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Abstract

Performance-driven interconnect design is a major concern in the synthesis of VLSI systems.
Delay estimation models are crucial in determining both the topology and the layout of good
routing trees. In this paper, we address the class of moment-matching, or moment represen-
tation, methods which have been used for the simulation of interconnects that are modeled as
distributed RC or RLC lines. We provide new optimal 2- and 3-segment equivalent circuits for
the distributed RLC and distributed RC models. Our equivalent circuits approximate a dis-
tributed RLC structure accurately up to second degree terms, i.e., we obtain the exact first and
second moments, and the third moment is almost exact. We have assessed the significance of
our contribution by using a two-pole methodology to calculate the voltage response. Our results
show that the previous approximate two-pole methods are off by at least 18%, even for the small
test cases studied in previous papers. As routing trees become bigger and interconnection lines
become longer, the advantage of our approach over previous approximate methods, both in ac-
curacy and simulation complexity, becomes highly significant. The improved accuracy afforded
by our results is particularly important for the design of high-speed systems.

1 Introduction

Accurate calculation of propagation delay in VLSI interconnects is critical to the design of high
speed systems and to performance-driven routing. Direct simulation codes such as SPICE can
be used for the simulation of any circuit, but cannot provide either the efficiency or the physical
intuition needed for layout design. At the same time, simple lumped or “distributed-lumped”

models are less effective for interconnection delay estimation as operating frequencies approach
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the order of GHz (a good review of lumped and distributed RC models is given in [Kum80]).
There are also numerous analytical methods for approximating the voltage response of a single
distributed line, as reviewed in [ZPK91], but these methods do not easily extend to the delay

analysis of arbitrary networks or even tree topologies.

Of particular interest is the class of moment matching approaches, which provide acceptable

accuracy without sacrificing computational efficiency. Examples of this approach include:

o Horowitz [Hor84] proposed a method for estimating the delay through RC trees using both
single-pole and two-pole methods: he calculates the poles of the estimated system response
from the first and second moments of the main path (i.e., the unique path from the input
node to the output node) in the RC tree. His paper with Rubinstein et al. [RPH83| points
out that for delay analysis of RC trees, each distributed RC line should be replaced by a

finite number of lumped RC segments to achieve the required accuracy.

e Zhou et al. [ZSTGC92] considered the polynomial describing the poles of a distributed
transmission line that is modeled as a single RLC segment driving a small capacitive load.!
Based on this model, the voltage response in a general interconnection tree is computed
from the two dominant poles. To achieve improved accuracy, the authors of [ZSTGC92]
propose modeling each tree branch by many shorter segments (but this deviates from the
underlying assumptions in that not every branch of the tree drives the small capacitive

load).

o McCormick [McCB89| also proposed a general technique for approximating the time-domain
response of a system from its moment representation, using basic waveforms which are lin-
ear, exponentially decaying, underdamped decaying, etc. This method of obtaining wave-
forms whose moments match those of interest can be used instead of the more traditional

two-pole techniques in [Hor84] [ZTG93].

From the recent literature it is clear that moment-matching methods have become increasingly
attractive due to their combined efficiency and accuracy. For example, the simulator of Zhou et

al. [ZSTGC92) is characterized by its authors as giving delay estimates within several percent of

1This model was proposed in [ZPK91]; it assumes that the input to the transmission line has linear  — V
characteristics and uses a single RLC segment to model the distributed transmission line.



SPICE; this simulator has been widely distributed, and was used for delay simulations in recent

works such as [BKR93] [CLZ93].

The motivation for our present work is simple: the accuracy of any moment-based method
depends upon the accuracy of the moment computation itself. For simulation of interconnect
trees existing moment-based methods use “distributed-lumped” - i.e., uniformly segmented -
representations (e.g., L, T or II circuits). (For example, both Horowitz and Zhou et al. use L
segments to model each branch of the interconnect tree.) For such uniform representations, one
can show that the moments are perfectly captured only as the number of segments used approaches
infinity, which is computationally unreasonable. When only a finite number of segments are
used, the moments will be either underestimated or overestimated depending on the type of
segment (T, I or L). Beyond the need to use only a finite number of segments, other inaccuracies
may stem from the underlying analysis itself: for example, Zhou et al. [ZSTGC92] analyze
the step response, but use a somewhat incompatible underlying model [ZPK91] for the I — V
characteristics. Moreover, it is clearly impossible to obtain the correct first and second moments
for a tree when only the polynomial describing the poles of a single RLC segment is used (see
the discussion below). Thus, the response calculated by [ZSTGC92] is highly approximated; it
moreover becomes somewhat impractical when used for trees with long wire segments (e.g., on

an MCM substrate, where the RLC lossy transmission line model is particularly relevant).

In this paper, we develop very accurate non-uniform equivalent circuits for both the dis-
tributed RC and the distributed RLC transmission line models. This concept is originally due to
Rajput [Raj74], who proposed an equivalent circuit model with two L segments to approximate
the response of a distributed RC line. The response of Rajput’s equivalent circuit was found
to be within 3% of the correct distributed response for a step input. Moreover, his equivalent
circuit exactly matches the first and second moments of the distributed RC line, i.e., the transfer
function exactly matches that of the distributed RC line up to the coefficient of s2 in the transfer
function. Clearly, this is very desirable in a moment-matching methodology. Furthermore, a
computational win arises in that two non-uniform L segments achieve the exact accuracy that
would require an infinite number of uniform L segments. Sakurai [Sak83] has observed that the
use of such an equivalent circuit is not always appropriate, since it cannot predict the corrlect

response when the line is driven bidirectionally. However, in most routing tree design problems,



the source and sinks are fixed and the direction of signal flow is known.

In the following, we present new non-uniform three-segment models which are highly accurate
up to the third moment for both the distributed RC and the distributed RLC transmission
line models. We find that our non-uniform three-segment models essentially match exactly the
corresponding distributed transfer functions. To evaluate the effect of our equivalent circuits in
the context of previous moment-based methods, we use the simple two-pole method and obtain
the voltage response for a small tree network studied in [ZSTGC92). We find that the previous
“two-pole” delay estimates of [ZSTGC92] have over 18% error for this instance. Qur new non-
uniform equivalent circuits can also be employed in place of the lumped T and II models that
are traditionally used for clock skew minimization [Eda93] and other routing applications. For
moment-matching approaches, our equivalent circuits use only two or three non-uniform RLC
segments to achieve the same accuracy as a very large number of uniform segments; this results
in very substantial complexity savings. Moreover, the improved accuracy afforded by our results

is of particular significance in the design of high-speed systems.

