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ABSTRACT OF THE DISSERTATION

Distributed Coordination of
Process Interactions
— Fairness and Fault-Tolerance

by

Yih-Kuen Tsay
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1993
Professor Rajive L. Bagrodia, Chair

The process interaction problem abstracts the basic issues in implementing the
symmetric, nondeterministic, and synchronous communication constructs of pro-
gramming languages like CSP and IP on a distributed architecture. A solution
to the problem is required to ensure that (a) a communication, or an interaction,
is initiated only when all participants are ready, (b) interactions with common
participants do not proceed simultaneously, and (c) if all participants of an in-
teraction are ready, then at least one of them will eventually participate in some
interaction. A special case of the problem, where each interaction involves ex-
actly two processes, is called the binary interaction problem; the general case is
also referred to as the multiway interaction problem.

We strengthen the problem requirements to include two fairness properties:
strong process fairness and strong interaction fairness. We prove that, in gen-
eral. strong process fairness is impossible for multiway interactions and strong
interaction fairness is impossible for binary interactions and hence for multiway
interactions. We describe an efficient algorithm for binary interactions that satis-
fies strong process fairness. The algorithm has the best known message cost and
response time.

We then introduce process failures and modify the problem requirements ac-
cordingly. Two failure models are considered: the detectable and the undetectable
fail-stop models. We show how the fair algorithm for binary interactions can be
extended to tolerate detectable failures. Based on an existing algorithm for the
dining philosophers problem, we derive another fair algorithm in the undetectable
model that has a constant failure locality. The algorithm is further improved to
have a response time asymptotically as good as that of the first algorithm.
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Finally, we use the process interaction problem as an example to explore the
use of UNIT¥ logic in the formal specification and verification of reactive systems
that need to satisfy certain strong fairness properties. We prove that UNITY logic
is sound and relatively complete for proving strong fairness properties. The result
is applied to specifying the process interaction problem with strong fairness and
to verifying the correctness of a solution.
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CHAPTER 1

Introduction

1.1 Motivation

“... input and output are basic primitives of programming and

... parallel composition of communicating sequential processes is a

fundamental program structuring method. When combined with a

development of Dijkstra’s guarded command, these concepts are sur-
prisingly versatile.”

— C.A.R. Hoare,

CACM, August 1978

This seminal proposal of CSP (Communicating Sequential Processes) [Hoa78]
spawned two threads of research:

¢ One studies the use of the “handshaking”, or synchronous, communica-
tion construct. The construct has been adopted as a joint-action prim-
itive in various formal models for concurrent systems, more notably in
process algebra, e.g. CCS [Mil89] and CSP [Hoa85). It has also been ex-
plored as a convenient language feature in distributed programming, e.g.
Ada [Dod82]. The generalization of pairwise communications to multi-
way communications in both aforementioned areas is also widely pursued

(Fra86b, Cha87, Bac88, Fra90].

e The other concerns the implementation of the communication construct,
pairwise or multiway, especially on asynchronous distributed architectures
[Sch82, Buc83, Rei84a, Sis84, Ram87a, Ram87b, Bag89a, Bag89b, Jou9l,
Cho92, Par92b]. The non-triviality of implementation comes from the lan-
guage design decision that allows synchronous communication commands
(inputs or outputs) to appear in the guards of the alternative entries of a
guarded command.

We abstract the implementation problem as the process interaction prob-
lem; an alternative formulation called the committee coordination problem can



be found in {Cha88]. The problem may roughly be stated as follows: A process
may from time to time become ready for several possible communications with
other processes. The goal is to design a scheduler that allows the processes to par-
ticipate in communications such that (a) a communication is initiated only when
all participants are ready, (b) communications with common participants do not
proceed simultaneously, and (c) if all participants of a communication are ready.
then at least one of them will eventually participate in some communication.

We strengthen the problem requirements to include two additional constraints,
namely fairness and fault-tolerance. The importance of fairness in concurrent
programming is most eloquently spelled out by Francez’s book [Fra86a}, which
is devoted solely to the subject of fairness. Many other researchers have also
studied the subject in various specific contexts, e.g. [Rei84b, Par92a]. In [FraS6a]
Francez gives an extensive overview of fairness notions and demonstrates the
effects of some of them on program correctness. For instance, some CSP programs
will terminate only under the assumption that the semantics of the language
stipulates strong process fairness. Hence, it is desirable that the implementation
enforces certain fairness properties. With respect to fault-tolerance, we consider
process failures in two models that have received much attention in the distributed
computing literature, viz. the detectable and restartable fail-stop model [Sch82,
Sch83] and the undetectable fail-stop model [Fis83). The problem requirements
are modified accordingly in the presence of process failures.

The goal of this dissertation is to do an in-depth study of the process inter-
action problem with fairness and fault-tolerance:

First of all, since additional properties have been taken into consideration,
the immediate question to ask is whether solutions to the problem exist such
that various additional properties are also satisfied. Both positive and negative
results should be interesting. In the event that certain additional properties
can be satisfied, we seek efficient solutions to make the concerned programming
language construct more feasible. The existence of an interesting relationship
between the process interaction problem and the dining philosophers problem
[Dij78, Cha84]! has long been recognized. This relationship is further explored
in the dissertation.

Additionally, we consider the process interaction problem a good example for
the study of formal specification and verification of reactive systems® that need

1A description of the dining philosophers problem can be found in Section 3.2.
A reactive system is one that maintains an ongoing interaction with its environment. An
operating system is an example of such systems, whose environment is the collection of user

programs.



to satisfy certain strong fairness properties. More specifically, we want to explore
the use of UNITY logic [Cha88] in this subject. Whereas the subject has heen
studied extensively in other formalisms including temporal logic [Man92, Lam91].
1ts has not received much attention in the context of UNITY.

1.2 The Process Interaction Problem

This section gives a precise definition of the process interaction problem, including
the computational model and performance measures. The additional properties
of fairness and fault-tolerance are also defined.

1.2.1 Computational Model

A distributed system consists of a set of processes that communicate with one
another via message-passing. A process is a set of local variables and a set of state
transition rules (or actions). The values assumed by the variables of a process
constitute the local state of the process; the local states of all processes and
the messages in transit (messages that are sent but not yet received) constitute
the state of the system. Each state transition rule of a process is in the form
of a guarded command where the guard, or enabling condition, depends on its
local state and an incoming message. A rule is enabled at a state if its enabling
condition is satisfied at that state. An execution (or computation) of the system
starts from an initial state where each variable assumes a well-defined injtial value
and no message is in transit; in each step, either an enabled rule of some process is
executed or some message is delivered to its destination. A continuously enabled
rule will eventually be executed (i.e. the system is weakly fair); process failures
are defined in a later section. Messages are assumed to be delivered in FIF O
order unless otherwise stated.

The system is completely asynchronous; no assumptions are made about the
relative speeds of the processes or the time bound on message delivery. The notion
of time becomes relevant only in measuring the response time of an algorithm.

1.2.2 The Problem

The process interaction problem abstracts the basic issues in implementing the
symmetric, nondeterministic, and synchronous communication constructs of pro-
gramming languages like CSP [Hoa78), Script [Fra86b], Joint Action [Bac88], and
IP [Fra90] on a distributed architecture.



In the prc;'blem, a number of interactions are defined on the set of processes in a
distributed system; each interaction is a non-empty subset of the process set that
represents some synchronization activity among its members. Two interactions
are said to conflict if they are distinct and have some common member. A process
can be in either active or idle state. An active process may autonomously become
idle: an idle process remains idle until it participates in some interaction of which
it is a member. (Note that, in general, it is not possible to determine when, or if.
an active process will become idle.) An interaction is enabled if all of its members
are idle; it is disabled otherwise.

The goal is to augment each process with a scheduler to select interactions
for execution such that the following safety and liveness properties are satisfied:

o Synchronization: Only enabled interactions can be started.

e Mutual Exclusion: A process can participate in at most one interaction at
a time, or equivalently, an interaction cannot be started if some conflicting
interaction has been started but not yet terminated.

e Progress: When an interaction is enabled, either the interaction or some
conflicting interaction will eventually be started.

In the special case where each interaction has exactly two members, the prob-
lem is called the binary interaction problem; the general case is also referred to
as the multiway interaction problem®. Figure 1.1 shows how a system of three
interacting processes may evolve in accordance with the problem specification.

The individual schedulers, one for each interacting process (also referred to
as the host process), collectively form a distributed scheduler®. We stipulate that
each scheduler and its corresponding host process share two variables: state and
flag. The first variable indicates the state (active or idle) of the host process.
This variable can be inspected, but not modified, by the scheduler. The variable
flag is updated by a scheduler to indicate the specific interaction in which its host
process will participate; when the interaction is terminated, the variable is reset
by the host process®. We assume that each interaction that has been started wiil

3The problem could be generalized such that an idle process may be willing to participate
in one of a subset of the interactions of which it is a member. However, a solution to the
original problem can easily be adapted to solve the generalized version; an approach will be
demcnstrated in Section 3.3.

4Each individual scheduler is a set of extra variables and a set of extra state transition rules
that are added onto the host process.

5 As starting an interaction should be mutually agreed upon by all the members of the inter-
action, only one scheduler of the members needs to set its flag to indicate that the interaction
is started. This is formalized in Chapters 2 and 5.



ij [ i,f become idle k becomes idle
ik are active {l"..,j) is enabled all interactions enabled

{ij} is started ij become active {14} is terminated
Kk remains idle

J becomes idle {7.k} is started
{i.k} is enabled

Figure 1.1: Possible execution of a system of three interacting processes



eventually be terminated. Prior to terminating an interaction, each member of
the interactidn may make a transition from idle to active.

