl* = maz[pdl*, AN (2.2)

If the access is a read, the dirty level vector of the top stack entry z; is set to

. . . k .
pdi. If the access is a write, write-saved counters ws®(pdl®) are incremented for

each k; the dirty level vector of x; s set to an all-1’s vector [1,...,1].

w—v+1
This is best explained by an example. Consider a reference trace X = 1001,

(000, 1100, 0100, 0010, 0000. Here v = l,w = n = 4. Accesses 1, = (0000

20

and x5 = 0010 are writes, the rest are reads. a; represents the j-th stack entry.
MLM; is the max left match value, and DL; = (DL!, DLY™',... DLY) is the
dirty level vector, respectively, for entry a;. The dirty level value of 0 represents
infinity. If the value of a dirty level DL;‘-’ was changed during the previous access,
this is indicated with an underline.
After access zy = 0000, stack S, is simply as follows. As it’s a write access,
DLy is all 1's.
a; | MLM; | DL;
0000 0 1111
1001 0 0000

After access xa = 1100, stack S5 is as follows.

a; | MLM; | DL;
1100 | 0 | 0000
0000 | 0 | 1111
1001 | 1 | 0000

After access x4 = 0100, stack Sy is as follows. x4 is in the same 21~ %-byte
block with s3(2) = 0000 for £ = 1, so pdl' = 1, the value of the 1st dirty element
of of s3(2), which is in turn reset to zero. At the end of current stack searching,
Al = 2, so pdl' is changed to 2 by Equation (2.2). As this is a read access, pdl

is stored in s4(1),

(Ij JM’LJ\JJ DLJ

0100 0 2000
1100 0 0000
0000 1 0111
1001 | 0000

After access x5 = 0010, stack S5 is as follows. Notice that since a5 is in
the same 23-byte hlock 0 with s4(1) = 0100 and the same 2%-byte block 00 with
54(3) = 0000. so pdl' = 2, pdl* = 1. At the end of the current stack searching,
Al = 1,A? = 3, thereby pdl' = 2 and pdI* = 3 by Equation (2.2). Since it is

21

a write access, ws'(pdl') = ws(2) and ws?(pdi*) = ws*(3) are incremented by

one, and DL, is set to all 1’s.

a; | MLM; | DIL;

0010 0 1111

0100 1 0000
1100 0 0000
0000 2 0011
1001 2 0000

After one more access x5 = 0000, stack Ss i1s as follows. 24 is in the same
23-byte block 0 and 22-byte block 00 with s5(1) = 0010, so pdl' = 1, pdl* = 1;
it is in the same 1-byte block 0000 with s5{4) = 0000, so pnhf3 = 1,pdl" = 1. As
Al = A? = 1, A% = A? = 4, By Equation (2.2), pdi' = pdl* = 1. pdl® = pdl* = 1.

As it 1s a read access, pdl is stored in sg(1) = 0000.

a; | MLM; | DL,
0000 | 0 | 1144

0010 2 0011
0100 1 0000
1100 0 0000
1001 2 0000

2.3 Formal Description

Here we present the combined procedure for stack distance counting, dirty level
computing, and stack updating. It is described in a PASCAL-like pseudo code,
where 2 « y denotes switching the values of variables z and y. The accessed
block is x¢ in minimum block size, and w; = & if z; is a read access. The jth
entry of 5}%, is ;. STACKLEN is the length of the current stack. LfM denotes
the minimum unfound prefix k, or equivalently, the maximum unfound block size

of 2°7% bytes. MLM is the maximum left match value for ;. In addition, there

22

is a dirty level vector of I = w ~ v 4 1 elements attached to each stack entry; as
for the jth entry a;, it is DL; = (DL3, DL;H, ..., DLY). Clean blocks in 5} have
an all-infinity dirty level vector. When a block is written, its dirty level vector
is set to all 1’'s. Counters 3(r) are used to calculate the stack distance A* for
every k. Counters n*(r} are used to store the distance frequencies of A%, ws*(r)
is the write-saved counter for 2"*-byte block number. L is the trace length, and

“ are the temporary

W is the number of writes of the L accesses. y,z,b%,...,b
variables used for entry down-pushing during LRU stack updating. pdl* is the
k-th element of temporary dirty level vector pdl that holds the dirty level of [z,]*,
which is the first stack entry that is in the same 2"~ *-byte block as z;.

Functions maz(a, b) and left_match(a,b) return the proper values for «¢ and
b. At the beginning of stack evaluation, counters n*(d) and ws®(d) are initialized
to zero. Before processing each new access, counters 3(r) are set to zevo, and
pdl* and b* are set to infinity for each k.

For each accessed block z,, the procedure searches the stack top-down, during
which the stack distance for the 2"~*-byte block entry [z,]* is accumulated in
B(r)’s, the dirty level for the 2"~-byte block entry [z;]* is collected in pdl*, and
meanwhile the stack is updated. Stack searching is completed when either 2, is
found or the stack is exhausted; in either case x; is put into the stack’s top entry
hefore the next round of searching (for x¢y1). Each pdI* is set to the new stack
distance A¥ if it is smaller. If the current access to z, is a read, pdl is stored with
¢ in the top stack entry; if it is a write, then counter ws*(pdi*) is incremented

for each k&, and the dirty level vector of the top stack entry for x; is set to all 1’s.

Algorithm. Multiple block-size write-back LRU stack evaluation

for k= v to w do
for j =1 to oc do
n*(j) = ws*(j) = 0;
STACKLEN = (;
fort=1to L do
get x;, wy,
Ji=18 y==z 2 =0; LIM = v; flag = true;
for k= v to wdo

Ak} =0;

GO =1 S O i Lo N =

w

23

10 pdl* = oo;

11 b = oo

12 while flag and j < STACKLEN do
13 r=maz(LIM, MLM; + 1);

14 B(r) = B(r} + 1;

15 LM = left_maich(z,, a;);

16 MILM; = max(MLM;, LM),

17 if LIM < LM

18 then

19 for k = LIM to LM do

20 pdl* = DL¥;

21 DJ.'lj,-r = 00;

22 LIM = LM + 1;

23 ﬁ‘ Iy = 4aj

24 then

25 a; =y

26 AJLM]‘ =z

27 for k = v to wdo DLf = b
28 flag = false;

29 else

30 y = aj;

31 z— MLMj;

32 for k = v to w do #* — DL};
33 i=i+1

34 if flag

35 then

36 a; =y

37 MLM; = z;

38 for k= v towdo DI} = b,
39 STACKLEN = STACKLEN + 1;
40 fork=v to LIM —1 do A* =5F_ 8(r):
41 for k= LIM to w do AF = oo;

42 fork=v to w do

43 nt(AR) = nF(AR) 4+ 1,

44 pdl* = max(pdi®, AF),

45 if wy # ¢

46 then

47 W=W+1;

48 fork=vtowdo

49 DL¥ =1,

50 wsk (pdl¥) = ws* (pdi*) + 1;
51 else

52 for k= v to w do DL¥ = pdi*:

Lines 1 to 4 and 7 to 11 initialize variables. Line 5 iterates the algorithm for
the entire reference trace. Line 6 gets the block address x; = &} of the current

acCCess.

24

Lines 12 through 33 are involved with stack searching and stack updating; this
block of instructions is exited when either the current accessed block x; is found
(flag is set to false) or the stack is exhausted (7 is greater than STACKLEN).

Line 13 sets the value of r to the least of all block prefixes that need to count
the current stack entry, a;, toward their stack distances. Line 14 remembers this
r value in the proper counter 8(r).

Line 15 calculates the left-match value LM between z; and ¢;. Line 16 updates
the maximum left match value of a;.

Lines 17 through 22 deal with the case of LIM < LM, where for block prefixes
k= LIM,LIM +1, ..., LM, the sought-for 2*~*-byte block entry [z;]* has just
been found. Here their dirty levels DL;? are transferred to temporary variables
pdl* in line 20 and are reset to oo in line 21. LIM is set to the new value LM + 1
in line 22, since all blocks with block size greater than 2*~¥ have heen found.

If a; is exactly equal to x, (lines 23 to 28), then the k-th bit block entry [x,]*
has been found for all £ = v,v + 1,...,w. The previous stack entry is placed
here by line 25 to 27, and stack searching is terminated with flag set to false.

If a; is not exactly equal to z; (lines 29 to 32), i.e. LM < w0, then 2" *-byte
block entry [z;]* has not been found for LIM < k < w, and stack searching will
continue. The current stack entry should be shifted down to the next entry ,
while the previous stack entry being shifted into current entry. Lines 29 to 32 do
just that by interchanging y, z, b with a;, MLM ;, DL; When the current entry is
the top one (j = 1), ¥ = @, is put in.

Line 33 increments the current stack entry index j, advancing stack searching
on to the next stack entry ;..

When stack searching is terminated but z; is not found, a new entry is cre-
ated, and the last stack entry examined is inserted by lines 34 to 38. Stack size
STACKLEN is incremented in line 39.

Lines 40 through 52 are for stack distance counting and dirty level computing,.
Lines 40 and 41 calculate stack distances A* for each block prefix k. For v <

k< LIM, A* should be the number of times that v < r < k happened in line

13, which is F_, A(r). For LIM < k < w, 2*~*-byte block entry [z,]* is not in
stack, hence its stack distance 1s co in line 41. All stack distances are recorded in
their corresponding counters in line 43. If pdi® is less than current stack distance
AF_ it is updated in line 44, by Equation {2.2).

If the current access is a write operation (Lines 45 to 50), then for each block
prefix &, the top stack entry’s dirty level vector is set to all 1's in line 49, and
the number of writes avoided is counted in line 5. The count of total write
operations is incremented in line 47. If the current access is a read operation,
then the temporary dirty level vector pd! is stored into the dirty level vector DL,

of the new top entry in line 52.

2.3.1 Correctness Discussion

Our method employs two techniques: (1). using a dirty level for each block
prefix; (2). if x has ever been written, always keep its k-th bit dirty level on the
top-most entry [z}* of stack S} that has the same k-bit prefix as x. The need
to maintain individual dirty level for each block prefix is due to the fact that
there is no definite relation between stack distances {(and hence dirty levels) of
different block sizes. Consider this reference trace: 0(w), 2% =%(r}, 2 x 2% (r),3 x
20k (py, oL, (28— 1) x 297F(r), 0(r). Here p(r) denotes a read access to address
p, and p(w) a write access to address p. At the end of the trace, the (& — 1)-
bit prefix dirty level and k-bit prefix dirty level of block p = 0 are A*¥ = 2%
AR~ = 281 Tp this case, A¥ = 2 x A¥1. Consider another reference trace:
0(w), 2 x 29=F(r), 4 x 297%(r) 6 x 2975 (r), ..., (2% —2) x 2¥7*(r),0(r), the dirty
levels of block p = 0 in the end are A* = AF1 = 26=1_ Generally, A*1 < AF <
2 x A*=1. One might try to exploit the monotonic property of stack distances
among different block sizes, namely A" < A% for k; < ky; but because of the
quite arbitrary disparity between AF and A*~1, it is necessary to keep track of
the difference p* = A¥ — A%~ for each k, which amounts to a vector.

The reasons to keep the dirty level on the top-most relevant stack entry are

two-fold: first, whenever z; is found, we can be sure that the dirty levels for every
2=k_byte block in which @, is contained, namely z:/2¢ F for k = v, ..., w, have
been obtained, therefore stack searching can be terminated; second and more im-
portant, the independence between stack distances as demonstrated above makes
it essential to keep it on the top-most relevant stack entry, so that individual dirty
levels are correctly maintained with each stack updating.

In Algorithm 1, lines 15, 16, 17 through 22, and 45 through 52, are responsible
for storing the k-th bit dirty level information with z;, which is to be put at the
top entry of 5}¥ at the end of current stack searching and updating. Doing this
in every round of stack searching and updating effectively puts the k-th bit dirty
level information for 2; on the top-most stack entry [z:]* that belongs to the same
2" byte block as x,. From this loop-invariant property, the correctness of the

algorithm readily follows.

2.3.2 Limitation

This method applies only to fully associative caches. Cache management usually
employs set associative caching to improve cache response time. One-pass eval-
uation of read-only LRU caches for multiple block-sizes and set associativities
is possible[Traiger 71], and it can be extended in a similar way to write-back
caches. However, now one needs an array, instead of just a vector, of dirty level
variables, for each stack entry in the minimum block stack. Such memory con-
sumption by the simulation can be quite overwhelming. We are currently looking
into properties of the algorithm similar to those in subsection 2.4.2 that enables
one to dynamically allocate dirty level arrays and reduce simulation requirement.

on memory.

27

2.4 Simulation

To examine 1ts application, we ran simulations using our method on some real
trace data. In this section, we will describe first the trace files used, then a simple

implementation of the algorithm, and finally the simulation results.

2.4.1 Trace Data

The trace data were produced by Agarwal on a VAX-11 architecture for van-
ous workloads, using a microcode-based tracing tool called ATUM {Agarwal 86).
They contain both single-task and multiprogramming traces. Each different trace
is stored in a separate file.

Both user mode addressing and kernel mode addressing were recorded, All
addresses are virtual addresses. The addresses correspond to four-byte words.
Each record consists of an operation code and a word address. The operation
code indicates whether it is an instruction access or a data access, and whether
a data access is read or write.

Table 2.1 summarizes the characteristics of the trace files. Trace files are
named NAME.num, where NAME indicates the type of workload traced, and
num is the sample number of the trace taken on that workload. For example, the
trace file lisp.000 represents the first sample of the (single task) lisp workload,
while the trace file mul3.1 the second sample of a workload with three active
processes (mul3).

In Table 2.1, the first column is the name of each trace, the second column
is the total number of references in each trace (trace size). The third column
is the total number of data references, the forth column is the number of read
references, and the fifth column is that of write references. The sixth column
is the number of unique data addresses referenced, and the last column is the

average number of reterences to the same data location.

28

Table 2.1: Trace Files

Trace T refs D refs reads writes Urefs repeats
allc 15334 4405 2400 2005 1147 3.84045
dec0.001 | 334775 164492 99897 64595 6030 27.2789
dec1.001 | 329613 161818 99342 62476 9207 17.4054
dia0 336093 139203 90819 48384 12425 11.2035
forl.GO0 314110 158397 100019 58378 16189 9.78424
forl 001 362518 192616 116460 76158 15980 12.0536
ivex.000 307172 127445 97238 30207 31517 4.04369
ivex.003 396775 225408 137022 B8386 RIT8® 27.5R27
lisp.000 262760 115527 99067 16460 5678 20.3464
lisp.001 261451 115224 98600 16624 6833 16.8629
mul0.0 337353 161356 122398 38958 20670 7.80629
muld.1 360325 185594 134442 51152 27260 6.80829
mul0.2 372610 196250 139659 56591 20120 9.75398
mul3.0 351089 171803 102505 69298 13388 12.8326
mul3.1 338946 160937 96533 64404 17624 9.1317
mul3.2 373408 198634 109771 88863 13166 15.0869
mulé.0 400698 234962 171440 63522 12812 18.3392
mulé.1 367205 191563 135282 56281 21925 B.T3719
mul6.2 394185 225444 149833 75611 20214 11.1529
pasc.001 | 540567 360547 264969 95578 19256 18.7239

spic.000 338168 208336 136088 T2248 7710 27.0215
spic.001 422818 250121 151510 98611 5584 44.7924
umill 357132 185315 167328 17987 11516 16.092
umil2 359462 196211 182390 13821 2233 B87.8888

2.4.2 Implementation

We use a simple doubly-linked list to implement the stack S of minimum
blocks. Since the algorithm requires update of the MLAM variable of each en-
try above the currently accessed block in the stack, a linear list is a natural
choice. Thompson[Thompson 87] compared various data structures in the imple-
mentation of write-back stack evaluation algorithm and found that sophisticated
data structures yield very little improvements in simulation time for real CP1l
traces.

To alleviate memory consumption by the algorithm, we will dynamically al-
locate dirty level variables to the stack entries, instead of statically allocating

an array of dirty level variables to each stack entry. The following properties of

29

the algorithm were observed during experiments, and the first one is useful in

reducing the algorithm’s demand on memory.

Property 2.1 Each dirty vector has a contiguous subvector of finite elements.
That is, for the j-th stack entry, and v <V < i <" < w, if DL;-’ < oo,DLj” <

oo, then DL;- < oo,

Proof. Let the minimum-size block address of the j-th stack entry be b, For any
7 such that v < ¢ < MLM;, there is a stack entry above that has the same :-bit
prefix as b (i.e., 5/2“7%); the i-th bit dirty level must therefore be stored in that
entry above. So DL} = 00,

For any I with MLM; < I < w, if DLJ{» < oo, then a block with the same
I-bit prefix as b has been written before. Thus, for any v < ¢ < I, then z-th bit
dirty level should be finite. As the current (j-th) stack entry is the top-most stack
entry [b]° for each ¢ in MLM; < ¢ < I, the ¢-th bit dirty level is, by the correctness

of the algorithm, stored in the current stack entry. Therefore, DL; < oo, O
Property 2.2 FEach dirty level vector has a non-decreasing finite subvector.

Proof. From statement 40 in the algorithm it is clear that the stack distance
vector A* is non-decreasing. From statement 44, the new dirty level vector is
the maximum of the old dirty level vector and the new stack distance vector,
element-wise. If the old dirty level vector is non-decreasing, then the new dirty
level vector will still be non-decreasing. Hence the conclusion by induction. C

It is clear from the proof of Property 2.1, that for any j-th stack entry, there
exists a value u; < w such that DL;- < oo for MLM; < ¢ < u;, and DL;- = oo for
v <1< MLM; and u; < ¢ < w. Hence each stack entry does not need a fixed
vector of 1w — v + 1 elements; instead, it only needs an integer vector of variable
length for only the relevant dirty level variables. The vector can be dynamically
reallocated according to the change in its length.

To speed up stack searching, we want to avoid unnecessary searching steps.
Stack search can stop whenever further searching down the stack will no longer

affect any stack entry or stack distance. From the algorithm, it is clear thai the

30

necessary and sufficient condition for the current stack entry to he the stop point
of the minimal searching is, that the current stack entry has the maximum left-
match function value with z,. At the beginning of each stack searching for new
access x;, we calculate the maximum value of the left-match function between z;
and all entries in stack S;_;; the stop point is the first entry whose left-match
function with z, equals this value.

The calculation can be easily done with a binary coding tree in a manner
similar to Huffman-coding. A binary tree, initially a single root node, is used to
record the addresses of all minimum blocks referenced so far. Each node, except
the root, corresponds to a binary address. The single digit addresses 0 and 1
correspond to the left and right child of the root, respectively. Generally, it an
address A corresponds to a node N, then addresses A0 and Al correspond to
the left and right child of node N, respectively. When a new address appears,
its corresponding node is created, together with all the missing internal nodes
leading from it up to the root. For example, Figure 2.1 shows how the tree

evolves, as the sequence of addresses 0, 10, 1, and 101 are referenced.

7554

Accesses
0 10

Figure 2.1: Coding Tree

To calculate the maximum left-match value between an address ¢ and all
previous addresses, we traverse from the root down in the binary coding tree as

deep as possible, while consuming the binary digits of a from left to right. At

31

the ¢-th step, we make a left turn if the i-th left-most digit of a is 0, and make a
right turn if it’s 1. We stop when we try to make a left (or right) turn but the
current node has no left (or right) child. The depth of the current node is the
value we want (root node has depth 0).

At the beginning of each stack search, we search the coding tree for z,. At
the end of the stack search, we create the node for z; if it is not there (i.e., the
value found is less than w). Note that since all addresses for minimum blocks
have the same length (number of digits) of w — v + 1, all the leave nodes of the

coding tree in this case have the same depth of w — v + 1.

2.4.3 Results

We treat kernel space address and user space address in the same way. Since we
are interested in write-back caches, and many cache systems now use a separate
data cache and instruction cache, we only consider data accesses in the traces.
The simulation of the trace data is done both by the one-pass multiple block-
size method, and by the fixed block-size method, assuming the size of a block
varies from 8-byte to 2%2-byte. Both types of simulation produce exactly the
same distributions of stack distance and dirty level on all trace files, validating
the correctness of the algorithm.

Write ratios are easily obtained from the simulation results. As suggested
in [Agarwal 86], we concatenated the sample traces with the same name into
one higger trace to get longer traces. Figure 2.2 and Figure 2.3 illustrate, for
the combined traces, the miss ratio against the block size B (number of bytes)
on a fixed cache capacity of 2048 bytes. The z-axis uses base-2 log B. For
these particular traces, bigger block sizes almost always result in less write-backs,
indicating both the locality and the sequentiality of the reference of these traces.

The simulation running times (user time + system time) are listed in Table
2.2, using a lightly loaded Sun SPARCstation SLC. The running time of multiple

block-size evaluation is overall just slightly better than the total time of sequen-

32

Cache w. 2048 Bytes

Miss ratio x 1073
T T T 1 T ™I

i 1 1 | | 1 log B

Figure 2.2: Miss ratio v.s. block size on UMIL1, UMIL2, and SPIC.

tial runs of all the separate fixed block-size evaluations. The reason for this
unimpressive simulation speed is due to the necessity of our algorithm to search
until it hits the stack entry which has the maximum left-match value with the
current address. If we solve the memory problem for multiple set-associativity,
then a one-pass evaluation for multiple block-sizes and set-associativities might
give dramatic speed-ups.

The advantage of this one-pass algorithm lies in its ability of being run on-
the-fly, 1.e., concurrently with trace collection[Hill 89]. Nowadays. the demand on
large disk space to store real trace data has become a costly problem nowadays.
On-the-fly technigues are a viable way to deal with this problem, by totally
avoiding the need to store trace data on disk. Because of the spatial locality of
memory access by a CPU, the number of distinct addresses contained in a trace is

extremely small when compared to the length of the trace itself. In other words,

33

Cache w. 2048 Bytes

Miss ratio x 10-3
[T T ! I T I M MU0

1 | \ 1 L I log B

Figure 2.3: Miss ratio v.s. block size on MU10, MUL3, and MULSG.

the size of the simulation stack is very short in comparison to the length of the
driving trace file. Through using a little more main memory (allocating extra
dirty level variables for each stack entry), our one-pass algorithm can save large
amount of disk space.

Running all the fixed-block simulations simultaneously in multiple indepen-
dent processes and sending the trace data to all of them, one is also a way of
doing on-the-fly simulation. However, this requires more memory than multi-
ple block-size simulation, since now each simulation of a fixed block size has its
own stack. For example, the pipe-lined running of fixed block-size simulations
on trace forl.001 takes 30MB, 3.5 times as much memory space as the multi-
ple block-size simulation. The problem will become worse when larger address
spaces are studied, since the trace will contain a larger number of unique ad-

dresses (more memory space used by each stack), and the range of block-size to

34

Table 2.2: Simulation Times

[Trace | fixed (f) mulii (m) (m—f)/f |
allc 8.3 5.5 337 %
dec0.001 201.7 196.2 2.7 %
dec1.001 220.9 217 -18%
dia0 195.5 169.4 -13.4 %
forl.000 361.5 224.9 -37.8%
forl.001 332.6 315.4 52%
ivex.000 955.8 547.7 -42.7 %
ivex.003 226.6 190.2 -16.1 %
Lisp.000 177.3 142.4 -19.7 %
lisp.001 192.8 132.9 -31.1 %
mul0.0 634.9 375 -40.9 %
mul0.1l 1005 972.5 -3.2%
mulQ.2 515.7 481.2 -6.7 %
mul3.0 296.7 238.1 -19.8 %
mul3.1 380.1 346.9 8.7 %
muld.2 364.3 4134 13.5 %
mul6.0 349.9 296.4 -15.3 %
mulG.1 495.3 405.9 -181 %
mulG.2 503.3 504.5 0.2%
pasec.001 1055.2 908.4 -13.9%
spic.000 258.6 206.4 14.6 %
spic.001 481.6 645.1 33.9%
umill 246.8 208.8 -154 %
umil2 204.7 164.5 -19.6 %

Note: Running-time in seconds.

35

Cache w, 2048 Bytes

Miss ratio x 10-3
23001 T T T T 1 BECo

nool- 1 _|'BEEL
21.00 - "‘-\ -
2000 i

1900 - -
18.00 [~ ‘\
17.00 | —
16.00
15.00
14.00
13.00
12.00
11.00
1060
9.00
8.00
7.00
6.00
500
400
3.00
200
1.00
000 [~ | | | 1 {

- log B

Figure 2.4: Miss ratio v.s. block size on DEC0 and DECI.

be considered is bigger (more concurrent processes to run); due to more frequent
context switching and disk swapping on simulating host, large memory alloca-
tion by the concurrent simulation processes could greatly slow down the entire

simulation.

2.5 Conclusion

We propose a one-pass evaluation algorithm that evaluates write-back LRU caches
for multiple block-sizes. As a candidate for on-the-fly simulation. it is a useful tool
in solving the problem of doing trace-driven simulation without storing enormous
trace data on disk. Combining previous stack evaluation techniques on multi-
ple block-size read-only LRU caches and fixed block size write-back caches. one

can extend efficient stack evaluation techniques to multiple block-size write-back

36

Cache w. 2048 Bytes

Miss ratio x 10-3
19000 F T T f I ¥ T = ALLC
18000 - 1 _|'¥&%c

17000 —

160.00
150.00

| | | i | TE PN

Figure 2.5: Miss ratio v.s. block size on ALLC and PASC.

LRU caches. There is a useful fact about LRU replacement: even though there
can be many 2"~ *-byte blocks in the 2°~%-byte block LRU stack S}” at time ¢ for
L < w, only the top-most entries with distinct k-bit prefixes in S are rclevant
for evaluating the stack distance of 2" *-byte block. By keeping information on
previous writes in the first S entries with distinct k-bit prefixes, one can deter-
mine the stack distance and dirty level of the currently accessed data block xr,
for every value of block-bit k < w, in one scan of the minimum-block stack 9}°.
Using a vector of dirty levels on each stack entry, and keeping the dirty level for
any block-size attached to its corresponding top-most stack entry. the multiple

block-size technique for read-only caches is extended to write-back caches.

37

Cache w. 2048 Bytes
Miss ratio x 1073

I T T I T I EORL

70.00

45.00

55.00

50.00

45.00

40.00

35.00

30.00

25.00

20.00

15,00

10.00

5.00

0.00

| ! |) | |
Q.00 2,00 4.00 6.00 3.0 10.00

Cache w. 2048 Bytes

log B

Miss ratio x 1073

7
mwl- .
160.00 -

1
15000 -} _
140.00

130.00 —

120.06 [~ —

110.00 ~ i —

100.00 — 3 —

90.00 |-
80.00 — \ -
70.00 — kY -

60.00

.-""‘"‘
|

50.00
40.00 —
30.00
20.00
10.00

8.00 — —

log B
0.60 200 4.00 6.00 8.00 10.00

Figure 2.6: Miss ratio v.s. block size on FORL, IVEX, DIAO, and LISP.