The remainder of this paper is organized as follows. In Section 2, we define the moments of
a system and express them using the coefficients of the s terms in the system transfer function.
Section 3 then discusses various uniform segmented models used for approximating the response
of a distributed transmission line. In Section 4, we develop non-uniform segmented models which
accurately capture the moments of the distributed RC and RLC models; Section 5 compares
the uniform and non-uniform models for a simple tree example. Finally, Section 6 compares our

methodology with the previous two-pole method of Zhou et al. [ZSTGCS92].

2 Moment Representation of the System Transfer Function

The relationships among the moment representation, the Laplace transform of the response, and

the time-domain of response are very well discussed in [McC89).

In a linear system the transfer function H(s) = ‘;,"'—‘r‘:{%l gives the relationship between the

output response V,,;(s) and the input response V;,(s).



The system transfer function H(s) is related to the impulse response A(?) by the equation

H@):Lweﬂmamt

Without loss of generality, the transfer function for any linear system can be expressed as a ratio

of polynomials in s, that is to say,

14 a8+ azs? + azs® + ...

H =
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where K is the DC (zero frequency) gain.
The #** moment of the linear system is defined as
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where H()(0) is the i*h derivative of H(s) at s = 0.

Assuming Vo:(0) = 0, the Laplace transform of the derivative of the output voltage response
for a unit step input is v,,(t) & sViu(s) = s- 1H(s) = H(s) © h(t). Therefore, the transfer

function can also be written as
H) = [ e tal i
0
Expanding e~*! into a Maclaurin series,
, &3
H(S) = / out(t)dt - -_/ tvout(t)dt + / t out(t)dt 31 j out(t)dt +
By identifying the integral quantities as moments Mo, My, My, M5 etc. from Equation (2),

H(s) = (Mp— sM, + s* My - s° M3 + ...) (3)

Therefore moments can also be defined as

j £10),(2)dt (4)

We see that the moments of any system can be calculated using the definitions given in Equa-

tion (2) or in Equation (3), or by comparing with Equation (4).

Before going further, we note that the Elmore delay, which is defined to be the first moment

(M) of the system impulse response (i.e., the coefficient of s in the system transfer function



H(s)), has received a great deal of attention in the literature. Note that Elmore delay is a first-
order approximation and corresponds to a single dominant pole approximation of the response.
However, many routing tree techniques [BKR93], [CLZ93] are based on the Elmore delay model.
It is well known that Elmore delay is a good analytical representation of delay, but it does not
afford any measure of delay with respect to a given threshold voltage [RPH83]. Methods which
calculate more than one dominant pole from the moments of the system, e.g., [ZTG93] [Hor84],

will lead to a second- or higher-order approximation with improved delay estimates.

The System of Interest: Distributed RLC or RC Transmission Line

Clearly for any RLC network the coefficients a; and b; of the transfer function are in terms of the
R, L,C circuit parameters (see Appendix A). In Appendix B, we show the relationship between
moments and the coefficients a; and b;. Here, we seek simple equivalent circuits for the widely

studied case of the open-ended distributed transmission line.

O Distributed RLC line O
v o i 1(t) lz(t) vy ®
O O

Figure 1: 2-port model of a distributed RLC line.

The ABC D parameters of a distributed RELC transmission line (Figure 1), are [Dwo79]:

Vits) \ _ [ cosh(Bh)  Zosinh(8h) \ { Va(s) '(5)
Ii(s) ) ~ \ gz;sinh(6h)  cosh(fh) I(s)
where 8 = /(r + sl)s¢, h = length of the line and r = %, = % and ¢ = % are the resistance,

inductance and capacitance per unit length.

Since I5(s) = 0 for an open-ended distributed RLC lkine the voltage response at the end of the

line is

Vi(s)
Va(s) = ——+— .
2(s) cosh(8h)

Therefore, the numerator polynomial of the open-ended transfer function for distributed RLC



Distributed Line Model
Coeflicients RLC | RC
b1 BC - 0.50RC BC = 0.50RC
b, (RO 4 LC _ 0.0417(RC)? +0.50LC | B9 — 0.0417(RC)?
ba (BOY | BLC? _ .0014(RC)* + 0.0833RLC? | EEL = 0.0014(RC)?

Table 1: Coefficients of s’s for both distributed RLC and RC models.

line is just a constant (i.e., all a’s = 0) and is given by

H(s)

1
cosh(y/(R + sL)sC)

1

1+ (R+;,!L)sc + (R+5L2!2(56')2 + (R-I-sLG);(sC)S + ..

1

14 Bl + (U0E 4 I0)s2 4 ((BRF 4 B2)s0 ¢

720 12

(6)

The coefficients of s’s for a distributed RLC line are tabulated in Table 1. The analogous coeffi-

cients for the case of a distributed RC line are obtained by substituting I = 0 in Equation (6).

3 Uniform Segment Models

We now discuss the open-ended transfer functions for various lumped models such as L, T or

II models, which have traditionally been used to approximate the behavior of the distributed

transmission line. Since the analyses for for T and II are very similar, we will discuss only the

case of T circuits.

3.1 Uniform L Segments

The open-ended transfer function for two uniform L segments (Figure 2} is

HgL(S) =

1

14 3(Ry(Ch + C2) + RCa) + 2By RC1 C

7



G = & O

Figure 2: A distributed RC line modeled using two uniform L segments.