Hereafter a scheduler and its host process will be regarded as a single unit
and referred to as a process, except when we need to be more specific.

Notation

For a given instance of the binary interaction problem, we can view the set of
processes and the set of interactions as an undirected graph, called its interaction
graph. A node in the interaction graph represents a process and an edge represents
an interaction between the two processes represented by the end nodes of the
edge. In the general case of multiway interactions, the interaction graph of a
given problem instance will be a hypergraph, where each edge (interaction) is a
set of nodes (processes). Alternatively, one may view the sets of processes and
interactions as a conflict graph, where a node corresponds to an interaction and
an edge indicates that the incident nodes, or interactions, are conflicting with
one another.

We will use {i,j,k} to refer to an interaction among process i, process j, pro-
cess k (hereafter p;, p;, and pg). Throughout the dissertation, D denotes the
maximum degree of a given interaction graph; thus D also represents the maxi-
mum number of interactions of which some process is a common member. Finally,
the total number of processes in the system is usually denoted by n.

1.2.3 Fairness

Besides the basic safety and liveness properties as required in the problem def-
inition, we are concerned with a stronger class of properties — strong fairness
properties. We only consider strong fairness properties, as weak fairness proper-
ties are much easier to implement, perhaps even easier than the basic liveness
property. Fairness properties usually appear as assumptions on the execution
model of a concurrent program: For instance, the model may require that if a
state transition of the program is enabled infinitely often then it is taken infinitely
often. Alternatively, the model may assume a weaker notion of fairness, but it
may be desirable for a specific program in the model to satisfy a strong fairness
property. An algorithm that satisfies a strong fairness property may be described
in a model such as UNITY that assumes a weaker notion of fairness.

Although many types of fairness properties have been defined in the litera-
ture [Fra86a, Apt88], we restrict our attention to two common forms of strong
fairness that are relevant for this problem: strong process fairness and strong



interaction fairness.

¢ Strong Process Fairness (SPF): If an idle process is ready to participate
in some enabled interaction infinitely often, then it participates tn some.
though not necessarily the same, interaction infinitely often.

* Strong Interaction Fairness (SIF): If an interaction is enabled infinitely
often, then it is started infinitely often.

SPF ensures that a process does not “starve”. It subsumes the progress
property: Consider the case of binary interactions and assume that the progress
property is not satisfied. This implies that although some interaction, say {iJ},
is enabled, neither p; nor p; will ever participate in any interaction. From the
problem definition, p; and p; must forever remain idle. As a result, p; {and p;)
will be ready to participate in some interaction, e.g. {1,7}, infinitely often but will
never do so, violating SPF.

SIF in turn is strictly stronger than SPF. As an example, suppose that the
scenario in Figure 1.1 is repeated indefinitely. In this particular execution, all
three interactions are enabled infinitely often; however, interaction {7k} is never
started, violating SIF. It is easy to see that SPF is satisfied, as no process starves.

1.2.4 Fault-Tolerance

Many types of failures have also been studied in different contexts [Sch82, Schs3,
Fis83, Dol87, Cha91]. We consider detectable and undetectable fail-stop process
failures, which are more interesting for the problem.

In the detectable failure model [Sch82, Sch83], the failure (and restart) of a
process is detectable by other processes in the system. When a process fails, its
local variables are reset to their initial values and a failure message is broadcast
to each of its neighbors. A process may restart and, when it does, it executes
a designated restart step and then resumes normal operation. In general, the
synchronization and fairness requirements of the problem cannot be satisfied in
the presence of process failures. For example, a process p; that has “committed”
to a request from p; for interaction may subsequently fail, recover, and stay in
active state. Meanwhile, p; will start interaction {#7}, which is no longer enabled,
violating the synchronization requirement. Regarding fairness, a process p; may
fail whenever it is waiting to request or commit to interaction {77}, causing p;
to starve, violating SPF and hence SIF. Thus, the problem requirements rust
be reformulated in the presence of failures. While no change is necessary for the



mutual exclusion and progress requirements, the modified synchronization and
fairness requdirements state that, for a system with a finite number of failures, the
synchronization and fairness requirements as specified in Sections 1.2.2 and 1.2.3
will eventually be satisfied.

In the undetectable failure model [Fis85], when a process fails, it will not
take any step in the rest of execution of the system and the failure cannot be
detected by any other processes. It has been shown that, in a message-passing
asynchronous or similar system, mutual exclusion among the processes in the
system cannot be achieved under the undetectable model [Dol87]. The implica-
tion of the result is that, in general, the requirements of the process interaction
problem cannot be satisfied. More recently, the notion of failure locality was in-
troduced [Cho92| to measure the size of the network that is affected by the failure
of a process. In the context of the process interaction problem, an algorithm has
a failure locality of m if a process behaves as specified by the problem require-
ments provided that no processes within m hops away from the process fail; two
processes are m hops away if the length of the shortest path between the two
processes in the interaction graph is m. The goal in the presence of undetectable
failures hence is to design algorithms with small failure localities.

1.2.5 Performance Measures

Two metrics have been defined to measure the performance of an algorithm for
the process interaction problem: message cost and response time. The message
cost is the worst-case count of number of messages sent by a process or received
as a reply, from the time the process becomes idle until it participates in some
interaction. Assuming that every message is delivered within one unit of time
and the time for doing any computation by a scheduler is negligible, the response
time is the elapsed time in the worst case from the time an interaction is enabled
until the interaction or some conflicting interaction is started.

An algorithm is considered efficient if its response time is independent of the
total number of processes n and is polynomial in D, i.e. the maximum degree of
the interaction graph.



1.3 Related Work

1.3.1 Fairness in Distributed Programming

In {Apt88], Apt et al. proposed three criteria® for determining the appropriate-
ness of fairness notions in distributed languages. They concluded that none of
the common forms of fairness (including SPF and SIF) for multiway interactions
meets all of the suggested criteria and only SPF for binary interactions does.
We shall prove that, in general, SIF is impossible to implement (in a distributed
manner as stipulated by our problem definition) for binary and hence for multi-
way interactions and SPF is impossible for multiway interactions”. We shall also
present algorithms for binary interactions that satisfy SPF. Qur results corrobo-
rate their conclusions.

Dijkstra [Dij88] has contended that fairness is a void obligation for language
implementors in that it i§ impossible to detect if the obligation has been fulfilled.
Our impossibility results show that under the assumptions of our model, some
fairness notions for process interactions are, in fact, impossible to implement.

1.3.2 Coordination Algorithms

A large number of algorithms have been devised for binary interactions [Buc83,
Sis84, Ram87b, Bag89b] and for multiway interactions [Ram87a, Cha88, Bag89a,
Jou91, Cho92, Par92b); algorithms for multiway interactions, of course, work for
binary interactions. In light of the impossibility results on implementing fairness
for multiway interactions, we shall review existing algorithms in the context of bi-
nary interactions. Although most algorithms satisfy the basic safety and liveness
properties, few implement fairness (SPF) or consider process failures.

Existing efficient algorithms (with response time independent of the num-
ber of processes), e.g. [Rei84a), are not fair and do not handle process failures.
Sistla’s algorithm [Sis84] satisfies a stronger fairness property in a slightly differ-
ent model®, but has response time dependent on the number of processes and,

5The three criteria are: feasible, equivalence robust, and liveness enhancing.

"The fairness properties that we show impossible to implement distributedly all turn out
not to be equivalence robust. However, there are fairness properties, e.g. weak process fairness
for binary interactions, that are not equivalence robust but can be implemented distributedly.

8Sistla {Sis84] considered a fairness property stronger than SPF: if a process is continuously
idle and is ready to participate in some enabled interaction infinitely often, then the same
interaction is started infinitely often. SPF does not requires the same interaction be started
infinitely often; instead, it only requires the process participate in some interaction infinitely
often. However, if a process always makes a transition from idle to active after some interaction



more signiﬁcéntly, on the duration of an interaction befween two processes. Fi-
nally, the response time of existing solutions that tolerate detectable failures.
e.g. [Sch82], is not independent of the number of processes.

In contrast, we shall present an algorithm that is a significant improvement
over existing solutions for binary interactions in the following respects: (a) the al-
gorithm satisfies the modified problem requirements as described in Section 1.2.4
in the presence of detectable failures and (b) assuming no failures actually occur,
its message cost and response time are independent of the number of processes.

To cope with undetectable failures, Choy and Singh {Cho92] recently proposed
a solution to the process interaction problem that has a constant failure locality
but does not satisfy SPF for the case of binary interactions; the solution is based
on their algorithm for the dining philosophers problem with a constant failure
locality. As we will show in a later chapter, the lack of fairness in their solution is
inherent in the usual transformation that they adopted to transform the process
interaction problem to the dining philosophers problem.

We shall propose a transformation of the binary interaction problem to the
dining philosophers problem that can guarantee SPF. We use this transformation
and the solution to the dining philosophers problem in [Cho92] to derive an algo-
rithm for binary interactions that satisfies fairness while maintaining a constant
failure locality. The response time of the derived algorithm is further improved
to be asymptotically as good as that of the fair algorithm proposed for detectable
failures.