38

Chapter 3

Set- Associative Multiprocessor

Caches

Abstract. We propose a simple solution to the problem of efficient stack evaluation of LRU
multiprocessor cache memories with arbitrary associative set-mapping. It is an extension of the
existing stack evaluation techniques for all set-associative mapping schemes LRU uniprocessor
caches. Special marker entries are used in the stack to represent data blocks (or lines) deleted
by an invalidation-based cache coherence protocol. A method of marker-splitting is employed
when a data block below a marker in the stack is accessed. Using this technique, one-pass
evaluation of memory access trace yields hit ratios for all cache sizes and set-associative schemes
of multiprocessor caches in a single pass over a memory reference trace. Simulation experiments
on real multiprocessor trace data show an order-of-magnitude speed-up in simulation time using

this one-pass technique.

3.1 Introduction

When the least-recently-used (LRU) algorithm is used by the cache as its block
replacement algorithm, a one-pass stack processing can produce hit ratios for
all set-associative mappings[Mattson 70]. We are interested in extending this

set-associative stack evaluation technique for an LRU cache on an uniprocessor

39

computer to LRU caches on a multiprocessor computer.

There are issues regarding the validity of trace-driven simulation for mul-
tiprocessor caches: perturbation to the trace data by the tracing mechanism,
differences in trace data across different runs of the same program, and partic-
ular system configuration (e.g., cache sizes) under tracing. All these factors can
potentially change the global execution order of the program(s) being traced,
since they all affect the way processors interact with one another, including their
relative order of arriving at some synchronization point, their relative speed in
finishing their assigned jobs, and consequently their job scheduling.

It has been found[Koldinger 91] that there is insignificant difference in simu-
lation results due to tracing perturbation, for both process-based coarse-grained
parallel programs and thread-based medium-grained parallel programs; miss ra-
tios did not vary much between different runs of a program, especially for coarse-
grained programs. For stack evaluation, even though the actual ordering of mem-
ory access requests may be altered by the changes in exactly which references are
cache misses due to the different cache sizes, the changes would be slight and
their effect on simulation results insignificant[Smith 93]. Generally, stack eval-
nation methods are useful in predicting the general performance trend of cache
memories, making a helpful tool in the early design stages. They can be used to
narrow the initially vast design space into a few, more manageable choices, which
in turn can be studied using other less efficient but more accurate methods such
as case-by-case simulations or software-driven emulation.

On multiprocessors where each CPU has its own local cache, the issue of cache
coherence arises. Like a uniprocessor cache, each cache still has to implement
some block replacement algorithm, in case a referenced block is not in the cache
and no cache space is available for it. Unlike a uniprocessor cache, however, mul-
tiprocessor caches have to interact among themselves by some cache coherence
protocol to keep all the caches consistent[Dubois 82, Dubois 33, Stenstréom 90].
There are three categaries of cache coherence protocols: immediate-coping. inval-

idation, and validation. Immediate-coping is the case where the updating cache

40

broadcasts the changed data to all other caches[McCreight 84]. Invalidation, on
the other hand, does not broadcast the data; instead the updating cache sends
an invalidation message to all other caches holding a copy of the data block, and
they discard their copies {Censier 78, Papamarcos 84, Archibald 86, Cheong 88,
Li 89, Chaiken 90]. With the validation methods, the updating cache does not
broadcast the new data nor send an invalidation to other caches; before access-
ing any local data block, a cache must make sure that it has acquired the latest
version of that data block. If the cache owns the block, then it is guaranteed
to have the latest copy; otherwise, it has to contact the owner of the block (a
remote cache or the shared memory) in order to have the latest version. Gen-
erally, immediate-coping is good for infrequent writes and high degree of data
sharing, and invalidation is suitable for frequent writes and low data sharing. A
validation-based protoco! incurs high overhead and is deemed impractical.

For an immediate-coping protocol, a write to a block in one cache does not
change the presence or absence of that block in another cache. Other CPU’s
writing will update a block if it is in cache-no effect if it is not. From the
view-point of cache evaluation, a CPU’s local cache is unchanged by reads or
writes in other caches and stack evaluation can be applied independently for
each cache. For a validation-based protocol, the situation is similar: the content
of a CPU’s local cache is independent of those of other caches and independent
stack evaluation can be done for each cache.

The interesting case is an invalidation-based protocol, where a write in one
cache results in blocks being invalidated (deleted) in other caches. In other words,
an invalidation by a write in one cache produces an empty block frame in all other
caches that have a copy of the changed data block. From the standpoint of stack
evaluation, this effectively leaves an empty block in the stacks of the effected
caches.

Mattson, et al. [Mattson 70] used a special marker entry “#” in the stack
to represent an empty block frame caused by the invalidation of an I/O opera-

tion. All marker entries contribute to stack evaluation, and the invalidated block

41

frames in the cache have the highest priority of being selected in replacement
decisions. For fully-associative LRU caches, a marker will remain at the same
position in the stack until another data block below it is accessed, at which
time the marker is moved down to the stack position of the newly accessed data
block, and the referenced data block is moved up to the top of the stack. For
set-associative caches, whether a marker should move, when a data block below
it is accessed, is dependent upon whether the empty frame (more precisely, the
invalidated data block from which the empty frame was obtained) and the newly
requested data block are in the same set. As two blocks can be in the same set
for one associativity and in different sets for another associativity, the movement
of a marker is not obvious for arbitrary set-associative mapping. This problem
was proposed and its difficulty discussed by Wang and Baer[Wang 91].

In this chapter we propose a solution to this problem. In section 2 we
present a new method for one-pass evaluation of multiprocessor caches with
invalidation-based cache coherence protocols, yielding performance measures for
all set-associative mappings. In section 3 we give simulation results of the method
on some multiprocessing application trace data. Section 4 concludes with a sum-

mary.

3.2 Multiprocessor LRU Set-Associative Eval-
uation

As with uniprocessor caches, we want to make a one-pass scan of the fully associa-
tive LRU stack S;_; and get stack distance AY of every set-associative mapping
scheme (or set length) a for multiprocessor caches. As mentioned earlier, an
invalidated block in the stack is represented by a marker entry. If a data block
helow a marker in the stack is accessed, the marker may need to be moved down
to a new stack location, depending on whether the accessed data block and the

marker are in the same set. The newly accessed data block is always moved up

42

to the top of the stack.

With fully-associative caches, the movement of a marker is simple. If there is
one marker above the accessed data block in the stack, the marker is moved down
to the stack location of the data block. If there are two or more markers above the
accessed data block, then only the top-most one is moved down to the data block’s
stack location, while the other markers remain in their locations[Mattson 70,
Thompson 87]. To update LRU stack S;_y, we scan down the stack until x, is
found or the stack is exhausted, remembering the location of the first marker
along the way. This is shown in Figure 3.1A. In case the accessed block is not
in the stack, the top-most marker is removed from the stack, as is shown in
Figure 3.1B. One can easily see it is the correct way to update a stack with
markers, by considering each case where the cache size is at least as big as the
stack position of the i-th marker in the stack but less than that of the (¢ +1)-th
marker in the stack, before stack updating.

To update an arbitrary set-associative LRU stack with markers, We will em-

ploy a method called marker splitting.

3.2.1 Marker Splitting

When a data block has just been invalidated, it becomes a marker that has pres-
ence in (k + 1) sets, for set length o ranging from 0 to k. These are the sets
that the invalidated data block would be in for each set length. We represent
each marker m with a 2-tuple (b, v), where b is the block address of the original
data block that was invalidated, and v is a (k + 1) element vector whose ele-
ments are either 0 or 1: v[i] = 0,1 for 0 < ¢ < k. We shall call b the address,
and v the covering vector, respectively, of the marker. . represents a marker
presence in set (b mod 2%) of set length « if its v[a] = I. When a data block b
is invalidated, it changes into a marker m = {b,v) with v set to I's: v[¢] = 1 for
0 < i < k, representing (k + 1) singular, indivisible markers in each set length.

Let |m| be the number of singular markers m is composed of: [m| = s vfd)

43

7/ 77
yead

/)

||

1]

(— 1 C—0d
A, wyis in stack B. xy is not in stack
my moves down and m, stays. m) is deleted and m stays.

Figure 3.1: Constructing fully associative LRU stack with marker(s)

A marker is composite if it denotes multiple singular markers for different set
lengths. Two markers are disjoint if the dot product of their covering vectors is
zero, L.e. 3.5, v1[i] X vali] = 0. Disjoint markers do not have presence in the
same set for any set length.

When a data block in the stack is accessed, and there is one marker m above
it in stack, with m = (b, v), then m is split into two disjoint markers m' = (b,v")
and m" = (b,v"), with |m| = |m’| + |m”|. m’ represents the original marker’s
presence in the |m’| sets that do not contain the data block, while m” denotes
the original marker’s presence in the |mn”| sets that contain the currently accessed
data block. m' replaces m, and m” is moved down the stack to where the data
block resides; this is illustrated by Figure 3.2A. If either m' or m” is empty
(Jm!| - |m”| = 0), there is no splitting: m either moves down or stays where it is,

depending on which one of m’ and m" is empty.

44

B

Vi

L5777

/

/

-7[__/_:'_'_'/-_',-‘_

/-1 771 T

// /
|

A. xyis in stack B. x;is not in stack
Figure 3.2: Constructing set-associative LRU stack with marker splitting

If, when a data block in the stack is accessed, there are multiple markers
above it in the stack, the situation becomes a bit more complex. Unlike the fully
associative case, where we only need to remember one top-most marker, here we
have to remember the top-most singular marker for each set length. Since each
marker above the accessed block in stack might contain some singular marker
that is in a same set as the data block for some set length, we must examine
each one of them and remember the top-most singular marker for each set length
along the way. Remember that for each set length, we only want to move down
the top-most singular marker, while keeping other singular markers in place.

Details of the stack updating procedure is given in section 3.2.2. Here we
summarize the three possible ways of adjustment of a marker which is above the

accessed data block in the stack:

e marker remains unchanged and in the same location; i.e.. the marker and

45

the referenced block are not in a same set for any set length, or for any set
length that they do share the same set, there was a singular marker above

in the stack.

e marker remains unchanged but is moved down to the data block’s stack
location; i.e., the marker and the referenced block are in the same set for
all set lengths which the marker has a valid singular marker, this singular

marker is the top-most one in the stack for its set length.

e marker gets split into two disjoint markers; one of them remains in the

same location, the other is moved down to the data block’s stack location.

The outcome depends on the addresses of the data block and the marker, the
covering vector of the marker, and the existence of other markers that are above

the current marker in the stack.

3.2.2 Stack Updating

Suppose there is only one marker m = (b,v) above the accessed block z; in the
stack S;.q. Let r = RM(z;,b). If v[¢] =0 for all 0 < ¢ < r, m is a non-existent
marker to block z; (m"” is empty), and hence can be treated as a normal data
block. If 3 j with 0 < j <7 and v[j] = 1, but v[i] = 0 for all » <7 <k, then m
is in the same set as z; for every relevant set length (' is empty); in this case m
is moved down to the stack location of z;. f 3¢, such that 0 < <r <j <k
and v[i] = 1 = v[j], then m is replaced by two disjoint markers m’ = (b,v") and

m"” = (b,v"), whereby

V)] =

46

m’ replaces m in the stack, and m” is moved down to that of z,, as shown in
Figure 3.2A.

If x, is not in stack S,_;, m’ still replaces m, but m"” is thrown from the stack.
This is shown in Figure 3.2B.

If there are multiple markers above an accessed block in the stack, then for
each set length, the top-most singular marker that shares the same set with the
accessed block needs to be moved to the location of the data block. All the
top-most singular markers in stack S;_; are collected during the search for z;
and, upon finding z;, they are placed at z,’s location. The general procedure
is: search stack S;_; for the accessed data block z;, and whenever a marker is
found, be it composite or singular, check if it contains any singular marker that
shares the same set with z; for a set length, for which a singular marker has not
been seen yet. If there are no such singular markers, leave the current marker
intact. Otherwise, collect all eligible singular markers, and remove them from
the current marker; if the current marker subsequently becomes empty. delete
this marker entry from the stack.

Finally, when the data block 2 is found, all the collected singular markers
are grouped into one composite marker and it replaces x, in the stack. while
v, is moved to the top of the new stack S;. Since these singular markers share
some set with x;, and these sets are for different set lengths, each of them can
be represented by a marker (x¢,v); the covering vector » has only one non-zero
element (of value 1), whose index is the set length for which the represented
singular marker shares the same set with block 2;. Therefore they can be put
into one composite marker {2y, v), whose covering vector is simply the sun of
those covering vectors of the collected singular markers.

if the data block x; is not in stack S;_;, all collected singular markers are
discarded.

The LRU stack updating procedure for stack S;—; while scanning stack for

x = x, 1s as follows:

Stack updating procedure

Let w be a k + 1 element integer vector initialized to all zero.

Scan down the stack S;_; and do the following at each entry = = s;1(j) until

z = z4 1s found or S;_, is exhausted:

If £ = (b,v) is a marker, let r = RM(z,0), U ={ i | (0 <i<r) A (0[] =1) },
W={i|(0<i<r) A (wfi] =0) }. Change E’s covering vector v into

. 0 ifielUNW
v[i] =
v[i] otherwise

Change vector w into

wli] otherwise

il = { 1 ifieunw

Leave marker E where it is if v is not an all-zero vector; remove £ from the stack

if v is all-zero.
If E is a data block but £ # z, continue.

If £ is a data block and £ = z, then replace s,_1(j) by a new marker m =
(z,w) if w is not all zero, and put block = on top of the stack. Break out of the

loop.

If S,_; is exhausted but z is not in the stack, throw away the collected vector

w, and just pull x to the top of the stack.

The updated stack S;_ is 5.

Example

There are two markers above a referenced data block = 0101 in the stack.
The first marker is (b, v;) = (1101,11001), and the second marker is (by.v2} =
(1001, 10011). All vectors are listed with their highest element first. For example,
v[4] = 1,9[3] = L,n[2] = 0,%[1] = 0,v,[0] = 1. RM(=, b)) = 3, RM(x.b2) =
2. Tnitially w = 00000. After scanning b, by = (1101, 10000}, w = 01001. After

48

scanning by, b, = (1001,10001), w = 01011. When z is reached, z is moved to
the top of the stack, and a new marker (0101,01011) is put in 2’s previous slot.

Theorem 3.1 The stack updating procedure correctly places markers for all set

lengths.

Proof. It is clear, from the stack updating procedure, that the vector w
records which set lengths have already had a marker in the same set as z. That
is, for each set length o with 0 < o < k, wle] = 1 if and only if we have already
seen at least one marker in the stack belonging to its set [z},. The changing of
the covering vector v of each marker £ = (b,v) encountered by z in the stack
is to take away all the first markers that are in the same set with block . for
some set length. The change to the vector w is to add those newly found first
markers. If 2 is found in the stack, then these first markers should all be moved
to the location of «, which is what the replacement of * by m = (2,w) does in
the procedure. If z is not found in the stack, then all these first markers should

bhe removed from the stack. O

3.2.3 Stack Distance Counting

We have just shown how to update the global LRU stack. In this section we
discuss how to calculate stack distances for all set lengths. These two operations,
stack updating and stack distance counting, are in fact carried out simultaneously
during stack scanning.

First let us define a couple of simple and useful functions. The trailing one
function TO{v, k) on vector v is the set of indices of the last element in each
string of consecutive 1’s in v that are less than or equal to k. That is, TO(v, k)
={i|@=1A< k) A@i+1] =0))V(i=k)} Forexample,
TO({10010110}, 7) = {2, 4, 7}, and TO({01010111}, 7) = {2, 4, 6}.

Define the frailing zero function TZ(v, k) on vector v to be the set of indices
of the last element in each string of consecutive 0’s in v that are less than &.

That is, TZ(v, k) = { ¢ | (i < k) A (v[i]] = 0) A {v[i + 1] = 1)}. For example,

49

TZ({10010110}, 7) = {0, 3, 5}, and TZ({01010111}, 7) = {3, 5}.

Let {u(r)} and {v(r)} be two groups of counters for 0 < r < k. To determine
{A2} for all «, scan down the stack S;_; until z = z, is found or the stack is
exhausted. Suppose the current stack entry being examined is the jth entry in
stack S,_1: E = s;.1(j). If E is a data block, increment counter p(RM(z, E)).
If E is a marker (b,v), consider values of r = RM(z,b) and v[f]’s. H v[i] = 0
for all 0 < ¢ < r, marker E is non-existent to block z, do nothing. Otherwise,
increment u(¢) for all ¢ € TO(v,r) and v(j) for all y € TZ(v,r). If z is found in
the stack S,_1, then each stack distance A is given by

Af (3.1)

Il
—
=
—

~
S’

|
=
—
=3
p—
S

where 0 < o < k. If S,.; is exhausted and z is not found, all stack distances Ay
are set to co. As in the uniprocessor case, the stack distance counter n,(Ay) is

incremented for each set length a.

Numerical example

There are three data blocks and two markers above a referenced data block

z = 0101 in the stack. The three data blocks are z; = 0111, z; = 0000, 23 = 0001.

The markers are (b1, v} = (1101, 11001), (b3,v;) = (1001,10011). The order of

their appearance on the stack is, from top down, z1, b1, @2, ba, 3. . As before, all

vectors are listed with their highest element first. Initially, ¢ = 00000, v = 00000.
scanning z1: RM(z, 21) = 1, g = 00010, » = 00000.

scanning by : RM(z,b1) = 3, p = 01011, » = 00100.
2) =0, ¢ = 01012, » = 00100.

=

RM(z,b2) = 2, g = 01022, v = 00100.
M(z, 23) = 2, p = 01122, v = 00100.

scanning bs x

scanning zry: RM(z,
R

scanning s

When 2 is reached, the stack distances are, according to Equation (3.1),
A =5A'=3A?=1,A’=1,A*"=0.

Theorem 3.2 Equation 3.1 correctly computes the stack distances A7.

50

Proof. When the stack entry is a data block, Equation (1.2) in section 1.5.1

applies, namely .
A =3 ulr). (3.2)

So we only need to consider the case where the current stack entry is a marker.
We depict in Figure 3.3 the covering vector of a marker E = (b,v) encountered
during stack scanning for block z, with the left-most rectangle representing the
kth vector element and the right-most one representing the Oth vector element.
A shaded rectangle denotes an element of value 1, and an unshaded one denotes
an element of value 0. Here r = RM(z,b). Notice that all rectangles indexed
from r up to k are all unshaded (zero elements), since they are irrelevant to .

It is clear that marker E represents an empty entry in the same set as x for set
length « (i.e., [z],) if and only if the ath rectangle in the figure is shaded. Thus
exactly these set lengths, whose corresponding element in the figure is shaded,
should increment their respective stack distance counters by one. For the specific
depiction in Figure 3.3, these set lengths are a,7,p,p — 1, and 1.

Suppose at first u(r) = v(r) = 0 for each r. Then after evaluating the first

marker,
k
> (u(r) = w(r))

is equal to 0 if the ath rectangle is not shaded, and is equal to 1 if it is shaded.
Generally, suppose a new referenced block z has been searched in the stack, and

pt(r),v*(r) are the new counter values. By the same reasoning, it follows that

k k
Do (pH(r) —vH(r)) = 30 (u(r) —w(r)) =0
if the current ath rectangle is not shaded, and = 1 if it is shaded. This means
that Equation (3.1) correctly counts stack distance when the stack entry is a
marker. O
The stack distance contributed by markers for each set length o can be

counted directly during stack scanning. Let AM«) be the stack distance counter for

markers of set length . When F is a data block, increment counter #(RM(r. £))

51

Covering Vector
ij q

1t
L0 0l 0 1}

< i

Figure 3.3: Counting of pu(r), v(r)

as before. When E is a marker (b,v), increment A(e) for all o € { 7 | (0 <
i < RM(z,b)) A (v[i] = 1)}. For Figure 3.3, counters A(a), A(z), A(p), A(p—1), A(1)
are incremented. We have another way to calculate the stack distances:
Theorem 3.3 The stack distance AY is also given by
k
AT =3 u(r) + Aa) (3.3)
Proof. Incrementing of counter A(a) remembers the number of times the
ath rectangle is shaded during the stack scanning process. This is exactly the
number of times an empty entry has appeared in set [z], before x is found. Hence,
counting both data blocks and empty entries, the sum of the right-hand side of

Equation (3.2) and A(a) gives the total stack distance of x for set length . O

Numerical example
We use the same example. Initially, ¢ = 00000, A = 00000.

scanning zr1: RM(z,z;) = 1, p = 00010, A = 00000.
scanning &; : RM(z, &) = 3, ¢ = 00010, A = 01001.
scanning ro: RM(z, 22) = 0, ¢ = 00011, A = 01001.
scanning b2 : RM(z,b2) = 2, p = 00011, A = 01612,
scanning x3: RM(z,23) = 2, g = 00111, A = 01012

When x is reached, the stack distances are given by Equation (3.3) as
AP=5A'=3 A =1,A=1,A*'=0.

This is the same result as before.

All the auxiliary functions TZ(v, k), TO(v, k) and RM(x, b) used in stack dis-
tance counting and stack updating are simple operations. So the time spent in
processing a marker stack entry is not much more than that spent in processing

a data block entry.

3.2.4 Time Complexity

Our one-pass evaluation saves time in two aspects: the trace data needs to be
read only once, and the stack processing is only done once for each access. What
we do with arbitrary set-associative evaluation is use one composite marker to
represent all & 4+ 1 possible singular markers, and split it when we have to. The
number M, of markers in the stack, is bounded by M < (k 4 1)I, where I 1s
the number of effective block invalidations, the invalidations that actually find
their target blocks in the stack. Under the assumption that the rate of actual
invalidations is not high in real applications, the number of markers produced
in the stack will not be very large. Once a marker becomes singular. it will not
split further. Therefore the stack does not grow indefinitely because of marker
splitting. In addition, markers never ascend in the stack; they tend to descend
in the stack as data blocks below them in the stack are accessed. Whenever a
marker becomes the last entry of the stack, it can be dropped. The extra work
needed in arbitrary set-associative evaluation is simple; the vector operations
in singular marker collection and stack updating can be done with efficient bit
operations on the simulating machine.

As the method requires sequential scanning of all stack entries above the ac-
cessed block in the stack, it defies efficient search data structures such as balanced
trees for the representation of the stack. However, as we will see later in simula-
tion experiments, with the exception of general hash tables which can be used by
almost any stack evaluation method, sophisticated data structures such as search

trees do not noticeably reduce the overall simulation time of a stack evaluation

53

method!. This is because the locality property of CPU access produces on av-
erage short stack distances, making linear search of the stack quite inexpensive.
Moreover, if most references are near the top of the stack, stack searching does

not “see” many of the markers on most references.

3.3 Simulation

We have implemented both the arbitrary set associative evaluation algorithm and
the conventional single set associative evaluation algorithm, in order to compare
their performances. In this section we report simulation experiments on some
real multiprocessor trace data. We are mainly interested in the comparison of
simulation times in getting stack distance distributions for all set lengths on a
given block size. The characteristics of the trace data are given, followed by a
detailed description of algorithm implementations. The simulation results are

given in the end.

3.3.1 Trace Data

Three traces of parallel applications are used: Weather, Simple, and FFT. They
were obtained using the IBM postmortem scheduling method and represent a
possible execution on a 64-CPU multiprocessor{Cherian 89, Chaiken 90]. The
Weather application partitions the earth atmosphere into a three dimensional
grid and uses finite-difference methods to solve a set of partial differential equa-
tions describing the system state. The Simple application models the behavior of
fluids and also uses finite difference methods to solve equations on hydrodynamic
hehavior. FFT is a radix-2 fast Fourier transform application. Each reference
record consists of a one-byte CPU number (ranging from 1 to 64), a one-byte

operation code (for data/instruction read/write), and a four-byte memory ad-

IThompson first observed this phenomena while comparing different data structures in the

implementation of stack evaluation of uniprocessor write-back caches{Thompson 87].

a4

dress. The length of each trace, i.e., the number of references, is respectively

7461123(FFT), 27172624(Simple), and 31777053(Weather).

3.3.2 Implementation

We will compare the run-time efficiency of the one-pass evaluation algorithm
for all set-associative schemes with that of conventional multiple-pass evaluation
algorithm for a single set-associative scheme. The data and instruction accesses
are “unified”; i.e., we treat them as being cached together. To obtain fair and
convincing results, we tried to make each implementation of an algorithm run as
fast as possible.

Preliminary tests showed that, for the single set-associative algorithm, an
implementation of the linked-list stack structure without using hashing ran sig-
nificantly slower. So we applied the hashing technique in all the implementations
and do not consider any non-hashing implementation for performance compar-

1sons.

Single Set-Associative Algorithm

For a set-associative cache, space is partitioned according some congruence set-
mapping scheme; different sets are independent of one another. This translates to
one (sub)stack for each set. So the conventional single set-associative algorithm
maintains as many stacks as there are different sets in the trace data. Of course,
the total number of distinct blocks (hence stack entries for valid data blocks) is
the same regardless of the associativity.

Orne simple technique for efficient stack simulation is to maintain a hash table
of all data blocks currently residing in the stack[Thompson 87]. It helps eliminate
fruitless searches for blocks not even in the stack. Hashing proves to be very
effective on uniprocessor traces[Thompson 87].

We use a two-level hashing table to hold all walid data blocks currently in

stacks. It should provide faster look-up than one-level hashing. particularly when

55

the number of distinct blocks is not small. At the beginning of each stack search,
the program first determines whether the referenced block is currently in the
corresponding stack (by looking in the hash table), and whether there are any
marker entries in the stack (by checking a counter variable). If neither holds,

then there is no need to search the stack.

l
l
O

|
|
]

=]

O
~ ~_

Set numbers Block numbers

Figure 3.4: Two-level hash table

The two-level hashing table, shown in Figure 3.4, is organized for a set length
o under study. For a block number b, its associated set number s = b mod 2
is used to probe the first level to find the set of the block, and its block number
b to probe the second level to find the block itself. The reason for using a hash
table on set numbers is as follows: when the value of & is not trivial, for example
a = 20, the number of different sets is not small. An array indexed by set
numbers requires a lot of space, some of which may be unused; a dynamically

allocated linked-list has a relatively long search time.

36

At the first level, there is an array of p pointers, each one of which points to a
list containing distinct set numbers with equal value mod p. The set number lists
dynamically grow when new set numbers are encountered in trace. It is more
efficient than static allocation of hash table entries for all possible sets; some
application traces might not utilize all possible sets, especially for big values of
set length «. Not shown in the figure, each element in the set lists has a pointer
to the substack (implemented with either a list or a tree, see section3.3.2) of the
set whose set number is contained in this element.

At the second level, each element in the set lists contains ¢ pointers, each
of which points to a list of elements containing block numbers with equal value
mod ¢. These block number lists dynamically grow (when a new data block is
referenced) or shrink (when an existing data block is invalidated) during trace
processing. When a valid data block in a stack gets zapped, its corresponding
block element is deleted from the second level in the hash table.

As stated before, any marker at the tail of the stack is void and is promptly
dropped by all implementations. This eliminates unnecessary memory consump-
tion and improves algorithm performance.