When resistance and capacitance values are uniformly divided between the segments, we substi-

tute Ry = Ry = R/2 and Cy = C2 = C/2 into the above equation and find

1

Har(s) = 3 (7)
14 %s + L%Lsz
Ry Ry R3
SR R SR
e & & &—o0

Figure 3: Three L-type RC segment model for a distributed RC line.
Similarly, the open-ended transfer function for three uniform L segments (Figure 3) is

1
1+ Sbl + Szbg + 8363

HgL(S) =

where
by = (R1(Cy + Ca + C3) + Ro(Cy + C3) + R3C3)
by = (R1R2C1C3 + R1R3C1C3 + RaR3CaCa + R R3C3C3 + R1R2C1C3)

b3 = R] Rz R3Cl 0203

Substituting Ry = Ry = Rz = R/3 and Cy = €3 = C3 = C/3 into the above equation, we get

1
2 3
L+ 2Cs 4 AEEst + (ks

Hii(s) = (8)

8



As the number of segments tends to infinity, the L type model approaches the RC distributed
line model given in Equation (6) with L = 0. We have proved that as N — oo, by, by and b3 all

tend to their respective values given in Equation (6) (details are given in Appendix C).

b.3x103
1.82 I T T
1.80 — . -
1.78 } -]
1.76 |- 3 —
174l b _
172 } =
1.70 H -
1.68 |- i .
1.66 [ i —
1.64 |- % -
162 - \ —
1,60 [ \ —
1.58 |- ' —
1.56 |- LY —
1.54 N, —
152 "\ -
1.50 - . ]
1.48 - S -
146 — —
144 — —
142 |- _
1.40 —
138 —
136 [ | 1 | a 1
0.00 20.00 40.00 60.00 80.00 100.00

# of Segments

Figure 4: Convergence of b3 (the coefficient of s?) with respect to uniform L segments. The
correct value of b3 is 1/720 = 1.39X 1073,

The convergence of b3 is plotted for different numbers of uniform segments, Figure 4. Interest-
ingly, b3 is not monotone with respect to the number of segments. From the Figure, we see that
the coefficient b3 is close to its optimal value of 1/720 when there three uniform segments, but

then increases to its maximum error (seven uniform segments) before decreasing. For example,



using 10 uniform segments to approximate the behavior of a distributed RLC line entails error
in the coefficient b3 of around 25%. At the same time, the error in b is around 10% and that
of by is 20%, also for the 10 uniform segment approximation. The corresponding errors in the
first moment and second moment are 10% and 20%, respectively. Since the voltage responsé is
exponentially dependent on these moments, the resultant error in the response can be quite high.
As we show below, it is always better to use non-uniform segments which can more accurately

approximate the transfer function of the distributed line.

3.2 Uniform T Segments

Ry Ry R3 Ry
Cq :: G ::
G— & S & O

Figure 5: Two uniform T segments model for a distributed RC' line.

The open-ended transfer function for two uniform T segments (Figure 5) is

1
1+ $(R1(C1 + C2) + (Ry + R3)C2) + s2Ri( Rz + R3)C1C

Substituting the uniformly distributed resistance and capacitance values R1 = Ry = R3 = Ry =

(9)

HQT(S) =

R/4 and C1 = Cy = C/2 into the above equation yields

1

Har(s) = (10)
14 82+ L%B—.ﬂ
Ry % % R Ry R

. L . 1

(=4 -4 €

¢
g

Figure 6: 3 T segments model for a distributed RC line.

Similarly, the open-ended transfer function for three uniform T segments is (Figure 6) is,’

10



1

H =
a7(s) 14 bys + bys? + b3s?

(11)

where

by = Ry(C1+ C2+ C3)}+ (Re + R3)(Ch1 + Ca) + (Ra + B5)Ca
by = (R1{R2+ R3)C1Ca+ Ri(Ra+ Rs)C1Cs+( Ra+ R3)(Ra+ R5)C2Cs+ Ry ( Ryt Rs)C2C3+ R (Ro+ R3)C1Ca)
bs = Ry(R2 + Ra)(Rs + Rs)C1C2C3

Substituting the uniformly distributed resistance and capacitance values By = K3 = Rz =

Ry = Rs = R¢ = R/6 and C; = Cy = C3 = C/3 into the above equation yields

1
3
1+ 525+ Okt + (ks

Har(s) = (12)

Sakurai [$ak83] showed that for both the T and II models, the open-ended transfer function
also converges to the distributed RC transfer function as the number of segments tend to infinity,
i.e., all the moments will converge to their respective values given in Equation (6). A comparison
of various lumped models approximating the distributed RC line is given in Table 2. It is clear
that for any finite number of segments the uniform 7" segments underestimate the coefficient of
5%, while the uniform L segments overestimate the coefficients of s and s? in the denominator of
the transfer function. While we have only presented the analysis of various lumped RC models,

we have also extended our study to lumped RLC models; this analysis is summarized in Table 3.

4 Non-Uniform Segment Models

Rajput [Raj74] proposed the following equivalent circuit, composed of two non-uniform L seg-

ments, for a distributed RC line. The circuit element values (refer to Figure 2) are given by

1 3
Ri=<R, R=3R

2 1

= ¢ ==

Cl 3 L] 02 3

and the open-ended transfer function for this equivalent circuit is given by

1
1+%3+L}%?352

HRajy(8) = (13)

11



Thus, the open-ended transfer function of a distributed RC line (Equation (6)}) is captured
exactly up to the coefficient of s?, i.e., the first and second moments are exactly the same as
for the distributed RC line. From the convergence analysis of by, b2, b3 in Appendix C, we know
that uniform segments can achieve this accuracy only as the number of segments tends to infinity
(N — 00). Since the accuracy of the two-pole method [ZTG93] [ZSTGC92] depends on the
first and second moments, use of this non-uniform equivalent circuit to model the interconnect
lines in tree networks will lead to improved delay estimates. In this section, we will calculate

non-uniform equivalent circuits to estimate the higher moments and also extend the technique

to RLC models.

R;=0.30R Ry=0.20R R3=0.50R
C;=040C — — Cy=044C C3=016C — —
o & & &—0

Figure 7: Non-uniform three L segment model for a distributed RC line.

4.1 RC Segment Model

For three non-uniform L type RC segments as shown in (Figure 7), we solve for the values of
the resistances and capacitances by calculating the open-ended transfer function and the open-
circuit input impedance; this leads to 7 equations with 6 unknowns, an overspecified system (see
Appendix E). Since there are no solutions to this system of equations, we have used numerical
techniques to minimize the squared error in the b, by and b3 values. We thus obtained the

following circuit parameters:
Ry =0.30R, R;=020R, R3=050R

Cl = 0.400, Cz = 0.440, 03 = 0.160

The corresponding coeflicients of s’s in the transfer function are

by = 0.50RC, by = 0.0416(RC)?, b3 = 0.0009(RC)*

12



These values are extremely close to the exact values given in Equation (6), and we can
improve the accuracy of coefficients of 8’s by extending the precision to which we express the
circuit parameters. The contrast between non-uniform and various uniform RC' models used for

approximating the behavior of the transmission line is also shown in Table 2.

R;=R/4 L=L/4 Ry=3R/4  Lo=3L/4

oMW EEN——o— AN EE—————o

Cy=2C/3 Cr=C/f3

© O & o)

Figure 8: Non-uniform two L segments model for a distributed RLC line.

