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Abstract

A great deal of research in the area of distributed discrete event simula-
tion has focussed on evaluating the performance of variants of conservative and
optimistic methods on different types of applications. Application characteris-
tics like lookahead, communication patterns etc. have been found to affect the
suitability of a specific protocol to simulate a given model. For many systems,
it may be the case that different subsystems possess contradictory character-
istics such that whereas some subsystems may be simulated efficiently using
a conservative protocol, others may be more amenable to optimistic methods.
Furthermore, the suitability of a protocol for a given subsystem may change
dynamically. We propose a parallel simulation protocol that allows different
parts of a system to be simulated using different protocols, allowing these pro-
tocols to be switched dynamically. A proof of correctness is presented, along
with some preliminary performance measurements.
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1 Introduction

A great deal of research has been done to evaluate the performance of variants of
conservative and optimistic methods on different types of distributed discrete-event
simulation applications ([Fujimoto 90] reviews many of these studies). Some consen-
sus has emerged on gross application characteristics like lookahead, communication
patterns among the primary model components, and checkpointing granularity that
determine the suitability of using a specific protocol to simulate a given model. For
many systems, it may be the case that different subsystems possess contradictory
characteristics: whereas some subsystems may be simulated efficiently using a conser-
vative protocol, others may be more amenable to optimistic methods. Furthermore,
the suitability of a protocol for a given subsystem may change dynamically. For in-
stance consider a gate level model of a circuit. If the signal activity in a given portion
of the circuit is reasonably uniform and regular, conservative null-message methods
may be suitable. However, if the signal activity becomes sporadic, an optimistic pro-
tocol that reduces blocking may be more effective. Performance reasons aside, in
some applications, it may not be possible to execute some processes optimistically
because of the sheer size of the state (many copies of which have to be maintained in
optimistic schemes), whereas the rest of the system may have characteristics suited
to optimistic execution. The need to develop efficient protocols for the execution of
dynamic systems has led to considerable interest in designing simulation protocols
which unify conservative and optimistic methods, thereby combining the advantages
of both.

This paper describes a simulation protocol called CON-OPT which attempts to
bridge the gap between optimistic and conservative simulation methods. CON-OPT
allows different parts of a simulation model to be executed using either conservative
or optimistic protocols. The execution mode for a submodel may also be changed
(from conservative to optimistic, or vice-versa) dynamically.

Optimistic schemes like Time Warp [Jefferson 85] have two major components -



the Local Control Mechanism{LCM), which ensures that events are eventually exe-
cuted in correct order, and the Global Control Mechanism (GCM) which is concerned
with global issues such as [/O handling, termination detection, memory management
etc. The key observation is that a similar logical division can be made for conservative
algorithms. For each simulation object (or LP) in the model, we define the Earliest
Input Time {EIT) as the lower bound on the timestamp of any future messages that
may be delivered to that LP. The GCM is used to compute the EIT for each LP and
the LCM allows only messages with timestamps less than EIT to be processed.

The choice of a GCM can be shown to be orthogonal to that of an LCM. This
means that an LP may autonomously choose to be optimistic or conservative by
selecting the appropriate Local Control Mechanism, whereas the model uses a single
Global Control Mechanism. Examples of candidate GCMs include the Global Virtual
Time mechanism used by optimistic methods or the null message based scheme used
by conservative methods. This permits an optimistic LP to exploit optimizations like
lookahead and null messages that are typically used only with conservative methods;
simillar]y a conservative LP may benefit from an arbitrarily dynamic communication
topology, and a relaxation of the FIFO channel requirement typically needed for
conservative methods.

The paper also presents a formal proof of correctness for the CON-OPT protocol.
As many of the existing simulation protocols like Time Warp [Jefferson 85), CMB
algorithm [Chandy 81], and the conditional event algorithm [Chandy 89a] are special
cases of this protocol, this generates a correctness proof for all the protocols under a
consistent set of assumptions.