To save space, instead of using an array of counters with fixed dimension
and having a lot of zero elements, stack distance counters are also dynamically
implemented with a linked-list, sorted with increasing stack distance value. kven
though incrementing a counter is no longer done in constant time now, thanks to
locality in memory reference, stack distances tend to be small, and the time spent
in looking for the right counter is negligible. We found virtually no difference
in execution time of simulation whether array counters or link list counters are

used.

Data Structures for Stack Implementation

The most natural data structure for a stack is a linked-list of entries, where the
stack updating procedure is readily carried out by entry deletion from the middle

of list and entry addition to the head of list. The program for a linked-list stack

57

is a simple one.

The potential drawback with a list is its linear search time; this might be
significant for traces such as data base applications with long average stack dis-
tance. However, as we will see in our experiment results, a simple linked-list
competes well with other complex data structures; thanks to reference locality,
the referenced data block tends to be close to the stack head.

Sophisticated data structures with lower asymptotic time complexities such
as binary search trees can be used to implement the stack. Benunett and Kruskal
used the leaves of a fixed-structure sparse tree to represent stack entries, and
Olken used an AVL balanced search tree to represent stack entries with both the
external and internal tree nodes (see [Thompson 87]).

In a binary search tree stack implementation, all data blocks in the left subtree
of any node are higher in the stack, while those in the right subtree are lower in
the stack. The embedded stack order is the inorder traversal of the tree. The
tree node containing the currently referenced data block can be quickly found
with the hashing table, in which each element in the block lists has a pointer to
the corresponding tree node. The stack distance of a data block can be found
by walking up the tree to the root and counting the number of tree nodes to the
left along the way. This can be done by storing in each tree node the number of
nodes in its left subtree[Thompson 87]. Alternatively one can store in each node
the number of nodes in the subtree with itself as the root.

In order to know if there is any marker on the left (i.e., ahead in the stack)
while walking up the tree from the currently accessed node, each node also stores
the number of marker nodes in its left subtree. Finding the left-most (i.e., top-
most in the stack) marker node requires a walk down from the root in the tree.

Stack updating is achieved through normal node deletion and insertion in
binary search trees; only here node insertion always occurs on the left end of the
tree, which corresponds to the stack head.

Because of the extremely biased node insertion, the search tree can quickly

degenerate into a linear list. In fact, it becomes the reversed stack, performing

58

much worse than a simple linked-list stack which benefits from reference locality.
A search tree with rebalancing is desirable. Among the many kinds of search
trees, three are considered: AVL tree[Wyk 88] and red-black tree (also called
2-4 tree)[Guibas 78, Wyk 88] are balanced trees, and splay tree[Sleator 85a} is a
self-adjusting tree.

It was observed[Guibas 78] that AVL and red-black trees have similar perfor-
mance for basic operations (node rotation) on some sequence of 20,000 random
accesses. There was no comprehensive performance comparison for splay trees.
We implemented these three data structures and informally tested them with
some random input data. For short sequences of random accesses, red-black tree
performs the best and is twice as fast as AVL tree; for a long sequence of 200,000
random accesses, the splay tree is the fastest, while AVL tree remains the slowest,

It has been proven[Sleator 85a] that, in terms of amortized time, which is de-
fined as the time per operation averaged over a worst-case sequence of operations,
a splay tree is within a constant factor as efficient as any uniformly balanced tree
and any fixed search tree for a sufficiently long sequence of accesses; more in-
terestingly, the time to access an item is approximately the logarithm of one
plus the number of distinct items accessed since the last time the given item
was accessed[Sleator 85a). Based on the theoretical results and our preliminary

experiments, we choose the splay tree to implement the stack.

Splay tree

The splay tree a self-adjusting binary search tree. The central idea is splaying,
a restructuring heuristic that moves a designated node to the root of a tree
through a series of rotations which approximately halves the depths of all nodes
along the path. All tree operations, including access, insertion, and deletion, are
implemented using splaying[Sleator 85a]. Splaying can be done both bottom-up
and top-down. Bottom-up is appropriate if there exists direct access to the node
at which splaying is to occur, while top-down if efficient for a to-be-splayed node

which has to be searched from the root. Details are described in [Sleator 85a].

29

We will use the bottom-up splaying for the data block obtained through hashing,

and top-down splaying for the left-most marker node in the tree.

Separate marker-list

If there is any marker node to the left of the currently accessed data block in the
tree, a top-down search has to be initiated to locate the left-most marker node.
Olken[Thompson 87] suggested the use of a separate list to store the markers,
sorted by the last access time; the tree at any time only contains valid data
blocks. The benefits of this approach are that locating the top-most marker in
stack is a constant time operation, and that it is easy to check whether there is a
marker above the currently referenced data block by simply comparing their last
access times. The drawback is slow invalidation: when a data block is zapped
by an invalidation, before we only need to locate the data block node in the tree
by hashing and change its flag to make it a marker, taking almost constant time;
now we have to delete the node from the tree, and put it into the proper position
(by sorted last access time) in the marker-list, not a constant time operation
anymore.

We implemented the stack with splay tree using both approaches. There is
a better way to implement the separate marker-list, though. Instead of using
last access time, we use, equivalently, the actual stack position of a marker in
the stack as its sorting key in the marker-list. As the stack distance has a much
smaller value than the (potentially unbounded) trace length, the space needed
to hold a key is less.

The stack updating affects the mark-list in the following way: when a data
block is accessed which is not in the stack, then the first marker (if any) in the
marker-list is thrown away; when a valid data block is accessed, and its stack
distance is bigger than that of the first marker, then the stack distance of this first
marker is set to the data block’s stack distance, and moved down the marker-list
to its proper new position, keeping the list ordered by distance keys. Clearly, the

stack distances of all other markers are unchanged.

60

my mj My

e

A. Data block tree B. Marker list

Figure 3.5: Stack distance calculation

The remaining question is how to calculate the stack distance of a valid data
block, since walking in the tree can only tell how many nodes are to its left in
the tree, i.e., how many valid data entries are above it in the stack. Suppose
that a data block is the d-th node in the inorder traversal of the tree, and the
marker-list has elements with stack distances m; < mqo < ... < my, we want to
find the real stack distance sd for this data block. Let m; < sd < m;41, then
among the first sd stack entries, ¢ of them are marker entries, and the remaining
(sd—1) are data block entries, as shown in Figure 3.5. We know there are exactly
d data blocks in the range, hence sd = d + 1. From m; < sd = d + 1 < 5,4, we
have

mi—i<d§3,'+1—(i—|-l),

the criterion for finding 2.

Arbitrary Set-Associative Algorithm

From the description of the arbitrary set-associative algorithm before, one clearly
needs to collect the relevant dirty level variables for all the set lengths from higher
entries in the global stack. Each entry above the currently accessed block entry
in global stack may contain some of those required dirty levels, and has to be

examined. A linear list is therefore a natural data structure choice for the global

61

stack. Implementation of this algorithm is simple and similar to the linked-list
implementation of single set-associative algorithm, but using one global stack
instead of many substacks. It involves slightly complicated bit-vector manipu-
lation when the current stack entry under scanning is a marker. Every 0/1-bit
vector (such as covering vectors) is just an integer variable, taking up little ex-
tra memory than the single set-associative algorithm. The vector operations in
the algorithm are done with concise and efficient bit-wise operations of the C
programming language.

As above, a two-level hashing scheme is used to at the beginning of each stack
search to quickly check whether the referenced data block is in the stack. Since
there is no specific set-associative mapping scheme here, we pick an arbitrary
hashing function, instead of a congruence set-mapping scheme, for hashing at
the first-level. To the arbitrary set-associative algorithm which only processes a
trace only, we believe the choice of a hashing function is not crucial,

Stack distance counters are stored in linked-lists, with one list per set length,
for up to a maximum of 33 lists. As before, markers are dropped as soon as there

is no valid block entries below them in the stack.

3.3.3 Simulation Results

The stack simulation algorithms have simple logic and control flow, and execu-
tion time is mostly spent in memory manipulation and data input, not complex
C'PU operations. Using the Unix code-profiling tool gprof indicates that for the
arbitrary set-associative algorithm, its disk I/O accounts for about half of the
entire running time. Since all trace files have the same data format, and reading
trace data is an integral part of any trace-driven simulation, we count I/O time as
part of the entire simulation time. The ever-increasing disparity of speed among
CPU. main memory, and 1/O can make I/O become a more important factor in

trace-driven simulation.

62

Output Data

All the simulation programs produce exactly the same output, i.e., stack distance
distributions, on all input traces and various block-size specifications, verfying
not only the correctness of our one-pass algorithm, but also that all the imple-
mentations for single set-associative evaluation using different data structures are

done right.

Memory

From the description of arbitrary set-associative algorithm, it is clear that its
memory consumption is just a little more than that for the linked-list stack
structure implementation of single set-associative algorithm. Specifically, each
stack entry uses one more integer field (4 bytes) to hold the covering vector. Using
the Unix command top, we find that the total program size (code + data + stack)
of the arbitrary set-associative algorithm is approximately the same as that of
the single set-associative algorithm with the linked-list stack imiplementation.

The splay-tree stack implementations of single set-associative algorithm have
three more fields per each stack entry than the linked-list implementation (one
more pointer field and two more integer fields). Their run-time memory size is
about 20% more than their linked-list counterpart.

The number of marker entries in the arbitrary set-associative program can also
be more than that in the single set-associative program. But experiments show
the number of extra marker entries in the algorithm is quite insignificant. One
reason is that we keep dropping the marker at the tail of the stack, to prevent
their number from growing; another reason: the number of markers might be

scarce anyway.

Running Time

Simulations were run on a lightly loaded Sun SPARCStation 10. As there is little

disturbance from other activities on the machine, the measurements were stable

63

Table 3.1: Simulation times on FFT (including i/o)

b mul sin.link sin.splay sin.mlist
13| 86.9 764.4 764.0 765.8
12| 86.1 800.3 803.3 805.1
11 | 87.9 853.0 849.2 866.9
10 | 91.8 899.3 904.3 901.7

9| 96.7 929.9 936.6 940.5

8] 100.2 1001.7 991.2 985.5

71083 1017.1 1023.1 1030.3

611074 1064.8 1071.1 1087.1

511134 11118 1120.7 1147.0

411234 1171.8 1176.8 1204.8

3 118.2 12492 1250.0 1301.8

21 111.7 1297.7 1314.7 1317.8

1| 116.1 1373.1 1393.0 1395.1

Block-size = 2% bytes. Run-time in seconds.

and repeatable. We use the Unix fime command to measure the execution times
of each simulation, and the real times are very close to the sums of user times and
system times, due to light load on the test machine. The arbitrary set-associative
algorithm runs much faster than the single set-associative algorithim on all three
traces.

Tables 3.1. 3.2, 3.3, and 3.4 illustrate the running times of the various imple-
mentations of the algorithms for the three traces. These results are from tests
done for a typical CPU. For each trace, we randomly selected a number of CPUs
and did stack simulation on them; their results were nearly identical. It is prob-
ably due to the fact that the traces were produced in a very symmetrical way
{see [Cherian 89]).

The tests are done for a variety of block sizes. The first columns (b) indicate
the base-2 logarithmic values of block sizes. The second columns (mul) are the
running times of the arbitrary set-associative algorithm; rest columns arc the

running times of the single set-associative algorithm implemented with various

64

Table 3.2: Simulation times on FFT (excluding i/o)

b mul sin.link sin.splay sin.mlist
13| 64.8 742.3 741.9 743.7
12 | 64.0 756.1 759.1 760.9
11| 658 786.8 783.0 800.7
10 | 69.7 811.0 816.0 813.4

9| 746 819.5 826.2 830.1

8| 781 869.2 8h8.7 853.0

7| 86.2 862.6 868.6 875.8

61 853 888.2 894.5 910.5

5| 91.3 913.1 922.0 948.3

4 (1013 951.0 956.0 984.0

3| 96.1 1006.4 1007.2 1059.0

2 896 10328 1049.8 1052.9

1| 94.0 1086.1 1106.0 1108.1

Block-size = 2% bytes. Run-time in seconds.

data structures (sin.link for linked-list, sin.splay for splay tree, and sin.mlist for
splay tree with separate marker list).

Tables 3.1, 3.3. and 3.4 include the disk i/o time of trace-reading in the
total simulation time for the three traces, and Table 3.2 excludes that from the
simulation time of FFT trace. Compare Table 3.1 and Table 3.2, we see that
i/o played a small role in the simulations. Qverall, our arbitrary set-associative
algorithm ran approximately ten times faster than all implementations of the
single set-assoctative algorithm.

For the single set-associative algorithm, the linked-list implementation with
hashing performs best, confirming previous studies on uniprocessor stack sim-
ulation implementations [Thompson 87]. For the splay tree version, we did a
faithful implementation of the original data structure, not dealing specially with
the fact that all insertions occur at the left end. Specializing the implementation
to exploit this characteristic might speed up execution, but the potential gain is

probably small.

65

Table 3.3: Times on Simple (inc. i/0)

b | mul sinlink
13 | 296.5 3231.6
12 | 302.1 3436.1
11 | 318.3 3644.3
10 | 350.3 3897.3

9 | 409.0 4131.6

8 | 428.0 4304.5

Run-time in seconds.

Ideally, one wants to implement the stack with all other balanced tree struc-
tures (AVL, red-black) and compare their performances. However, our simulation
results indicate that any improvement using sophisticated data structures will be
minimal and hardly worth the effort.

For completeness, we also ran the algorithms on randomly generated long
synthetic trace data. The same magnitude speed-up in simulation time on the
part of arbitrary set-associative algorithm over the single set-associative algo-
rithm still holds. This indicates the stability of the algorithm’s performance on
different traces.

As most trace files are quite large, they are often stored in compressed format
and are uncompressed on-the-fly for a simulation. We piped the results of un-
compressing some *.7Z files into the various simulation programs and did not see
any noticeable change in simulation time. The reason is that the “uncompress”
program runs faster than the simulations, the overall speed of the pipeline still
depends on the simulation. Therefore using compressed trace files will get almost
the same speed-up result for the above simulations.

We did one more comparison. Instead of using one process to run the single
set-associative algorithm for each set length, we lumped all of them into one

program, which controls multiple independent groups of stacks. one per each set

66

Table 3.4: Times on Weather (inc. i/o)

b | mul sinlink
13 | 350.2 3798.2
12 | 373.6 4024.1
11 | 408.7 4298.1
10 | 483.1 4599.2

9| 567.4 4912.1

8 | 5824 5167.4

715844 5416.7

Run-time in seconds.

length. On each trace reference, the program sequentially does stack processing
on all the stacks. This considerably reduces the [/O time of the single set-
associative program. But its memory consumption is, however, much larger than
that of the arbitrary set-associative simulation. This excessive space requirement
can become a big burden when testing large traces with many distinct addresses.
While testing the Weather trace, this kind of simulation failed to finish in a
reasonable amount of time.

As a one-pass evaluation method, the arbitrary set-associative algorithm can
be run on-the-fly, i.e., simultaneously with a trace generating program{Hill 89],
and the saving of a long trace data onto disk can be avoided. This kind of on-
the-fly simulation is espectally useful, when the amount of distinet addresses in
the trace can be safely accommodated by the main memory, but the entire trace
is extremely long, in which case the required disk space could be overwhelm-
ing. As the disk space needed for trace storage is becoming too large even for a
short operating period of time of a moderately fast computer nowadays, inves-
tigation of on-the-fly techniques is becoming necessary(Baer 91]. Our arbitrary

set-associative algorithm is also an applicable tool in this regard.

67

On Concurrent Simulation

One might consider concurrently running all the simulation programs of the single
set-associative algorithm, using the Unix piping mechanism to pass trace data se-
quentially from the first simulation program through other simulation programs,
relieving them of the necessity of getting trace data through slow disk I/O.

The problem with this concurrent-execution approach is again the enormous
amount of main memory required. The memory demand of each single set-
associative program is approximately equal: each uses the same number of stack
entries for valid data blocks; and the difference in the number of stack entries
for invalid data blocks (markers) is small, since the number of markers is kept
small in any stack by the dropping of markers from the tail of stack. For A" set
lengths, the main memory demand of the concurrent simulation is approximately
K times that of the sequential execution. For small block sizes (hence large set
length ranges), that becomes a serious burden on the testing machine’s memory
system. Excess demand on main memory can cause frequent memory paging
and context switching in virtual memory, generating new disk 1/0 for paging
and swapping. Consequently, the real running times of the simulations would
be much larger than the sums of their respective user times and system times.
QOur test on the FFT trace found that the overall running time of this kind of
concurrent simulation was comparable to that of the sequential simulation.

As our arbitrary set-associative algorithm uses almost the same amount of
memory space as the single set-associative algorithm, while one does concurrent
simulations with the single set-associative algorithm on one trace, we can instead
run concurrent simulations on different traces with the arbitrary set-associative
algorithm-using the same resources of CPU, memory, and time to simulate more

traces.

68

64-byte Blocks

Miss Ratio x 103
14500 - 1 T T T T T T BT

140.00 —
135.00 -
130.00 —
125.00 -
120.00 -
115.00 —
110.00 -
105.00 —
100.00 -
95.00 -

50,00 [~
45.00 [

alpha

Figure 3.6: Miss ratio v.s. « for a cache of 128 64-byte blocks.

Example of Simulation Results

With the new simulation algorithm, we can get miss ratios for arbitrary cache size
(in number of fixed-size blocks) and arbitrary set-associative mapping function
in one-pass trace processing. Figure 3.6, illustrates, regarding a particular CPU
for all traces, the relationship between miss ratio and set length o on a cache
of 128 blocks, each block with 64 data bytes. For a given cache size, generally
(but not always) the fully associative mapping has a lower miss ratio than a
set-associative mapping; but occasionally some set-associative mapping has the
same or even lower miss ratio than the fully-associative, such as a = 3 on trace
FFT and o = 2 on trace SIMP as shown by Figure 3.6.

Various performance quantities can be obtained using the stack distance dis-
tribution data obtained from the efficient one-pass simulation. For example, given

the cache capacity, one might need to find the optimal set-associative mapping

69

2-byte Blocks

alpha

T T T T
7.00 & ueene « — Bikip

6.50 -

6.00 -

5.50 |- :
so0|- :'
4350 =:

400 - ::

3350+
3.00 —
2.50 -
200 ;

1.50 -

1.00 —) 4
;
0.50 |- s / -
/
-
o -

0.00 -
L | L loge

Figure 3.7: Optimal a v.s. Cache Size for 2-byte Blocks.

scheme that has the lowest miss ratio. Figure 7?7 through Figure 77 illustrate,
regarding the same CPU as above, the relationship between the set length o that
vields the minimum miss tatio, and the cache size ' in number of blocks {the
w-axis uses base-2 log (). Fach figure is for a specific block size, ranging from
2-byte block to 4096-byte block. When there is a tie in minimum miss ratio, we

break the tie by choosing the o with a larger value; for a fixed cache size. more

sets (i.e., larger &) provide quicker cache searching.

3.4 Summary

We show that efficient stack analysis can be extended to arbitrary two's power
congruence set-associative mapping for LRU caches on multiprocessors. For block

addresses between 0 and 2* — 1, instead of running stack evaluation on the same

70

4-byte Blocks

aipha

T T T T T T T 1FFT
Bivp

5.00 —

4.50 [—

3,50 —

3.00

T

250 -

1.50 [I

0.50 -

0.00

Figure 3.8: Optimal a v.s. Cache Size for 4-byte Blocks.

trace k + 1 times for all the possible set lengths, one run of stack evaluation on
the trace can give us the same hit ratio function for all set lengths. Thanks to
the locality property of CPU access in real applications, the necessity of using a
simple linear list stack structure for the arbitrary set-associative evaluation does
not compromise its simulation time. Simulation on real multiprocessor trace data

show an order-of-magnitude speed up by our algorithm in simulation time.

71

8-byte Blocks

alpha

logC

9.00 —

8.50 -

8.00 —

7.50 —

7.00 —

6.50 -

6.00 —

5.50 —

5.00 —

4.50

4.00

350 —

3.00 —

2.50 —

200

1.50 —

100 —

0.50 ~

4.00 6.00 8.00 10.00 1200
16-byte Blocks

2.00

.00

alpha

R

 sip

: logC

9.00 —

8.50 —

800 —

7.50 -

7.00 -

6.50 —

6.00

5.50 —

5.00 —

4.50 —

4.00 -

3.50 —

.00 —

2.50 —

2.00 —

L.50 p—

L00 -

0.50

0.00

2.00 4.00 6.00 8.00 10.00 12.00

0.00

1 o v.s. Cache Size for 8 and 16-byte Blocks.

ma.

Opt

Figure 3.9

72

32-byte Blocks

alpha

logC

=TT

T

T
s

9.00 —

8.50 —

8.00 —

7.50 —

7.00 -

6.50 [~

6.00 -

5.50 -

500 —
4.50 —
4.00 —

3.50

300

2.50

260 1

150

1.0¢ -

Q.50 ~
0.

.00 -

2.00 400 6.00 8.00 10.00 12.00

0.00

64-byte Blocks

alpha

11.00 —

10.00 —

9.00 —

8.00 —

7.00 -

6.00 —

5.00

4.00 -

300 —

200 -

1.0¢ |-

0.00 —

2.00

0.00

Cache Size for 32 and 64-byte Blocks.

3.10: Optimal o v.s.

Figure

73

128-byte Blocks
alpha

12.00 —

16.00 —

9.00

8.00 —

6.00

500 1~

300 -

200 —

i L | | | 1 i logC
0.00 2.00 4.00 6.00 300 10.00 12.00

256-byte Blocks

alpha

i
| 1 \ L g
040 2.00 4.00 6.00 8.00 10.00 12.00

Figure 3.11: Optimal o v.s. Cache Size for 128 and 256-byte Blocks.

74

512-byte Blocks

alpha

SWIHR

I logC

12.00 [~

11.00 -

10.00

9.00 —

5.00 —

1.00 —

6.00 —

5.00 —

4.00 —

3.00 —

2.00 —

100 —

0.00

2.00 4.00 6.00 8.00 10.00 12.00

.00

1024-byte Blocks

alpha

- Sivip

R

12.00 -

11.06 —

10.00 -

9.00 —

£8.00 —

7.00 —

6.00 —

5.00 —

4.00 —~

3.00 -

200 —

1.00 —~

0.00 -

2.00 4.00 6.00 8.00 10.00

0.00

Figure 3.12: Optimal a v.s. Cache Size for 512 and 1024-byte Blocks.

73

2048-byte Blocks
alpha

Bikip
Wit

1200

1140

9.00
3.00 -
7.00 —

6.00 —
4,00 —
200 —
1.00 — A
0.00 —
0.00 2.00 4.00 600 8.00 10.00 12.00
4096-byte Blocks

logl

alpha

T T T T T T FFT
1200 |- P

WiHR
10,00 ~
8.00 |-
6.00 (~
4.00 -
3.00 -

200 -

100 -

0.00 —

I\ | | 1 | I | 10gC
0.00 2.00 400 6.00 8.00 10.00 1200

Figure 3.13: Optimal o v.s. Cache Size for 2048 and 4096-byte Blocks.

76

Chapter 4
All Set-Associative Evaluation

Abstract. It is known that the LRU block replacement algorithm allows efficient stack eval-
nation for all two’s power congruence-mapping set associativities in one-pass processing of
memory access traces, by using just a single stack. It is natural to ask if any other stack algo-
rithm permits such an efficient evaluation. We show that LRU is the only such stack algorithm
among all stack algorithms which do not base replacement decisions on the numerical values of
block address. This conclusion can be generalized from the two’s power congruence-mapping
set associative scheme to any set associative scheme with more than two different mapping
schemes. If a set mapping scheme includes all possible groupings of data blocks, then LRU is
the only such stack algorithm among all stack algorithms, regardless of whether or not they

base replacement decisions on the numerical values of block address.

4.1 Introduction

Generally, stack algorithms require that stack evaluation be applied separately
for each value of the set length a. With 0 < o < &, £+ 1 runs of trace analysis
are needed. Mattson, et al. [Mattson 70] showed that the LRU block replacement
algorithm can be evaluated for all congruence-mapping set associativities in one-
pass, using a single stack.

For LRU replacement, the global stack S;—; is the list of previously (from

77

time 0 to t — 1} accessed blocks in decreasing order by the time of their most
recent reference; the substack S;_1(7, @) is the list of previously accessed blocks
that are in the ith set of set length «, also ordered by the decreasing time of
their most recent reference. S;_;(¢,a) can be recovered from S,_y, by taking
in order all the stack entries of S;.; that are in the ith set of set length a.
Therefore, the list of the stack entries above z, in any substack S;_1(Z, &) would
constitute a sublist of that of the stack entries above z; in the global stack S;_;.
When searching for z; on the global stack S;_; is done, either by finding =, or
by reaching the end of the the global stack, one is certain that the entries in
substack S;_;(%, @), which would be scanned in S;_;(¢, a) if the search were done
directly on S,_1(%, @), are all scanned in the right order. In other words, a search
for z; in the global stack S,_; includes simultaneous searching of all the substacks
Si1(i,0),0€: €2 - 1,0<a < k.

To do one-pass evaluation of LRU algorithm for all congruence-mapping set
associativities, only the global stack is needed. At time ¢, search stack S;_; until
x; 1s found or S;_; is exhausted; at each entry s;_;(7) of §,_1, increment the stack
distance counter A? for every set length a such that s;_;(z) is in the same set
as @y (s;_1(¢) = x; (mod 2%)). If z, is not found, Ay is set to co for every set
length a.

Notice that congruence-mapping is an unnecessary assumption. The above
one-pass evaluation can be carried out for LRU on any set mapping scheme.

In the next section we shall show that LRU is the only stack algorithm among
a wide range of stack algorithms that permits such a one-pass trace evaluation

for all set associativities.

4.2 All Set-Associativity Evaluation and LRU

To clarify what we mean by “a wide range of stack algorithms”. let us define the

following subset of stack algorithms:

78

Definition 4.1 An address-independent algorithm is a stack algorithm whose
priority list is independent of the numerical values of block addresses.

LRU, LFU, MIN are examples of address-independent stack algorithms. Their
priority lists depend entirely on the fime aspects of block usage, e.g. when or
how often a block has been used, or will be used. They are not related to the
actual numerical values of the block addresses. On the other hand, both the
least-transition-probability (LTP, choosing the block least likely to be referenced
after the current block) and the least-next-reference (LNR, choosing the block
with the largest expected next reference time) algorithms are address-dependent.
Their priority lists depend on a transition probability matrix I = {m;.}. where
Ty is a fixed probability that block ¢ is referenced right after block b is. The prob-
ability 7. dictates that the address of the currently accessed block he taken into
consideration. Most commonly used stack algorithms are address-independent
algorithms.

From previous discussion, it is clear that in order to be able to determine all
stack distances { A¥ | 0 < a < k } in one scan of the global stack S,_;, a stack
algorithm must satisfy the following:

Property At any access time ¢, scanning global stack S;_; for 2, is equivalent
to simultaneously scanning all substacks {S;.1(7,&) |0 <:<2°—1,0 < a < k).