4.2 RILC Segment Models

Extending the equivalent-circuit technique to an RLC model is straightforward (see Appendix

E). For two non-uniform RLC segments (Figure 8), we obtain the following values for the circuit

components:
R = -l-R R §R
1= 4 3 2 = 4
1 3
Li=-1L, Ly=-L
1Ty T
2 1
Ci= §C, Cy= §C
for which the corresponding coefficients of s’s are
1
b]_ = ERC
1 1
by = — L T
2 24(RC) + 2LC'
1 2
by = 1—2-RLC

In other word, the open-ended transfer function for these two non-uniform RLC segments is

1

H(s) =
1+ 805 (BEE + LO)s2 4 BLE 3

(14)

By comparing Equation (14) with Equation (6), we see that two non-uniform RLC segments

can obtain the first and second moments exactly. Notice the similarity of the inductance values

13



to the corresponding resistance values. We offer the conjecture that in any optimal non-uniform

RLC equivalent circuit the distributions of the resistance and inductance should be the same.

We have also numerically optimized the equivalent circuit with three non-uniform RLC seg-

ments. The optimized circuit elements are
R, =030R, R;=020R, R3=050R
L;=030L, IL2=020L, L;=0.50L
C, =040C, C;=044C, C3=0.16C
which imply the following coefficients in the transfer function:

b, = 0.50RC

by = 0.0416(RC)? + 0.50LC

bs = 0.0009(RC)* + 0.832RLC?

Therefore, the open-ended transfer function for the three non-uniform RLC segment model
is
1

RC (RrC)? Lc RC)3 RLC?
1+ 5%+ (G- + )8 + (%H_l.}ﬁ + 9567 )5°

H(s)= (15)

Our non-uniform three-segment RLC model obtains the first and second moments exactly,
and the third moment almost exactly. Table 3 provides a comparison of non-uniform and uniform
RLC models used to approximate the distributed RLC model of the transmission line. Using
these non-uniform equivalent circuits in a higher-order approximation of the transfer function
will yield a more accurate voltage response than using any number of uniform segment models

(i.e., the approach used in [ZSTGC92]).

4.3 The Complexity Win

For large routing trees, using non-uniform equivalent circuits for a distributed RLC line will
reduce the computation time significantly compared to using a number of uniform RLC segments.
Recall that previous works suggest using k segments to model each interconnect line (for instance,

[CLZ93] divides each line into 25um segments and then models each segment using a uniform L

14



[ Method [6 [ b2 | b3 |

. N 2 3
Distributed RC % %)— U;—%)—
Line Model
One uniform L segment RC 0 0
Z
Two uniform L segments %": L%)— 0
N z 3
Three uniform I segments % ﬂ%L %l—
One uniform T segment ‘—ng 0 0
Z
Two uniform T segments %ﬁ %)— 0
. Rc | (RC)* (RC)?
Three uniform T segments 3 57 453
Zz
Two non-uniform L segments % L}%— 0
; ) 3
Three non-uniform I segments” % LfT%)T i(%)ﬁ

Table 2: Various models approximating the open-ended transfer function of distributed RC
line.* These values are computed numercially, since the corresponding system of equations
is overspecified.

type RLC circuit), and for MCM interconnects k can be very large. Let N be the total number
of interconnect lines from the input node to the output node (i.e., on the main path). From
the expressions given in Appendix A, the computation time of b; is O ((kN )?), that of by is
O ((kN)Y*) and that of b3 is O ((kN)®). Using two non-uniform segments the computation time
will be reduced to O(N?) for by, O(N*) for by and O(N®) for b3, which will be a very significant
reduction if the interconnection tree is large or if accuracy is desired. As we pointed out earlier,
to achieve the accuracy of the non-uniform models, the number of uniform segments required is
infinite (k = 00). With 10 uniform segments, the errors in the first and second moments are 10%

and 20%; even with 25 uniform segments these errors are still 5% and 8%.

5 Sample Analysis: A Small Tree Circuit

15



T Method (6 | b | bs |

et RC RCY | LC RC)Y |, RLCZ
Distributed RLC T -(—2;)— + &4 fﬁ])_ + BLL
Line Model
Two uniform L segments anc iﬂl%)i + 3LC 0+ .Elé_c'z

Z 3
Three uniform L segments 3’;—0 ﬂ%})— + -LTC (RC)” | 10RLC?

729 81
Two uniform T segments RC %ﬁ + & 0+ R—’{'E—Z
Three uniform T segments R—ZC iRTC;)i + ['2_0 %?si 2321_}02
Two non-uniform L segments R_20 1%%2 + % 0+ R{fz

j RC | (RCY | Lc | (RC)* | RLC?
Three non-uniform I segments 5 2+ 5 Tt iz02

Table 3: Various models approximating the open-ended transfer function of distributed
RLC line.

O
B

A
ORS

C  Output
Driver O

Figure 9: A simple tree with three transmission lines.

To show the practical impact of the non-uniform equivalent circuit, we now show the inaccuracy of
uniform segment models when applied to the small tree shown in Figure 9. For the tree analysis
we use the same approach as [ZSTGC92], which identifies the main path between the input
node and the output node and then replaces all off-path branches by their respective capacitive
impedances. The simple tree we consider has three transmission lines A, B and C; the driver is

connected to the front of line A and the output node is at the end of line C. Therefore, line B is

16



an off-path branch and will be replaced by an equivalent capacitive load at the intersection point

X.

Case 1: One Uniform L Segment. Replacing each tree branch by one RC segment and the
off-path branch by its capacitive impedance, we obtain the following the transfer function for the

main path:

1

His) =
(s) 1+ $(RsC4+ RaCp+ RaCc + RoCc) + 82 RaRc(Ca+ CB)Ce

(16)

Case 2: Two Uniform L Segments. Using two uniform L segments to model each tree branch,

the transfer function of the main path is:

1
14 by8+ bys? + ...