Rest of the paper is organized as follows. Section 2 describes the distributed simu-
lation model and the assumptions made. Section 3 describes the simulation protocol.
We give a proof of correctness for the algorithm in section 4. Section 5 describes
how processes can change their mode of operation at the runtime. Relationship of

CON-OPT to the existing simulation protocols and some new algorithms that can



be derived as special cases of CON-OPT are discussed in section 6. Section 8 dis-
cusses assumptions made regarding the communication topology and lookahead in
CON-OPT. Section 7 presents some performance results. The related work is briefly
discussed in section 9. Section 10 gives the conclusions and directions for the ongoing

research.

2 Model

A physical system is a finite set of physical processes (PP) and a finite set of events;
each event represents some interaction among the processes. In the simulation model,
each PP is represented by a logical process(LP). An event is represented by a mes-
sage communication among the corresponding LPs. Each message in the model has
a logical timestamp that corresponds to the (relative) physical time at which the cor-
responding event occurred in the physical system. For efficiency reasons, an LP may
simulate an arbitrary number of LPs for an arbitrary interval of simulation time (i.e.
an arbitrary region of the space-time [Chandy 89b]). For simplicity, we will assume
that each LP simulates exactly one LP for the entire simulation interval.

Execution of a simulation model on a p‘a.r;a.llel architecture requires the allocation
of the LPs in the model among the available physical processors, and the definition
of a synchronization protocol to ensure that messages in the distributed model are
(eventually) processed by the LPs in the global order of their timestamps. This
paper addresses only the latter problem. Before describing the protocol, we list a set
of assumptions that form the basis for our design. Similar assumptions have been

imposed by most existing protocols.

Assumption 1 All messages with the same timestamp are processed simultaneously

by an LP (and the corresponding PP).

Assumption 2 Each LP is a total function of its inpuls.



Assumption 3 For a given initial state and inputs (with the same timestamp) , the

LP will produce the same output(s) and reach the same final state as the corresponding

PP(Fidelity ).

Assumption 4 Given a finite set of inputs with timestamp t, an LP generates a

finite set of outputs with timestamps t + € or greater, where € is a positive constant.
Assumption 5 Communication channels on the multiprocessor are reliable and FIFO.

Assumption 6 Sufficient memory is available at each processor to store all incoming

messages (i.e. we ignore the problem of flow control).

Henceforth we use x. y, z to refer to PPs, and p, q, r to refer to LPs. The preceding
identifiers may also be used to subscript variables used in the description of the

protocol; thus v, is used to refer to the variable v for LP p.

Definitions
We introduce a few terms that occur frequently in the protocol description:

input-set refers to the set of inputs with a given timestamp; the input-set at p
with timestamp ¢ is represented by I,(t). A sequence of input-sets is referred
to as an input-sequence; I5,(t) refers to the subsequence of input-sets with

timestamps less than ¢ received by p.

output-set refers to the set of outputs (possibly with different timestamps) that
are a function of a given input-set; O,(t) refers to the set of outputs produced
by process p as a result of processing I,(t). An output-sequence is defined
similarly to an input-sequence; OS,(t) refers to the output-sequence that is a

function of I5,(t).

Lookahead for a process p, at simulation time time ¢, is said to be la, if p can
accurately predict all the outputs it will generate in the interval [t, ¢t + la]. By

assumption 4, la is at least e.



Logical Process

We abstract an LP by the set of data structures used by the LCM or GCM to

implement the corresponding simulation protocol. The following data structures are

defined:

Input Queue contains inputs received by the LP that have not been processed.
Tp refers to the earliest timestamp in the input queue; if the queue is empty,

T, = oc.

History contains a history of the LP over some interval of simulation time; the
duration of the interval depends on the LCM of the LP. We use h,(f,,1;) to
refer to the history of LP p in the interval [t,t;]. For a given ¢, ht) is a 5-
tuple - < ¢, I(t),St,0O(t),la >, where St represents the state of the LP after
processing input-set I(¢), and the other elements are as described above. The
history is sorted by the timestamp of each entry. The entry with the earliest
timestamp is denoted by S[0], whereas the entry with the largest timestamp,
also known as the current state, is denoted by S{n]. As will be shown later, for
a conservative LP, the history need only contain a single entry, the one with the

largest timestamp.