LRU obviously has this property. We show this property necessitates that for
any address-independent stack algorithm, reference to one block must not alter
the relative ordering of any other blocks in its global stack during stack updating,
and the only stack algorithm that preserves the relative ordering of non-accessed
blocks in its global stack is LRU. Therefore, LRU is the only address-independent
stack algorithm that satisfies the aforementioned property.

For easy exposition later on, we introduce a few more definitions.
Definition 4.2 A stack algorithm that can be evaluated in one-pass trace pro-
cessing for all congruence-mapping set associativities, using a single stack, s

called a congruence-mapping arbitrary set-associative stack algorithm.

79

Definition 4.3 For two blocks a,b in a stack S, denote a Sp if a is above b in

stack S, i.e., a’s stack distance is less than b’s stack distance.

Apparently, 2, defines a partial relation on blocks in stack 5. When stack .S
is changed by updating, the relation changes accordingly. It is undefined if one
of the two blocks is not in S.

We first derive two conditions any congruence-mapping arbitrary set-associative
stack algorithm has to obey, then strengthen them to obtain a necessary condi-
tion that an address-independent congruence-mapping arbitrary set-associative
stack algorithm must satisfy, and finally conclude that LRU is the only address-
independent stack algorithm that meets this necessary condition.

For brevity, we use = to denote “logically implying”.

First of all, for any set length «a, accessing one block should not alter the

stack of any other set which the currently accessed block does not belong to:

Lemma 4.1 Let [z;], denote the set that @, is in, for set length o
[o)a E {plp=2 (mod2%)}
For any stack algorithm, after accessing x,
Si(r,a) = S (i, @)

for all combinations of 0<i1<2*—1,1Zx, (mod2%), 0<a<hk.

Proof. Consider a fixed set length a. For any stack algorithm, processing an
access ; at time ¢ only requires examining the patt of cache space allocated for
set [z]., as this is the only place where z; can possibly be found. If x, 1s there,
access it; if 2, is not there, bring it in and access it, and in this case the stack
algorithm makes a replacement decision if the part of cache space for set [x], is
already full. In both cases, none of the cache spaces allocated for other sets is
searched. Hence accessing z, should only change the substack S;_i(2; mod 2%, o);
it does not affect any other substack Si_1(¢, @), where 7 Z x; {mod 27). In other

words,

St(?:, Of) = St_l(l', CY)

30

for 0<i<2*—1,{#x2, (mod2%). Since « is chosen arbitrarily, this holds
for every a between 0 and k. O

Secondly, the ordering of blocks in any substack must always be preserved in
the global stack:
Lemma 4.2 Suppose two different blocks py and p are in the same set [p). of
some set length o (ie., pp = po = p (mod 2%)). For a congruence-mapping
arbitrary set-associative stack algorithm, the relative ordering of py and py in the

substack Si(p mod 2%, o) is preserved in the global stack S; at any fime ¢

St(pmod2®, o)
—

S
2 p2 = p1 — pa.

Proof. The proof is by contradiction. Suppose at some time # and for some

specific @, we have two different blocks p1, p2 in set [p], such that

Se(pmod2®, o} S
P J—y Pz, and p; —= py.

Let x;17 = p1. Then the stack distance Afﬂl_l obtained from scanning substack
S(p mod 2%, «) is different from that obtained from scanning the global stack
S,. The reason is obvious: in substack S;(p mod 2, a) block p, is not counted
in calculating Ag,, since py is below py; while in the global stack S5 block p; is
counted., since p, is above p; and p; does belong to the same set [p], as pi. In
this case congruence-mapping arbitrary set-associative evaluation of the single
global stack does not yield the correct stack distance for set length o. O

With these two lemmas, we deduce that for an address-independent stack
algorithm to be a congruence-mapping arbitrary set-associative algorithm, after
an arbitrary access, the relative ordering of any non-accessed two blocks in the
global stack must be preserved after stack updating:
Theorem 4.1 For any address-independent congruence-mapping arbitrary sel-

associative stack algorithm, if accessing block x; at time t,
Sp—1 S
p1— p2 == p1 — P2

holds for any two blocks py, pa such that py # zy, p2 # .

81

Proof. Since the case of p, = p; is trivial, we assume that p;,ps, z; are all
different.

We first prove the theorem for the special case of p; = p3,p; = p3, 2, = 2?2,

where p§ # p # 29 # p, and
J set length o with 0 < a < k, such that [p{]s = [P]o # [2}]a

An exampleis p¥ = 1,p) = 3,2, =2,a = 1.

Since p§ Sy p3, and p?, pd belong to the same set [p}]a,

Se-1(I mod2®, a)
p(l) SR iy pg (4.1)

. . Se— . .
because if otherwise, by Lemma 4.2, we would have p§ == p?, contradicting the
assumption. Since z¢ is not in the same set [pd], that p{,p} both belong to, by
Lemma 4.1,

S p° mod 2%, @) = S,—i(pf mod 2%, a) (4.2)
Therefore, from (4.1) and (4.2),

g Sl p?mod2°‘, &) g

Py — P; (4.3}

Apply Lemma 4.2 to (4.3), we have

St
Pl = p) (4.4)

Now let’s consider arbitrary blocks pr, pa, x; with py # p2 # & # p1. Suppose

the original access trace is X = xy,a2,..., 7L, and before accessing a;, we have

St—1
P1r— P2 (4.3)

We want to show that p; S, Pa.
Define a permutation P on blocks: P = (p1,5)(p2, P3)(@1, 27). That is, p; is

switched with p?, p, is switched with p3, and w, is switched with 27; all other

82

blocks remain unchanged:

pi ifb=p
p1 if b=p!
Pg if b= p;
Pb)=4 p; ifb=p;

e lfb:l't

w, ifb=2zf

b otherwise

P is a valid permutation, as both (py, p2, ;) and (p?, p3, z) are groups of three
distinct numbers. Let the result of performing the permutation P on X be
X% =P(X)=2a%,29,...,29. We do stack evaluation on the new trace X", with
59 being the global stack for trace X° at time 1.

Because the stack algorithm is address-independent, at any access time 1,

stack S5 is the result of performing permutation P on Sy,
5% = P(Sy) forVi >0 (4.6)

Equivalently, Sy is the result of performing the inverse permutation P! = P on
s9,
Sy = P(5%) forVit >0 (4.7)
Apply transformation P to Equation (4.5),

P(5;-1)

P(p1) — P(p2) {4.8)
by (4.6) and {4.8),
P 2 8 (1.9)

from (4.4) and (4.9), accessing z? preserves,

0o 50 o
P — P, (4.10)

apply transformation P~! = P to (4.10),

P(s? :
Py 22 p(pd) (4.11)

83

from (4.7) and (4.11), we arrive at

I S, D2 (4.12)
a
The logic of the above theorem proof can be described by the following dia-
gram

Theorem 4.1

St—l St
m —)p2 _ m—p:
“ Lemma 4.2 W Lemma 4.2
Si—a(F(p1)if) Se(f(p1).1)

yul e p2 f———— pl — p2

Lemma 4.1

where in order to prove the conclusion for the global stack, we find a substack
(whose existence is guaranteed by the address-independency of the stack algo-
rithm) which contains p; and p,, the two blocks under consideration, but does
not contain z:, the currently accessed block. According to Lemima 4.2, the rela-
tive ordering of p; and p; in this substack is the same as that in the global stack:
using Lemma 4.1, their relative ordering in the substack is unchanged by the
current reference to x4; again by Lemma 4.2, their relative ordering in the global
stack is therefore unchanged by the current reference to 2.

It is easy to see why some of the most familiar address-independent stack algo-
rithms like LEU and MIN are not congruence-mapping arbitrary set-associative
stack algorithms. The LFU stack updating may send its previous top entry block
down the stack across one or more entries, reversing the relative ordering of the
first two blocks on stack. The same thing may happen for MIN stack updating.

Using this theorem, it is a simple matter to conclude the following result.
Corollary 4.1 An address-independent, congruence-mapping arbitrary set asso-

ciative stack algorithm is LRU.

84

Proof. For any stack algorithm, the currently accessed block always goes to
the top of the stack after stack updating. By Theorem 4.1, stack updating of
an address-independent congruence-mapping arbitrary set-associative stack algo-
rithm consists of moving the currently accessed block to stack top while keeping
the orderings among all other blocks in stack unchanged. This is exactly the
stack updating of LRU algorithm. Hence this address-independent congruence-
mapping arbitrary set-associative stack algorithm is LRU. [

So far we have been concerned with congruence mapping set associative
schemes, which constitute a rather restricted case. The above conclusion can

be extended to more general set mapping schemes.

Definition 4.4 Let F be a set of set-mapping functions, which are real-valued
functions defined on block numbers. That is, F = { f | f: N = R }, where
N={0,1,2,...,2" =1}, R = set of real numbers. A stack algorithm, which
can be evaluated in one-pass trace processing for all sel-mappings in F while
only using a single stack, is called an F-mapping arbitrary set-associative stack
algorithm.

“orollary 4.1 says that LRU is the only F-mapping arbitrary set-associative
stack algorithm that is address-independent, with F = { fo | fa(p) = p mod
2. 0<a <k},

A set-mapping function puts the blocks into a specific arrangement of group-
ings or partitions. Constant-valued functions put all blocks into the same group,
i.e., a single partition, so they are equivalent when used as set-mapping fune-
tions. When discussing a set of set-mapping functions, we are interested in those
functions that group the blocks in different ways. Here we introduce a notion of

equivalent class among set-mapping functions.

Definition 4.5 Let functions fi and f; belong to F, a set of set-mapping fune-
tions. If for any blocks by and by, fi(b) = fi(bo) if and only if [2(b1) = Fa(b2),

then fi and fy are called equivalent functions.

85

We denote by [f]F the equivalent class of f € F, the functions in F that are
equivalent to f. Use [0]% for the equivalent class of constant-valued functions.
||7|| denotes the number of equivalent classes in F.

Notice that in the previous proofs, nothing intrinsic about congruence map-
ping is used. In fact, the lemmas can be extended to any set-mapping function,
and the theorem and corollary can be extended to any set of set-mapping func-
tions with more than two equivalent classes.

For brevity, we shall use [z]; to represent the set of blocks whose values on
function fis f(x): [z]s &ef {p| flp) = flz) }, Si(r, f) to represent the stack of
the blocks p such that f(p) = r at time ¢, and A{ to represent the stack distance
of z; in the substack S; {(f(z,), f), for ¥V f € F.

Lemma 4.3 For a F-mapping arbitrary set-associative stack algorithm, where
F={Ff|f:Nw— R} isaset of set-mapping functions, accessing v, should

not alter any other set that x, does not belong to. That is,
for Vf € F and Vr # f(z:), Si(r, f) = Seza(r, f)

Proof. Similar to Lemma 4.1. Consider a fixed f € F. Accessing x, only
needs to look into the part of cache space allocated to set [z:];. None of the
other substacks S;_i(r, f), where r # f(a), is affected, S,(r, f) = 5,_1(r, f) for
¥r # f(x;). Since f is chosen arbitrarily, this holds for Vf € F. O

Lemma 4.4 For a F-mapping arbitrary set-associative stack algorithm, if two
blocks py and py are in the same set [pl; of some set-mapping function f € F:
i.e.. f(pr) = f(p2) = flp). then the relative ordering of py and py in substack
Si(f(p). [) is preserved in the global stack Sy at any time t:

Se(f(p), f St
m —p)’)P2=>P1 — pa2.

Proof. Similar to Lemma 4.2. Suppose to the contrary, there exists a function

f € F and time t > 0, such that

5 .
m () pz, but py =5 pr.

86

Let @,41 = p1, then there are two distinct values for the stack distance /_\{_H
from scanning the substack S,(f(p), f) and the global stack S;. The F-mapping
arbitrary set-associative evaluation would yield wrong stack distance for set-
mapping function f. O

We again note that Lemma 3 and 4 apply to any general stack algorithm, no
matter whether it is address-independent or not.

Before proceeding further, we need another simple lemma

Lemma 4.5 Let F be a set of at least three different set-mapping functions,
|F| > 3. Then F has a function f such that, there exist blocks p,q,r € N with

p#qg#r#p.but f(p) = flg) # f(r).

Proof. Clearly, F has at least two different and non-constant equivalent classes

[A]F,[f2)". That is, [1)" # [f2]T # [0]F # [A]. I both fi and f; are injective

functions, i.e.,
Vi.jeN, i#j= fili)# fi(§) and fo(2) # fal7)
then we have
¥ by and by, fi(b1) = fi(be) iff folby) = fa(ba)

By Definition 4.5, they are equivalent ([fi]* = [f2])7), which is a contradiction.

Hence at least one of them, say fi, is not injective; 1.e.,

3p,qg €N, p#qbut filp) = filg)

Since f; is non-constant, there is another r € N such that fi(r) # fi(p). Obvi-
ously p£ g#r#£p O

Theorem 4.2 F is a set of set-mapping functions with at least three different
equivalent classes: ||F|| > 3. For an F-mapping arbitrary set-associative stack

algorithm that is address-independent, after accessing block ¢ at time 1.
St—l 5:
P —— P = p1 — Pz2-

holds for any two blocks py, p2 such that py # @, p2 # 4.

87

Proof. The result is trivial if p; = p., so we consider p; # p,.

Suppose p1 274 p,. As lF|| = 3, by Lem
there are blocks p{,p,z? € N with

ma 4.5, F has a function f such that

P #pS# 2) #p) ,and f(p3) = f(p3) # f(7).

We first prove the theorem for a special cas

0 o 0 o _ o0 G
e of py = py, p2 = p3, x, = ;. Since

Se_ . .-
9 == p9, applying Lemma 4.4 by contradiction,

P

Since ¢ does not belong to set [pd]; that pJ

Se(f(pY): f) = Se-

Therefore, from (4.13) and (4.14),

p(l) St(@af

Applying Lemma 4.4 to Equation (4.15),

0 St
P1— D

For the general case of p1 # p2 #
transformation on block numbers as in the
independency of the concerned stack algori

general case. O

Corollary 4.2 LRU is the only address-in

associative stack algorithm for any {|Fi| = 3.

Proof. Similar to Corollary 4.1, by applyin

0 St—lﬂ?):f) 0

P2 (4.13)

,p3 are both in, by Lemma 4.3,

1(f(p), f) (4.14)

(4.15)

[==

p1, do the same permutational
proof of Theorem 1.1. The address

thm leads to the conclusion for the

dependent F-mapping arbitrary set-

g Theorem 4.2, O

Now we can prove Corollary 4.1 in another way: for two’s power congruence-

mapping, F = { fo | fu(p) = pmod 2%, 0
k > 2, Corollary 4.2 applies.

If a set mapping scheme is further relax

Ka<k} As||Fll=~k+123for

ed to include arbitrary block group-

ings, the above result can be extended to

88

address-dependent stack algorithms.

LRU will be the only stack algorithm, not just address-independent, that allows
one-pass all set-associativity evaluation using a single stack. Here is the definition
for a set mapping scheme with arbitrary block groupings:
Definition 4.6 Let F be a set of set-mapping functions such that for ¥ blocks
p,q,r where p # r,q # r, there exists a set-mapping function f € F such that
p,q are in a same set defined by f, but v is in a different set: f(p) = f(q) # f(r).
F is said to contain universal set-mappings.

Now we have a stronger result which applies to all general stack algorithms:

Theorem 4.3 Suppose F contains universal set-mappings. For a F-mapping

arbitrary set-associative stack algorithm, after its accessing block x4,
Si—1 St
h— pr == p1 —* Pa.

holds for any two blocks py, ps in the global stack such that py # x¢, p2 # 24
Proof. Suppose p; % py. Since p; # z4,py # y, and F contains universal

set-mappings, by Definition 4.6, there 3 f € F such that

f(pr) = f(p2) # f(a) (4.16)

The rest is similar to what we did before:
Since py Si-g p2, applying Lemma 4.4 by contradiction,
1 St-—l@)l)af) pz (417)
As 7, is not in the set [ps]; that py, p2 belong to, by Lemma 4.3,
S{fm) f)= Si-1(f(p1), f) (4.18)
Therefore, from (4.17) and (4.18),
p D (4.19)
Applying Lemma 4.4 to Equation (4.19),
St
h — P2
O

By this we get to the final conclusion:

89

Corollary 4.3 For a set F of universal set-mappings, LRU is the only F-

mapping arbitrary set-associative stack algorithm.

Proof. Similar to Corollary 4.1, using Theorem 4.3. O

4.3 Summary

To the question of whether other stack algorithms would permit an efficient
all set-associativity stack evaluation like LRU, we have shown that among all
the stack algorithms which do not base replacement decisions on the numerical
values of block address, LRU is the only such stack algorithm. This result can
be generalized to any set associative caching which has more than two different
equivalent classes of set mapping schemes. If the set mapping schemes include all
possible block groupings, then LRU is the only such algorithm among all stack

algorithms, no matter how they make their replacement decisions.

90

Chapter 5

Multilevel Hierarchies

Abstract. We show an implementation of general (stack) replacement algorithms on multilevel
memory hierarchies that maintains the staging properties and provides quick up-staging of data
blocks in the hierarchy. This kind of multilevel hierarchy can be efficiently evaluated by using

the stack evaluation techniques on two-level hierarchies.

5.1 Introduction

Multilevel hierarchies consist of an array of memory modules My,..., My that
provide data storage. An upper level module (lower number) has smaller storage
capacity than a lower level, but provides quicker response to a reference request
and is more costly per unit storage. By effectively exploiting reference locality
and keeping frequently used data in the upper levels, reference requests from
the CPU are served quickly, while the cost of the whole system is kept low.
Cache memories, commonly used in computer systems, are just two-level memory
hierarchies, with the first level module being referred to as the cache.

Similarly, when a requested data is deep down the hierarchy, it needs to be
brought into some upper level, so that future CPU access to that data can be
served faster. If the upper level is already full at the time, then some old data

will have to be replaced to make room for the newly requested data. The decision

91

of choosing an old data for replacement is often based on some stack replacement
algorithm. To reduce overhead, data movement within a hierarchy is carried out
in blocks, the size of which might vary from one level to another. A transfer
hetween level M; and any lower level M; (¢ < j) is done in B;-byte blocks, with
By < --. < Byg_1. The effectiveness of a memory hierarchy is measured as well
by hit ratios, the percentage of references to each level. If the response time of
the ¢-th level is T; (including the time to transfer a block containing the data to
some upper level(s) before giving the data to the CPU), and its hit ratio is p;,
then the expected response time of the hierarchy is i, p:T:.

Stack evaluation of arbitrary multilevel hierarchies is difficult in general. This
is because the reference pattern observed by the second or any lower level depends
on the size and the replacement algorithm of all the levels above it. It seems
difficult to apply an efficient evaluation method such as one-pass stack processing
for a general multilevel hierarchy.

Mattson et al. [Mattson 70] proposed a multilevel hierarchy with a single block
size and stack algorithm for all levels, with the limitation that only one copy of
each block can reside in the hierarchy above the bottom level Mg. They showed
that hit ratios can be obtained by stack evaluation for arbitrary configurations
(the number of levels and their capacities) of such hierarchies.

Stutz and Traiger{Slutz 72al introduced the concept of staging-hierarchies,
which satisfy two properties: (1). inclusion: the data content of every level,
except the bottom one, is a subset of the data content of its immediate lower level;
(2). independence: the data content of every level is independent of the number
of levels above it and their capacities. Staging-hierarchies are more realistic than
the hierarchy of Mattson et al. because they allow the flexibility of multiple copies
of the same data to reside in the hierarchy. The inclusion property between levels
makes the implementation of certain cache coherence protocols easier for some
tree structured multiprocessor memory hierarchies[Baer 89]. The independence
property makes hierarchy evaluation simple, since from the evaluation point of

view, for a specific level, the existence of the upper level(s) are immaterial; it can

92

be viewed as the top level of a two-level hierarchy and evaluated using the stack
processing method.

Gecsei[Gecsei 74) described one realization of staging hierarchies with differ-
ent block sizes among the levels. Each CPU access is broadcast to all levels. The
top level uses an arbitrary stack algorithm; a lower level’s replacement policy
is determined by those of its upper levels, forced by the containment (staging}
property. Evaluation of such hierarchies is very expensive, as it requires a sepa-
rate stack processing for each level of the hierarchy. Traiger and Slutz[Traiger 71]
showed that if the top level uses the LRU replacement algorithm, then the replace-
ment algorithms of the lower levels are all LRU. Such LRU multilevel hierarchies
can be evaluated efficiently, as one-pass stack evaluation works for multiple block
sizes[Slutz 72a]. Gecsei[Gecsei 74| later gave an implementation of this LRU hi-
erarchy without using broadcasting; replacement decision at each lower level is
made in a distributed fashion based on information passed down from its immedi-
ate upper level, and a requested data block is staged sequentially up the hierarchy
to the top level before the data is given to the CPU. Silberman[Silberman 83
proposed a delayed-staging hierarchyin which the highest level with the requested
data supplies it to the CPU directly, and the data block is “staged” into the top
level sequentially through all intermediate levels, during which time a new CPU
request may arrive and be concurrently served. Block replacement 1s also car-
ried in a delayed way. It was shown that stack processing can be applied by
considering the delayed staging times.

We consider applying a general stack algorithm to multilevel hierarchies in
a way that both provides quick response to CPU requests and permits efficient
evaluation. The multilevel hierarchy under consideration has a single block size
for all levels (one-pass evaluation of an arbitrary stack algorithm for multiple
block sizes seems out of reach). A common general stack algorithm is imple-
mented on all levels of a staging hierarchy with minimal exchange of replacement
information between adjacent levels. The staging of a missing data block into

upper levels gets done fast by using broadcasting. One-pass stack processing of

93

Figure 5.1: Multilevel Hierarchy Control

the stack algorithm on an access trace gives hit ratios for any configuration of

such hierarchies.

5.2 Multilevel with Arbitrary Stack Algorithm

Consider the H level memory hierarchy My, ..., My depicted in Figure 5.1. The
center links connecting adjacent levels are for passing replacement-related infor-
mation from the level above, and the bus on the right is used for up-staging a
data block from a lower level to all upper levels. The CPU directly accesses
the top level M, only. Demand-fetching is assumed: only when the requested
data is not in My, is it brought up from the upper-most level that contains it.
Initially all data blocks reside in the bottom level My. All levels use the same
stack prelacement algorithm A and the same block size B. The i-th level M,
(1 <+ < H) has a capacity of C; blocks, with 1 <) < €y < ... < Cy. P is the
priority list of A for access time t. A’s stack is S, after each access time ¢, when

CPU access to x; has just been fulfilled.

94

5.2.1 Implementation

Taking an approach similar to Gecsei’s[Gecsei 74], we call a block residing in a
level a free block for that level if there is no copy of that block in any upper level.
Let M;(¢) denote the content of level M; after time {.

Definition 5.1 A block x is a free block for level M; after access time t, if
T € Mi(t), and z & M;(1),1 <3 <.

All blocks in level M, are free blocks for level M. Notice that to preserve the
inclusion property of staging hierarchies, whenever a block replacement is needed
at some level, only free blocks in that level should be considered.

Each level M; keeps an ordered list of its free blocks. Let F! denote the free
block list of level M, after access time ¢t. If a referenced block x; 1s first found
in My, then for 1 <1 < d each M; updates its free list £/, for x,. A free list is
updated in the same way as stack S;_; is updated with priority list P, with the
exception that z; is not appended to the head of the new free list F}. Specifically,
let F = [fi ,(0),...,fi_,(m;)] be the free block list of level Af; before access
time t. First, compare f;_,(0) with f;_,(1), let the one with higher priority in
P, be fi(1), and the one with lower priority be gi(1); then compare g{(1) with
fi1(2), vielding similarly fi(2) with higher priority and ¢;(2) with lower priority.
Generally, for 1 < k < m;, compare g(k — 1) with fi_, (k}, producing f;(k) with
higher priority and g!(k) with lower priority. This process stops at fi_,(j) if
fi_(j) = 2;; then 2, is pulled out of the free block list, and the new free block
list of M, after access time t is F} = [fi(1),...,fi{(j — 1) gi(j —). fi (G +
1),..., fi_1(m;)]. Figure 5.2 illustrates this case for level My. 1f z, is not found
in M;, then in the end fi_,(m;) and gi(m; — 1) are compared to produce f;(m;)
and g'(m;), and the new free block list of M; is Ff = [fi{(1),.... fi(m:), gi(m.)).

Suppose at time ¢ the CPU issues to M, a reference request of some hyte In
block @;. M; looks for it in its free list, doing the above free-list updating as it
goes. If x; is found, then it is pulled to the head of the new free list, and the

requested byte to sent to CPU. If z; is not found, AM; will send the request to

95

£4(0) 1

rhan —*CP—' i)
d, .
g (1)

(42 = - £d¢2)
g,(2)

o (Ol
g,(3)
) " (2)

£ GO £2G1)

If‘:(i-l)
5 < 14 () eD)

is "captured”

14 Grp————=] 40+

£ (mg) =} f§(mg)

Figure 5.2: M, Free List Updating

My; if My is already filled, the last block on its new free list is deleted. M sends
a 3-tuple of numbers: the needed block address z;, the current access time ¢, and
the address y of the deleted block (if no deletion, y = nel). Here ¢ is necessary
to inform the lower levels of the proper priority list P, to use in updating their
free lists, since lower levels do not observe every CPU access as M, does and
consequently need to know the current access time {.

Generally, a lower level M; (i > 1) on the search path for x, receives the
3-tuple {z;,t,y) from M;_y. If y # nil, by Lemma 5.1 shown later in section
5.2.2, block y is gunaranteed to be in M;; M; appends block y to the head of its
free block list F/_,. Then M, looks for z; in F;_,, npdating it into F} at the same
time. If x; is found, M; pulls it out of its free list, and broadcast the block x; to
all upper levels. If z; is not found, the request is propagated to M;yy; if in this
case M; is already full, the last block on its new free list F} is deleted from M;,

96

and the new 3-tuple of numbers (24, t,y) is passed to M;4q.

The action of an intermediate level M; (1 < ¢ < d) is as follows:

Input: (z.,1,y) from M;_;.

if (¥ # nil and block y € M;) {
append block y to the head of F}_;
y = nil;

}

F} = update_free_list(F;_;);

if (number of blocks in M; = C}) {
y = address_of_last_block(F});
Fi = delete_last(F});
delete y from M;;

}

Output: (z¢,1,y) to Miy1.

By replacing a block out of each filled level along the way. it is guaranteed
that every level above M, has at least one open slot to store the data block z,
later.

When M; finds z, during updating its free list, it takes x; out of its free list
(shown in Figure 5.2), as block z; will be residing in upper levels and will not be
a free block to My, and broadcasts it to all upper levels. After the entire block
x, is received, M; appends it to the head of F} and provides the requested byte
to the CPU. Now block z; resides in every level of the hierarchy.

Figure 5.1 illustrates the operations of the hierarchy, with shaded rectangles
representing the levels participating in current access. The down-arrows between
levels are for sending the 3-tuple numbers (z4,1,y), sequentially passed from M,
through M,,..., M;_y to My. The right-arrow is for M,’s broadcasting data
block z;. The left-arrows are for M;’s (1 < ¢ < d) receiving data block z,.
Sequential search down the hierarchy is essential for a general stack algorithm,
for a lower level can not make a replacement decision without knowing which
block its immediate upper level has chosen to replace. The information about
access request z; 1s only sent down to level M, the highest level that has a copy

of the data block before current CPU access.