1.3.3 Formal Specification and Verification

As planned, we are mainly interested in the use of the UNITY formalism. Nonethe-
less, in the proof of the impossibility results, we apply a variation of the branching
time temporal logic in [Eme89] to make the presentation formal and precise. Our
work perhaps is the first that uses branching time temporal logic in proving
impossibility results.

UNITY was proposed by Chandy and Misra in [Cha88]; a brief introduction
to the formalism is presented in Chapter 5. Their book contains abundant ex-
amples, ranging from communication protocols, termination detection to sorting
and searching. Many other researchers have also explored the applications of
UNITY [Kna90, Cun90, San91b, Liu92a, Liu92b] as well as meta-results about
its logic [Ger89, Jut89, San9la, Rao9l, Kna92). In particular, a recent work on
the application of UNITY in specifying and verifying fault-tolerant programs can

of which it is a member is started, then the two fairness properties become identical.
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be found in [Liu92b].

It has been shown that UNITY is sound and relatively complete (in the sense
of [Coo78)°) in that an unconditional property in terms of the UNITY logic
relations: unless, invariant, or —, is provable from a program if and only if a
corresponding operational property is satisfied by each execution of the program
[Jut89, San9la, Rao91, Kna92]. However, no analogous result for conditional
properties has been provided in the literature.

We shall prove new results about UNITY logic. In particular, we show that
a strong fairness property “if p holds infinitely often then g also holds infinitely
often” (or OCp = G<Og¢ in temporal logic notation) can be specified by the
conditional property “Hypothesis: true — p Conclusion: true — ¢” in UNITY.
We further show that UNITY is relatively complete for proving strong fairness
properties. Hence, it is possible to specify the process interaction problem with
strong fairness and prove the correctness of a solution entirely within the UNITY
formalism.

1.4 Organization of the Dissertation

The rest of the dissertation is organized as follows:

Chapter 2 contains the impossibility results; both formal and informal proofs
are presented.

Chapter 3 describes algorithms for binary interactions that satisfy SPF. The
second algorithm is based on a new transformation from the binary interaction
problem to the dining philosophers problem.

Chapter 4 shows how the fair algorithms can be extended to tolerate de-
tectable failures. To cope with undetectable failure, an existing dining philoso-
phers algorithm is adopted by the second algorithm to achieve both fairness and
constant failure locality. It also shows how the failure locality can be minimized
at the cost of increasing response time.

Chapter 5 gives an introduction to UNITY and shows its expressive power
along with its relative completeness in proving strong fairness properties.

Chapter 6 applies UNITY in specifying the process interaction problem with
strong fairness and verifying the correctness of a solution.

Chapter 7 concludes the dissertation with a summary of its main contributions

9Roughly speaking, a proaf system for program correctness is relatively complete if the truth
of a program property can be reduced to the truth of assertions on program statements.
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and a list of possible directions for future research.

TechnicaIIy, Chapter 2 is independent from its subsequent chapters. while
Chapters 3 and 4 form a coherent unit and so do Chapters 5 and 6.

12



CHAPTER 2

Impossibility Results

We prove that, in general, SIF is impossible for binary and hence for multiway
interactions and SPF is impossible for multiway interactions. Although the im-
possibility results are proven in a message-passing model of distributed system,
the results hold in any model where (a) each process autonormously decides when
and if it 1s willing to participate in some interaction and (b) the model assumes
low atomicity, i.e. in one atomic step a process cannot both change its local state
and inform other processes of the change.

Much of the material in this chapter is adapted from our work reported in
[Tsa93d)].

2.1 Informal Description

We sketch the impossibility results, focusing on the crucial assumptions of the
problem and their consequence to the results. All technical terms and assumnp-
tions will be made formal and precise in subsequent sections.

In the description of the process interaction problem (Section 1.2.2), we have
made three assumptions which are crucial to the impossibility results: (i) An ac-
tive process may or may not become idle. (ii) If an active process becomes idle, it
does so autonomously. (iii) The state transition of a process is not immediately
observable by other processes or their schedulers. Modifications to the assump-
tions and their effect on the impossibility results are examined in Section 2.5.

Consider an instance of the binary interaction problem with three processes 1,
J» and k and three interactions {i,7}, {j,k}, and {4,{}; its interaction graph is
shown in Figure 2.1. The schedulers are referred to as schedulers i, j, and k,
respectively.

In accordance with assumptions (i) and (i1), we further assume that the three
processes have the following property: (iv) It is always possible for an active
process to remain active or autonomously become idle. We shall construct an
execution of the system where interaction {%,i} becomes enabled infinitely often
but is never started, violating SIF.

13



Figure 2.1: The interaction graph of a binary interaction problem instance

The construction is developed around the following key observations: First,
if some interaction [ is enabled, the schedulers cannot indefinitely postpone the
execution of [/ while waiting for other interactions to become enabled; otherwise.
if other interactions never become enabled as allowed by assumption (iv}), the
progress requirement will be violated. This observation will be established for-
mally by Lemma 3 in Section 2.4.2. Secondly, when the schedulers decide to
start some interaction [, it is possible that a conflicting interaction K becomes
enabled before [ is started. However, assumption (iii) implies that in general it is
impossible for the schedulers to detect that K is enabled before [is started. This
will be established formally in Theorem 1 in Section 2.4.2.

In some execution of the system, the following scenario may occur repeatedly
in violation of SIF: Initially, all processes are active and no interaction is started.
Processes ¢ and j go from active to idle, while process k remains active. To sat-
isfy the progress requirement, schedulers i and j decide to start interaction {ij}.
Meanwhile, process k becomes idle right before interaction {1,5} is actually started
thus causing interactions {j,k} and {k,} to also become enabled together with
interaction {i,j}. After participating in interaction {i,j}, process j becomes idle
again causing {j,k} to become enabled, while process i remains active. Sched-
ulers j and k then start interaction {j,k}. Subsequently, processes j and & again
become active and interaction {j,k} is terminated. Now, all processes are active
and no interaction is started; and the above scenario is repeated.

To see that SPF is impossible for multiway interactions, we add process [ to
the previous instance and change interaction {3} into {k,4,[}. Figure 2.2 shows
the interaction graph of the new problem instance of multiway interaction.

In an execution of the new system, assume process ! becomes idle. Processes ¢,
j, and k behave exactly the same as above. It follows that process [ is ready to
participate in interaction {4/} infinitely often but never does so.

In the remainder of this chapter, we define a formal model, construct a formal
specification of the process interaction problem with strong fairness, and derive
the impossibility results.

14
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Figure 2.2: The interaction graph of a multiway interaction problem instance

2.2 Formal Model

The formal model is essentially the same as the one described in Section 1.2.1
but in greater detail. The model resembles very much the program model in
UNITY. We also define a branching time temporal logic to express and reason
about program properties.

2.2.1 Program and Computation

A program consists of a set of variables and a set of (state transition) rules.
Each variable may assume values in some domain, a subset of which is specified
as possible initial values of the variable. Every program includes an auxiliary
variable called label, which may assume the name of a rule or an initial value
null. The state of a program is the tuple of values assumed by the program
variables, including label; an initial state is a state satisfying the specification
of initial values of the program variables. Each rule is specified by a unique
non-null tag, called its name, a predicate on program states, called its guard,
and a sequence of assignment statements, called its body. A rule is enabled at a
program state if the state satisfies its guard; otherwise it is disabled.

A computation (or ezecution) of a program starts from any initial state and
goes on forever. In each step of the computation, a rule is selected nondeterminis-
tically for execution and the value of label is updated with the name of the selected
rule. If the selected rule is enabled, its body is executed; nothing else happens
otherwise. The execution of a rule {enabled or disabled) results in a deterministic
state transition of the program. Thus, each computation uniquely determines an
infinite sequence of program states. To exclude computations where a continu-
ously enabled rule is indefinitely ignored, we postulate a fair selection criterion:
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each rule of the program is selected infinitely many times (regardless of whether
or not the rute is enabled) in a computation?.

We introduce some notations:
s (or ', 59, 51, ... etc.) denotes a program state.

z; denotes the i-th element of sequence z. We assume the elements of a
sequence are numbered from 0.

z' denotes the suffix of sequence z starting from the i-th element. i.c.
LiTip1 Ligpn " "

(s,z) denotes the sequence of states determined by the execution of sequence
of rules z starting from state s.

{5,7) denotes the last state in (s, z), assuming r is finite.

zy denotes the concatenation of sequences z and y, assuming z is finite. From
the definition of the computational model, it follows that (s, zy) = ((s, z). y).

z < y denotes that sequence z is a prefix of sequence y.

Inity denotes the predicate that specifies the initial states of a program D.
Rule(D) denotes the set of rules of D.

Rule™ (D) denotes the set of all infinite sequences of rules of D such that each
rule is selected infinitely many times.

Pref(D) = {r | Ja : @ € Rule*(D) Az < a} is the set of all prefixes of
sequences in Rule®(D).

Comp(D) = {0 | 3s,a: (Initp at s) A a € Rule®(D) Ao = (s,a)} is the set
of all possible computations of D.

Comp*(D) = {0 | 3z : z0 € Comp(D)} is the suffix closure of Comp(D).

Branch(s) = {0 | 0 € Comp™(D) A 0g = s} is the set of all possible “futures”
of the state s. Note that each possible future of a program state is a sequence of
states.