3 Simulation Protocol

The simulation protocol can be logically divided into two orthogonal parts - Local
Control Mechanism(LCM) and Global Control Mechanism(GCM). The LCM is re-
sponsible for executing events in the correct timestamp order, and GCM for global
issues like progress, I/O handling, termination detection, and memory management.

Following definitions are used in describing the Local and Global Control Mechanisms:

Earliest Input Time(EIT) At any execution instant, the EIT for a given p 1s re-

ferred to as eit, and is defined to be the timestamp of the earliest input message
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that the LP may receive in the future. The history of each LP contains at most
one entry with timestamp less than its EIT. i refers to the minimum EIT in the

system.

Earliest Output Time (EOT) At any execution instant, the EQT for a given p
is referred to as eof, and is defined to be the timestamp of the earliest output

that the LP may send in the future. eot, is equal to min(T,, eit,) + S[0].la.

Earliest Conditional Output Time(ECOT) At any execution instant, the ECOT
for a given p is referred to as ecot, and is defined to be the timestamp of the
earliest output that the LP may generate in the future, assuming no more in-
puts are received by the LP until then . ecot, is equal to T, + S[i].la, where :
is the largest integer such that S[i].t < T,. Note in absence of any lookahead,
ECOT would the equivalent of LVT in Time Warp.

3.1 Local Control Mechanism

LCM ensures the correctness of simulation either by blocking to ensure that only
correct messages are processed(Conservative) or through rollbacks upon discovering
causality errors(Optimistic). Note that LPs process an antimessage exactly like the
corresponding positive message. However, if a message and its antimessage, both are
present in an input(output)-set, they are assumed to cancel each other. If there are
more than one eligible (as defined below) LPs on a processor, any of the conservative
LPs can be chosen to be executed. If there are no eligible conservative LPs, the

optimistic (eligible) LP with the smallest T} is chosen.

3.1.1 Optimistic Processes

An optimistic LP is eligible to be executed whenever it’s input queue is non empty.

Let p be the LP selected to execute, and let I{t) be the first input-set in its input



queue.

o If t > S[n].t: Execute < 5¢',0,la >:= p(S[n].S¢t, I). Send out the messages in
O. Append the entry < t, I, 5t,0,la > to the history,

o If t < S[r].t: Find the largest ¢, such that ¢t > S[¢].£. Rollback upto S[i], and
recompute using the input-sets from the history, after adding I to the input-set

with timestamp ¢.

Lazy cancellation and lazy recomputation optimizations [Jefferson 85} can be used in

case of rollbacks.

3.1.2 Conservative Processes

A conservative LP is eligible to be executed if its T, < eit, Let p be the selected LP,
and let I{t) be the first input-set in its input queue. (it follows from lemma 3 that
t > 5[0].t).

o Execute < St',0,la >:= p(S5[0].5t,I). Send out the messages in O. Append
the entry < ¢, 1, St',0,la > to the history. The previous entry would be deleted.
since, only one entry with ¢ < EIT needs to be kept. Note, therefore, that for
a conservative LP, there is only one entry in the history at any given time. As

mentioned before, I and O need not be saved for the entry S{0].

3.2 Global Control Mechanism

The objective of the Global Control Mechanism(GCM) is to provide as good(i.e. as
high) an estimate of Earliest Input Time(EIT) as possible for every LP. Note that we
don't necessarily require one global estimate for every LP. Computing good estimates
for EIT is crucial for the progress of conservative processes, since, they process only
the inputs that have timestamps less than EIT. On the other hand, the optimistic

processes need good estimates of EIT to efficiently manage their memory space(by
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collecting the fossils from history, input and output queues) and for committing /0,

but, not to guarantee local progress.

3.2.1 GVT based GCM

One simple global control mechanism is simply the GVT method used in Time Warp
and other optimistic methods. In a global snapshot of the system, GVT is defined
as the minimum of all the ECOTs and the timestamps of the messages in transit.
[Bellenot 90] describes some G VT algorithms. Note that in our case, ECOT also takes
into account the lookaheads specified by the LPs, hence, the G VT estimates computed
might be better than the ones computed otherwise. The computed GVT forms an
estimate of EIT for all the LPs in the system. It is assumed that any process can send
messages to any other process in the system. If, however, the predecessor set, which is
the transitive closure of the source set(the set of processes that the entity can receive
messages from), is known for an LP, its EIT is equal to the minimum of ECOTs over
only the predecessor set and the messages in transit from these processes. GVT with
predecessor set optimization may compute better estimates for EIT for each entity

but will allow inflexible communication topologies(discussed in detail in section 8.1).