97

Figure 5.3: LRU Hierarchy Control

Remarks

e Commonly used stack algorithms, such as LRU and LFU, have the char-
acteristic that the relative ordering of the priorities of two blocks remains
unchanged if neither of them is being accessed. These algorithms can be
simply implemented by attaching a priority number to each block, and
changing the priority accordingly whenever the block is accessed by the
CPU. When a block is replaced from a higher level, its priority is passed
down to be attached to the block’s copy in the next lower level. For such
algorithms, the current priority list P, is stored with the blocks themselves,

so it is unnecessary to pass down the time ¢ while looking for 2.

e For the LRU algorithm, the hierarchy can be made to operate even faster.
There is no need to sequentially step through the intermediate levels to
update their free block lists; instead, the top level broadcasts the address
of the needed block via the bus on the left to all levels in the hierarchy,

shown in Figure 5.3. The LRU algorithm has a very simple stack updating,

98

which merely shifts all stack entries down by one position until the stack
entry containing the data is found. When reflected in the updating of the
free block lists of M;,..., My, this can be done in parallel by these levels.
Each intermediate level M; for i = 2,...,d— 1, upon getting the broadcast
address from M, checks that it doesn’t have the block, deletes its last free
block from its memory module if it is full, and sends the address of the
deleted block down to the next level M;;, via the center link; at the same
time, it prepares to receive a deleted block address from its previous level
M;_,, which must happen by Lemmas 5.1 and 5.3 later, and appends that
block to the head of its new free list.

A level above Af; decides that it is an intermediate level if it does not
contain the sought-for block. Level M, has the sought-for block as one of
its free blocks and can be sure that it is the top-most level containing the
data. A level below M, decides that it is not going to participate in the
current access if it has the block but it is not free. According to Lemma
5.5 below, if the requested data block is first found in a level other than
My (i.e., d < H), then all upper levels M,..., My_, are full, and they all
delete one free block to make room for the block to be broadcast by M,.
In particular, M;_; will send the deleted block number to My, after which
M, can begin to broadcast the data block through the right bus. Siuce My
is the slowest memory module, after it finishes receiving the block number
from My_;, all other upper levels have done their free list updating; they

are ready to receive the data block broadcast by My now.

If the requested data block is found only in My, My_; may and may not
be full. Since My will not broadcast the data block until it has received a
block number from My _q, it is necessary that My_, always provide a block
number to M. When a CPU request is not found in My_; and My_, is
not full, My_, can send a fake replacement block number to My, so My

knows when it can broadcast the data block.

99

o Only the levels above M, which receive the searching 3-tuples and which do
not have the requested data, are informed to receive the broadcasting of the
data block by My. All levels below M, will not participate in receiving the
broadcast. As all upper levels have faster response time than lower levels,
there is no problem for the receiving speeds of upper levels My, ..., M, 4

to keep up with the sending speed of M,.

e The multilevel hierarchy can be reconfigured dynamically, using a special
switch on each memory module to inform whether it is the top level module.
The top level is different from all the other levels in that it gets requests
from the CPU in the beginning of each access, and sends a byte to the
CPU at the completion of the access; if the data is in M. there is no need
to broadcast. Each module can decide whether it 1s M; by checking if its
special switch is set. Memory modules can be added to or deleted from the

hierarchy, with smaller and faster modules above larger and slower ones.

¢ We assumed all capacities to be different among the levels. Two contiguous
levels with the same capacity makes no practical sense; they pose no prob-
lem to evaluation either, as their contents are identical and can be treated

as one level.

5.2.2 Properties

We study some properties of such multilevel hierarchies that are useful to their
evaluation. For clarity of exposition, first define some notions. A list is an ordered
sequence of distinct blocks L = [ly,..., 1], ; # {; if ¢ # j. [; is the leading block.
x € L if there is an equal block I; = 2,1 < i < n. |L| = n is the size of the list.
A sublist between entries 7 and j is denoted L[i,j] = [l;,....;]. A sublist from
entry ¢ to the end of the list is L[z,.] = L[z, |L|]. The concatenation of two lists
X =[rq...,x]and ¥V = [ys,. ., ym] is X oY = [21, ..o, Tny Y1, oo Y- A list
is empty if it has no elements, denoted by []. If ¢ > 7, L[z, j] = []. Set(L) is the
set of blocks which are from the list L: Set(L) = {z|z € L}.

100

Lemma 5.1 M,_4(t) C M;(t) for 1 < < H.

Proof. Whenever a block z is to be brought into M;_;, it must first be brought
into M;, and as long as € M;_;(%), T is not a free block in M; and will not be
replaced, hence z € M;(¢).0

Lemma 5.2 For 1 <i < H, Set(F}) = M(t) — M;_1(t), hence |F}| = |M;(t)| —
| M1 (2)].

Proof. By Definition 5.1, Set(£7¥) C Mi(t) — M;_1(t). For any = € M;(t) —
M1 (8),xz € M,_1(t); by Lemma 5.1, & M;{t)for all 1 < ;7 <i—-1, 2 €
F}. Thus Mi(t) — M;_(t) C Set(F}). Again by Lemma 5.1, |F}| = |Set(#7)| =
|Mi(2)] — [Mioa(8)].0

Lemma 5.3 For1 <i< H, if |[Mi(t)| = Ci, then {M;(t"})| = C; fort' > t.

Proof. Whenever M; becomes full, it will stay full forever, since each time it
replaces a block, it does so in order to get another one, hence the conclusion. O

Since (', < Cz-, M;_, gets full before M; does; if |M;(t)| = C;, by Lemma

()] = . This means that replacement always starts from the top
level.
Lemma 5.4 Define Co = 0, then |[FI < C; —Ciy for 1 <i< H.

Proof. As C; — C;_; > 0, consider |F}| > 0, which means M, gets a free
block replaced by M;_; after some access time to: o5 < ¢, so |M;_1(to)! = Cizq.
By Lemnma 5.3, {M;_i(t)] = Ci_1; by Lemma 5.2, |F}| = |Mi(t)| — |M._1(8)] =
|M;(t)] = Cia < C; = Ciy .0

Lemma 5.5 If |F{| > 0, then |M;(t)] = C; and |F/| = C, — C;_y for any
1< <.

Proof. As |F}| > 0, by the proof of Lemma 5.4, |M;_;(¢)| = Ci_y. By Lemma
5.2, |Fi7 = |M; ()] — | M;_o(8)] = Cimy — [Mi—a(1)| 2 Cioy — Cizz. But Lemma
5.4 has |F/™'| < Cy_y — Ci_z. Apply the same reasoning to each upper level M),

fory=¢—1,...,11n turn. 0

Lemma 5.6 F! = S[1,C41.

101

Proof. As M; uses stack algorithm A for its replacement decisions, by the
definition of stack algorithm, the content of M; after access time ¢ is the first
(', entries of A's stack S;. All blocks in M, are its free blocks; from the free list
updating procedure described in section 5.2.1, it is clear that F} is exactly the

first (’y entries of S,.00
Theorem 5.1 For 1 <i< H, F} = §[{Ci_1 +1,Ci].

Proof. Due to Lemma 5.6, only need to prove the conclusion for ¢ > 1.

The proof is by induction on time ¢. Initially, the stack is empty: Sp = [|;
each level except the last one is also empty, F§ = []| for 1 < ¢ < H. The
conclusion 1s true.

Suppose the conclusion holds after access time t — 1 (¢ > 1}. Now the CPU
references ay; let d; be the stack distance of ¢ in S;- (1 < d; < o0). After

updating, the stack remains unchanged for all entries beyond d,:
Sidi+1,.] = Sia[de + 1,] (5.1)
There are three cases to consider:

o d < Cy: 2y € FL | = 5;4[1,C], 74 1s found at the top level M;. All other
levels except M, remain immune to the access, F} = F} |, 1 <i < H. As

Ci > Cy>dy+1,by (5.1), Fj = F{_, = 5_4[Ci_1,Ci] = S{Ci-1, Cil.

o Oy <d, <Ciforsomel <l < H: x, € F! | = S1[Cio1+1,], x, 1s first
found in level M; and has to be brought into M;_y,..., M. As |F/_| > 0,
by Lemma 5.5, [M;(t)] = C; and |F}_,| = C: — C;—; for 1 < i <, each level
above M, is full and needs to replace a block to make room for z,. From
the proof of Lemma 5.6, it is clear that M; picks none other than ¥, () as

its replacement block, and passes the address of y:(C1) to M;.

At each lower level i (2 < i <1 —1), M; gets from AM,;_, the address of a
block replaced by M,_;. Suppose the address is y,((C;. 1); for an induction

to hold, we want to show that the address passed from M; to M, will

102

in turn be y,(C;). M; will append v,(C;_;) to the head of F/_,, and get
its new free list F} and replacement block by using the free list updating
procedure in section 5.2.1. As F{ , = S;_1[Ci-1 + 1,(%], upon getting
y:(Ci_1), M; updates its free list in the way that exactly mimics the stack
updating from S;_; to Sy, for the range of entries from C;_, +1 to C;. Hence
F} = 5{C;.1 +1,C], and the replacement block will precisely be y,(C}).
The address y:(C;) is passed down to M,;;.

Finally, level M; gets from M,;_, the address y;(Ci.1) of the block replaced
by M,_1. M, mimics stack updating on its free list until reaching F/_,[d; —
C1—1] = x4, then it deletes z, from its free list. Hence Ft’[l,dt —] =
SiCZy + 1,ds]. By (5.1), Filds — Ci_1 +1,C)) = Fly[d, — Ciy + 1.0 =
Siq[di+1,Cf) = S¢[di41,C],s0 F} = F/{1,dy—Cpy]e Fi[d, ~Cioi +1,.C)]) =
Si{Ci—1 + 1,C4).

For all [< i < H, M, is unaware of the CPU access to z,, so F} =
Si|Cice + 1, Ci).

o d; > Cy_y: z,; is only found in the bottom level My. If all upper levels
have a full free list (|F¢_,| = C; — C;_1), this is the same as the previous

case except I = H, whose free list we don’t need to consider.

Otherwise, let I (1 < [< H) be the up-most level with 0 < |F_ || <
Cp — Ci—y. Tt must be that |S;—4] < €1 < Cy_1 < dy. since otherwise
|FL | = |841C2, €l = Cr — Ciy. Tt means z; has never been accessed
hefore, so |5;] = {S:_4| + 1 < €. This is also similar to the previous case,
except there is no block replacement at level I. At level I, [M;(t — 1}| < C,
no block needs to be replaced, F} = S:[Ci_1 +1,|S:]] = S:[Ci—1+1,C)]. For
l<i< HF =F_,=[]=8[Cis1+1,Ci.

So Fi = §[C;-1+1,Ci] holds at every level i after access time {. By inductive
argument, it holds always. O
The entire stack is distributed among levels of the hierarchy in a disjoint and

complementary manner. Each level does part of the stack updating by mimicking

103

the changes on its free list according to the common stack algorithm.
Corollary 5.1 M;(t) = Set(5:[1,Ci]) for1 <: < H.

Proof. With Lemmas 5.1 and 5.2, M;(t) = Set(F{) U M;_1(t) = Set(F;)}U
Set(FiYy U M;_5(t) = --- = Set(F))U---U Set(F!). Fori > j, if ¢ € F},
then = & M;({), v ¢ Fliifye F? theny € M;(t),y & F}. hence if i # j, F}
and F} do not have a common block, so M(t) = Set(Fi) U ---U Set(F}) =
Set(Fle---e Fi) = Set(8]1,C]).0

After any access time £, the content of level M; is composed of the first C;
entries of the stack S;. This is illustrated in Figure 5.4. The hierarchy satisfies
the independence property of staging hierarchies. Together with the inclusion

property by Lemma 5.1, this multilevel hierarchy is a staging-hierarchy.

5.2.3 Ewvaluation

From theorem 5.1, it is clear that a request x; is first found in level { if and only
if its stack distance d; satisfies C;_y < d; < (). Let r(s) be a counter for the
number of times that stack distance s is found during the stack processing of a

reference trace of length L, the total number of times an accessed block is first

found in M; is R; = Zfzicwﬁl r(s), and the hit ratio of M; is p; = R;/L.

Write Effects

Like cache memories, a write-back multilevel hierarchy writes a dirty block from
the i-th level into the (7 + 1)-th level when that block is chosen for replacement
in M;. The difference between read-only hierarchies and write-back hierarchies
is that for the former, when level M; replaces a block, it only passes the block’s
address to M1, while for the latter, when level M; replaces a block that 1s dirty,
it writes the block data to M.

Due to Theorem 5.1, evaluation of write-backs in the multilevel hierarchy is
the same as the evaluation for cache memories. Denote by di{x) the dirty level

of block x. Each time z is written, d{(z) is reset to one. Let w(s) be a counter

104

5,(13

§8,(2)

Mo

5G| | Mo

Sl(cl +1}

Mp,®

t | sy

St((‘?-&l)

8,Gy) r
Sl((‘H+1)

5.1

Figure 5.4: Level Contents v.s. Stack Contents

for the number of occurrence that s is the longest stack distance a dirty block
has achieved between the time of its two consecutive writes, during the stack
processing of a reference trace of length L of which W are write accesses. FFor
level Af;, the number of writes it receives from M;_; is W minus the number
of writes saved by M;_; and the number of distinct dirty blocks still residing in
My, M;_y. Hence the number of write-backs of M; is W; = W — Zi}l w(s) —
|D;(L)], and the write ratio to level M; is w; = W;/W. Here Di{(L) = {z|x €
M,_((L)Adl(z) < Ci_1}, where di(z) < C;_; means that z has not been replaced

105

from the (¢ — 1)-th level M;_; since last time it is written by the CPU.

5.3 Summary

We show an implementation of a general stack algorithm on multilevel memory
hierarchies that maintains staging properties and provides quick up-staging of
data blocks in the hierarchy. Due to the staging property, the multilevel hierar-
chies can be efficiently evaluated using the standard stack processing of reference
traces. One-pass processing of the stack algorithm over an access trace gives hit
ratios and write ratios for any configuration of such hierarchies.

This implementation has two apparent restrictions: that a lower level is at
least as large as an upper level in capacity, and that all levels use the same block
size. The first restriction reflects reality hence is not much a problem. The second
restriction is probably inherent in the requirement of doing one-pass evaluation

for any stack algorithm with any configuration.

106

Chapter 6
Multiprocessor Cache Analysis

Abstract. We model shared-memory multiprocessor caches on a bus architecture with a
snoopy-based invalidation coherence protocol. Assuming an independent reference model, the
general method of modeling the cache states as a Markovian chain is presented. Upper and
lower bounds on cache performance are derived. Using recursion and conditional probabilistic

reasoning, steady state analysis is applied to the states of LRU stack entries.

6.1 Introduction

Trace-driven simulation, stack evaluation in particular, is a viable tool in accu-
rately predicting the performance of different memory hierarchy designs. Com-
pared to full-scale, software-based system simulation, it runs at least a magnitude
times faster[Chaiken 90].

However, there are several problems associated with trace-driven simulation:
the validity of the used traces, the storage and computational requirements of
the traces. Traces are usually gathered for a particular application. and to get
some general result out of a simulation one must experiment with many traces
from different application paradigms. Traces are expensive to gather and keep;
because of the fast execution speed of modern computers, it takes a short time

for a machine under tracing to produce a very large trace, requiring large storage

107

space and long simulation time.

On the contrary, while probably being less accurate than trace-driven simula-
tion, analytical modeling can predict more general and long-term system behavior
in a quick and relatively inexpensive way. It is a useful tool in the early stages
of memory system design, which by identifying a sensible range of consideration

for the design parameters can greatly narrow down design space.

Cache Cache | ~ =====- Cache

Global Shared Memory

Figure 6.1: Shared-Memory Multiprocessor with Bus-Interconnection

In this chapter, we model a bus-based shared-memory multiprocessor caching
system, shown in Figure 6.1. Each processor has a local cache. The caches and
the shared main memory is connected by a bus interconnect. All caches use
“snoopy” method to monitor bus transactions. Cache coherence is achieved by
an invalidation-based protocol, whereby a cache invalidates its copy of a data
block whenever it “hears” on the bus that some other cache has issued a write
to that block. The actual write approach, whether write-through or write-back.
is of little relevance and not specified in the analysis. Fach cache employs LRU
as its block replacement algorithm LRU is the mostly used algorithm in practice,
and its stack updating strategy is relatively simple to analyze.

There are a number of models on reference string for the analysis of caches
[King 72, Franaszek 74, Rao 78, Smith 79, Tzelnic 82, Dubois 82, Agarwal 89,
Dan 93]. The most used is the independent reference model {IRM). which em-

108

bodies a simplifying assumption on CPU memory access patterns that makes
analysis more tractable. Models based on IRM tend to underestimate memory
system performance, due to its inadequacy in describing some important CPU
access features such as localities. Baskett and Raffi (see {Flajolet 87]) showed
that by appropriately converting observed reference probabilities into some vir-
tual probabilities and use the virtual probabilities in modeling, the prediction on
paging system performance agrees well with real performance. It demonstrated
that dependent references can be modeled with independent reference model us-
ing modified probabilities for the main memory and disk hierarchy.

Under the IRM model, closed-form solution for miss ratios was obtained for
fully associative LRU, FIFO, and RAND replacement algorithms on uniproces-
sor caches[King 72|, by solving for the steady state distribution probabilities of
each cache state. Some bounds on performance comparisons of LRU, FIFO, and
RAND, with respect to MIN, were derived on uniprocessor caches[Franaszek 74],
both for fixed memory size and for variations of performance with various mem-
ory size, using only mean values of the independent reference distribution. Set-
associative caches were analyzed in [Rao 78], by solving the steady state distri-
bution probabilities of cache states for a fixed cache size, extending the work
in [King 72]. Smith used Poisson process assumption to analyze the buffering
effects on a write-through cache with a buffer[Smith 79]. In [Tzelnic 82], the
hit ratios of LRU algorithm on uniprocessor caches was analyzed for a first-
order Markov chain reference distribution. Dubois and Briggs studied coherent
LRU multiprocessor caches[Dubois 82], modeling each process and the interac-
tion among processes, under the assumptions that the address space of each
process is divided into a private cache and a shared cache, and the processes
strictly alternate in their memory access. Agarwal used a hybrid of measurement
and analysis[Agarwal 89] to study the effect of caching parameters on the perfor-
mance of multiprogramming on uniprocessor caches. In [Dan 93], various buffer
coherence policies are studied for LRU cache buffers under the IRM model, with

an approximating assumption that all blocks stay in a stack entry for the same

109

amount of time.

We model the multiprocessor caches using two approaches. First, caches with
fixed size are studied; their states are modeled by a first-order Markov chain,
and their steady state probabilities found. This approach is similar to those
in {King 72, Franaszek 74, Rao 78, Smith 79, Tzelnic 82], except that now we
consider the cache interaction of block invalidation in the multiprocessor envi-
ronment. Secondly, LRU stack entries are studied; their steady state probabil-
ity distributions are formulated and solved with balance equations. [Dubois 82,
Dan 93] also studied stack entry probabilities. Unlike [Dubois 82], we make no
assumption about reference order of the CPUs; unlike [Dan 93], we determine
approximately the steady-state probabilities.

The next section formally introduces the IRM model for the multiprocessor
environment under study. The Markov chain model of cache states is described
in section 3. Section 4 gives upper and lower bounds on cache performances. In
section 5, a different approach is taken by analyzing the steady-state probabilities

of each stack entry with recursive equations.

6.2 Independent Reference Model

Data are moved in blocks among the caches and the shared memory. We assume
the block size is fixed. The blocks are numbered from 1 to n, with & = {1,....n}
denoting the entire address space. The reference sequence observed by a typical
cache is represented by X(1),..., X (L), with X(¢) € (L.

Consider an arbitrary time epoch tg, and suppose that the block referenced at
to 1s X(ty) = b. Let the next reference to b occur at time epoch #; > #,. For LRU
replacement without invalidation, we are interested in the number of distinct
blocks referenced between #, and ¢, since that determines whether block b still
remains in cache at ¢;. If the cache size is bigger than the number of distinct
blocks referenced during the interval (fy,¢;), then X (1) is a hit; otherwise it's a

miss.

110

Cache invalidation makes the analysis of multiprocessor caches difficult. An
invalidation from a remote cache erases an existing block from the local cache,
creating an empty slot for a new block referenced in the future. There are two
possibilities upon which an access to block b is a miss: first, b itself has been
invalidated since its last local access; second, b is not invalidated, but there have
been more than m — 1 (m being the cache size) other blocks that were accessed
after b’s last access, and the number of valid blocks in the cache has exceeded the
cache size. The last condition is necessary, and this is what makes the analysis
difficult. Notice that even though the number of distinct blocks referenced during
the intermission is more than the cache size, it may be that blocks are invalidated
after being accessed and their slots reused for future new blocks during that time
period, so there is never a necessity to replace a resident block. namely b, and b
remains in the cache. X(¢;) is a hit if and only if & is not invalidated between
the two accesses to it, and at any time during the intermission the number of
distinct valid blocks (including b) is no more than the cache size.

Denote by S(#) the set of valid blocks at time ¢ since the last reference to block
b at time ¢o. Then S(tp) = {X(to)}, and S(t+1) = 5(t) — { blocks mnvalidated at
time t + 1} 4+ {X (¢t + 1)}. A necessary and sufficient condition for X(#;} to be a
hit in a cache of size m-blocks is X (¢;) € S(¢;— 1) and |S(t)| < m for to <t < #;.

We assume that the local CPU accesses and remote CPU invalidations to the
local cache obey an Independent Reference Model (IRM). Each reference X(#)
is a combination of block number b and access tag r: X{¢) € {(b,r)lb € Q,r €
{—1,1}. A tagof 1 means a normal memory access from the local CPU, while the
tag of -1 means an invalidation from a remote CPU. Each access is independent of
others and has the probability distribution: P[X = (b,1)] = pp, P[X = (b, -1)] =
gs. Here py > 0,g5 > 0,5 4cqpo + ¢ = 1. The py, gy are observed by a typical
CPU’s cache and depend on the number of CPUs and their composite access

pattern.

111

If X(2) = (b(2),r(2)), clearly

1
-1

S(0) = 5(%: - 1)+ {b(%:)} ff 7‘(@:)
St ~1) = {b(2)} if r(3)

As a probabilistic model, IRM has been frequently applied in uniprocessor
cache analysis[King 72, Franaszek 74, Flajolet 87]; under this assumption, anal-
ysis becomes tractable. It has also been widely used in analyzing a list search-
ing problem, which is to some extent related to block replacement algorithms
[Bitner 79, Mendelson 80, Sleator 85b].

We explicitly deal with a fully associative cache. Set associative caches can be
treated as a group of disjoint, independent fully associative ones and the analysis

18 not much different.

6.3 Markov Chain Model

Let S;_y = [3(1),...,s(m)] denote the state of the LRU cache before access time
t. That is, the first m entries of the LRU stack. For 1 < i < m, s(2) € Q
or s(7) =“#". s(f) is the first marker entry “#” in S;_q; i.e.. s(f) ="“#" and
s(1) #£“4" for 1 <4 < f. f > m means S;_; does not have a marker entry.
An empty cache is represented by m markers. For the current access X(f) =

(b(t),r(t)), the state transition from S;_; to S; is the following:

1.if s(y) = b(t) and j < f, then S, = [s(]),s(1),...,s(7 — 1).s(y +

2. if s(y) = b(t) and j > f, then S; = [s(7).s(1),...s(f — 1}.s(f +
1), oys{f — 1,478 + 1), .., 8(m)].

3. b(#) € S,1.then S, = [b(t),s(1),..,s(f —1),8(f +1),..,8(m)].

o if () = —1,

112

1. if s(j) = b(t), 1 < j < m, then S, = [s(1),..,s(7 — 1),“#", s(7 +
1),..,s(m)].
2. i b(t) & S¢_q for 1 < < m, then Sy = 5,_1.

Given state S;_; and access X(t), the new state S; can be determined without
any additional information. Hence the state sequence {.5;} forms a Markov chain.
Since the actual access time ¢ plays no role in the model, the Markov chain is
homogeneous. The state transition probability matrix P = (ps,s,) is composed
of either p; or ¢; and is quite straight-forward to determine following the above
description of state transitions.

It is possible to apply such reasoning to any stack algorithin and model its
(cache) state sequence as a Markov chain. For an arbitrary stack algorithm with

markers in the stack, its stack updating procedure is as follows:

e if there is no marker above the currently accessed block in the stack, then
stack updating, using the algorithm’s priority list £ for that access time,
is done from stack top to the position of the data block. This is the same

as the case with no markers in stack.

e if there is at least one marker above the accessed block in the stack, then
stack updating is done from stack top to the position of the first marker,
and then the marker is directly moved to the position of the accessed block,

while the stack entries between them are unchanged.

Because of a stack algorithm’s explicit priority list P; at each time ¢, the state
transition is deterministic, given the current state and the access. Therefore the
state sequence is also Markovian. But since P, can change with time, the Markov
chain may not be homogeneous.

Actually, one can construct the model for non-stack algorithms as well — the
difference being that one may need a different model for each cache size. if the

replacement algorithm is not a stack algorithm.

113

Let € be the state space: @ = {[s(1),...,s(m)]|s(i) € QU{“#"}}. We have
the following statement for the Markov chain for the LRU stack algorithm

Lemma 6.1 Suppose p; > 0,¢; > 0 for 1 <1 < n, then the Markov chain {5}
is irreducible and aperiodic. Hence there is a unique equilibrium solution p(5)

for the probabilistic distribution of steady state S in Q).

Proof. To get the transition from state [s(1),.. ., s(m)] to state [s'(1), ..., s'(m})],
we can first access m data blocks to fill up the cache, and then erase the un-
wanted entries. Specifically, suppose the indices of non-marker entries of the
target state [¢(1),...,s'(m)] are ji,...,j4, L., s'(d) = “#” if ¢ &{ j1,....50 }
Access sequence (b, 1), (bp_1,1),...,(b1,1), where b,’s are distinct blocks and

b;, = &(j1),-...b;, = §(ja), transforms the source state [s(1),...,s(m])] into

[bla rey bjl—la‘s,(jl)a bj1+1: T bjz—] 3 3’(_].'2)5 bjg-}'lv ar bjd—17 Sl(jd)a bjd+l- vy bm]

Now a zapping access sequence (b;, —1), where ¢ = 1,...,m and ¢ €{ ji,...,J4
}, transforms it into the target state [¢'(1),...,s'(m)]. The probability of going
from the source state to the target state is at least (T ps,gs,)/(T121 Gasn)) SO
the state space is irreducible. As each state goes to itself by an invalidation
(b, —1) with any b not in its stack, it is aperiodic. O

The cardinality of @ is quite large: |@]| = 212, (”:') (’:’) ! (i out of m entries
are non-markers, selected from n blocks). Due to the large state space, one
may have to settle with approximate solutions. Standard numerical methods for
solving large Markov chains [Muntz 93] can be applied accordingly.