2.2.2 Temporal Logic

Our logic is a variation of the branching time temporal logic in [EmeS89]. We
do not distinguish between state formulae and path formulae, but simply refer
to them as temporal formulae. We use 0,0, instead of the more standard

1The fair selection criterion only requires that each rule be selected infinitely often. In
particular, it is possible that a rule is enabled infinitely often (not continuously) but the body
of the rule is never executed, because it may be selected only when it is disabled.
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X,G,F. Quantifiers are introduced to abbreviate the conjunction or disjunction
of a number of temporal formulae with similar pattern.

We directly define the semantics of our logical language with respect to a
program D; its syntax is implicitly defined by these semantic definitions. Suppose
a,b,c are predicates on program states and p,q are temporal formulae. & is an
infinite sequence in Comp™(D); recall that o' denotes its suffix ¢;0,4 (042 . In
the following definitions as well as subsequent sections, the logical connectives -,
A, V, and = and quantifiers ¥ and 3, when not occurring as part of a temporal
formula, should be interpreted according to their standard meanings in classical

logic.
aloc = aatay (ais true at state ag) (A1)
plo = ~(p|o) (A2)
oplo = p|o’ (A3)
Dp|a§\:/z':i20_:*'(p|or") (A4d.1)
Cple = 3:i20A(plo') (=-0-p|o) {A4.2)
Ap|o = Y7:71 € Branch{cy) = (p| 1) (A3.1)
Eplo = 3r:7 € Branch(oo) A{p|7) (=-A-p|o) (A5.2)
pValo = (plo)Vig]o) (A6.1)
phglo = (pla)r(qgla) (=-(-pV-q)]o) (A6.2)
p=>qlo = (-pVyg)lo (A6.3)
peglo = ((p=>9A(g=p))|o (A6.4)
aUntilblo = 3i:i20A0|a)A(Vj:0<j<i={a]| ) (A7.1)
a Unless b | o = (a = (CaV(a Until b)) |o (A7.2)

(Notice that “e Unless b | o” is true if a is false at oy, regardless of the truth
value of b. This definition, motivated by the “unless” in [Cha88], is very useful
in specifying safety properties of a program.}

A quantified temporal formula is interpreted as multiple occurrences of the
temporal formula with the quantified variables replaced by their possible values.
“Vz : Q(z) = p(z)) | 0" is evaluated to true if all occurrences of p(z) with r
satisfying Q(z) are evaluated to true. Arn important constraint on the predicate
Q(z) is that its truth value does not depend on program states. For example,
can be the index of processes and ((z) asserts that z range over some set of
numbers. Similarly, “(3z : @(z) A p(z)) | ¢” is evaluated to true if at least
one occurrence of p(z) with z satisfying (Xz) is evaluated to true. For brevity,
temporal formulae will often be written without explicit quantification; they are
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assumed to be universally quantified over all values of the free variables.

The properties of a program D are expressed by statements of the form
“p in D,” where p is a temporal formula.

pinD = Vo:o0€ Comp™(D)=>(p|o) (=V¥r:7€ Comp(D)=(0p | )
(Pl)

The following are some temporal formulae that are true for any sequence

of Comp™(D). Their validity can easily be verified from the definitions (Al)-

(A7.2). Notice again that a, b, ¢, and d are predicates on program states and do
not involve temporal operators.

O(pAq) & (BpAQg) (T1)
(a AAp) & A(a A p) (T2)
(O(p = ¢) AOp) = Ugq (T3)
(a Unless bV ¢) = ((a Unless b) V (a Unless c)) (T4)
({a Unless b) A (c Unless d)) = (a A c Unless bV d) (

2.2.3 Modeling Distributed Systems

Programs can be composed to produce composite programs in a natural way:
The set of variables (rules) of the composite program is the union of the sets
of variables (rules) of all component programs. Each component program of
a composite program will be referred to as a module. Variables belonging to
more than one module are termed shared variables. A constraint on program
composition requires that each shared variable be initialized “consistently”™ by all
sharing modules. A program composed of modules F and G is denoted by F|G?.
Note that F and G may themselves be composite programs. In a computation
of F||G, each rule of F or G must be selected infinitely often. A computation
of F is no longer a computation of F|G, since the rules of G are not selected;
analogously for G. For clarity, the state of a module in a composite program will
be referred to as the local state of the module.

We consider programs where modules are functionally divided into two cat-
egories: processes which do significant computations and channels which simply
relay messages. Distinct processes have disjoint sets of variables and so do dis-
tinct channels; variables may be shared only between a process and a channel.
A sender process may send a message to a receiver process by depositing the
message in a message queue shared by the sender and a channel; the channel

2The notation “|” is borrowed from UNITY; another commonly used notation is “||”.
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then delivers the message by removing the message and depositing it in another
message quelie shared by the channel and the receiver process. (Note that the
notions of process and channel are relative to a program. A module in a process.
which shares variables with other modules in the same process, is not a process
of the entire program; analogously for modules in a channel.)

Programs composed in the above manner are called distributed programs. A
distributed program models a distributed system with message-passing.

2.3 Problem Specification

Let USER refer to a distributed program which contains a set of processes and the
channels that relay messages among the processes and OS refer to the distributed
scheduler that implements synchronizations among the asynchronous processes

in USER. The composite program USER{]OS is referred to as P.

A process in USER with index i is denoted by user;; analogously for OS.
Let p; denote user;[os;; each p, is a process in P. We shall refer to a process in
USER as a user, a process in OS as an os, and a process in P as a process. An
interaction among user;, user,, and usery is represented by {7,j,k}. T is the set
of all interactions defined among users; each element of Z is a nonempty subset
of the process indexes. Two interactions are said to be conflicting if they are
distinct and have a non-empty intersection.

Each user and the corresponding os share two variables: state and flag. state
may assume the value active or idle. The two states of a user (or loosely, a
process) correspond to a user that does not want to participate in any inter-
action and a user that is waiting to participate in some interaction. A user is
said to be participating in an interaction if it is a member of the interaction and
the interaction is started. Interaction [ is started if one of its members, say p;,
sets flag; to [ and is terminated if flag is set back to null for all members of I.
The relationship between a user and its os and that between two processes {each
formed by the composition of a user and its os) are depicted in Figure 2.3. As a
pair of processes in P communicate via channels and do not share variables, an
update of state; in any computation step is not observed by any p; (j # i) in the
next step, enforcing assumption (iii) in Section 2.1.

We introduce some abbreviations for commonly used predicates:

active; = (state; = active), analogously for idle; (d1)
enable’ = (Vi:ie = idle;) (d2)
start! = (Ji:ie€nflag,=1) (d3)
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Figure 2.3: Compositions of users and os’s

engaged, = (31 :i €1 A start!) (d4)
Ell,Jl = (I #JAINJ# ¢), interactions [ and J are conflicting (d3)

We use the temporal logic language introduced in Section 2.2.2 to specify the
properties of USER and P as well as the constraints on OS®. Again, all temporal
formulae are assumed to be universally quantified over all values of their free
variables.

2.3.1 Specification of USER (the Given)

This part specifies the behavior of the USER program at its interface with OS
and also specifies some properties that are guaranteed when USER is composed

with OS.

For each user, the variable state is initialized to active and flag to null. A user
may not start an interaction — (ul). Provided that an os may not terminate
an interaction and an os may not change the state of a user ((ol), (02.1), and
(02.2) in Section 2.3.3), USER will satisfy the following two properties: An idle
user may become active only after it becomes engaged — (u2) and a started
interaction will eventually be terminated — (u3).

(flag; = null) A O(label € Rule( USER)) = o(flag; = null) in P (ul)
If OS satisfies {0l), {02.1)}, and (02.2) in Section 2.3.3, then
idle; Unless engaged; in P (u2)
start! = O-start! in P - (u3)

3We omit the exact temporal specification of the initial states as well as the precise speci-
fication of other restrictions {e.g. the restriction on what variables are shared among different
modules). Although the omitted specifications can easily be verified from the program text,
their explicit inclusion would considerably lengthen the problem specification and the impossi-
bility proofs.
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2.3.2 Specification of P (the Composite)

This part specifies the safety and liveness properties that must be provided by
the composition of USER and OS.

The safety properties require that only enabled interactions can be started
— (ppl), i.e. the synchronization requirernent, and that conflicting interactions
cannot be started simultaneously — (pp2), i.e. the mutual exclusion requirement.
The liveness property requires that if an interaction /is enabled, either or a con-
flicting interaction be eventually started — (pp3), i.e. the progress requirement.

—start! Unless enable! in P {ppl}
E[I,J] = —(start! A start’) in P {(pp2)
enable’ = O(start! v (3J : E[I,J] A start”)) in P (pp3)

2.3.3 Constraints on OS (the Solution)

The only shared variables between user; and os; are state; and flag,. For each
os, state is initialized to active and flag to null (consistent with the initialization
in USER). An os may not terminate an interaction — (ol) and an os may not
change the state of a user — (02.1) and (02.2).

(flag; = I) A o(label € Rule(0S)) = offlag; = 1) in P {ol}
active; A O(label € Rule(0S)) = Oactive; in P (02.1)
idle; A O(label € Rule(0S)) = oidle; in P (02.2)

(Assumption (ii) in Section 2.1 is enforced by {02.1) and (02.2).)
Remark

The specification in Sections 2.3.1-2.3.3 formalizes the problem description
in Section 1.2.2. It is intended to be a general abstraction of the problem of im-
plementing nondeterministic synchronous communications among asynchronous
processes in a distributed system. It does not place any restrictions on the mem-
bership of an interaction or on the allowable state transitions of an active process.
In particular, a process that never becomes idle and a process that will always
eventually become idle will both satisfy the specification, enforcing assumption
(i) in Section 2.1. Property (u3) might appear to be unnecessary; the rationale
behind this restriction is explained in the final remark of Section 2.4.2.