3.2.2 Null message based GCM

Another possible global control mechanism is based on null messages, traditionaily
used in conservative methods. Every process sends the value of its Earliest Output
Time(EOT) to all its destination processes using null messages. The Earliest Input
Time(EIT) of a process is defined to be the minimum of the highest values of EOT
received from each of its predecessors. It is initialized to ¢ for every LP. The frequency
of sending null messages can be varied as long as the new value of EOT is eventu-
ally communicated. This scheme requires every process to know all its predecessors
and successors{the whole system in the default case). Also, the estimates of EIT

computed by each process may be different. This method is able to take advantage



of the knowledge of the communication topology in calculating EIT, and doesn’t re-
quire any global communications. However, it doesn’t allow an arbitrarily dynamic

communication topology.

3.2.3 Combination

The third possibility is to execute both the G'VT algorithm and the null message
scheme together. They can be executed independently , since, they don’t interfere
with each other. The EIT, for any process, would be the maximum of the value
computed by each method. Although, this would incur a larger overhead than either

of the methods, it would give better estimates too.

4 Proof of Correctness

In order to simplify the proof, we assume that the communication topology is static,
and that there is only one LP per processor. Let p, g, and r refer to the LPs corre-

sponding to the PPs z, y, and z, respectively, for the rest of this section.

Lemma 1 Processing of any input-set with timestamp t results in production of a

finite number of outputs, all with timestamp greater than t.

Proof:

If the input-set results in forward computation, it schedules a finite number of new
messages all with timestamps greater than t(assumption 4). If it causes a rollback, a
finite number of output-sets, all having outputs with timestamps > t, are cancelled.
Recomputation uses a finite number of input-sets with timestamps > ¢, hence, sends

a finite number of outputs, all having timestamps > ¢.

Lemma 2 (Extended Fidelity) Let I5,(t) and IS.(t) be the input-sequences pro-
cessed by the LP p and the PP t, respectively(starting in the same initial state).
Let OS,(t) and OS.(t) be the corresponding output-sequences produced by them. If
1S,(t) = IS8.(¢), then, OS,(t) = OS.(t), and p and z reach the same final state.
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t—S[0].la = t' < eot,— S[0].la = t' < min(eit,, T,). Therefore, p must have received
an input with timestamp ¢’ < eit, after sending eot,. This contradicts the assumption
that (m,t) is the earliest violator message in the system.

Case 2GVT based GCM): The last GVT computation before the arrival of m must
have returned a value eit, which implies that there must have been a global snapshot
S before the arrival of m whose GVT was > eit,. In S, T, + la > eity,Vp, and all
the messages in transit bear timestamps > eit,{by the definition of GVT). Therefore,
by the definition of lookahead, the system can't produce or deliver a message with
timestamp less than eit,. Hence, contradiction.

Let eit refer to the minimum EIT in the system, at any point during execution.

Lemma 4 (Safety) Let IS,(eit) be the input-sequence received, with timestamp
less than eit, by an LP p, at any point in ezecution. Let [S (eit) be the input-sequence,
with timestamp less than eit, processed by the PP x. Then, IS,(eit) = I5:(eit), for

any LP p and its corresponding PP r.

Proof:

Assume the contrary. Let t < eit be the earliest timestamp at which an IS5,(e:t) differs
from 15,(4), for any LP p and its corresponding PP z. Therefore, I,(t) # I.{1).
Since, t is the earliest time where the logical and physical sequences differ, 15,(t) =
1S,(t),V¥q, and corresponding y.

Let OS,(t) be the output sequence with timestamp less than ¢ for a PP y in the
physical system. Consider an execution instant where all J S,(t) have been processed
in the logical system. Let OS,(t) be the output sequence with timestamp less than ¢
produced at this point by an LP ¢q. By lemma 2, therefore, O5,(t) = 0S,(t),Yy. and
corresponding gq.