King[King 72] found explicit solution to the state probabilities of the above
formulation for uniprocessor caches for LRU, FIFO, and Ay replacement algo-
rithms.

Define the kernel kern(S) of a state S = [s(1),...,s(m)] in @ to be the set
of non-marker elements in S: kern(S) ={ s(i)|]1 <7< m } — {“#"}. An access

(b, 7) is a miss if and only if its tag r = 1 and the next state has a different kernel

114

than the current state. The miss ratio can be formulated by

Pm.s: ZP(S) Z PsT (61)

S€Q Te@:kern(T)#kern(S)

where ps7 = py such that b & S,b € T. An equivalent but simpler form is

SeQ bikern(S)

6.4 Bounds

Since we lack a closed-form solution, we wish to find some bounds on P,,s. Under
the condition that {S;} is irreducible and aperiodic, i.e. P{S) is unique for each

S € @, the steady state miss ratio can be reformulated from Equation {6.1) as

Pms = Zpizi (63)

i=1
where z; = lim;_., Pr[i € S|, the steady state probability of finding block 7
absent from the cache, for 1 < i < n. As above, we are assuming a specific cache
size of m blocks.

In deriving the upper bound on the miss probability z;, we use a method sim-
ilar to that used by Franaszek and Wagner[Franaszek 74] and later Rao[Rao 78]
in their work on uniprocessor caches. Assume without loss of generality that
P> Zpe Let B =577 pii=1,0.0n

The event {i € 5;} can happen because either the last access to block ¢ was an
invalidation from a remote processor, or it was a local access but since then there
has been a time when m blocks other than block ¢ resided in the cache. Denote
the event A; = the last reference to block ¢ is a local access, and at some time
since the last reference to block i, m distinct blocks other than block 7 resided
in the cache. Let y; = Pr[4,], then z;, the probability of finding block z missing
from the cache, is the sum of the probability that the last access to block 2 is an

invalidation (i.e., ¢;/(p; +¢;)), and the probability that the last access to block «

115

is a normal access but there was a time since then that m distinct blocks other

than block 7 resided in the cache {(p;y:/(p: + ¢i)),

zi = qif (pi + @) + [/ (Pi + ¢:)]yi

A necessary condition for event A; is that there are at least m distinct blocks
accessed locally since the last time block i was accessed. If i < m, i.e., the block
number ¢ is less than or equal to the cache size, then among the m distinct blocks
accessed later, at least one of them (say block j) has its block number greater

than m (j > m). The associated probability can be calculated as

Pr[some block j > m is accessed after last access to ¢ < m] = Rn./(pi + Ru),
{6.4)

therefore, for 1 < m,

yi < [Rn/(pi + Rm)] Prlat least m — 1 distinct blocks (# i) are accessed]

< [Rpn/(p:i+ Bn)] P [some blocks (# 1) are accessed m — 1 times]

= [Rm/(pi + Bn) E pe)™ !
L 1 ki

From Equation (6.3), we have
i
Pm,s = Z}’izi
i=}
m mn
< D opzm+ D> op
=1 i=m+1

= in{qz‘/(Pi + @) + [pi/ (pi + @:)]yi} + R

i=1
< S/ (pi + 0+ DR/ [(pi + @) pi + R D i)™+ R
=1 =1 k=1,k#7

Therefore, we obtain

Theorem 6.1

T

Prs < S piqi/(pi+) + IR /[(pi +) (pi + Ba)l(D p)" 7 A R

i=1 i=1 k=l kst

116

A simplification gives
Corollary 6.1 P, < 37, min(p;, ¢:) + 27, Pi(EE:l,k¢,-pk)m" + Ry,

Now let us consider an access sequence which, after the last local access to
block ¢ and before the next local access to i, consists entirely of local access (i.e.,
no invalidations) and each access is to a unique block. In order for this sequence
to replace block 4, its length has to be at least m. To get a lower bound, we
count only those sequences that have exactly m local accesses to distinct blocks
other than 7, thus

m
> II»s

n#EnR#E.Fim#E k=1

fn

> I ~

h#je#F - Fim#F k=n-m+1

(n - l)ml I o

k=n-m+1

Y

Yy

v

By Equation (6.3},

P, = zn:pi{Qi/(Pi +qi) + [pi/ (pi + ai)lyi}

=1
i n—1} z
> D pi/(pi + @)l(a: + pi m! [me)
i=1 m k=n—m+1
For a i > n—m - 1, the access sequence under consideration has to have at least

one of its accesses made to a block j <n—m + 1,

m=1
Vi 2 Pa-m Z H Pix
NF#EFEIm—1# k=1

n

2 Prn—m Z H Pk

n#FRFFim1# k=n—m+2

n—2 =
> pom -1 I m

k=n-m+2

hence,

Pos > Sopa/pi+a)+ D ptwi/(pi+ @)+ Y iy (v + a)

=1 =1 t=n—m+1

117

iPiQi/(Pi+Qi)+(n;l)m'(H pk)Z[p, (pi + i)+

i=1 k=n-m+1
n—2 | id n R
S (m—l)-(II Pk) > [P+ @)
k=n—m+42 1=n—m+1

Therefore, we have

Theorem 6.2

n _1 n n—7
Py 2 ZP£Qi/(pi+Qi)+(nm)m!(II)Z /(pi + @) +
k

1=x1 =n—m+1 i=1
(1m0 (1 n) 5 it

max{(n — 1)pn-ms1s Pn-m})

6.5 Steady State Analysis of LRU Stack

In this section we look at the problem from a different angle. Instead of looking
at caches of fixed size, we examine the steady state of the entire LRU stack. Our
purpose is to derive the probability distribution for the state of each stack entry
in equilibrium.

As before, let the LRU stack at time ¢ be S, = [s:(1),...,s:(y)]. Fori € Q,
define the steady state probability that the j-th stack entry contains the i-th
block as p(z, 7) = limy_..Pr[s:(j) = 7]. Define the steady state probability of the
j-th stack entry being empty as e(j) = hm_Prs:(j) =“#"]. Obviously we

have

YieaP(ij) te(y) =1

where the first formula is less than one when block 7 is missing from the stack.

{ 2 p(i,5) < 1

The miss ratio, in equilibrium, for a cache of C blocks is therefore

=S p(1 =3 p(&.0))/ > pi-

i€n j<C ien

118

Qur goal is to solve for the defined probabilities. We derive a recursive equa-
tion for p(i,7) and e(j) in terms of p(k,{) and e(!) for I < j, and get solution for
p(2,7),e(y) of all j’s.

For the first stack entry, it is simple. In arder for block 7 to be at the top
of the stack, the current access must be a normal access (not an invalidation)
to block 7, or block 7 was at the top of the stack and the current access is an
invalidation directed to another block,

p(i,1) = pi + 2 gp(i, 1)
ki
This gives

p(3,1) =pi/(1 =) qi) for i € Q.
ki

For the first entry to be empty, then either it was empty and the current access is
an invalidation, or it was holding a block but the current access is an invalidation

to that block,
e(1) =e(1)>_ar + Y qp(k,1)
k k

that 1s.

e(1) = (3 aqup(k, 1)/(1 = S ar) = [3_pean/(1 — Do a)l/(1 = D aw).
k

% % i#k %
For an entry other than the first one, we make some observation about all the

possible state changes:
o the entry is occupied by block 2, either because

1. it was occupied by 7, and the current access or invalidation is directed

to some other block, and no block is pushed down from above, or

2. the immediately above entry was occupied by block ¢, and it gets

pushed down.
e the entry is empty, either because

1. it was empty and no block is pushed down, or

119

2. it was occupied by a block which is erased, or

3. it was occupied by a block which is accessed, and there was a empty

entry above it.

Applying this to the second stack entry, assuming the event that block 2 resides
in stack entry 2 is independent of the event that block & # ¢ resides in stack

entry 1, and also independent of whether stack entry 1 1s empty:
p(i,2) = p(i, 2)%&:[% + pelp(k, 1) + e(1)]} + pli, 1) gm
from which we get
pli,2) = p(i, 1) gpk/{l - g[qk + pelp(k. 1) + e(1)]}.

Similarly,

(2) & e au+ Doprle(l) + plhs 1]+ 2wl 2)(an + pre(l))

which has
e(2) = > p(k,2)(pre(1) + qe)/(1 = 3 qe — e(1) Y _px — D pep(k. 1))
k k % k
To simplify the derivation, for j > 2, we define some auxiliary probability
P(5) = limy—.oo Pris (7)) # se—1(j — 1) V 5.(3) =“#"]. That is to say, P(j) is the
probability that no valid data block gets pushed down from stack entry 7 — 1
to j. Migration of an empty entry from above does not count as push-down. A

necessarv and sufficient condition for this to happen is that
e there is no push-down from entry j —2to 3y — 1, or

e there is push-down from entry j — 2 to 7 — 1, but it stops at entry 7 — 1

hecause

1. entry 7 — 1 was empty, or

2. entry j — | holds the currently accessed block.

120

Assuming that whether there is a block push-down from the (; — 1)-th entry
to the j-th entry is independent of whether the j-th entry was empty, and also

independent of whether a particular block was residing in the (7 — 1)-th entry,

P(jy= P(3 = 1)+ (L= P(j — Dl(e(j — 1) + 3 _p(k,j = V)ps)- (6.5)

k
For boundary conditions, we have
P(l) = 11 P(2) =1- Zp(kvl)zp!
k I£k

Conditioning on the auxiliary probabilities, the probability of the j-th stack entry
containing the i-th block can be calculated as follows. If there is no push-down
from the (j — 1)-th entry, then block ¢ was in the j-th stack entry before the
current reference, and this reference is made to a block other than #; if there 1s

push-down from the (j — 1)-th entry, then block 7 was in the (j — 1)-th stack

entry. So for j > 2,

p(i.7) = P(j)p(i,5)(1 — pi — @) + [1 — P()]p(z,5 — 1)
which gives

plisj) ~p(isj — DL = PG = D)/ — PG)1 —pi—)] (6.6)

In order for a stack entry to be empty, there must not be a push-down from above
during current stack updating; otherwise, this entry would be containing a valid
block. So for the j-th stack entry to be empty, it must be that (1). there is no
push-down from above, and (2). it was either empty before, or it contained a
valid block but that block is either invalidated, or accessed hence has been moved
to stack top (for this case, since there is no push-down from above, it must be
that there was an empty entry somewhere above, which just migrated to the j-th

entry). That is,
e(7) = P(5)[e(d) + D p(k,) (ax + pi)]
k

hence

e(7) = P(7)>_ p(k, 7)(ax + pe) /11 = P(5)] (6.7)
k

121

Using equations (6.5-6.7), all necessary probabilities can be solved in a system-
atic recursive manner. The process can stop at the depth that represents the

maximum possible cache size.

6.6 Summary

In this chapter a Markov model of shared-memory multiprocessor caches on a
bus-based architecture is provided. Under the assumption of independent refer-
ences, the general method of solving the steady state distribution probabilities
of cache states, formulated as a Markovian chain, is proposed. Simple upper
bound and lower bound on the miss ratios of the LRU algorithm are derived. In
another approach, instead of analyzing caches with specific sizes, the steady state
probabilities of stack entries is studied, which can be solved by using recursion

and conditional probabhilities.

122

Chapter 7

Tree Cache Directories

Abstract. Shared-memory multiprocessors use caches on individual CPUs to reduce mem-
ory and network latency. Effective use of caches provides both better response to memory
requests and lessens traffic demand on the interconnection network. Two approaches to the
cache coherence problem are: for systems with a bus topology {(hence inexpensive broadcasting
mechanism), cache-snooping is an appropriate method to achieve cache coherence; for systems
with a general interconnection network, a message-passing directory scheme is recommended.
The most popular directory schemes can be characterized as full-map directories, limited di-
rectories, and chained directories. The full-map directory scheme is not scalable due to the
storage required for the directories; the limited directory scheme restricts the number of caches
having a copy of the same data block and limits data sharing; the chained directory scheme is
slow in sequentially carrying out coherence operations of update or invalidation. In addition,
some tree directory schemes were proposed that either had a fixed topology and longer tree

height or could degenerate into linear lists.

We propose a novel directory scheme with a balanced binary-tree structure that dynami-
cally changes with current data sharing. It is scalable in allowing unlimited number of caches to
share the same data block, and can carry out coherence operations quickly, i.e., in logarithmic
time. This scheme is especially appropriate for update-oriented coherence protocols where the
sharing structure is preserved across writes. We demonstrate how the tree directories handle
cache addition (a cache acquiring a data block copy) and cache deletion (a cache surrendering
a data block copy due to its local block replacement), and their time complexities. We prove
that this kind of tree structure is an optimal directory scheme for scalable architectures, which

carries out all cache operations in minimum possible times. We also discuss some other tree-like

123

schemes and show that the proposed scheme has significant improvements in space and time

complexities.

7.1 Introduction

Caches have been used as a buffering device in both uniprocessor systems and
shared-memory multiprocessor systems to cope with the ever increasing disparity
in speed between the CPU and the memory. For shared-memory multiprocessors,
using caches is more appropriate and necessary. Here the delay of a memory ac-
cess is a combination of memory latency and interconnection network (including
bus-based interconnections) latency, of which the network latency 1s even more
significant. Caches with low miss ratios can reduce the memory delay close to
that of the cache and help realize satisfactory CPU utilization; they also put
less demand on network traffic, alleviate network contention on those memory
accesses which have to be serviced by the shared memory.

Having a cache for each CPU raises the prospect of multiple copies of a data
block in the system. Write operations can then cause data in other caches to be-
come out-of-date. To ensure correct parallel execution, data consistency must be
maintained among the caches. Cache coherence schemes or protocols have been
proposed to solve this problem. For bus-based shared memory multiprocessors,
a snoopy scheme is most often used[Archibald 86, Goodman 83. Katz 85, Lee 87,
Papamarcos 841, where each cache controller independently monitors bus activi-
ties. If there is a memory access on the bus that would make one of its local data
block copies differ from those on other caches or the main memory, the cache
controller takes appropriate actions such as invalidation or updating of all copies
of the data block to preserve data consistency. Snoopy schemes rely heavily on
the broadcasting capability of bus and are unfit for systems with arbitrary inter-
connection networks. Due to its limited bandwidth, bus communication topology
can only accommodate a small number of processing elements and is insufficient

for building large, scalable shared-memory systems.

124

Scalable shared-memory multiprocessors usually use point-to-point or multi-
stage networks to connect processing elements and the main memory[Chaiken 90].
They have message-passing as their main communication mechanism; efficient
broadcasting is not available due to inherent implementation difficulties (for de-
tails see [Chaiken 90, James 90]). For such general architectures, various di-
rectory schemes have been proposed in [Agarwal 89, Censier 78, Chaiken 90,
Chaiken 91, James 90, Lenoski 90a, Tang 76, Thapar 90]. These schemes main-
tain a data structure called the directory to store the sharing structure, i.e. the
locations of the copies of each cached data block. When a data block is wriiten,
the main memory may send an invalidation or update message, depending on the
specific coherence protocol, to each cache that holds a copy of the effected data
block.

For an invalidation-based coherence scheme, a writing cache first becomes the
only cache with a copy of the data block (i.e. the exclusive owner of the data
block) by invalidating all other cache copies; subsequent writes to the same cache
only need to be done locally on the cache, improving the efficiency of coherence
operations. Exclusive ownership is terminated whenever another cache reads from
or writes to the same data block, at which time if the copy has been written (is
dirty) by the previous owning cache since its exclusive ownership was established,
the dirty copy is sent back to the main memory and then read into the currently
requesting cache. Such an invalidation-based coherence protocol is usunally called
write-back with ownership.

For an update-based coherence scheme, a writing cache does not need to first
obtain the exclusive ownership of a data block. Instead data is written directly
into the main memory and all caches that hold a copy of the data block. An
update-based coherence protocol is usually called write-through.

The directory entry may contain other state information on the data block,
such as dirty bit and exclusive ownership bit[Archibald 84, Censier 78, Chaiken 90,
Papamarcos 84, Tang 76]. The directory is either centralized within the main

memory or distributed among the processing elements. Distribution can be

125

done in two ways: distributed with the main memory among the processing
elements[Agarwal 89] in a so-called distributed main memory, or distributed among
the caches of the processing elements[Chaiken 91, James 90, Thapar 90].

This paper proposes a new distributed directory scheme that can carry out
coherence operations in an efficient manner and is suitable for scalable large
shared-memory multiprocessors. Moreover, for each type of cache operation, it
has provably optimal time complexity. In section 7.2 we first review the major
existing directory schemes. Section 7.3 presents the binary-tree directory scheme
and discusses its time complexity for each cache operation. In section 7.4 we
examine some other tree-like directory schemes, including a redundant-pointer
list structure proposed previously in the literature. Compared to these other
schemnes, our approach is superior in space and time complexities. Section 7.5

concludes with a summary.

7.2 Directory Schemes

First we discuss how each cache does read and write, which is common for all
directory schemes. Usually, a cache has a few state bits for each cached block,
such as a validity bit, an ownership bit, and a dirty bit. The validity bit indicates
whether a local cache copy of a data block is up-to-date (valid). The ownership
bit indicates whether the local cache is the (exclusive) cache which is currently
allowed to write to the data block; for any data block, there is always at most one
cache whose ownership bit of that block is set. The dirty bit indicates whether the
local cache copy of a data block is newer than the copy in the main memory, which
means upon giving up ownership of or replacing this data copy, the local cache
must sends this block copy back to the main memory. These bits, particularly
the last two, are usually used by invalidation-based coherence protocols.

For any coherence protocol, a read always proceeds if the cache’s validity bit
for the target data block is set. For an invalidation-based coherence protocol, a

write can proceed if the cache’s ownership bit for the target data block is set. For

126

an update-based coherence protocol, a write is always sent to the main memory
and the update is relayed to all other caches that have a copy of the target data
block.

When a cache has a read-miss (its validity bit is not set), it sends a read
request to the main memory or the memory module which controls the requested
data block (we will not differentiate these two cases from now on), which sends
back, or asks a cache with the most recent copy to send back, a copy of the data
block. For an invalidation-based coherence protocol, when a cache has a write-
miss (its ownership bit is not set), it sends a write request to the main memory,
which sends back the permission to set its ownership bit, and possibly a copy of
the data block if it is missing. For an update-based coherence protocol, when a
cache has a write-miss (here its validity bit is not set), it sends a write request
to the main memory, which updates everyone else, and send back a new copy of
the data block.

Between the time the main memory gets a read-miss/write-miss request from
a cache and the time it replys, the main memory usually carries out some cache co-
herence operation. For read-miss, this includes recording the requesting cache as
one of the caches holding a copy of the requested data block; and for invalidation-
based protocols, it also resets the exclusive ownership bit of some other cache
which had ownership of the data block, if there is one. On a write-miss with an
invalidation-based coherence protocol, it includes invalidating the data block in
all current holding caches, and, if there exists a owner cache for this block. reset-
ting the exclusive ownership bit of that cache. Normally the main memory waits
to receive acknowledgement from all caches involved in the coherence operation
before replying to the original requesting cache[Chaiken 90]. An update-based
coherence protocol requires that each write be sent to the main memory, which
in turn relays the update to all the other holding caches. The details of coherence
operations are directory-scheme dependent and may differ for protocol variations.

When a full cache has a miss, it must replace one of its blocks. Information

concerning the replacement block needs to be sent to the main memory along

127

with the miss request, so that the main memory is aware that the replaced block
is no longer in that cache. For invalidation-based protocols, if the cache currently
has exclusive ownership of the replaced block, and the corresponding dirty bit is
set, then the dirty data block needs to be sent back to the main memory.
There are primarily three popular directory schemes[Agarwal 89, Censier 78,
Lenoski 90b, James 90]: full-map directories, limited directories, and chained di-
rectories. Their data structures are essentially a linear list. Some tree schemes
were proposed recently [Haridi 89, Maa 91, Wallach 92, Wilson 87, Yang 90].
There was a brief description of a tree-like structure using redundant pointers
on a chained directory[James 9¢], proposed as a possible standard for scalable
coherent interface. We will examine it closely in section 7.4 and point out its
inadequacies compared to our scheme, in terms of structure simplicity and time

complexity for handling a cache miss, i.e., adding a new cache (O(log N} v.s.

O(1)).

Main Memory Block Directory

1|0 |1 | 1

cachel cache? cache3 cacheN

Figure 7.1: Full-map Directories

A full-map directory[Censier 78, Lenoski 90b] allows a data block to be cached
simultaneously in all caches. It uses a presence vector of 0/1 bits in the main
memory to represent the presence or absence of a data block in each cache, as
is shown in Figure 7.1. For invalidation-based coherence protocols, a separate
dirty bit is used to indicate if there is any cache with a more up-to-date copy of

the data block than the one in main memory. When the dirty bit is set, exactly

128

one element in the presence vector can be set, which is for the cache with the
most up-to-date version of the data block; that cache currently has the exclusive
ownership of the data block. The presence vector and the dirty bit constitute the
directory entry for that data block. If there are N caches in the system, the size
of a directory entry is O(N). Full-map has good petformance for invalidation
and update coherence operations. Its drawback is the large memory overhead of

the directory entries.

Main Memory Block Directory

')
=

cachel cache2 cache3 cacheN

Figure 7.2: Limited Directories

To reduce the memory demand of directory entries, a limited directory scheme
[Agarwal 89] was designed. It limits the number of caches that can simultane-
ously store a copy of the same data block to some number & < N by using &
cache pointers, depicted in Figure 7.2. Its main memory overhead is O(% log V),
as each element is now a cache ID. When a directory entry is already full and
another cache requests to cache the data block, a previously cached copy must
be invalidated, which can be chosen by a replacement policy. The limited direc-
tory scheme restricts sharing; highly shared data blocks can therefore experience
poor performance. A combination of full-map and limited directory schemes is
implemented in [Chaiken 91], where the full-map scheme is emulated in software.
Both the full-map directories and the limited directories are centralized schemes
in the main memory.

The chained directory scheme[James 90] distributes directory entry informa-

129

Main Memory Block Directory

cachel cache2 cache3 cacheN

Figure 7.3: Chained Directories

tion among the caches that hold a copy of the concerned data block; these caches
are chained linearly in a linked list, shown in Figure 7.3. The main memory
has a pointer to the header cache of the list. There are minor variations be-
tween using singly-linked list[Chaiken 90] and doubly-linked list[James 90], and
whether the main memory or the header cache on the list provides the most re-
cent copy of the data block, but the main idea is the same[Chaiken 90, James 90,
Thapar 90]. A cache always joins a linked list by becoming the new header.
When a cache has a miss, it sends a request to the main memory; the main mem-
ory changes the header pointer to point to the new cache, and returns the ID of
the old header cache to the requesting cache. Upon receiving the cache id, the
requesting cache joins the cache list by making its forward pointer to the received
cache ID. Coherence operations are done from the header through the linked list
in serial fashion: invalidation removes the list. Cache replacement is handled
by purging a cache from the list of the replaced block; with doubly-linked list,
it is easily done in constant time O(1)[James 90]. Chained directory has only
O(log N) memory overhead for a cache pointer, making it applicable for large
scalable systems. Compared to limited scheme, it does not impose limitation on
sharing. The drawback is slow coherence operations: invalidation or update is
done sequentially on the linked list, needing Q(N) time.

The above directory schemes have the drawback of performance bottleneck

130

at the main memory, any cache missing a data block has to access the main
memory to get a copy. To this end, Wilson[Wilson 87], Haridi[Haridi 89], Yang
et al. [Yang 90] proposed bus-based hierarchical tree structures where each node
is a group of processing or storing elements connected by a bus. Each element in
the tree records which blocks are cached by its descendant elements{Wallach 92].
A processor in want of a data block sends its request up the tree until a copy is
located. These schemes differ in whether the intermediate level only stores direc-
tory information[Haridi 89, Yang 90], and whether the main memory is attached
at the top of the hierarchy[Wilson 87, Yang 90]. Wallach[Wallach 92] proposed a
similar tree hierarchy scheme and its mapping onto k-ary n-cubes, with different
hierarchies for different data blocks, further reducing the memory bottleneck.

All these hierarchical schemes have a fixed sharing structure containing all
caches: at any time the tree may have many irrelevant caches. A requesting
cache would have to send its message past several caches before finally locating a
cache with a copy of the requested data block; cache invalidation/updating also
may have to pass irrelevant caches on way to the destination caches. It is desirable
to have a dynamic sharing structure that adjusts to changing data-sharing and
contains only relevant caches.

Maa et al. [Maa 91] proposed two tree directory schemes that dynamically
change and contain only the sharing caches. However, their tree structures are
unchecked, hence can become unbalanced and in the worst case degenerate into
a linear list, reducing to the chained or full-map scheme.

A good directory scheme should be free of these problems.

7.3 Balanced Binary-Tree Directory

To achieve true scalability, the directory space must be bounded per block entry,
i.e., only a limited number of pointers are employed in each directory entry,
for both the main memory and for each individual cache. If we view the main

memory and the caches as nodes in a directed graph, and the directory pointers

131

as arcs of the digraph, then the digraph of a scalable architecture has bounded
out-degree for its nodes. The time complexity of message-broadcasting in such
scalable architectures is that of broadcasting a message in the corresponding

bounded-degree digraph, which clearly has a lower bound of O(log N).

Lemma 7.1 The time to propagate information in a bounded-degree N-node di-
graph is at least O(log N).

Proof. Suppose a constant d > 1 is the maximum value of the out-degrees of all
nodes, and at time step 0 some node s is to send a message to N other nodes.
Message-passing from one node to another directly connected node takes unit
time. For simplicity, we assume that it takes zero time for a node to emit message
to its out-bound channel, so there is no difference in time between sending a
message to one out-hound channel and sending a message to all {at most d) of its
out-bound channels. Since this assumption could only underestimate the amount
of time required by communication, it does not affect conclusions on the lower
bound of communication time.

At time step 1, at most d distinct destination nodes have received the message,
since s is one-hop away from at most d destination nodes. Using induction, at
time step k, at most d* +d*+- - -+d* = (dk+1 —~d)/(d—1) distinct destination nodes
are reached. From (d**' —d)/(d—1) > N, it gives k > log,((d—1)N +d) ~1. As
d is a constant, the lower bound on the number of time steps & to send messages
to all V destination nodes is O(log N). O

In a shared-memory multiprocessor system with N caches, each cache pointer
in the directories uses log N binary bits to identify N caches. This is the mini-
mal requirement on pointer bits. For any bounded-degree directory scheme, the
minimum memory overhead per directory entry is therefore O(log N).

In order to obtain an O(log N) communication time for invalidation and up-
date in scalable shared-memory multiprocessors, a tree data-structure is a viable
way to organize the sharing structure. Due to constant cache joining (a cache
miss) and cache purging (a block replacement}, i.e., addition and deletion on the

sharing structure, the tree can degenerate into a linear list. To guarantee the

132

logarithmic time scale, the tree must be kept balanced. The issue is to efficiently
update and balance the tree with continuous node addition and deletion. Dele-
tion can be done simply in O(1) time, as shown below. The trick is with addition.
A naive way of adding a node is to search from the tree-root down to a leaf node,
taking O(log N) time. Due to the high frequency of occurrence, node addition
requires a more efficient method.