A number of algorithms have been designed, e.g. {Cha88, Bag89a], for the
problem as specified in the preceding sections. This indicates that the specifica-
tion is “consistent,” or more precisely, for any USER (satisfying the specification
of USER) there exists an OS (satisfying the constraints on OS) such that their
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composition satisfies the specification of P.

2.3.4 Additional Properties: Fairness

We formally specify the two fairness properties introduced in Section 1.2.3: SIF
and SPF.

SIF = DOenable! = TOstart!
SPF = OOready; = DOengaged,, where ready; = (31:1 ¢ [ A enable’)
Recall that “SPF in P, or simply SPF, subsumes (pp3).

2.4 Main Results

Given an additional property ¢, a USER is said to be -compatible if there exists
an S such that their composition satisfies the specification of P and also the
additional property ; otherwise the USER is ¢-incompatible. We prove that a
USER is @-incompatible by showing that, for any OS such that the composition
of USER and OS satisfies the specification of P, Comp®(P) always contains some
sequence violating . We shall use this approach to prove that there are SIF-
incompatible instances for the binary interaction problem and there are SPF-
incompatible instances for the multiway interaction problem. As a consequence,
SIF is in general impossible for binary or multiway interactions and SPF is in
general impossible for multiway interactions.

We start with some general properties of distributed programs (or systems).

2.4.1 Some Characteristics of Distributed Systems

Consider a distributed program 7 that models a distributed system. Let ¢
be the composition of some modules in D and ) be the composition of some
other modules such that @ and @ do not share any variables. s[Q] denotes the
projection of program state s on @), i.e. the local state of @ at s. The following
two lemmas describe conditions under which the projections of (possibly different)
states of D on @ are equivalent. These results capture the ideas behind fusion of
computations in [Cha86], which is one of the basic techniques in our impossibility
proofs and in others, e.g. [Fis85].

Lemma 1 If the local states of @ corresponding to two program states s and
s’ are the same, the execution of a sequence of rules in @ starting respectively
from s and s' will also result in identical local states of Q). In other words, if
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(s[Q] = $'[Ql) Az € Pref(Q), then (5,2)[Q] = (¢, 2)[Q).

Proof. According to our model, the execution of a rule of a program results in
a determiinistic state transition of the program. Starting from the same state.
a program will reach a unique state after the execution of the same sequence of
rules. Since @ is also a program, the lemma follows. End of Proof.

Lemma 2 The ezecution of a sequence of rules in Q) has no effect on the local

state of Q. In other words, if (s{Q] = §'[Q])Az € Pref(Q), then s[Q] = (5. 2)[Q].

Proof. From the assumption, @ and @ do not share any variables. Also. by
the definition of program, rules in Q may only reference variables in Q and
cannot change the value of any variable in . The lemma follows immediately.

End of Proof.

Lemma 2 has the following application: According to the problem specifi-
cation, any pair of processes in P communicate via channels and do not share
variables. The execution of a rule or a sequence of rules in p; will not change the
values of the variables in any p; (7 # i); an update of state; in any step is not
observed by any p; (j # i) in the immediately following step. In general, the pre-
ceding applies to the composition of some users and os’s and the composition of
some other users and os’s, as these two compositions do not share any variables
(they communicate with each other through the channels with which they share
message queues).

2.4.2 Impossibility Proofs

In the following proofs, we consider BIN, a collection of instances of the binary
interaction problem in which USER has three processes user;, user;, and user;
and I = {[,J,K}, where [ = {ij}, J = {j,k}, and K = {k,i}.

Besides (ul)-(u3}, the three processes also satisfy the following properties: It
is always possible for an active user to become idle due to the execution of some
rule (there can be more than one such rule) belonging to the same user - (u4)
and, if the OS satisfies its constraints, it is always possible that an active user
never becomes idle — (u3). Assumption {iv) in Section 2.1 is enforced by (u4)
and (u5); it is straightforward to construct a USER program that satisfies the
two properties.

active; = EO(label € Rule(user;) A idle,) in P, analogously for user; and
usery. (ud)
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If 05 satisﬁes (o1), (02.1), and (02.2) in Section 2.3.3, then
active; = EQactive; in P, analogously for user; and user,. (ud)

The following lemma formally establishes the first key observation in Sec-
tion 2.1, i.e. if some interaction is enabled, the schedulers cannot indefinitely
postpone the execution of the interaction while waiting for other interactions to
become enabled.

Lemma 3 For any instance in BIN, if at some state interaction [ is enabled.
P ts active (so, interactions J and K are disabled), and no interaction is started,
then there exists a possible future of the state in which interaction I is started and
pr remains active until I is started. In other words:

(enable’ A active, A —startt) =
E((enable! A activey A —start™ Unless start!’) A Ostart!) in P,

where start denotes (start! v start’ V start®).

Proof. Assuming the contrary, we shall demonstrate a possible future of a state
satisfying (enable’ A active, A —start*) such that interaction / remains enabled
but neither I, J, nor K will be started, violating (pp3).

do : o € Comp™(P) A ((enable’ A active, A —startt)A
A-((enable’ A active, A ~startt Unless start!) A Ostart!) | o)
),

, from the assumption and definitions (P1), (A5.2), and (A6.3).
Fix the above ¢.
Yr: 1 € Branch(oo) = ((enable’ A active, A —startt)A
—((enable’ A active, A —start* Unless start!) A Ostart!) | 7)
, from the above, (T2), and (A5.1). (1)
¥r : 1 € Branch({co) = (enable! A activei A —start™ | )
, from the above. (2)

¥1:7 € Branch{og) =
(~(enable’ A active, A —startt Unless start’) v O-start! | 1)
, from (1), (A4.2), and {A6.2). {3)
We deviate to prove the following property:
(enable! A activey A ~start™ Unless start!)v
(emtbh‘zlr A active, A —startt Unless start’ V start¥ v idley) in P. (4)
—start! Unless start! in P, analogously for J and K
, from that an interaction is either started or not started.
—startt Unless startt in P
, (T5) on the above.
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(s1”,7)[osi]os;,].
Since stértl at (s1,y1), the preceding statement implies start! at (s1",r). (1)
Also, from Lemma 2, wdley at s’ implies idley at (s)",7). (2)

The above scenario is depicted in Figure 2.5, which shows that the transition
to idle of user, (execution of ¥2) has no effect on starting interaction J {by the
execution of r), as the local state transition of user; is not immediately visible
to os;fos;. /is started irrespective of whether usery is active or idle.

enable’ (A-start?)

active,
(Sls yﬂ)
AN
r Y2
AN
N
(51, yo?") = (Sl,yl) \ (Sl,yoyz) =5/
start! enable’ (A-start?)
activey r enable’

enable

(81, ?Joyz") = (31', ”‘)

start!
zdlek

Figure 2.5: The transition to idle of user; has no effect on starting interaction [

(= { isj} )

Those rules of P except user; and user;, not selected in the sequence yyy, 7
can form an arbitrary sequence y3. As y; does not contain any rules of user;
or user;, from Lemma 2 and (1}, start! at all states in (81', rya); this implies
—start! at all states in (81, rya), due to (Pp2). According to (02.2), (u2), and
(2), idle, at (s, ry3). Let s = (s, ry3). So,

(start! A idley) at s,. (3)

Stage 3: user; becomes active and user; becomes idle after 2 number of state
transitions. Consequently, interaction J is enabled.

Interaction [ was started in stage 2 at (s, r). By virtue of (u2), user; and
user; go from idle to active; by (ud), interaction [ is terminated. Similar to
Stage 1, apply (u4) to user; such that user; becomes idle again; however user;
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remains active. Let z be the corresponding sequence and s3 = (s;,2). idle; at s,
and active; at s3. From (3) and Lemma 2, idle, at s3. As z does not involve rules
in os’s, no other interaction is started. In summary, (enable'] A active, A —start™)
at si.

Stage 4: Similar to Stage 2 (with Jand isubstituting for [ and k, respectively).
interaction Jis started and, similar to Stage 3, both user; and user; eventually
become active. Let w be the sequence and sy = (s3,w). All processes are active
and no interaction is started at s.

All interactions are enabled in Stage 2 and interaction J is enabled in Stage
3. Interaction [ is started in stage 2 and interaction Jis started in Stage 1; while
interaction K is never started. Repeat the four stages indefinitely, we obtain an
infinite sequence o such that (OOenable® A O-startX) | (s, ). Each rule in
P is selected at least once either in Stage 1 or Stage 2, so a € Rule’('P) and
{s0, ) € Comp*(P). End of Proof.

Add one process user;, which has properties (ul)-{u5), to each USER in
BIA and change K to {k,z,[}. We obtain a collection MUL of instances of the
multiway interaction problem.

Theorem 2 USERs in MUL are SPF-incompatible. (So, in general, SPF is

impossible for the multiway interaction problem.)

Proof. At some point of computation, assume that p, becomes idle, while other
processes remain active. Since p; may participate only in interaction K, in order
to satisfy SPF, interaction K should be started infinitely often if it is enabled
infinitely often. Ignore p; altogether and treat this problem as implementing SIF
for the equivalent binary interaction problem. The conclusion follows from the
constructed computation in the proof of Theorem 1. End of Proof.