H(s)= (17)

where

3 3
by = ZRACA + R4Cp + RaCc + ZRCCC

B = (RAC'A)2 N R2AC’ACB + 9RAR-CaCe n 3RAR-CgCe N (RcCC)2
: - 16 8 16 4 8
RARCC% . RZCACC
16 8

Case 3: One Uniform T Segment. Replacing each tree branch by one T segment, the transfer

function for the main path is

1

H =
(S) 14+ b]S 4= b282 + 6333

(18)
where

1 1
by = §RACA + RaCp + RaCc + ERCCC‘

RiCACB RAR-CaCc RaRcCBCe RzACACC
+ + +
4 4 2 4
RARcC4CpCe

8

by =

bgz

Case 4: Non-uniform Two L Segments. Using the two non-uniform RC segment model for

each tree branch, the transfer function of the main path is

17



1

H(s) = 1+ b8+ bes? + ...

19)

where

1 1
by = ERACA + RaCp+ RaCc + ERCCC

b = (RACA)? + RiCACB + RARcCaCe N RAR:CaCyc + (R0CC)2
2 24 8 4 2 24

From the transfer function of a distributed RLC line given in Equation (6), we know that
the effect of the branch A should be -B-AiQA in the coefficient of s, i.e., in by, and the effect-on
b, should be @-“%ﬁ. By comparing Equations (16) - (19), we see that the coefficient of s is
correct only in Case 3 (one uniform T segment) and Case 4 (two non-uniform segments). The

coefficient of s? is correct only in Case 4. Again, note that all previous approaches based on

pole calculations use uniform L, T or II equivalent circuits in the delay calculation.

6 Experimental Results: Two-Pole Method for Tree Analysis

In this section, we give a stronger demonstration of the effect of equivalent circuit models, by
considering the “two-pole” simulation methodology. Zhou et al. [ZPK91] proposed an analytical
approach for calculating the dominant poles for a single transmission line by using a single
RIC segment as the underlying model. In their analysis, they assume a linear model for the
sources I — V curve and obtain a polynomial describing the poles of the transmission line. By
making various assumptions about this polynomial, they obtain the poles of interest ([ZPK91},
p. 781). Based on this work, Zhou et al. [ZSTGC92] then compute poles of a tree of general
RLC interconnection segments. Since the polynomial obtained in [ZPK91] is based on a single
RLC segment, the coefficient of s2 (i.e., b2) will not have any (RC)? term. Thus, order to
improve the accuracy, [ZSTGC92]) use multiple RLC segments to model each distributed line.
The polynomial used in their calculations is given by ([ZSTGC92], p.11):

I
(?C + ch) s+ (% + RC, + Ro(C + cg)) b =0 (20)
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Figure 10: Unit step response at node 6 of the tree shown in Figure 10, using both uniform
and non-uniform models and the two-pole approximation. Here, driver resistance is 10£.
7ZSTGC is the previous approximate method of [ZSTGC92), and “Two-Pole” is the standard
method discussed in the standard method proposed in [Hor84] [ZTG93].

which can be expressed in the form

1'232 +7M8+ =0

For the tree analysis, the first and second moments are computed as described in Appendix B,
and then matched as first moment for 71, and second moment for 7. There is no clear relationship
between the first and second moments and the 7y and 7 values, except for the case of a single

transmission line.

Here, we calculate the voltage response for interconnection trees with the non-uniform segment
model, using the standard two-pole approximation for the system transfer function developed by

[Hor84] [T G93]. The system transfer function in terms of the poles is approximated by
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Figure 11: Unit step response at node 6 of the tree shown in Figure 10, using both uniform
and non-uniform models and the two-pole approximation. Here, driver resistance is 15012

where s1, 83 are the poles and kq,k; are the coeflicients corresponding to the poles. (Appendix
D describes the poles and coefficients in terms of the moments and also gives the expression for
voltage response.) For the tree analysis, we first identify the main path from the source to the
output node and then replace all off-path subtrees by their respective capacitive loads [ZSTGC92].
The delay computed in this way is clearly an upper bound on the exact delay. Using this two-
pole methodology we compared the non-uniform and uniform segment models. We plotted the
voltage response at Node 6 of the tree interconnection layout studied in [ZSTGC92] (Figure 12),
for different models and using different driver resistances. Note that in [ZSTGC92], they calculate
the response assuming a driver resistance of 10{2. (This is perhaps not very realistic: as noted
in [ZPK91] [WES8], a more appropriate driver resistance is in the range of [20092,400092].) The
voltage response for the driver resistance of 10€2 are given in Figure 10. Similarly we plotted the
response for a driver resistance of 1502 (Figure 11). In these plots, the previous delay times for

90% threshold voltage are off by around 14%.

To demonstrate the increase of error for longer interconnects, we used the same tree but

20



scaled the length of the branches (edges) between nodes (1,2) and betweer nodes (2,3) by a
factor of 10. All other branch lengths were kept the same. The response at Node 6 is given
in Figure 13, and the error in the 90% threshold delay between two uniform RLC segments
and non-uniform RILC segments is around 18%. As the driver resistance decreases or as the
wire length increases, the difference between these models becomes much more significant. For
high-speed systems, or MCM layout applications where the wire lengths become very large, our
non-uniform segment model will allow improved accuracy and efficiency when compared with

previous two-pole methods.

7 Conclusions

For high-speed systems, accurate estimation of the propagation delays due to interconnects is
one of the main obstacles for correct system implementation. In this paper, we develop compact,
optimal equivalent circuits for estimating the delays in single RLC interconnects and interconnect
tree topologies. These equivalent circuits are calculated either analytically or else using numerical
techniques when the governing system of equations is overspecified. Our non-uniform RLC
segment models approximate the transfer function of the distributed line very accurately using
only two or three segments; moreover, the same technique can be used to derive equivalent circuits

for a distributed RLCG model of the transmission line.

We give a practical demonstration of our technique’s advantages, in the context of the two-
pole approximation approach [Hor84] [Z§TGC92] [ZTG93] (which uses the first two moments).
Since the first and second moments are matched exactly by our new non-uniform models, we
obtain very accurate delay estimates that would be possible only with a very large number of
uniform segments. We show that the delay estimates of previous methods [ZSTGC92] are in-
correct by anywhere from 14 to 20%, even for a very small routing topology. Such differenceé
are very significant for critical timing analyses in the design of high-speed systems. We believe
that the non-uniform equivalent circuits can be useful in place of the lumped T and II models
that are traditionally used for delay estimation, clock skew minimization [Eda93] and other rout-
ing applications. Moreover, the evaluations of existing routing tree techniques (such as Elmore
routing trees [BKR93) or A-trees [CLZ93]), whose delays were measured using the technique of

[ZSTGC92], may change. Finally, there is an obvious complexity reduction since our method
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uses only two or three segments instead of many segments.