We will use a balanced binary-tree to represent data block sharing, in which
both cache-miss and block-replacement take only O(1) time. Since the tree is
balanced, invalidation and update only take O(log N} time, which is optimal,
by Lemma 7.1, for any directory scheme with bounded-degree for each directory
entry. Therefore such balanced binary-tree scheme is an optimal directory scheme

to represent the sharing structure for scalable shared-memory multiprocessors.

Figure 7.4: Balanced Binary-Tree

For each data block, there is a well-balanced binary tree structure whose
nodes are caches that have a copy of this data block, as illustrated in Figure
7.4. In the directory entry for that data block, the main memory has a pointer
to the root of the tree, and a pointer to the “last” leaf of the tree, which is the
last leaf on the last level. The main memory directory entry also has an oddness
bit to indicate whether the tree height is odd or even: 1 for odd height and 0
for even height. FEach cache node has five cache pinters—parent, left child, right

child, left sibling, right sibling. Sibling pointers are depicted by dashed lines

133

in the diagram. The memory overhead of each directory entry is Q(log N} for
main memory and every cache; the directory entry information for a data bhlock
is distributed among the main memory and its resident caches.

We first explain how to add and delete one tree node, then discuss how to
handle simultaneous node additions and deletions by locking the directory entry

(root directory) on the shared main memory.

Node Addition. For brevity we will omit discussing the details of how to set
various state variables such as validity bits and ownership bits, and whether most
recent block copy is provided by the main memory or a cache. While variations
on these points can yield many different protocols, they are orthogonal to the
sharing data structure under study.

Initially the tree is empty: the data block is not cached anywhere. When a
cache has a miss on this block, it sends a request to the main memory. A single-
node tree is created with the main memory setting both its root pointer and last
pointer to the requesting cache, and setting the oddness bit to 1. The data block
and a null pointer are returned to the cache, which sets all five of its pointers to
null. Subsequently, each added node becomes the new last node, and the binary
tree grows level by level, filling up one level before advancing to the next one.
The arrows in Figure 7.4 show the direction of node expansion on each level of
the tree. The direction (left or right) to fill new nodes on the bottom level of
the tree is easily determined by the tree’s current oddness bit. For oddness bit 0
(even tree height), the nodes are added from left to right, while for oddness bit 1
(odd tree height), the nodes are added from right to left. In order to add a new
node, the question is how to efficiently find the correct parent node.

If the bottom level is already full, addition is easy; the old last node is the
parent of the new node. See Figure 7.5. In this case the main memory switches
its oddness bit. If the parent node of the old last tree node has only one child,
addition is simple too: that parent node is exactly the needed parent node for the
new node, as shown in Figure 7.6. We describe in detail the general case where

the old last node is neither on the boundary of the bottom level, nor does it share

134

A. Before adding a node B. After adding a node

Figure 7.5: Node Addition: New Level

parent node with the new node. The basic idea is to find the proper sibling of

the parent of the last node, which will be the parent of the newly added node.

A. Before adding a node B. After adding a node

Figure 7.6: Node Addition: Common Parent

When a new cache (say cache 11) experiences a miss on this block, it sends
a miss request to main memory; main memory sets the last node pointer to the
new cache, and returns the old last node {cache 10) and the oddness bit of tree
height (0) to the new cache; see Figure 7.7A. The new cache sets its left sibling
pointer to received node pointer (cache 10), and sends a parent request and the
zero oddness bit to that node (cache 10), which sets its right sibling pointer to the
new cache {cache 11), and returns with a pointer to its parent {(cache 5). Now the

new cache sends a sibling request and the zero oddness bit to the received node

135

pointer (cache 5); that node {cache 5) sends back its right sibling pointer (cache
4). The new cache sets its parent pointer to the received node pointer (cache 4),
and sends a child request and the zero oddness bit to its newly adopted parent
node (cache 4). Upon receiving the message, the new parent node (cache 4) sets
its left child pointer to the new cache (cache 11). The new cache completes the
addition be sending an acknowledgement back to the main memory. Now a new
tree is created, shown in Figure 7.7B. If the oddness bit was 1, then “left” and

“right” should be switched in the above description.

A. Before adding a node B. After adding a node

Figure 7.7: Node Addition: Distinct Parents

To add a cache to the binary-tree sharing structure, the worst case requires
the new cache to communicate with four parties: main memory, last node, last
node’s parent, and real parent. It may take up to a total of ten messages (the last
two messages are to and from the main memory to release the lock on directory
entry, see Locking below), thus the complexity in latency is O(1). To avoid
message-queue deadlocks, messages should not be directly forwarded by the main
memory or the caches, as indicated in{James 90].

Notice that we did not differentiate between a read-miss and a write-miss. If
the write protocol is invalidation-based, then a write-miss cache does not join
the tree; instead the main memory nullifies the tree by sending an invalidation
to the tree root, from which propagates it down to every descendant node, and

acknowledgernents are propagated upward in the tree back to the root, then the

136

root sends its acknowledgement to the main memory. If the write protocol is
update-based, the write-miss cache first joins the tree, then sends each write to

the main memory which relays it to every tree node.

Node Deletion. Deletion occurs when a cache voluntarily discards a cached
data block, due to miss-incurred block replacement. When the node to be deleted
is the last node, it is quite simple. If it is not the last node, we just move the last
node to the position of the deleted node.

Specifically, the deletion node sends a deletion request to the main memory,
which decides that it is not the last node, sends back to the requesting node
a pointer to the last node. Now the deletion node sends a substitute message
together with its five pointers (parent, left/right child/sibling) to the last node.
The last node informs its parent and sibling (there is at most one} to cut their
links, and substitutes its five pointers with the corresponding five pointer values
just received, effectively taking the place of the deletion node in the tree. For
all the non-null pointer values, the nodes they point to must properly adjust
their pointers from the deletion node to the new substitution node; this can be
done with the substitution node sending a adjust message, together with its node
ID and the deletion node ID, to these adjacent nodes; these nodes can find the
correct pointer to change by comparing with the deletion node ID, and change
it to the new substitution node ID.

After that, the substitution node returns to the deletion node its sibling
pointer if it is not null, or its parent pointer if it has no sibling; the deletion
node in turn sends the new lust node ID back to main memory. In the first case,
the sibling is the new last node. In the second case, the old fast node was the only
node on the bottom level, and its parent becomes the new last node; the main
memory switches the oddness bit for the tree height is now decremented by one.
Now the main memory sends acknowledgement to the deletion node, informing
the completion of deletion.

To remove a cache from the binary-tree sharing structure, the worst case

requires the deletion cache to communicate with two partners: the main memory

137

and the last (substitution) cache. The substitution cache in the worst case needs
to communicate with five partners: the parent, two siblings, and two children of
the deletion node. The time complexity in latency remains O(1). Like node
addition, to avoid message-queue deadlocks, messages for node deletion are not
forwarded by the main memory or caches.

In the chained directory scheme, multiple nodes can be deleted in parallel, as
long as they are not adjacent with one another in the list, while in the binary-tree
scheme, multiple deletions must be carried out sequentially. as each node deletion
involves the main memory, This, however, does not improve the overall time
complexity for the chained directory scheme. The reason is that node addition
in both schemes is sequential (with the rare exception of request combining for
chained directories[James 90], which is rather unlikely to occur); as the number of
node deletions is bounded by the number of node additions, the time complexity
of node addition dominates that of node deletion - meaning that any speed-up in
node deletion does not improve the overall time complexity of the combination

of node addition and node deletion.

Locking. To avoid data structure corruption due to race conditions, the main
memory locks the directory entry of a data block on which there is a cache addi-
tion or deletion activity going on. Any request from other caches on the directory
entry is rejected or queued to be serviced later. The binary tree updating mes-
sages (parent,child, sibling) have higher priority than normal cache operations.
A cache waiting on an outstanding request still participates in tree updating:
whenever it receives a tree updating message, it properly adjusts one of its tree
pointers. Since any change to the tree goes through the main memory, concurrent

addition and deletion are serialized.

Drawbacks. As any change in tree structure involves the main memory, it can
become a performance bottleneck. Static distribution of main memory space
among a number of memory modules or processing elements[Chaiken 91] may

alleviate the bottle-neck problem, provided data usage is evenly spread among

138

all blocks in the address space. Skewed data usage is better served by some
kind of dynamic distribution of “home” locations of the data blocks{Haridi 89,
Wallach 92, Wilson 87, Yang 90], in order to balance the traffic demand on the
memory modules, processing elements, or connecting networks. There are issues
of when and how to do the redistribution under changing circumstances. For
example, the Data Diffusion machine[Haridi 89] takes a simple approach: it relo-
cates a data block only when its last copy is being replaced; the new home node
is found at another leaf node inside the shallowest subtree that also contains
the old home node, by traversing the tree bottom-up to its root. In general,
these issues are hard to solve satisfactorily. Bus-based hierarchical architectures
also suffer the performance hit due to bottleneck at or near the top of their
hierarchies[Haridi 89, Wilson 87]. Using different hierarchies for different data
blocks[Wallach 92] is analogous to distributing the main memory among many
memory modules or processing elements.

While the asymptotic time complexities of the cache operations are optimnal,
in practice the accumulated cost of building up a big tree is still expensive. It
may not be suitable for invalidation-based coherence protocols that completely
nullify the tree each time some CPU issues a write to the data block. Instead, it
is more appropriate for update-based coherence protocols, which do not change
the sharing structure on writes but keep using the same tree structure for prop-
agating new data values. In this way the cost of building the tree is amortized
by the saving in coherence operations. An update coherence protocol is espe-
cially suitable for some event synchronization; for example, all processors waiting
on a barrier variable are released efficiently with an update-based write to the
barrier[Lenoski 90a]. Update is also perceived to have better performance than
invalidation on normal data blocks[McCreight 84]. Applications with high degree
of read-sharing and relatively infrequent write-sharing are good candidates for
applying an update-based coherence protocol, and hence our binary tree directory

scheme.

139

Synchronization. Goodman, et al. [Goodman 89] proposed an efficient method
of FIFQ access to synchronization variables by linearly queueing requests. The
binary tree scheme provides efficient implementation for locks, in a manner sim-
ilar to a linked list queue[James 90]. With the sibling and children pointers, a
lock can be passed sequentially from the root to the last node then through each
level to all tree nodes and finally back to the root, along a zig-zag and bottom-up
path, reverse of the itinerary by which node addition is done. There is the danger
of node-deletion causing the last node to miss its current turn to gain locking.
To make matters worse, before the lock is passed to this poor node, it becomes
last node and another node is being deleted, so it does substitution again and
consequently loses its next turn, etc. However, this kind of lock-missing does not
go on forever: each time a node (as the current last node) substitutes a deleted
node, its distance to the root of the tree, measured by the length of the zig-zag
bottom-up path, is strictly decreased. Since a path has finite length, any node
can only do substitution for a finite number of times, before it finally becomes
the root itself. Thus it will get its locking in finite time-no locking starvation.
Notice that passing the lock in the opposite direction {i.e., from the root down
through each level before finally reaching the last node and back to root) can
indeed cause starvation: when the last two nodes on the bottom level alternate
in a sequence of add-lock-unlock-delete operations, the lock can be hogged by
them forever.

As mentioned earlier, event synchronization such as barrier release is done

most naturally by our binary tree scheme.

Performance Comparison With Full-Map Scheme. Full-map directory
provides a performance upper bound for centralized directory schemes[Chaiken 90].
We compare our binary tree with full-map in terms of invalidation/update speed.
For both main memory and caches, let the average inter-transmission delay be-
tween sending a message to two out-bound channels be t;, the average processing
time of invalidation and update message at each cache be t,. and the average

point-to-point transmission delay among the main memory and the caches be £,.

140

For simplicity, we shall assume that the message-processing time of acknowledge-
ment is negligible; this will not fundamentally change the comparison.

Denote by 7' the average overall delay between the beginning (main memory
issties the operation) and the end (main memory receives acknowledgements from
all caches involved) of a invalidation or update coherence operation. For full-map

directory with N caches,
Tralemap = (N~ D)t + o+ tp + o = (N — 1)t + 2t + £,

where (N — 1)¢; is inter-transmission time before the message to the last cache
is sent, t, is the transmission time to the last cache, t, is the processing time
at the last cache, and t, is the acknowledgement from the last cache. When
the last acknowledgement arrives at the main memory, it has already received
acknowledgements from the other N — 1 caches. For binary tree directory with
N caches, the longest delay occurs to the leave nodes on the lower-right corner

of the binary tree:

Tbin—tree < i+ [log N] (tp + i+ t:r:) -+ flOg N-l ty + 1,
[log N|(t; + 2t + £,) + 21,

Here the first ¢, is the transmission time from the main memory to the tree-
root cache; (t, + ¢; + 1, is the delay between the receiving time of an internal
node and that of its right child (the sum of the processing time at the parent,
the inter-transmission time for the right child, and the transmission time), this
happens at each of the [log N7 tree levels; last two terms are transmission delays
for acknowledgements to go bottom-up to the root cache, and back to the main
memory.

Trull_map grows with O(N), while Thin_tree grows with O(log N), and
Tfull—map/Tbin—n'ee 2 (N - l)tt/(|—10g QN] (tl + Ztl + tfﬂ))

When 2t, +t, < (N — [log N] — 1)t;/[log N, Thin—tree < Truti~map- Compared

to the full-map scheme, binary tree scheme could be competitive in performance

for large systems.

141

Performance Comparison With Chained Directory Scheme. Obviously
the chained directory scheme has the worst performance. For the sake of com-
pleteness, we compare our balanced binary-tree scheme with it as well. Use the

same notation as above,
Tchained = N(ta: + tp) + 1z

where N(t. + t,) is the total transmission and processing time from the main
memory to the last cache on the chain, and the last z, is the transmission time
of the final acknowledgement from the last cache on the chain back to the main

memory. Since t; < t,.,

Thin-tree < 3[log N(tz + 1) + 2t
3([log N1+ 1)(t, + t,)
3[log 2N|{t: + 1)

FAN

Trhained grows linearly with N, while Tiin—iree grows logarithmically with N, and
Tchained/Tbin—tree 2 N/3 I_log “ZN} .

Compared to the chained directory scheme, balanced binary-tree scheme is much

better.

To sum up, like any directory scheme, our binary tree scheme is suitable for
general interconnection networks without relying on a broadcasting mechanism.
Unlike previously proposed tree schemes, which either has a fixed structure and
contains many non-sharing caches, or can easily degenerate into linear lists, our
scheme guarantees balanced structure without wasting any time on irrelevant
caches. Compared to the chained directory scheme, it provides the same scala-
bility by distributing directory entry information among caches with unlimited
data sharing, while its logarithmic tree height allows much faster coherence oper-
ations than chained directory. For very large scale architectures with thousands

of processing elements, our tree scheme could even compete with the full-map

142

scheme in performance, when the large value of the number of nodes NV makes the
point-to-point transmission time ¢, among caches comparable with O(N/log N)
times the inter-transmission delay f; at each cache node. We also prove that
among all directory schemes with bounded-degree for each directory entry, our
balanced binary-tree is an optimal scheme in terms of time complexity for each

cache operation.

Generalization to d-ary Tree. In passing we note that there is nothing intrin-
sic about the tree structure being binary. The above discussion can be generalized
to any d-ary tree with some constant integer d > 1. Each tree node now has d
children pointers, while the numbers of parent pointer and sibling pointers re-
main unchanged. Node addition and deletion are carried out in exactly the same
way, except that now each parent node can accommodate more children nodes, a
new addition node is more likely to share parent with the old last node, making
node addition faster by alleviating the usual searching sequence of “last to parent
to sibling” in looking for the parent of a new node. On the other hand, node
deletion becomes slower, as the substitution node has more pointers to update.
Since the number of node deletions is at most the number of node additions,
a bushy d-ary tree seems to have better performance than the binary-tree. Of

course, their asymptotic time complexities are the same.

7.4 Discussion on Other Tree-Like Schemes

Redundant List. James, et al. briefly described a tree-like directory scheme
[James 90}, as depicted in Figure 7.8. It uses redundant pointers in the linked list
to reduce coherence operation delays from linear to logarithmic. But the details
of node addition and deletion were not given.

If we number the nodes by 0,1,..., N — 1 from the header on the left to the

tail on the right, the interconnection can be described as follows:

143

1y o0 1 2 3
210 2 4 6
411 5 9 13
8 3 11 19 27
16 7 23 39 35
32115 47 79 111

Each row to the right of the vertical line is a sequence of nodes that are linearly
connected; the first column is the difference in ID numbers between consecutive
nodes. Generally, nodes 27! —1,2™~1 —142™, om=1_149m2 9m-1_149m3, ...
are linearly connected. A node n = 2™~1 — 1 + 2™ has up to four connected
neighbors: n—1,n+1,7—2™,n+2™; here m is one plus the number of consecutive
I’s in the lower order of binary n.

Node deletion can be done by substitution with the last node, as we did above.
Using double links for each connection, this takes Q1) time. To add a new node,
backward links need to be created to two predecessors. One is to the tail of the
list, which is easy; the other one is to some node in the middle of the list, which is
difficult. To add, say, node 2™ 427-1_1, one has to find node 2™~! —1, for which
the searching takes at least O{m) time. The time complexity for adding a node to
such a structure with N-node is therefore Oflog V). However, in order to decide
which existing nodes are to be connected with a new node, the main memory has
to keep track of the number N of current nodes in the list, requiring a counter
of log N bits per directory entry. While this does not change the O(log V) space

complexity, it does incur more directory overhead on the main memory than the

144

halanced tree scheme does.

Another way might be to keep pointers to all the “loose” nodes in the current
list, that do not have four neighbors yet, in the main memory; when a new node is
to be added, the farthest predecessor node can be found in O(1) time. However,
this requires a memory overhead of Oflog? N) for each directory entry in the
main memory (for up to O(log N) loose node pointers, each using log N bits),

which 1s less scalable.

Perfect Shuffle. One might consider the perfect shuffle structure[Stone 71] as
another alternative. Shown in Figure 7.9, the interconnections are[Kindervater 91]
(0,1),(N—=2, N—1), and (3, 23), (i + N/2,2i+1), (2,2 +1),fori = 1,..., N/2—2.
It has a O(log N) hound on the length of its paths with no repeating nodes, so
invalidation and update only take time O(log N). The difficulty is with node
addition and deletion, which requires the changing of O(N) pointers on all the
connections (i+N/2,2i+1), due to the change of N’s value. In addition, the num-
ber N of current nodes must also be kept by the main memory, using O(log V)

hits per directory entry.

Figure 7.9: Perfect Shuffle List

Therefore, our tree scheme, compared to the above tree-like schemes, has the

following advantages:
1. it has a simpler structure that is easy to understand and implement.

2. it needs O(log N) time for invalidation/update, the minimum for bounded-

degree directory entry schemes.

3. it needs minimum time O(1) for addition and deletion. Without O(log® V)

145

memory overhead, the redundant-pointer list scheme cannot achieve O(1)

addition time. The perfect shuffle scheme requires O(N) addition time.

4. it uses the bounded-degree space of O(log V) for each directory entry on
both main memory and caches. The redundant-pointer list scheme requires
O(log N) space for O(log N) addition time, and O(log? N) space for O(1)

addition time.

5. it only uses one oddness bit for each directory entry on the main memory,
while the redundant-pointer list scheme requires a log N-bit counter to keep

track of the number of nodes in the list.

7.5 Summary

We propose a balanced binary-tree directory scheme as an alternative to represent
the block sharing structure of shared-memory multiprocessors. It is scalable
such that unlimited number of caches can share the same data block, with the
bounded-degree directory space O(log N) for each block entry of the directory
table in the main memory and each cache. All cache operations are done with
provably optimal time complexity: cache-miss and cache replacement use O(1)
time. while coherence operations of invalidation and update use O(log N) time.
Compared to some previous tree directory scheme, it never degenerates into a
linear list; since only the sharing caches are contained in its sharing structures,
its trees are smaller (hence shorter) in comparison to those of some previous
tree scheme, making faster coherence operations. Compared to other tree-like
schemes such as redundant list, its structure is simpler and easier to implement,
and cache-misses are handled much more efficiently. For update-based coherence
protocols where the sharing structure is not destroyed by invalidation, our tree

scheme is a promising choice.

146

Chapter 8
Conclusions

This chapter summarizes our results in analysis, design, and simulation of cache
memories, and proposes future areas of research in the simulation of cache sys-

tems.

8.1 Summary

Performance evaluation is very important to the effective design of memory
systems. The parameters considered in designing memory hierarchies include
the number of levels, level capacity, placement algorithm (set associativity),
block size, replacement algorithm, fetching method (pre-fetching v.s. demand-
fetching). This thesis has concentrated on two-level cache memories and the LRU
replacement algorithm. Cache memory is the most successfully implemented
memory hierarchy in practice, and the LRU is the most interesting and studied
replacement algorithm, and is known to perform well in many applications.

We try to extend previous stack evaluation methods to new areas, including
one-pass evaluation of write-back LRU caches for multiple block-sizes, and one-
pass evaluation of multiprocessor LRU caches with invalidation-based coherency
protocols for multiple set-associativities, For the former, a vector of dirty level

variables is used on cach entry in the minimum block-size LRU stack. Each

147

individual dirty level variable is always attached to the corresponding top-most
stack entry. Using this approach, stack evaluation of a memory reference trace
produces hit ratios and write ratios of write-back LRU caches for multiple block-
sizes in a single pass over the reference trace. For the latter, special marker
entries are used in the stack to represent data blocks deleted by an invalidation-
based cache coherence protocol. A method of marker-splitting is employed when
a data block below a marker in the stack is accessed. Using this method, stack
evaluation of a memory reference trace yields hit ratios for all cache sizes and set
associativities of multiprocessor caches in a single pass over the reference trace.

To the question of whether other stack algorithms would permit an efficient
all set-associativity stack evaluation like LRU, we formally show that LRU is the
only such stack algorithm that do not base replacement decisions on the numerical
value of a block address. The conclusion can be generalized to any set associative
caching, as long as it has more than two different set mapping schemes. If the
set mapping schemes include all possible block groupings, then LRU is the only
such algorithm among all stack algorithms, even if they do consider the value of
a block address in their replacement decisions.

We propose a special realization of multilevel staging hierarchies with an
arbitrary stack algorithm. It maintains staging properties, and provides quick
up-staging of data blocks from lower level to higher level in the hierarchy. The
staging property permits a multilevel hierarchy to he evaluated by standard stack
evaluation methods on reference traces, originally only applied to two-level hier-
archies, One-pass processing of the stack algorithm over a reference trace gives
hit ratios and write ratios for multilevel hierarchies with any number of levels
and any capacity on each level.

In analytical modeling, we use the Independent Reference Model to study bus-
based shared-memory multiprocessor LRU caches. A general method of modeling
the cache states as a Markovian chain is presented, whose solution for steady state
distribution probabilities can be solved by standard numerical solution methods.

Because of cache interactions through block invalidations, it is difficult to get

148

a closed solution form; some simple bounds on the solution are derived. We
approach the problem in another way by looking at the LRU stack of a cache;
the distribution of state probabilities of each stack entry in equilibrium can be
solved systematically with the help of recursion and conditional probabihties. It
is desirable to do simulation experiments to verify the analysis.

In the area of cache system design, we propose using a balanced binary-tree
directory scheme for the sharing structure of shared-memory multiprocessors. It
is truly scalable without any limitation on the number of caches that can share
the same data block, using only a bounded-degree directory space per block entry
of directory table. (Clache operations have provably optimal time complexities.
Compared to previously proposed tree schemes, its shape is uniform and its height
is minimum, achieving coherence operations more efficiently. Compared to a tree-
like redundant-list scheme proposed as a possible standard for scalable coherent
interface, its structure is simpler and easier to implement, handling cache-misses
more efficiently. For any update-based coherence protocol where the sharing

structure is not destroyed by a write operation, it is a promising choice.

8.2 TFuture Work

Cache memory evaluation is a well trodden research area, yet there are still many
open and very hard questions yet to be resolved. The important role that caches

continuously play in computers makes their satisfactory solution essential.

8.2.1 Simulation methodology

The traces that we use often correspond to a relatively short period of execution.
Due to the high speed of present computers, the length of a trace tends to be
extremely long even for a short period of running time[Smith 82]. In order to
study the reference behavior for a reasonable amount of running time, very long

traces are needed. The time needed to collect these traces and to process them

149

will in turn grow very long, so will the disk space needed to store them become
very large. Qualitative but more efficient simulation methods such as on-the-fly

and statistical sampling therefore require further study[Baer 91].

8.2.2 Validity of multiprocessor trace simulation

As to the validity of using trace data collected on one architectural configuration
to simulate another configuration, no definite study has been done yet. For stack
evaluation, it boils down to how “universal” the trace data is; i.e., how accurately
the trace data, collected on a target machine with specific cache sizes, may be
used to predict the performance of the same target machine but with different
cache size configurations.

It is worthwhile to do detailed timing simulations and find out under what
conditions the traces collected with different cache sizes may be used by stack
evaluation to accurately predict the performance of one another{Smith 93]. The
outcome could very well depend on the type of application program being traced.
Characterizing which application programs are suitable for stack evaluation needs

extensive data collection and experimentation.

8.2.3 Parallel stack simulation

Though an efficient simulation method, stack evaluation still takes a lot of time
on very long traces. It is interesting to explore parallelism in stack evaluation
and look into possibilities of using multiprocessor computers or multicomputers
in carrying out parallel simulation.

One approach is to divide a long trace into m equal parts and run stack
simulation on a m-PE multicomputer. The combination of their hit ratios are
lower bounds on the true hit ratios of the original trace, since except the first
partition, every later partition begins with a “cold-start” and will overestimate its
miss ratios. On the other hand, one can convert the i-th infinite stack distances

of each later partitions to stack distance i, then the final hit ratios will be an

150

upper bound on the true hit ratios of the original trace, since every later partition
begins with the assumption that all blocks to be referenced in this partition have
all been referenced in some earlier partition, and the distance conversion renders
the best-case “warm-start” for this partition.

The problem here is trace partition and error estimation. Statistical methods
such as sampling may be combined with this kind of approach to get hetter
estimation.

How to effectively run sirnulations on multiprocessors, in view of their ever-

increasing availability, is an important topic and deserves further research.

8.2.4 Application paradigms

There exist an array of cache evaluation methods: analytical, trace-driven, and
software-based emulation. When and how to best use each method remains ad
hoc at best. One method may very well be more suitable for some type of appli-
cations. Some applications may require a hybrid approach that combines several
different methods to compensate one another and get more accurate estimations.
Categorizing various classes of applications according to their suitability for dif-
ferent evaluation methods is an important problem that has to be addressed in

the future.