Remark

Property (u3) was used in Stage 3 of the proof of Theorem 1. Removal of
this property from the specification may trigger some superficial impossibility re-
sults. For instance, assume that some interaction is started but never terminated
while its members remain idle. A conflicting interaction may become and remain
continuously enabled but can never be started (to ensure mutual exclusion, i.e.
(pp2)). This violates a fairness property referred to as weak interaction fairness.
The problem can be avoided by modifying the specification to introduce an ad-
ditional state for a process (other than active or idle) which refers to a process
that is participating in an interaction. However, this modification makes the
specification longer and more complex.
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activey Unless idle; in P
- , from that a process is either active or idle.
enable’ Unless startt in P
, (T3) on (u2).
enable! A active, A —start™ Unless start* V idleg in P
, (T5) on the above three.
Applying (T4) to the above, we obtain (4).
V7 : 7 € Branch(ay) =
((enableI A activer A —start™ Unlessstart’ V start® v idley) v O=start! | )

, from (3) and (4). (5)
3r": 7' € Branch(ao) A (Qactives | 7') (the second conjunct = (O-idle, | 7))
, from (u3), (2), and (A5.2). (6)

Fix the above 7'.
—start? A =startX A O(-enable” A —enable®) | v
, from the above, {d2), and (2).
C(-start! A —startX) | 7/
, from the above, (ppl), and (A7.2).
(enable’ A active, A —startt) A O(=start? A —startX A ~idleg) | v’
, from (2), the above, and (6).
enable! A O(=start! A —start? A —startf) | 7/
, from the above, (5), and (A7.2).
The above violates (pp3). End of Proof.

Theorem 1 USERs in BIN are SIF-incompatible. (So, in general, SIF is im-
possible for the binary or multivay interaction problem.)

Proof. Starting from a state of P where all processes are active and no interaction
is started (initial states are such states), we are able to construct an infinite
sequence of rules a satisfying the fair selection criterion, i.e. a € Rule™(P), such
that in the corresponding computation interaction K is enabled infinitely often
but never started. Formally, 30 : ¢ ¢ Comp*(PYA((BCenableX AD-startX) | o).
The construction proceeds in phases, where each phase consists of four stages.
During each phase all interactions are enabled at least once but only [ and J are
started. At the end of each phase the program reaches a state where all processes
again become active and no interaction is started. To satisfy the fair selection
criterion, each rule in P is selected at least once in each phase. Figure 2.4 outlines
the major state transitions in various stages of a phase.

Starting from a state s, where all processes are active and no interaction is
started, each phase proceeds as follows:
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rStage 14 Stage 2 o+ Stage 3 e Stage 4 -
So 51 52 33 54

active; enable! enable! enable’ active; active; active; active;

active; J J tive - J J tiv
LUE 5 . enable:. enable’, achive;  engble” enable” AQCLITE;
activer activer  enagble™ enabl‘e}‘ idley activey

—startt -—startt —startt  start —startt -—startt start?  —startt

Figure 2.4: Major state transitions in a phase of the computation under con-
struction

Stage 1: user; and user; become idle (so, interaction [ is enabled), while
user, remains active,

Apply (u4) first to user; then to user; (or the other way around) to obtain
a sequence z; consisting of rules of user; and user; such that (idle; A idle;) at
(s0,21). From (d2), enable’ at (s0,21}. Those rules of user; and user; not selected
can be arranged in arbitrary order to form a sequence z;. Let 5, = (so,7122). As
x,x; contains rules from o-nly user; and user;, due to (ul) and (u2), no interaction
is started hence enable’ A —startt at s; and, since activey at sp and 1z, does
not contain any rules in usery, from Lemma 2, we get active, at ;.

Stage 2: Interaction [ is started; usery becomes idle just before [ is started
such that [, J, and K are enabled simultaneously. However, it is impossible for
the schedulers to determine that J and K are enabled before [ is started (the
second key observation in Section 2.1).

Given (enable’ A activer A —start™) at g, from Lemma 3, there exists a se-
quence y; of rules in P such that start! at (s;,;) and —start! A —start?® at all
states in {(s1, ). Without loss of generality, we assume y; = yor, where ris a
rule of os; or os;, and —start! at (s1,3), i.e. the execution of r starts interac-
tion I. From (ppl) and -start! at (s;,10), enable! at (s1,y). According to {ud),
there exists some rule or in general a sequence of rules y; in user; such that
idlex at (s1,%0y2). (If idle, at some state in (s1, y1), then y; is simply the empty
sequence.) Let s, = {s1, %o¥2). So, (enable! A enable’ A enable™) at s’. Rule r
can be selected for execution at s’

From Lemma 2 (replacing s and s’ in the lemma by (s1,%), @ by os:{os;, Q

by oss, and z by 1), (su.w0)losilos;] = ((s1,30)ve))losiosy], ie. (su.30)fosilos)
= 5,'[os;[os;], which is to say that the transition to idle of usery did not change

the local state of os;[os; at (s1,10).
From Lemma 1 (replacing s by (s1,%), s’ by s1', @ by osi[os;, and z by r),
((s1,30),)osilos;] = (s1',P)osilos;]. As 1 = yor, we get (s1.31)[osifos;] =
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2.5 Discussion

2.5.1 Generalization of Main Results

Two factors determine whether a problem instance is SIF and/or SPF-
incompatible: (a) the properties exhibited by the users in addition to (ul}-
(u3) and (b) the “system configuration”, i.e. the number of processes and the
interactions defined among the processes. In the previous section, we proved
the impossibility results for problem instances in BZA and MUL by assuming
that every user satisfies the additional properties (u4) and (u5). In this section.
we extend the applicability of the results first by weakening (u4) and (u5) and
subsequently by considering system configurations other than those of BIA and

MUL.

Property (u4) may be weakened to allow an active user to become idle on
the execution of a sequence of rules (instead of one rule) belonging to the same
user. The results and proofs in Section 2.4.2 would still be valid; however, a
precise specification of the weaker version will be tedious in the temporal logic
adopted here. Note that both (u4) and the weaker version capture the essence of
the assumption that an active user becomes idle autonomously.

Property (u5) states that it is always possible that an active user never
becomes idle. As the proofs do not make use of this property for user;, the
results in Section 2.4.2, particularly Lemma 3, are still valid if only user; and
usery are assumed to satisfy (u5). The requirement that every user satisfy
(u5) may be further weakened as follows: Assume that either user; or user,
satisfies (u5) but which of them does is not known. Lemma 3 still holds and, as
a consequence, Theorems 1 and 2 will also hold. However, the proof of Lemma 3
would involve game-playing arguments that assume an adversary; the current
proof of Lemma 3, based only on the computational model and the temporal
logic, will not be sufficient. It is also possible to assume a property weaker than
(u5) for both user; and user;. For example, it could be the case that a user
is guaranteed to make only a finite number of transitions from active to idle.
We believe that Theorems 1 and 2 are still true, though Lemma 3 is no longer
true and the proofs of the theorems are no longer valid. However, the adopted
temporal framework is inadequate for developing a precise specification of the
weaker assumption as well as the required proofs.

We now consider the impact of expanding the system configuration. The
interaction graphs of problem instances in BTN and MUL are shown again in
Figures 2.6 (a) and (b) respectively, where we identify j* with j.
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(a) Binary (b) Multiway

Figure 2.6: “Minimal” interaction graphs (j and j' may be identical)

Assume that jand j' in Figures 2.6 (a) and (b) are distinct processes and that
the interaction graphs represent problem instances in BIA” and MUL' respec-
tively. Also assume that all users satisfy (ul)-(u5). Let J’ denote interaction
{j’.k}. Tt is easy to show that Theorems 1 and 2 apply to problem instances in
BIN' and MUL' respectively: the proofs must simply be modified to replace
interaction J (= {j,k}) by interaction J' (= {j’, k}); furthermore, references to
user; in the context of interaction J must be replaced by user;: in the context of
interaction J'. The interaction graph in Figure 2.6 {a) is “minimal” in the sense
that an instance of the problem with a simpler interaction graph (with fewer pro-
cesses or interactions) will become SIF-compatible. We show the minimality of
BIN' by demonstrating that the removal of any edge leads to a problem instance
for which SIF can be satisfied; the minimality of Figure 2.6 (b) can be shown
analogously.

Assume {j’,k} is removed from Figure 2.6 (a) (the consequence of removing
another edge may be argued similarly). We must show that if some interaction in
the reduced graph is enabled infinitely often, it will be executed infinitely often.
Using a construction similar to that used in the proof of Theorem 1, assume that
at some point in the computation, interaction {i,j} is started after p; becomes
idle. As interaction {4,k} is the only interaction of which p, is a member, the OS
can easily satisfy SIF by ensuring that if p; subsequently becomes idle, {i,k} is
the next interaction to be started.

The minimality of BIA” and MUL’ can be used to extend the impossibility
results to other process configurations: Any problem instance with interaction
graph reducible to Figure 2.6 (a) is SIF-incompatible and one reducible to Fig-
ure 2.6 (b) is SPF-incompatible provided that every user satisfies (ul)-(u4) and
at least user; and usery satisfy (u5). (A graph is said to be reducible to another
graph if the latter graph is a result of removing some of the nodes or edges from
the former.) '
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2.5.2 Basic Assumptions Revisited

We restate the basic assumptions of the problem and show that they are moti-
vated by practical considerations:

(A) It isimpossible to determine a priori whether an arbitrary process will make
a transition from active to idle.