I.(t) is equal to the set of messages with timestamp ¢ in OS5, (t),Vy.

Since, t < eit, by lemma 3, all the messages in OS;(t) have been delivered(assuming
reliable communication), for all ¢. Therefore, I,(t) is equal to the set of messages

with timestamp ¢ in OS(¢), Yq.
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Therefore, I,(t} = I.(t) (contradiction).

Lemma 5 Eventually, all the messages in the system with timestamp less than eit

will be processed.

Proof:

All the messages ever to be generated in the system with timestamp < eit have
already been delivered(lemma 3). Since, optimistic LPs process available inputs (in
increasing timestamp order) without blocking, and conservative LPs process inputs
with timestamp less than their EIT (in increasing timestamp order), all the messages

with timestamp < eit will eventually be processed.
Lemma 6 (Liveness) Eventually, the minimum EIT of the system will be > eit +¢.

Proof:

By lemma 3, all the messages with timestamps less than eit will eventually be pro-
cessed. In such a state, there are only a finite number of messages in transit with
timestamps in the interval {eit, ezt + €) (by lemma 1 and the fact that the system has
processed only a finite number of input-sets so far).

Null message based GCM: The value of EOT for any LP p is > eit 4 ¢ (since
min(ett,, T,) > eit). Eventually, a null message carrying this value will be delivered
to all the LPs that p can send a message to. Therefore, eventually all the LPs would
receive an EOT > eit + ¢ on each one of their input channels, thus, making their EITs
> et + €.

GVT based GCM: Eventually, all the messages in the interval [eit, ezt + ¢} which
are in transit will be delivered. Any new messages generated will have timestamp
> eit + e(lemma 1).

Eventually, the earliest unprocessed message at an optimistic LP will have a times-
tamp > eit +¢€. At this point, the value of their ECOT would be atleast et +¢. Since,
the conservative LPs are required to know the value of ¢, and their T}, > e:t, the value

of their ECOT would > eit + € too. Therefore, the value of GVT is > eit + e. This
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value of GVT will eventually be returned by the GVT computing algorithm and will
be assigned to the EIT of every LP.

5 Dynamically changing modes of Operation

At some point in execution, some of the processes may want to change the mode of
operation from conservative to optimistic or vice-versa, because of changed lookahead,

network traffic or some other reason.

5.1 Conservative to Optimistic

This doesn’t require any special transitory phase. The process can instantaneously

change its mode and start following the rules of optimistic execution.

5.2 Optimistic to Conservative

There are two options possible:

5.2.1 Option 1

Rollback the process to state S[0]. Mark all the inputs with timestamp greater than
S[0].t as unprocessed. Discard all the history entries except S[0]. Change the mode
to conservative and start executing. This option is simpler and instantaneous(doesn’t

require any transitory stage), but, causes some amount of recomputation.

5.2.2 Option 2

The process has to be in a transitory phase called OtoC as long as n is greater than 0
i.e. there are more than one element in the history . The local control mechanism of
this state is given below. Assuming, the global control mechanism keeps advancing
the EIT, it can be shown that eventually, there will be only one state left in the

queue, namely, S[0], at which point the process can switch to the conservative mode
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of operation.
Local Control Mechanism for OtoC

An LP is eligible to be executed whenever it has an unprocessed input with times-
tamp < S[n].t. In case there are many such LPs, the one with earliest unprocessed
message is selected.

Let p be the selected LP, and let I(t) be the first input-set in its input queue.

e Find the largest 7, such that ¢ > S[t].t. Rollback upto S[i], and recompute using

the input-sets saved in the history.

Lazy cancellation and lazy recomputation optimizations can be used.

6 Relationship to Other Simulation Protocols

The distributed simulation scheme outlined above encompasses many of the conser-
vative and optimistic schemes that we know of. If all the processes in the system
use the conservative LCM, then using null message bhased GCM corresponds to the
Chandy-Misra-Bryant algorithm. If, on the other hand, GVT based GCM is used,
the resulting protocol is same as the Conditional Event algorithm [Chandy 89a].
Similarly, if all the processes use the optimistic LCM, along with GVT based GCM,
the result is the traditional Time Warp(Jefferson 85] scheme.