So far in the analysis, we used only the two dominant poles for the calculation of the voltage
response. We can extend the application of our result to obtain a more accurate analysis, bsr
including additional dominant poles and zeros, and also by using a higher-order approximation for
the system transfer function. Computation of higher moments (e.g., M3, My, etc.) is required for
the analysis of these higher-order transfer functions. As an example, retaining the assumption
of two dominant poles with a higher-order system, we would have a transfer function of form
H(s)= (s_f].;j + Ts_fi;v For the voltage response calculation of the above system, we need only

the first three moments to establish the boundary conditions.
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Figure 13: Unit step response at the node 6 in same tree topology as that of Figure 10, with
the branches (edges) between nodes (1,2) and between nodes (2,3) scaled by a factor of
10. Again, we compare uniform and non-uniform models using the two-pole approximation;
driver resistance is 15042,
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Appendix A: Calculation of the Coefficients of s Terms in the
the Denominator Polynomial of the Transfer Function

In this Appendix, we derive the values of by, by and b3, which are respectively the coeflicients
of the s, s? and s® terms in the denominator polynomial of Equation (1), in terms of the R, L,
and C circuit parameters. (For the distributed RLC line, all coefficients 4; in the numerator
polynomial are identically zero.)

Vel Ry Ly v Rwa Wl Ry L vy R Ly v

‘"'JT _l_

O 2 & - £ £

Figure 14: N-segment distributed RLC transmission line model.

Consider a single RLC transmission line that is modeled with N segments. These RLC
segments are connected as shown in Figure 14. For this structure, Gao et al. [GZ93] have shown
that the input voltage Vi 11(s) can be written as

N
Vivaa(s) = (Rv + sLn) 3 sCiVi(s) + Vn(s) (21)
i=1
Thus, Vx41(s) can be expressed as a series in s, Le.,

N
Vnei(s) = VA()(1+ D b;)

=1

Va(s)(1 + bys 4 bas® + 038 +...) (22)

From Equation (21), we see that the coefficient of s in Vi 41(s) is given by the coefficient of s in

Vn(s), plus Ry times the summation Z;V:l C;- (constant terms in Vj(s)).

We will use the notation b‘y +1 {0 denote the coefficient of s in V%ﬁ‘;gﬂ, i.e., the transfer

function at node (N + 1). Thus, we have

N
bf]"'l = RNZCj 4 bV

i=1

From Equation (22), we see that b‘;v *1is simply & . Therefore,

N N-1
by = RNZCJ'+RN_.1ZCJ'+...
=1 7=1
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x (o)

i=1
By changing the order of variables in the double summation, we abtain

ZQZR (23)

=1 i=j
To obtain an expression for by, we return to Equation (21), where we see that the coefficient
of s* in Vy41(s) can be written as the sum of three terms: (i) the product of Ry times the
summation E;-V:l C;- {coefficient of s in Vj(s)); (ii) the product of Ly times the summation
Ej-\;l C; (constant terms in Vj(s)); and (iii} the coefficient of s? in Vn(s). Using the same

notation as above:

N _ N

Therefore,
N -1 -1 N=-1 -1 j-1
by = [RnY_C; (Z Ci(> Rd)) +Bn-1), Cj (Z Ci(3 Rd)) +
j=1 =1 d=t j=1 =1 d=t
N-1
+[LNZCJ 4+ Ly Z C; +
=1 =1
N i 3-1 i-1 {
= [Z Ry (Z C; (Z Ci(z Rd)))] + [Z L (Z CJ)
=2 i=1 1=1 d=i J=1

Again, we rearrange the order of summation to obtain

bz_Zc ZR;ZC’ ZRd+ZC S L (24)

=2 I=; i=1 i=1 {=3

Finally, a similar analysis yields

N . N .
by = b = Rp(S_ G505 + En (D Gy -6 + b8
i=1 j=1
from which

by = [RN(iCJ (ch jE_:R;pX:C ERHZC ZL;))+RN_1...]

i=1 = I=p i=1 d=i i=p
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+[Ln (i C; (E ijz: Rl)) + Ly_1.-}

i=1 1
N q j-1 i-1 p-1 1 1 j-1
= DR, (Zqr (}:C,,ER;EC,ZRd+ ZC,,ZL;))
q=3 J= 2 I=p i=1 d=i 1 I=p
N N i1 i-1
+>° L, (E C; (Z Gy, R;) )
q=3 i=1 1 i=p
Again rearranging the variables in the first two summations, we obtain
Jj-1 -1 p—1 -1 N N j—1 -1
ZC ERQZCPZRIZC.ZR¢+ZC,ZRQZC,,EL;
] g=7 p=2 I=p =1 i= q= p=1 I=p
N j=- i—-1
+ZCJELQZ YR (25)
q=J =1 I=p

and in general, by is given by

by —bN"'l-—RN(ZC . )+LN(ZC N R

i=1 j=1

The coefficients of the s terms for a segmented RC model are obtained by substituting L =0

in the above equations for b1, by and b3, i.e.:
N N

by = Y .CiY R
j=1  i=j

N N -1 -1
by = ZCjZR:ZCiZRd

j—2 I—j i=1  d=i

T e pe
by = Zc ZR ZCPZR,ZC > Ry (26)
g=j  p=2 i=1  d=i
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Appendix B: Calculation of Moments from the Transfer Func-
tion Polynomial

Consider the system transfer function given in Equation (1),

1 + as -|- 0282 + a333 +

H(s)= K
(8) 14+ bis+ 5232 + bas3 + ...

Considering the denominator polynomial and expanding as an infinite series, we have
G(s) = (14bis+bas® +b3s®+ byst 4+ ....)"1
= [1—(bys +bys? + bas® + bes* + ... + (brs + bas® + bas® + bas® + )
—(bys + bys? + bas® + bus® + )0 + ]
= (1= bis+ (8]~ ba)s? = (by B} — 2miba)s + ) (27)

Therefore,

H(s) = K(1+ais+azs®+a3s®+...) (1 — bys 4 (b2 — by)s? = (by + b3 — 2b1b2)s% + ...)