(B) The scheduler cannot control the actions of an active process. In particular.
the scheduler cannot control when an active process becomes idle.

(C) The transition from active to idle of a process is not immediately observable
by other processes or their schedulers.

The validity of assumption {A) can be proven by arguments similar to those
used to demonstrate the undecidibility of the halting problem. For a set of
processes with restricted behavior wherein it is possible to assume that every
active process will eventually become idle, SIF can easily be guaranteed. Assume
that some total order is assigned to the set of interactions. Given that at any
point of a computation each active process will eventually become idle, every
interaction must eventually become enabled. A scheduler may then simply choose
each interaction in turn and wait until it is enabled, implying that the complexity
of such algorithms will be dependent on the average time each process remains
in the active state.

Contrary to assumption (B), it is possible to assume a more powerful sched-
uler which is responsible for scheduling both local and communication actions
of a process. This would imply that the transition of a process from active to
idle can also be controlled by the scheduler and indirectly by other processes in
the system, thus violating the autonomy of a process in executing a local action.
Such a scheduler can prevent a process from executing its active to idle transition,
thus allowing it to control which interactions are enabled. In the extreme case,
such a scheduler can always ensure that conflicting interactions are never enabled
simultaneously and thus guarantee SIF in a straightforward manner. However,
such a powerful scheduler is just an artifact that defines away the real prob-
lem. Furthermore, postulating such a powerful scheduler, in effect, implies that
a scheduler has an instantaneous “global snapshot” about which interactions are
enabled, a requirement that is met by very few real-life distributed systems.

Assumption (C) is a consequence of unbounded communication delays in asyn-
chronous systems. Moreover, SIF is impossible even if a known upper bound
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(other than zéro) is assumed for communication delays. If the active to idle tran-
sition of a process is immediately observable by other processes in the syvstem.
SIF can be guaranteed, as once again the scheduler has an instantaneous giobal
snapshot of the enabled interactions.

Under the three assumptions, the impossibility results hold in a model which
allows more than one atomic actions {or rules) to be executed in each computation
step in contrast to the interleaving model assumed here; this follows immediately.
as the former model will contain all computations allowed by the latter model.
Also, 1t should be clear that any fairness property stronger than SPF will he
impossible for multiway interactions and any fairness property stronger than SIF
will be impossible for binary interactions. For example, a fairness property, which
requires that two interactions which are enabled equally many times be started
equally many times, is impossible for binary (and hence multiway) interactions.
Interested readers are referred to [Fra86a, Apt88] for stronger variations of SIF
and SPF.
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CHAPTER 3

Fair Algorithms

In this chapter, we present solutions to the binary interaction problem that satisfy
SPF. We show that algorithms based on the usual transformation from the process
interaction problem to the dining philosophers algorithm cannot guarantee SPF.
We then propose a transformation that ensures SPF and derive algorithms based
on this transformation.

3.1 Algorithm A

3.1.1 Informal Description

The basic idea of the algorithm is as follows: A single token is associated with
each interaction. Each token (and the corresponding edge in the interaction
graph) is assigned an identification number, or id, using 2 minimal proper edge-
coloring of the interaction graph; at most (D + 1) id’s are needed [Ber76]. A
token is initially assigned arbitrarily to one of the two processes named in the
corresponding interaction; tokens held by a process are stored in a token queue. A
process may request an interaction only if it has the corresponding token; it does
so by sending the token to the other process. Upon receiving a request (token),
the requested process captures the token and either commits to the request by
sending a yes message, denies the request by sending a no message, or delays the
request. A token captured by a process is appended at the end of its token queue.

A process requests an interaction if (a) it is idle, (b) it has not committed
to any request, (c) it is not participating in any interaction, (d) it holds the
corresponding token, and (e) it does not have a pending request, i.e. it has not
sent a request for which a reply has not been received. For brevity, a process
satisfying conditions (a)-(c) will be referred to as a waiting process. As we
prove subsequently, every process must eventually receive a yes or no message in
response to its request. If it receives a yes message, it starts the corresponding
interaction. If it receives a no message and if conditions (a)—(e) still hold, it will
request another interaction by sending the corresponding token.

A process selects tokens from its token queue according to the following strat-
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egy: Every time the process becomes waiting, the first interaction it requests is
determined by the token at the head of its token queue; subsequent tokens. if
needed, are selected from the queue in decreasing order of their id's. The rea-
son of adopting this strategy will become clear in the proof of SPF and in the

performance analysis.

A process commits to an incoming request if it is waiting and it does not
have any pending request. A process delays a request if it has a pending request,
(which implies it is also waiting, as a process sends a request only if it is waiting).
it has not delayed any other request, and the id of the incoming request is greater
than or equal to that of the pending request. The process subsequently denies the
delayed request if it receives a yes message in response to its pending request and
1f commits to the delayed request if it receives a no. A process denies a request
immediately if it can neither commit to nor delay the request.

The basic ideas of Algorithm A are summarized in Figure 3.1, while the order
of sending tokens is illustrated in Figure 3.2.

3.1.2 The Algorithm

The following variables and transition rules are defined for the scheduler of each
process p; (subscripts of variables are omitted when no confusion may arise):

VARIABLES:

flag;: Interaction {i,j} is started if flag; = {1, } or flag,; = {i,;}.

token_q: a queue of tokens. Each token is an unordered pair of process id’s.
ino[{7,7}]: id of interaction {i,j}.

pend;: If p; has a pending request, say {i,j}, pend, is set to j.

delay;: id of the process, if any, whose request has been delayed by p;.
commit;: (commit; = j) indicates that p; has committed to a request from p;.

INITTALIZATION:

1. Edge-color the interaction graph with positive integers < (D + 1). Assign
ino{{#,7}] the color (id) of edge {i,j}.

2. Assign each token arbitrarily to one of the two processes in the correspond-
ing interaction.

3. All tokens initially assigned to a process are stored (in an arbitrary order)
in its token_q.

4. Variables flag, pend, delay, and commit of each process are initialized to
null
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Figure 3.1: Basic idea of Algorithm A
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Figure 3.2: The order of sending tokens by a process in Algorithm A
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TRANSITION RULES:

(For brevityTthe variable pend will also be used as a boolean expression whose
value is true if and only if (pend # null); analogously for other variables. Recall
that a process is said to be waiting if it is idle, it has not committed to any
request, and it is not participating in any interaction; waiting is implemented by
“(state = idle) and —~commit and —flag.”)

Rule 1: waiting and —pend and —empty(token_q).
1. token-selection: For the first time after the process becomes waiting.
the token at the head of token_q is selected; subsequent tokens. if
needed, are selected from token_q in decreasing order of their id's.
2. Remove the selected token {i,j} from token_q and send it to p,.
3. pend :=j.
Rule 2: On receiving a request (token {i,j}) from p;.
1. if waiting and —-pend
then send a yes message to p;; commit := j.
2. if waiting and pend
then if —~delay and (ino[{7,7}] > ino[{:,pend}})
then delay := j
else send a no message to p;.
3. if ~waiting then send a no message to p;.
4. Append token {i,j} to the end of token_q.

Rule 3: On receiving a yes message.
1. flag := {i,pend}. /* Interaction {i,pend} is started. */
2. if delay then send a no message to pyelay-
3. pend := null; delay := null.

Rule 4: On receiving a rio message.

1. if delay then send a yes message to pgqlay; commit := delay.
2. pend := null; delay := null,

As the transition from active to idle or from idle to active is done autonomously
by the host process, the corresponding rules are not included here. For brevity,
we have omitted the rules that deal with termination of interactions. A host
process terminates an interaction by resetting its flag to null; its scheduler de-
tects that the flag has been reset and notifies the other scheduler by means of an
appropriate message, which resets its commit to null
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3.1.3 Co;‘rectness Proof

We prove that Algorithm A satisfies the safety and SPF requirements: recall that
SPF subsumes the progress requirement.

Theorem 3 Algorithm A satisfies the mutual exclusion requirement.

Proof. Assume some interaction {1.7} is started. Without loss of generality.
assume that the interaction was requested by p; and (as the interaction does
start) eventually p; sent a yes message to p;. We prove mutual exclusion by
showing that neither p; nor p; may simultaneously request or commit to another
interaction. We first consider pi: From Rule 1, after p; sends a request to p,,
pend; must hold and the guard for Rule 1 ensures that p; will not send any
other request. Further, pend; requires that p delay or deny subsequent incormning
requests (step 2 of Rule 2, or simply Rule 2(2)). As p; is assumed to eventually
receive a yes message from pi, Rule 3(2) requires that it must deny any delayed
request. After receiving the yes message, p; is no longer waiting and can neither
request interactions nor commit to other requests (Rule 1 and 2(3)).

We next consider pj: The yes message sent by p; is either due to the execution
of Rule 2(1), which requires that p; be waiting and without a pending request,
or due to that of Rule 4(1), which requires delay;, after receiving a no message
for its pending request. From Rule 2(2), delay, requires that p; be waiting. In
either case, prior to sending the yes message, p; must be waiting and must not
have pending requests. After sending the yes message, it is no longer waiting and
can neither request interactions nor commit to other requests (Rule 1 and 2(3)).

End of Proof.

Theorem 4 Algorithm A satisfies the synchronization requirement.