Using a combination GCM with conservative processes gives rise to a new conser-
vative algorithm whose implementation is discussed in [Jha 93]. Using the null mes-
sage based GCM with optimistic processes gives rise to a new optimistic method.
Using null messages to compute EITs in optimistic algorithms removes the need for
global computations of GVT(or can be used in conjunction with GVT, as in combi-
nation GCM) and may give better estimates of EIT since it uses lookahead and the

topology information in calculating it.
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Using the predecessor set optimization for the GVT based GCM(hence applicable
to conditional event algorithm and Time Warp) corresponds to calculating Target
Specific Information as described in [Pancerella 93].

For the conditional event algorithm(conservative LPs, with GVT based GCM), we
defined ECOT to be equal to the earliest unprocessed message plus the lookahead.
This just gives a lower bound on the timestamp of the next conditional output The
exact value of the next conditional output timestamp may be obtained by actually
executing(tentatively, subject to rollback) the next input(in cases where it wouldn’t
be executed otherwise, since the processes are conservative). Using this estimate for
the ECOT may result in better estimates for the GVT(at the expense of possible
local rollback/state saving overheads). This corresponds to the Breathing Time
Bucket algorithm [Steinman 92](with a synchronous GVT computing algorithm).

In section 2, we assumed for simplicity that each SP corresponds to one LP for the
entire simulation time interval. If, however, we divided the entire simulation interval
into n intervals and assigned all the LPs for one of the n intervals to one SP, and
used the optimistic LCM for all the SPs, the resulting algorithm would correspond

to a Time Parallel simulation [Lin 91].

7 Performance

In this section, we present some preliminary results on the performance of the CON-
OPT protocol for a small synthetic benchmark. The benchmark was designed to
isolate the type of configurations that are expected to perform better with a mixed
protocol than with a pure optimistic or a pure conservative one. Rather than imple-
ment the protocol directly on a parallel architecture, we chose to first evaluate it in a
simulated environment where the protocol could be studied for a wide range of over-
head costs. The protocol was simulated using the Maisie[Bagrodia 92a] simulation

language.
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We use virtual time to refer to the timestamps of the application being simulated
by CON-OPT, and simulation time to refer to the timestamps of the CON-OPT
simulator. The execution time of actual messages, null messages, commurication
delays and other overheads in the actual parallel simulator are modeled by the hold
and other Maisie constructs. Therefore, the simulation time it takes for the Maisie
simulator to simulate CON-OPT for HORIZON amount of virtual time is an estimate
of the real time it would take for CON-OPT, implemented on a parallel architecture
(with number of processors equal to the number of LPs}), to simulate the application
for HORIZON amount of virtual time.

The benchmark is shown in Figure 1. The network consists of 5 processes. Pro-
cesses C and D are source processes, E is a sink process and A and B are server pro-
cesses that service incoming jobs in FIFO order. C generates jobs with a fixed inter-
arrival time given by serv_time; for every job message generated by C, with probability
P. it also generates and sends a straggler message with timestamp t — 5 * serv_time.
If A is an optimistic process, receipt of a straggler messages will cause A to rollback,
and the frequency of rollbacks can be controlled by varying P. D sends a single mes-
sage with timestamp 0; this message is serviced by B and with probability 1, is sent
back to B. Communication topology is (potentially) a completely connected network
between A and B. However, channels between A and B are never used to send any job
messages (although they are used in the implementation of the GCM). The (virtual)
service times for A and B are equal to serv_time and 10*serv_time, respectively. Both
of them take 1 unit of simulation time to execute any message.

We run the benchmark using both GVT based and null message based GCMs.
Only overhead is rollbacks versus blocking time. We assume that the GCM com-
putation messages (GVT related messages or null messages) incur no processing or
transmission costs. Also, optimistic LPs don’t incur any state saving overheads.
Therefore, the only overhead that is incurred by an optimistic LP is due to recompu-

tation (following a rollback) of certain messages. A conservative LP only suffers from
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Figure 1: Network 1 simulated on CON-OPT
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Figure 2: Network 1 using GVT based GCM: Simulation time versus P
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Figure 5: Network 1 using null message based GCM: Rollbacks versus P

overhead due to blocking of messages. Four different combinations are possible for the
execution modes of the servers, and the performance of the protocol was determined
for each mode. Each experiment was executed for a duration that was sufficient for
each server to process 200 job messages.