I([]. + s(a1 - bl) + 32(a2 —a1by + b% - bz)

+33(a3 — azhy + al(b% - bg) — by — b:i)' + 2b1b2) + ]

Applying the definition of moments (Equation (4)), we obtain

My = K

M, = K(b—ay)

M, = K(az— aby + b —by)

Ms = K (B3+bs—2biby — ag + azby — ax (b} - b2))

My = K (04— asby +ag(8 - b2) + aa(b + by — 2b1b2) + b1 + 63 + 2bybs — by — 36b)

Recall that we are interested in the special case where the numerator polynomial is constant, ie.,

all a; = 0, so that the transfer function is of form

1

H(S) = T im0 £ o
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and the moments are given by

My
M
M,
M3
My

1

by

b2 — b,

b3 + b — 2b1b2

b3 + b2 + 2b1b3 — by — 3bIb,

29
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Appendix C: Convergence of the Coefficients of s* and s3

In this Appendix, we show that the uniform distributed representation of an RC line by L
segments will converge to the correct values of by, b, and b;. As noted above, Sakurai [Sak83]
has shown the analogous result for uniform distributed T and II representations, using ABCD
matrix representation. His method of derivation leads to the observation “It is difficult to obtain
the counterpart of (B8) for the L ladder circuit” ([Sak83], p. 425), but he however notes that “it
is obvious that II, T and L ladder circunits coincide ... if infinite blocks are connected.” Here, we
show that the desired derivation can be obtained by directly manipulating the summations given

in Appendix A.

Case 1: From Equation {26), the coefficient of s is given by
Z Ci Z B
=1 =g

For N uniform distributed L segments,

NCNR
o= Dyl

and thus
RC

N =T

Case 2: Similarly, from Equation (26) the coefficient of s? is given by

i—1 i—1
by = Zc zR,zc,ZRd
=1

For N uniform distributed L segments, the last two summations are in the same form as in the

equation for by. Therefore,

Jj—- i—-1 RCJ]
S e R = 20D

i=1 d=1

Using the above result in the expression for by,
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N o R/RCiG-1
ho= LeS RN

=2 I=j
RCP X . RC
_ Nz) E(N_JH)(N?J(J? ))
— (};E;) Z:(N_J'*'ZI)J(J_I) (*)
2 N—-1
_ (;"ﬁ} (N - K)(k + 1)k
k=1
(RC)?2 "

k=1

In the limit, summations involving the lower-order terms Nk and k? will vanish. We can use
the well-known formulas for Sk(n), i.e., the sum of the k** powers 1¥F 4+ 2% 4 ... 4 n*, to read off

the solutions (see, e.g., [GKP89], page. 269),

by = (fgf [(N 1)(%(1\?—1)3—% - 1%+ —1)) (— “—%NBﬁN?)]
- U9 -]
Thus, in the limit )
i = 57

The same analysis from Case 1 can be used to prove that the inductance term in b for RLC

segments (Equation (24)) also converges to
L
hm Z C; E L — —g
Case 3: Finally, we consider the coefficient of the s® term given in Equation (26),

b3_ZC ZRq (Zc iR;pZ:C ZRd)

p=2 i=p 1=1 d=i

For uniform segments, notice that the the last four summations have been solved in our

analysis of the b, expression namely,
- p—-1  p-1 ( RC)2 j—2

ZC ZR(ZC ZRd—- SN Z( —l—k)(k-I—l)k

p=2 i=p i=1 d=t k=1
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from which

N N 2 3=2
b= SOy R IED Z(j-l—k)(k-i-l)k]
N

=37 g¢=j k=1
3 [ i=2
- ) Z(N—j+1)2(j—1—k)(k+1)k]
|7=3 k=1
53 [N-2 i—2
- &y Z(N—j—nz(j—l—k)(kﬂ)k}
\.j=1 k=1

Evaluating the inner summation,

i—2 j—2
SNG-1-k)k+1Dk = Y (- kY(K® + k) — (K? + k)
k=1 k=1
= J_i(jk2+jk — k3 — 2k - k)
k=1

Again using the formulas for Si(n) and retaining only the leading terms,

i-2 j4 j3
1Rkt Dk~ L

from which

Again eliminating all the lower-order terms in the limit, we obtain

. (ROP|F NS
bs > SNe ;( 12
(RGP 1 e 1 e
~ 2NS GON 72N]
(RC)®
720
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Appendix D: Calculation of Voltage Response Using Moments

The transfer function of the system considering two dominant poles is

k1 ko

H(8)=3—81+8—82

where 81, 8 are the poles and ki, ky are the coefficients corresponding to the poles.

Assuming a step input, Vin(t) = Vou(t), Vin(s) = l:ﬂ, the output voltage given by

Vout(s) =W H.ES)

Applying partial fractions and taking the inverse Laplace transform:

ky ko
_eslt + __e.SQt
3 82

ki |k
Vour(t) = (—(s—i + é) +

Now using the following boundary conditions one can solve for s, s, ki, ko,

Voue(t = 0) = OaVc:ut(t =0)=0 (29)
Therefore,
k k
(2 +32)=1
31 52
k—1+k=0

Now by applying the definition of moments from Equation (4) to the two-pole transfer func-

tion, we get
ky | k2
A2 ST A V'
(3%’ + sg) !

ki ko
o2y M
( 8‘;’ + 3%) 2
and solving above equations yields
2
S12 =
~ My \JaM, - 3M}
1
ky =—ky=—
4M, - 3IM]
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Note that the poles of the system should be always in the left half of the s—plane for stable

systems. The voltage response can be calculated for both real and complex poles as follows:

Case 1: Real Poles.

From the above equations,

818
892 — 81
and
8182
kz = !
89 — 31
The voltage response for real poles is
32 S
Vout(t) = Vo(1 - et — )
sz — 81 81 — $S2

Note that this is exactly the same as in [ZSTGC92].
Case 2: Complex Poles.
Since the poles are complex we can express them in the form s; =

The voltage response is

[ 83 81
Vour(t) = Vo ll- L etit ————e’ﬁ]
L 82 — 81 81 — 82
i e—ort

= Vol1-

= V :1 — e~ cos(8t) + %Sin(ﬁt))]

[ /ol + 32
= VWpil- —iiie““‘sin(ﬁt + p)}
I 1Y
where p = tan~1(£) and

a= __M
—AMT - M)
IME — 4M,
- 2AME - M)
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(30)

—a+ 38 and 83 = —a—30.



Appendix E: Three Non-Uniform RC Segment Model

In this Appendix we will try to obtain the parameters for three non-uniform RC segment model

in terms of the distributed RC' line parameters.