151

Bibliography

[Agarwal 86)

[Agarwal 88]

[Agarwal 89]

[Aho 74]

[Archibald 84]

[Archibald 36]

A. Agarwal, R. L. Sites, M. Horowitz. “ATUM: A New Tech-
nique for Capturing Address Traces Using Microcode”, Pro-
ceedings of the 13th International Symposium on Computer

Architecture, pp. 119-127, June 1986.

A. Agarwal, R. Simoni, J. Hennessy, M. Horowitz, “An Eval-
uation of Directory Schemes for Cache Coherence”, Proceed-
ings of the 15th International Symposium on Computer Ar-
chitecture, pp. 280-289, June 1988.

A. Agarwal, M. Horowitz, J. Hennessy. “An Analytical
Cache Model”, ACM Transactions on Computer Systems,
Vol. 7, No. 2, pp. 184-215, May 1989.

A. V. Aho, J. E. Hopcroft, J. D. Ullman, The Design and
Analysis of Computer Algorithms. Addison-Wesley Publish-
ing Company, Reading, Massachusetts, 1974.

J. Archibald, J.-L. Baer, “An Economical Solution to the
(‘ache Coherence Problem”, Proceedings of the 11th Inter-
national Symposium on Computer Architecture, pp. 355-362,

June 1984,

J. Archibald, J.-L. Baer, “Cache Coherence Protocols: Eval-
uation Using a Multiprocessor Simulation Model”, ACM

[Baer 89]

[Baer 91]

[Bechtolsheim 90]

[Belady 74]

[Birrell 84]

[Bitar 91]

[Bitner 79]

[Censier 78]

Transactions on Computer Systems, Vol. 4, No. 4, pp. 273-
298, November 1986.

J.-L. Baer, W. Wang, “Multilevel Cache Hierarchies: Or-
ganizations, Protocols, & Performance”, Journal of Parallel

and Distributed Computing, 6(3), pp. 451-476, May 1989,
J.-L. Baer, private communication, December 1991.

A. V. Bechtolsheim, E. H. Frank, “Sun’s SPARCstation 1:
A Workstation for the 1990°s”, Proceedings of the Spring 90
IEFE COMPCON, pp. 184-188, February 1990.

L. Belady, F. Palermo, “On-Line Measurement of Paging
Behavior by the Multivalued MIN Algorithm”, IBM Journal
of Research and Development, Vol. 18, No. 2, pp. 2-19, April
1974.

A. D. Birrell, B. J. Nelson, “Implementing Remote Proce-
dure Calls”, ACM Transactions on Computer Systems. Vol.
2, No. 1, pp. 39-59, February 1984.

N. Bitar, E. Shienbrood, “Mach: Architecture and Tmple-
mentation”, Lecture Notes, University of ('aliforma, Los An-

geles, November 1991.

J. R. Bitner, “Heuristics That Dynamically Organize Data
Structures”, SIAM J. Computing, Vol. 8, No. 1, pp. 82-110,
February 1979.

L. M. Censier, P. Feautrier, “A New Solution to Coher-
ence Problems in Multicache Systems”, IEEE Transactions
on Computers, Vol. C-27, No. 12, pp. 1112-1118, December
1978.

153

[Chaiken 90]

[Chaiken 91]

[Cheong 88]

[Cherian 89]

[Courtois 86]

[Cross 93]

‘Dan 90]

[Dan 93]

D. Chaiken, C. Fields, K. Kurihara, A. Agarwal, “Directory-
Based Cache Coherence in Large-Scale Multiprocessors™,

IEEE Computer, Vol. 23, No. 6, pp. 49-59. June 1990.

D. Chaiken, J. Kubiatowicz, A. Agarwal, “LimitLESS Direc-
tories: A Scalable Cache Coherence Scheme”, Proceedings of

the ASPLOS IV, pp. 224-234, April 1991,

H. Cheong, A. V. Veidenbaum, “A Cache Coherency Scheme
with Fast Selective Invalidation”, Proceedings of the 15th In-
ternational Symposium on Computer Architecture, pp. 299-

307, May 1988.

M. M. Cherian, “A Study of Backoff Barrier Synchroniza-
tion”, MIT/LCS/TR-452, June 1989.

P. Courtois, P. Semel, “Bounds on Conditional Steady-state
Distributions in Large Markov and Queueing Models™, Tele-
traffic. Analys.& Comp.Perf.Eval., O. Boxma (Eds), pp. 499-
520, North-Holland, 1986.

D. Cross, R. Drefenstedt, J. Keller, “Reduction of network
cost and wiring in Ranade’s butterfly routing”, Information

Processing Letters, Vol. 45, No. 2, pp. 63-67, February, 1993.

A. Dan, D. Dias, P. S. Yu, “The Effect of Skewed Data Ac-
cess on Buffer Hits and Data Contention in a Data Sharing
Environment”, Proceedings of the 16th VLDB, pp. 419-431,
August, 1990.

A.Dan, P.S. Yu, “Performance Analysis of Buffer Coherence
Policies in a Multisystem Data Sharing Environment”™, [EEE
Transactions on Parallel and Distributed Systems, Vol. 4, No.
3, pp- 289-305, April 1993.

154

[Denning 68|

[Denning 70]

[Dubois 82]

[Dubois 86]

‘Dubois 88]

[Dygas 86]

[Edenfield 90]

[Feller 71]

Flajolet 87|

P. J. Denning, “The Working Set Model for Program Behav-
ior”, CACM, Vol. 11, No. 5, pp. 323-333, May 1968.

P. J. Denning, “Virtual Memory”, ACM Computing Surveys,
2(3), pp- 153-190, September 1970.

M. Dubois, F. Briggs, “Effects of Cache Coherency in Mul-
tiprocessors”, IEEE Transactions on Computers, Vol. C-31,

No. 11, pp. 1083-1099, November 1982.

M. Dubois, C. Scheurich, F. Briggs, “Memory Access Buffer-
ing in Multiprocessors”, Proceedings of the 13th Interna-
tional Symposium on Computer Architecture, pp. 434-442,
June 1986.

M. Dubois, C. Scheurich, F. Briggs, “Synchronization, Co-
herence, and Event Ordering in Multiprocessors™. [EEE
Computer, pp. 9-21, February 1988.

M. Dygas, “A Singular Perturbation Approach to Non-
Markovian Escape Rate Problems”, SIAM J. Appl. Math.,
Vol. 46, No. 2, pp. 265-298, April 1986.

R. Edenfield, B. Ledbetter, R. McGarity, “The 68040 On-
Chip Memory Subsystem”, Proceedings of the Spring 90
IEEE COMPCON, pp. 264-269, February 1990,

W. Feller, An Introduction to Probability Theory and its Ap-
plications. Vol. 1, 3rd Ed., John Wiley & Sons., New York,
1971.

P. Flajolet, D. Gardy, L. Thimonier, “Birthday Paradox,
Coupon Collectors, Caching Algorithms and Self-Organizing
Search”, T.R. 87-1176, DCS, Stanford Uuniversity, August
1987.

155

[Franaszek 74|

[Fricker 91]

[Gecsei T4}

[Goodman 83]

[Goodman 89]

[Gopal 90]

[Guibas 78]

[Gupta 91]

P. A. Franaszek, T. J. Wagner, “Some Distribution-Free As-
pects of Paging Algorithm Performance”, JACM, Vol. 21,
No. 1, pp. 31-39, January 1974.

C. Fricker, P. Robert, “An Analytical Cache Model”, Rap-
ports de Recherche No. 1496, INRIA, Chesnay Cedex,
France. September 1991.

J. Gecsei, “Determining Hit Ratio for Multilevel Hierar-
chies”, IBM Journal of Research and Development, Vol. 18,
No. 4, pp. 316-327, July 1974.

J. R. Goodman, “Using Cache Memory to Reduce Processor-
Memory Traffic”, Proceedings of the 10th International Sym-
posium on Computer Architecture, pp. 124-131, June 1983.

J. R. Goodman, M. K. Vernon, P. J. Woest, “Efficient
Synchronization Primitives for Large-Scale Cache-Coherent
Multiprocessors”, Proceedings of the ASPLOS I, pp. 64-75,
1989,

M. Gopal, B. Kadaba, R. Sultan, “Analysis of Caching in
Distributed Directory Algorithms”, IBM Res.Rep. RC 16277,
November 1990.

L. J. Guibas, R. Sedgewick, “A Dichromatic Framework for
Balanced Trees”, Proceedings of the 19th Annual Symposium
on foundations of Computer Science, pp. §-21, October 1978.

A. Gupta, J. Hennessy, K. Gharachorloo. T. Mowry, W.-
D. Weber, “Comparative Evaluation of Latency Reduction
and Tolerating Techniques”, Proceedings of the 18th Inter-
national Symposium on Computer Architecture, pp. 245-263,

May 1991.

156

[Greenberg 86]

[Guibas 78]

[Haridi 89]

[Hennessy 84]

[Hill 89]

[Hoare 78]

[Hwang 93]

[James 90]

Karlin 81]

A. Greenberg, A. Weiss, “A Lower Bound for Probabilis-
tic Algorithms for Finite State Machines”, J. Comp.Syst.Sci.,
Vol. 33, No. 1, pp. 88-105, August 1986.

L. J. Guibas, R. Sedgewick, “A Dichromatic Framework for
balanced Trees”, Proceedings of the 19th Annual IEEE Sym-
posium on Foundations of Computer Science, pp. 821, 1978.

S. Haridi, E. Hagersten, “The Cache Coherence Protocol of
the Data Diffusion Machine”, PARLE’89: Parallel Architec-
tures and Languages Europe, Vol. I, pp. 1-18, June 1989.

J. L. Hennessy, “VLSI Processor Architectures”. IFEF
Transactions on Computers, Vol. C-33, No. 12, pp. 1221-
1246, December 1984.

M. D. Hill, A. J. Smith, “Evaluating Associativity in CPU
Caches”, IEEFE Transactions on Computers, Vol. C-38, No.
12, pp. 1612-1630, December 1989.

C. A. R. Hoare, “Communicating Sequential Processes™,

CACM, Vol. 21, No. 8, pp. 666-677, August 1978.

K. Hwang, Advanced Computer Architecture with Parallel
Programming. Preliminary Edition, 1993 by McGraw-Hill,

Inc..

D. V. James, A. T. Laundrie, S. Gjessing, (3. Sohi, “Scalable
(Coherent Interface”, IFEE Computer, Vol. 23, No. 6, pp.
74-77, June 1990.

S. Karlin, H. Taylor, A Second Course in Stochastic Pro-
cesses. AP, 1981.

157

[Katz 85]

[Kindervater 91]

[King 72]

[Kleiman 86]

[Kleinrock 75]

{Kleinrock 76}

[Knuth 73]

[Koldinger 91]

[Lamport 78]

R. H. Katz, S. J. Eggers, D. A. Wood, C. L. Perkins, R.
G. Sheldon, “Implementing a Cache Consistency Protocol”,
Proceedings of the 12th International Symposium on Com-

puter Architecture, pp. 276-283, June 1985.

G. A. P. Kindervater, Ezercises in Parallel Combinatorial
Computing, pp. 6-7, CWI Tracts, Stichting Mathematisch

Centrum, Amsterdam, 1991.

W. F. King, Il “Analysis of Demand Paging Algorithms”
Proceedings of IFIP congress 71, Freiman Ed., Vol.1, pp.
485-490, North-Holland, 1972.

S. R. Kleiman, “Vnodes: An Architecture for Multiple File
System Types in Sun UNIX", Useniz Summer 86, pp. 238-
247, 1986.

L. Kleinrock, Queueing Systems, Vol. I. Theory. John Wiley
& Sons, New York, 1975.

L. Kleinrock, Queueing Systems, Vol. II: Computer Applica-
tions. John Wiley & Sons, New York, 1976.

D. E. Knuth, The Art of Computer Programming, Vol. 111:
Sorting and Searching. Addison-Wesley Publishing Com-
pany, Reading, Massachusetts, 1973.

E. J. Koldinger, S. J. Eggers, H. M. Levy. “On the Validity
of Trace-Driven Simulation for Multiprocessors”, Procecdings

of the 18th International Symposium on Computer Architec-
ture, pp. 244-253, May 1991.

L. Lamport, “Time, Clocks, and the Ordering of Events in
a Distributed System”, CACM, Vol. 21, No. 7, pp. 558-565,
July 1978.

158

[Lamport 79]

[Lee 87]

[Leighton 92]

[Lenoski 90a]

[Lenoski 90b]

[Leung 83]

[Levelt 90]

L. Lamport, “How to make a multiprocessor computer that
correctly executes multiprocessor programs’ , JEEE Transac-
tions on Computers, Vol. C-28, No. 9, pp. 690-691, Septem-
ber 1979.

R. L. Lee, P. C. Yew, D. H. Lawrie, “Multiprocessor Cache
Design Considerations”, Proceedings of the 14th Interna-
tional Symposium on Computer Architecture, pp. 253-262,
June 1987.

F. T. Leighton, Infroduction to Parallel Algorithms and Ar-
chitectures: Arrays o Trees & Hypercubes. Morgan Kaut-

mann, 1992,

D. Lenoski, K. Gharachorloo, J. Laudon, A. Gupta, J. Hen-
nessy, M. Horowitz, M. Lam, “Desing of Scalable Shared-
Memory Multiprocessors: The Dash Approach”, Proceedings
of the Spring 90 IFEE COMPCON, pp. 62-67, February
1990.

D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, J. Hen-
nessy, “The Directory-Based Cache Coherence protocol for
the DASH Multiprocessor”, Proceedings of the 17th Infer-

national Symposium on Computer Architecture, pp. 143-159,

May 1990.

C. H. C. Leung, “Analysis of Disk Fragmentation Using
Markov Chains”, Computer Journal, Vol. 26, No. 2, pp. 113-
116, May 1983.

W. G. Levelt, M. F. Kaashoek, H. E. Bal, A. 5. Tanen-

baumn, “A Comparison of Two Paradigms for Distributed

159

[Li 89]

[Maa 91]

[Maltese 86]

[Mattson 70]

[McCreight 84]

[Mendelson 80|

[Metcalfe T6]

[Meyer 80i

Shared Memory”, Report IR-221, Vrije Universiteit, Ams-
terdam, August 1990.

K. Li, P. Hudak, “Memory Coherence in Shared Virtual
Memory Systems”, ACM Transactions on Computer Sys-
tems, Vol. 7, No. 4, pp. 321-359, November 1989.

Y .-C. Maa, D. K. Pradhan, D. Thiebaut, “Two Economical
Directory Schemes for Large-Scale Cache Coherent Multi-
processors”, Computer Architecture News, Vol. 19, No. 5,

pp. 10-18, September 1991.

(. Maltese, “A Simple Proof of the Fundamental Theorem
of Finite Markov Chains”, Am.Math.Monthly, Vol. 93, No.
8, pp. 629-630, October 1986.

R. Mattson, J. Gecsei, D. Slutz, and 1. Traiger, “Hierarchical
Storage Evaluation Techniques”, IBM Systems Journal, Vol.
17, No. 2, pp. 78-117, February 1970.

E. McCreight, “The Dragon Computer Svstem: An Early
Overview”, Technical Report, Xerox Corporation, Septem-

ber 1984,

H. Mendelson, U. Yechiali, “A New Approach to the Analysis
of Linear Probing Schemes”, JACM, Vol. 27, No. 3, pp. 474-
483, July 1980.

R. M. Metcalfe, D. R. Boggs, “Ethernet: Distributed Packet
Switching for Local Computer Networks”, CACM, Vol. 19,
No. 7, pp. 395-404, July 1976.

C. Meyer, “The Condition of a Finite Markov Chain and Per-
turbation Bounds for Limiting Probabilities”, SIAM Journal

160

[Muntz 74]

[Muntz 93]

[Needham 78]

[Nelson 83]

{Nielsen 91]

[Ousterhout 87]

[Owicki 89]

[Papamarcos 84]

on Algebraic and Discrete Methods, Vol. 1, No. 3, pp. 273-
283, September 1980.

R. R. Muntz, H. Opderbeck, “Stack Replacement Algorithms
for Two-Level Directly Addressable Paged Memories™, STAM
Journal on Computing, Vol. 3, No. 1, pp. 11-22, March 1974.

R. R. Muntz, E. S. Silva, Computational Solution Methods
for Markov Chains: Application to Computer and Commu-

nication Systems, In preparation.

R. M. Needham, M. D. Schroeder, “Using Encryption for
Authentication in Large Networks of Computers”, C'ACM.
Vol. 21, No. 12, pp. 993-999, December 1978.

M. N. Nelson, B. B. Welch, J. K. Ousterhout, “Caching in the
Sprite Network File System”, ACM Transactions on Com-
puter Systems, Vol. 6, No. 1, pp. 134-154, February 1988.

M. J. Nielsen, “DECstation 5000 Model 200", Proceedings
of the Spring '91 IEEE COMPCON, pp. 220-225, February
1991.

J. K. Ousterhout, A. Cherenson, F. Douglis. M. N. Nelson, B.
B. Welch, “The Sprite Network Operating System”, Report
No. UCB/CSD 87/359, June 1987.

S. Owicki, A. Agarwal, “Evaluating the Performance of Soft-
ware Cache Coherence”, Proceedings of the ASPLOS III, pp.
9230-242, April 1989.

M. S. Papamarcos, J. H. Patel, “A Low-Overhead Coherence
Solution for Multiprocessors with Private ("ache Memories”,
Proceedings of the 11th International Sympostum on Com-

puter Architecture, pp. 348-354, June 1984.

161

[Quarterman 86|

[Rao 78]

[Ritchie 74]

[Rivest 78]

[Roberts 90]

'Rudolph 84]

[Ruschitzka 83]

Sandberg 85]

J. S. Quarterman, A. Silberschatz, J. L. Peterson, “4.2BSD
and 4.3BSD as Examples of the Unix System”, ACM Com-
puting Surveys, Vol. 17, No. 4, pp. 379-418, December 1985.

G. S. Rao, “Performance Analysis of Cache Memories”,
JACM, Vol. 25, No. 3, pp. 378-395, July 1978.

D. M. Ritchie, K. Thompson, “The Unix Time-Sharing Sys-
tem”, Comm. of ACM, Vol. 17, No. 7, pp. 365-375, July
1974.

R. L. Rivest, A. Shamir, L. Adleman, “A Method for Ob-
taining Digital Signatures and Public-Key Cryptosystems”,
C'ACM, Vol. 21, No. 2, pp. 120-126, February 1978.

P. Roberts, T. Layman, G. Taylor, “An ECL RISC Micro-
processor design for Two Level Cache”, Proceedings of the

Spring ‘90 IEEE COMPCON, pp. 228-231. February 1990.

L. Rudolph, Z. Segall, “Dynamic Decentralized Cache Con-
sistency Schemes for MIMD Parallel Processors”, Proceed-
ings of the 11th International Symposium on Computer Ar-
chitecture, pp. 340-347, June 1984.

M. Ruschitzka, “A Markov Model for Evaluating Syn-
chronization Algorithms™, Parallel and Large-scale Com-
puters: performance, architecture, application, IMACS

Trans.Sci.Comp., Vol. 2, pp. 53-66, North-Holland, 1983.

R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, B. Lyon,
“Design and Implementation of the Sun Network Filesys-

tem”, USENIX Summer 85, pp. 119-130, 1985.

162

[Schwartz 87|

[Seitz 84]

[Seitz 85]

[Shoemaker 90]

[Silberman 83]

[Singh 91]

[Slater 92]

[Sleator 85a]

[Sleator 85b]

M. Schwartz, Telecommunication networks: Protocols, Mod-
eling and Analysis. Addison-Wesley Publishing Company,
Reading, Massachusetts, 1987.

C. L. Seitz, “Concurrent VLSI Architectures”, IEEE Trans-
actions on Computers, Vol. C-33, No. 12, pp. 1247-1265, De-
cember 1984.

(. L. Seitz, “The Cosmic Cube”, CACM, Vol. 28, No. 1, pp.
22-33, January 1985.

K. Shoemaker, “The i486™ Microprocessor Integrated
Cache and Bus Interface”, Proceedings of the Spring 90
IEEE COMPCON, pp. 248-253, February 1990.

G. M. Silberman, Stack Processing Techniques in Delayed-
Staging Storage Hierarchies, Communications of ACM, Vol.
26, No. 11, pp. 999-1007, Nov. 1983.

J. P. Singh, W. D. Weber, A. Gupta, “SPLASH: Stanford
Parallel Applications for Shared-Memory”. C5L-TR-91-469.
Stanford University, April 1991.

A Guide to RISC Microprocessors, M. Slater, Editor, Aca-
demic Press, Inc. 1992,

D. D. Sleator, R. E. Tarjan, “Self-Adjusting Binary Search
Trees”, JACM, Vol. 32, No. 3, pp. 652-686. July 1985.

D. D. Sleator, R. E. Tarjan, “Amortized Efficiency of List
Update and Paging Rules”, CACM, Vol. 28, No. 2, pp. 202-
208, February 1985,

163

[Slutz T2a]

[Slutz 72b]

[Smith 79]

[Smith 82]

[Smith 93]

[Smith 91]

[So 86|

[Spencer 85]

[Spencer 87]

{Stenstrom 90

D. R. Slutz, I. L. Traiger, “Determination of Hit Ratios for a
Class of Staging Hierarchies”, IBM Res.Rep. RJ 1044, May
1972.

D. R. Slutz, I. L. Traiger, “Evaluation Techniques for Cache
Memory Hierarchies”, IBM Res.Rep. RJ 1045, May 1972.

A. J. Smith, “Characterizing the Storage Process and Its
Effect on the Update of Main Memory by Write-Through”,
JACM, Vol. 26, No. 1, pp. 6-27, January 1979.

A. J. Smith, “Cache Memories”, ACM Computing Surveys,
Vol. 14, No.3, pp. 473-530, September 1982.

A. J. Smith, private communication, April 1993.

M. D. Smith, “Tracing With Pixie”, CSL-TR-91-497, Stan-
ford University, November 1991.

K. So, A. S. Bolmarcich, F. Darema-Rogers, V. A. Norton,
“SPAN - A Speedup Analyzer for Parallel Programs™, IBM
T.R. RC12186, September 1986.

J. Spencer, “Probabilistic Methods”, Graphs and Combina-
tories, Vol. 1, No. 4, pp. 357-382, 1985.

J. Spencer, Ten Lectures on the Probabilistic Methods.
CBMS-NFS Regional Conference Series of Applied Mathe-
matics, No. 52, STAM, 1987.

P. Stenstréom, “A Survey of Cache Coherence Schemes for
Multiprocessors”, [EEE Computer, Vol. 23, No. 6, pp. 12-
25, June 1960.

164

[Stewart 83]

[Stone 71]

[Taksar 91]

[Tang 76!

[Tarjan 78]

[Tarjan 83}

(Teller 89]

[Thapar 90]

[Thompson 87]

G. Stewart, “Computable Error Bounds for Aggregated
Markov Chains”, JACM, Vol. 30, No. 2, pp. 271-285, April
1983.

H. S. Stone, “Parallel Processing with the Perfect Shuffle”,
IEEE Transactions on Computers, Vol. C-20, No. 1, pp. 153-
161, January 1971.

M. Taksar, W. Grassman, “Probabilistic Approach to Com-
putational Algorithms for Finding Stationary Distribution
of Markov Chains”, J.Comp.Appl.Math., Vol. 36, No. 2, pp.
131-136, August 1991.

C. K. Tang, “Cache Design in the Tightly Coupled Multi-
processor System”, AFIPS Conf. Proc., National Computer
Conf., pp. 749-753, June 1976.

R. E. Tarjan, “Complexity of Combinatorial Algorithms”,
SIAM Review, Vol. 20, No. 3, pp. 457-491, July 1978.

R. E. Tarjan, Data Structures and Network Algorithms.
CBMS-NFS Regional Conference Series of Applied Mathe-
matics, No. 44, STAM, 1983.

P. J. Teller, “The TLB Consistency Problem”, Technical Re-
port RC' 15156, T. J. Watson Research (‘enter, November
1989.

M. Thapar, B. Delagi, “Stanford Distributed-Directory Pro-
tocol”, IEEE Computer, Vol. 23, No. 6, pp. 78-80, June 1990.

J. G. Thompson, “Efficient Analysis of Caching Systems”.
TR UCB/CSD 87/374, Ph.D. dissertation, Univ. of Califor-
nia, Berkeley, Oct. 1987.

165

[Thompson 89]

[Traiger 71]

[Tzelnic 82)

[Wallach 92]

[Wang 89]

[Wang 91]

[Weber 89|

[Wilson 87]

J. G. Thompson, A. J. Smith, “Efficient (Stack) Algorithms
for Analysis of Write-Back and Sector Memories”, ACM
Transactions on Computer Systems, Vol. 7, No. 1, pp. 78
116, February 1989.

L. L. Traiger, D. R. Slutz, “One-Pass Techniques for the Eval-
uation of Memory Hierarchies”, IBM Res.Rep.RJ §92, San
Jose, California, July 1971.

P. Tzelnic, “The Length of Path for Finite Markov Chains
and its Application to Modeling Program Behavior and In-
terleaved Memory Systems”, Applied Prob.-CS: the Inter-
face, R. Disney, T. Otto (Ed), Vol. 2, pp. 373-403, Birkhauser
Boston Inc., 1982.

D. A. Wallach, “PHD: A Hierarchical Cache Coherent Pro-
tocol”, Master Thesis, EECS, MIT, 1992.

W. Wang, “Multilevel Cache Hierarchies”, DCS TR 89-
09-13, Ph.D Dissertation, Univ. of Washington, Seattle,
September 1989.

W. Wang, J.-L. Baer, “Efficient Trace-Driven Simulation
Methods for Cache Performance Analysis™, ACM Transac-
tions on Computer Systems, Vol. 9, No. 3, pp. 222-24]1,
September 1991.

W.-D. Weber, A. Gupta, “Analysis of Cache Invalidation
Patterns in Multiprocessors”, Proceedings of the ASPLOS
111, pp. 243-256, April 1989.

A. W. Wilson, Jr. “Hierarchical Cache/Bus Architecture
for Shared Memory Multiprocessors”, Proceedings of the

166

[Wu 92]

[Wyk 88]

[Yang 90]

[Yew 87]

1{th International Symposium on Computer Architecture,

pp. 244-252, June 1987.

Y. Wu, J. Popek, R. R. Muntz, “Efficient Evaluation of Arbi-
trary Set-Associative Caches on Multiprocessors”, Proceed-
ings of the Jth IEEE Symposium on Parallel and Distributed
Processing, pp. 507-514, December 1992.

C. J. Van Wyk, Data Structures and C Programs. Addison-
Waesley Publishing Company, Reading, Massachusetts, 1988.

Q. Yang, G. Thangadurai, L. N. Bhuyan, “An Adaptive
Cache Coherence Scheme for Hierarchical Shared-Memory
Multiprocessors”, Proceedings of the 2th [EEE Symposium
on Parallel and Distributed Processing, pp. 318-325, Decem-
ber 1990.

P. C. Yew, N. F. Tzeng, D. H. Lawrie, “Distributed Hot-Spot
Addressing in Large-Scale Multiprocessors™, IEEE Transac-
tions on Computers, Vol. C-36, No. 12, pp. 388-395, April
1987.

167