Figure 2, and Figure 3 plot the simulation time needed to simulate the network as
a function of the probability P, for each of ‘the 4 execution modes for the two GCMs.
(the source and sink LPs behave the same irrespective of whether they are conservative
or optimistic). It shows that for P equal to 0.0, a pure optimistic configuration is
amongst the best (also better than the pure conservative configuration), whereas for
higher values of P, the mixed configurations - A:CON, B:OPT is the best. This is to
be expected since if A is executed optimistically, it would incur too many rollbacks.
However, if both A and B are made conservative, all B's events would execute after
A’s since they have higher timestamps. Having A as conservative, and B optimistic
allows them to execute their events independently (and in parallel). Figure 4 and
Figure 5 plot the amount of rollback (total number of states rolled back during the

entire execution) versus P. They confirm that the main contributing factor to the
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relative execution times is the amount of rollback. Note that these experiments

ignored overhead for computation of GVT as well as that due to state-saving.

8 Discussion

In this section, we discuss the assumptions that we make regarding the communication

topology and the process lookaheads.

8.1 Communication Topology

An ability to support dynamically changing communication topology is often cited
as a major advantage of optimistic schemes over the conservative ones. We believe,
however, that whether a dynamic communication topology can be supported in a
simulation protocol or not depends on the Global Control Mechanism used. Besides,
there is a trade off between the performance gained by exploiting the knowledge of
communication topology and the flexibility of a completely dynamic configuration.

A null message based GCM can't allow arbitrarily dynamic configuration. The
main problem is illustrated in figure 6. A channel is to be created from process b to
process ¢ at time ¢t. But, by the time this information reaches process ¢, the value of
its EIT might already have been advanced beyond time t, causing a possible causality
violation.

However, {Jha 93] describes how a restricted form of dynamic topology can be
supported even in this case. Any channels created between the parent and the child
process at the time the child process is spawned don’t suffer from a possible causality
violation described above. In order to create any other channel, say between b and
c at time ¢, both b and ¢ should receive channel creation messages with timestamp
less than or equal to ¢ on eristing channels. In many applications this requirement is
easy to satisfy. Once again, this restriction would apply to any protocol, optimistic

or conservative, using the null message based GCM.
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Figure 6: Creating channels dynamically

GVT based GCM assumes a completely connected network, and hernce can sup-
port an arbitrarily dvnamic configuration. Hence any simulation protocols, whether
optimistic e.g. Time Warp, or conservative e.g. Conditional Event Algorithm or
Breathing Time Bucket, that use a GVT based GCM, can support a dynamic con-
figuration. Besides, they don’t require the LPs to know the exact communication
topology, since they assume a completely connected network.

Note, however, that using the predecessor set optimization, as described in sec-
tion 3, for GVT calculation requires processes to know their predecessor sets. This

would, therefore, restrict the dynamic creation of channels as described before.

8.2 Lookahead Assumptions

The basic assumption we make regarding lookahead is the existence of the positive
constant e (assumption 4) for every LP. It can be shown that existence of such a pre-
determined constant is also required for the progress of even pure optimistic methods
like Time Warp. In CON-OPT, under the GVT based GCM, the conservative LPs

need to know the value of the e, whereas the optimistic LPs don’t need to know the
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value of ¢, for the system to make progress. Under the null message based GCM,
however, at least one LP (optimistic or conservative) in each cycle has to know the
value of e.

Under a different assumption, namely, that messages with same timestamp at a
given LP can be processed in an arbitrary order (as long as they obey the causal
order), it can be shown that pure conservative conditional event algorithm doesn’t
require even the existence of € to make progress (with the obvious condition that
systems with infinite physical messages take infinite amount of time to simulate),
whereas Time Warp still does.