The open-ended transfer function for distributed RC' line is obtained by substituting L =0

in Equation (6),

1
H(s)=
(%) 1+%Qs+%ﬁsz+g—};—%ﬁs3+...

(31)

The open-ended transfer function for three uniform L-type RC segments (Figure 3) is given

by

1

HBQ(S) - 1 + b18 + 5282 + 6333 (32)

where

b1 Ri(C1+ C3 4+ C3) + Ry(C2 + C3) + RaCs

by, = Ri1R2C1Cy+ RiR3C1Cs + RoR3C2Cs + RiRaCaCls + R1R:C1C

I

bs = RyRaR3C1C2C3

Since the three segment RC model should match the distributed RC line transfer function
up to the third moment (see Appendix B), comparing the coefficients of s, 82, 8% in Equation (31)

and (32), we obtain the following equations

RC

Ri(C1+ Ca + C3) + Ra(C2 + C3) + RaCs = —~ (33)
(RC)?
RyR;C1C3 + R1R3C1C3 + RyR3CoC5 + Ry R3CyCs + R RC1C5 = 21 (34)
3
RiRaR3C1CACs = (1;200) (35)
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Clearly there is no unique solution if we try to solve for the six variable parameters of the
model given in (Figure 3) using the above three equations. Using the approach given in [Raj74]
we can obtain more information by calculating the open-circuit input impedance for both the

distributed RC line and for the three segment model.

The open-circuit input impedance, 211 of the distributed RC line is given by [GK68]

3
1+ B84 (RO 2 4 (FOL 4

211 = (36
Cot BT T EE Ry . :
The open-circuit input impedance for three uniform L-type RC segments is
1+bys4 b232 + b333
(211)eq = (37)

a1 s + azstazs®

where the numerator polynomial (i.e. the variables b;’s) is exactly same as the the denominator
polynomial of the open-ended transfer function given in Equation (32) and the coefficients a;’s

are

ag = C1+C24C3

az RyC1Cy + B3C1Cs + RoC1C3 + R3CoC3

R2R3CIC2C3

as

Comparing the coefficients of s, s, s* in the denominator of the Equation (36) and (37) yields

the following equations,

C1+C+C3=C (38)
RC?
R,C1C5 + R3€1€3 + R2C103 + RgCng = T (39)
R2C3
= 4
Ry R3C1C2C5 120 (40)
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Note that the by comparing the numerator of the Equation (36) and (37) we get the same
equations as (33) - (35).

Since the sum of all the resistances should be equal to the total line resistance,

Ri+ Ry+R3=R (41)

Clearly we can not solve for the six unknown parameters Ry, Ry, R3,C1,C3,C3 using these
seven overspecified equations. Thus, we have obtained values for these parameters by using

numerical techniques to minimize the squared error in the coefficients by, b2, bs.

The above analysis can be extended to RLC segment models by replacing all the resistances
R:’s by R; + sL; and then comparing the corresponding coefficients s’s of the open-circuit input

impedance numerator and denominator polynomials.

37



References

[BKR93) K. D. Boese, A. B. Kahng and G. Robins, “High-Performance Routing Trees With Identified
Critical Sinks”, Proc. 30th ACM/IEEE Design Automation Conf., June 1993, pp. 182-187.

[CLZ93] J. Cong, K. S. Leung and D. Zhou, “Performance-Driven Interconnect Design Based on Dis-
tributed RC Delay Model”, Proc. $0th ACM/IEEE Design Automation Conf., June 1993, pp.
606-611.

[Dwo79] L. N. Dworsky, Modern Transmission Line Theory and Applications, Wiley, 1979.

[E48] W. C. Elmore, “The Transient Response of Damped Linear Networks with Particular Regard to
Wideband Amplifiers”, Journal of Applied Physics 19, Jan. 1348, pp. 55-63.

[Eda93] M. Edahiro, “A Clustering-Based Optimization Algorithm in Zero-Skew Routings”, Proc. 30th
ACM/IEEE Design Automation Conf., June 1993, pp. 612-6186.

[GZ93] D. S. Gao, D. Zhou, “Propagation Delay in RLC Interconnection Networks”, Int. Symposium on
Circuits and Systems, May 1993, pp. 2125-2128.

[GKP89] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, 1989.
[Hor84] M. A. Horowitz, “Timing Models for MOS Circuits”, PhD Thesis, Stanford University, Jan. 1984.

[GK68] M. S. Ghausi and J. J. Kelly, Introduction to Distributed-Parameter Networks: With Application
to Integraied Circuits, New York: Holt, Rinehart and Winston, 1968.

{Kum80] U. Kumar, “Modeling of Distributed Lossless and Lossy Structures: A Review”, IEEE Circuils
and Systems Magazine 2(3), 1980, pp. 12-16.

[McC8&9] S. P. McCormick, “Modeling and Simulation of VLSI Interconnections with Moments”, PhD
Thests, MIT, June 1989.

[RPH83] J. Rubinstein, P. Penfield and M. A. Horowitz, “Signal Delay in RC Tree Networks”, IEEE
Trans. on CAD 2(3), July 1983, pp. 202-211.

[Sak83] T. Sakurai, “Approximation of Wiring Delay in MOSFET LSI”, IEEE Journal of Solid-State
Circuits, Aug. 1983, Vol.18, No .4, pp. 418-426.

[WES8] N. Weste and K. Eshraghian, Principles of CMOS VLSI Design: A systems Perspective, Addison-
Wesley, 1988. :

[Raj74] Y. V. Rajput, “Modelling Distributed RC Lines for the Transient Analysis of Complex Networks”,
Int. Journal of Electronics 36(5), 1974, pp. 709-717.

[ZSTGC92] D. Zhou, S. Su, F. Tsui, D. S. Gao and J. S. Cong, “Analysis of Tree of Transmission Lines”,
Computer Science Department, Tech. Report CSD-920010, UCLA, March 1992 (also to appear
as “Simplified Synthesis of Transmission Lines with A Tree Structure”, Intl. Journal of Analog
Integrated Circuits and Signal Processing (Special Issue on High-Speed Interconnects), 1993).

[ZPK91] D. Zhou, F. P. Preparata and S. M. Kang, “Interconnection Delay in Very High-Speed VLSI”,
IEEE Trans. on Circuits and Systems 38(7), July 1991, pp. 779-790.

{ZTG93] D. Zhou, F. Tsui and D. S. Gao, “High Performance Multichip Interconnection Design”, Pro-
ceedings of the jth ACM/SIGDA VLSI Physical Design Workshop, April 1993, pp. 32-43.