If the system has good lookahead properties (and the LPs know the value of looka-
head), both GVT based GCM and the null message based GCM are able to utilize
this knowledge to give better estimates of EIT. However, the null message based GCM
does a better job of exploiting this knowledge since it combines it with the knowledge
of communication topology. Hence, if the communication topology is sparse, message
communication is regular, and lookaheads are good, it is preferable to use null message
based GCM. However, if the topology is dense, there are small number of messages
in the system or the communication is irregular, and the lookaheads are bad, a GVT
based GCM would perform better. In case of these characteristics changing during
the execution, either the GCM can be dynamically switched, or a combination GCM
( which uses both null messages and GVT, and computes the maximum of the EIT

values obtained from both) can be used.

9 Related Work

The efforts in combining the optimistic and conservative protocols have thus far con-
centrated on either adding limited amount of optimism to conservative protocols, or
limiting the optimism of the optimistic protocols. The methods in the former class

[Dickens 91}, [Steinman 92] allow processes to compute messages optimistically, but,
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potentially erroneous messages are not sent to other processes. The methods in the
latter class [Sokol 88], [Reiher 89] attempt to reduce rollbacks by preventing certain
LPs from progressing too far into the future. A third approach consists of forming
clusters of LPs, using an optimistic protocol within each cluster, and a conservative
protocol for inter-cluster synchronization [Rajaei 93]. The most promising approach,
in our opinion, is one which allows different parts(LPs) of the system to choose, dy-
namically, to be either optimistic or conservative. Composite ELSA [Arvind 92] is
one such protocol. However, it requires each message to contain extra information
(to specify whether it is certain or guessed) whose processing may constitute ex-
tra overhead. Additionally, it requires the communication topology to be statically
determined.

Introducing conservative LPs in an optimistic system can be compared to the
throttling mechanisms described in (Reiher 89]. In Window based throttling, all the
LPs in the system are allowed to process events only with in a spéciﬁc time window.
The problem with this approach is that it penalizes the LPs doing correct work also,
along with those doing incorrect work. Also, the window size is sensitive to the
application and the actual timestamps of the messages. The penalty based throttling
tries to alleviate this problem by penalizing specific LPs that have done incorrect
work (measured by the number of negative messages sent) recently. However, the
problem in this case is that the only choice available is either to schedule a penalized
process (in which case it continues to do incorrect work, and also incurs the overheads
of state saving etc.) or to not schedule it all (in which case it does no work at all).
CON-OPT provides the alternative of allowing it do guaranteed correct work (by
making it conservative). Other advantages of CON-OPT include the possibility of
using GCMs other than the GVT based GCM used in the throttling mechanisms.
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10 Conclusion and Ongoing Research

We have described a distributed simulation scheme in which various logical processes
executing in either optimistic or conservative modes can interact with each other
correctly. The processes are also allowed to change their mode of execution on the
fly.

Our protocol allows the user to combine the features so far thought to be charac-
teristic of optimistic methods like dynamic configuration with conservative processes.
Similarly, it allows optimistic processes to take advantage of features normally asso-
ciated with conservative LPs e.g. exploiting the knowledge of lookahead and commu-
nication topology. Any of these features can be used in conjunction with a mix of
conservative and optimistic LPs too.

Presence of a conservative process amongst optimistic ones doesn’t restrict the
progress of the optimistic ones in a big way. The optimistic processes won't receive
the (possibly incorrect) messages from the conservative process that they would have
received had the process been optimistic. However, they can still receive and process
possibly incorrect messages from the optimistic processes and the correct messages
from conservative processes, without blocking, which they would not have been able
to if they had been conservative. The other thing that might happen is that the
fossil collection in the optimistic processes might be delayed because the presence of
a conservative process might lower the value of EIT computed.

Currently, CON-OPT allows only one GCM for the whole system (different LPs
could be using different LCMs). We are working on extending it to allow different
GCMs for different clusters of LPs, also allowing them to switch the GCM. We are
in the process of implementing CON-OPT on a parallel architecture. Based on the
insights gained from running different types of benchmarks on this implementation.
we would formulate and implement policies to transparently switch LCM and GCM

of individual LPs, and cluster of LPs.
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