Proof. Once again, assume interaction {4,7} is tarted; from Theorem 3, no
conflicting interactions can be started. We show that p; and p; are idle imme-
diately before the interaction is started, Again, assume that the interaction was
requested by p; and eventually p; sent a yes message to p;. From Rule 1, p,
must be idle before it sent token {¢,7} and must subsequently remain idle until
interaction {¢,5} is started. A yes message is sent by p, either on execution of
Rule 2(1) which requires that p; be idle, or Rule 4(1) which requires delay.. From
Rule 2(2), delay; requires that p; be idle. End of Proof.

Lemma 4 A request will not remain pending forever.
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Proof. By Rule 2, a request is either replied immediately or delayed. Assume
that dela.yeci requests form a cycle, which must involve at least 2 processes. \
cycle of exactly 2 processes is possible only if a pair of processes delay each other’s
request, i.e. both processes hold a token for the interaction between them: this
is impossible because only one token exists for each interaction. A cycle with
more than two processes implies that every process in the cycle has delayed the
request received from its predecessor process. Due to Rule 2(2), this is possible
only if the id’s assigned to all these requests are the same. A proper edge-coloring.
which ensures all edges incident to a node have distinct id’s, implies that this is
not possible. Thus a chain of delayed requests can never form a cycle and the
last process in a delay chain will either commit to or deny its incoming request
immediately. As the computational model guarantees reliable message delivery,

we conclude inductively that a reply is generated for every incoming request,
End of Proof.

Lemma 5 A process that delays a request must eventually perticipate in some
tnteraction.

Proof. By Rule 2(2), a process that delays a request must have a pending request.
From Lemma 4, a reply to its pending request will eventually be recetved. If a yes
message 1s received, by Rule 3 it will participate in the corresponding interaction.
Instead, if a no is received, by Rule 4 it will commit to the delayed request and
will eventually participate in the interaction corresponding to the delayed request.
End of Proof.

Lemma 6 If a process is continuously waiting, eventually its token.q must be-
come empty and thereafter remain empty.

Proof. Let s refer to a system state where p; becomes waiting and remains
waiting continuously thereafter.

Assume that token_q; is empty at state ;. Subsequently, if p; receives a token.
from Rule 2(1), it must commit to the request, contradicting the assumption of
the lemma.

Assume that token_q; is not empty at state s;; let t refer to the token at
the head of token.q,. As p; remains continuously waiting, from Rule 1(1), it
must eventually send ¢ which must be denied. Let s, refer to the system state
immediately after p; receives the no message in response to token .

Consider any state s; subsequent to s,, where token_q; is not empty. Let T
refer to the tokens in token_q; plus a possible pending request (token) at state
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s; and let t' be the token with the largest id in T. We first show that. at any
state subse(iuent to s;, pi can never receive a token with id greater than that of
t’. Consider the first such token that it receives. If p; does not have a pending
request, it must commit to the incoming token (Rule 2(1)) and will not remain
waiting forever. If p; has a pending request, which must be token ¢’ (Rule 1(1)).
the incoming request with id greater than that of ¢ must be delaved (Rule 2(2))
which also implies that p; will not remain waiting forever (Lemma 5). We now
show that eventually p; must lose t’, i.e. t will no longer be in T. If # is its
pending request at s;, eventually ¢’ must be denied (as p; is assumed to remain
waiting continuously). If pi does not have a pending request at s, Rule I ensures
that the next token selected by p; must be . Asa continuously enabled transition
rule must eventually be executed, p; will eventually send token ¢ to the other
process; and the previous argument for ¢ as the pending request applies.

Hence at any state subsequent to s2, where T is not empty, eventually p; must
lose the token with the largest id and can never subsequently capture it again.
It follows that the largest id in token_q; must decrease; and, inductively, token_g;
will eventually become empty. End of Proof.

Theorem 5 Algorithm A satisfies SPF.

Proof. Assume the contrary, i.e. there exists a process p; such that p; is ready to
participate in some enabled interaction infinitely often, but from some point in
time no interaction of which Pi is a member is started. It follows that eventually
pi will be continuously waiting. And, from Lemma 6, token_q; will eventually
remain empty.

We claim that if any of the neighbors of p;, say p,, becomes idle infinitely
often, then p; will eventually send token {tj} to p;, which will commit to the
request if it is waiting, contradicting the assumption that pi will be continuously
waiting. If p; becomes idle infinitely often, it must participate in some interaction
infinitely often; otherwise, from Lemma 6, token.q; also will eventually remain
empty, which is not possible. Each time p; participates in some interaction, say
{7.k}, there is at least one exchange of the corresponding token between p; and
Px. To ensure that interaction {iJ} is eventually requested by p;, we need to
show that the token for interaction {i,7} will eventually emerge to the head of
token_q;. For simplicity, we assume that when a process becomes waiting, if its
token_q is not empty, the process makes at least one request before replying to
any incoming request. Thus, the distance of token {44} from the head of token_q ;
will decrease by at least 1 each time p; becomes waiting. It follows that token
{1} will eventually emerge to the head of token_q; and be sent by p; to p;. (In
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reality, a waiting process may accept an incoming request before itself makes
any request.~This can occur consecutively for at most D times, as there is only
one token for each interaction and a process can be a member of at most [
interactions. Particularly, once a process holds all the tokens for the interactions
of which it is a member, it has to send at least one request next time when it
becomes waiting.) End of Proof.

Remark

Though we have assumed that message delivery is FIFO, Algorithm A can
handle out of order message deliveries. According to the algorithm. at any state
there is at most one message in transit between a pair of processes, with one
exception: A process p; may deny a request ¢ (for instance, if p, has a pending
request t; such that id of ¢; is larger than id of £, ) from one of its neighbors p; and
subsequently p; may send ¢, to p; (for instance, if t; is itself denied). At this point
both f; and the no message may be in transit. Assume that token ¢ is delivered
before the no message. In this case the prematurely received token will be delayed
by p; due to Rule 2(2) (assuming it is the case that waiting and —delay are true;
otherwise, p; will deny or commit to ¢, immediately) until the no message from p,
is received. Before then all other requests to p; will be denied and, when the no
message from p; is received, p; will commit to request £, (Rule 4(1)). It follows
that the algorithm can handle out of order message deliveries.

3.1.4 Performance Analysis
3.1.4.1 Worst Case

Theorem 6 The message cost of Algorithm A is at most 2(D + 1) and its re-
sponse time is at most D* + 5D.

Proof. The performance of the algorithm is affected by the number of requests
sent by a process and the length of a delay chain that may be formed in the
interaction graph.

Suppose p; becomes waiting. Let ¢ and T be as defined in Lemma 6; token
t is denied and subsequently p; sends tokens from T in decreasing order of their
id’s.

We claim that each token from T is sent at most once by p; before p; par-
ticipates in some interaction. Assume the contrary, i.e. there exists a ¢, in T
such that ¢; is sent at least twice by p; before p; participates in some interaction.
When ¢; was sent for the first time by p;, it must be the token with the largest
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id (Rule 1(1}). Subsequently, ¢, is captured by p; only when p; receives ¢; from
its communication partner. On receiving the token, if p;, delays or commits to
the request, some interaction of which p; is a member will eventually be started.
which contradicts the preceding assumption. Thus p; must deny the token. How-
ever, p; can deny the token only if it has a pending request whose id is greater
than ¢; (Rule 2(2)). This is impossible as p; must request tokens from T in de-
creasing order of their id’s, which establishes the necessary contradiction. As a
process is a member of at most D interactions, T can contain at most D tokens.
Together with the request corresponding to token ¢, this implies that p; may send
at most (D + 1) requests. As each request generates exactly one reply message.
the message cost is at most 2(D + 1).

An incoming request at some p; is delayed if p; has a pending request with
a smaller id (two interactions with a cornmon member have distinct id’s). It is
possible for the requests to be made such that a chain of delayed requests is formed
in the interaction graph. As a request is delayed only by another request with a
smaller id, a request with id £ may introduce a delay chain of length at most & and
will thus be replied within 2% units of time. From the analysis of message cost. at
least one of the two members of an enabled interaction will participate in some
interaction before they both send (D + 1) requests. Token ¢ as in the previous
paragraphs may be sent twice. Its id cannot be the largest among those of the
tokens that p; holds; otherwise, it will be committed to or delayed by p; when it
is returned. So, within at most 2(2+3+---+ D+ (D +1))+2D = D*+5D units
of time after an interaction is enabled, either the interaction or some conflicting
interaction will be started. End of Proof.

In contrast, the bound on the response time of Sistla’s algorithm [Sis&4] is
D*(T.+ L), where T. is the bound on the duration of an interaction and L is the
length of the longest path in the interaction graph.

3.1.4.2 Optimality of Message Cost

We argue informally that the message cost of Algorithm A is within a constant
difference from optimum.

If p; is to start interaction {i,j}, then p; must know that (1) both p; and p; are
idle and (2) neither of p; and p; is participating in any other interaction. This
implies that p; must have received some message from p; after p; became idle
so that p; knows p; is idle (which, in accordance with the problem description,
also implies that p; is not participating in any other interaction). We shall refer
to this message as a request as we did for Algorithm A. An enabled interaction
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may remain enabled continuocusly if both members are waiting for the other to
send a request, so at least one of them must “take the initiative” and eventuallv
send a request to the other. A process is said to be aggressive for an interaction
if it is responsible for taking the initiative; it is passive for the interaction other-

wise. Both members of an interaction may be aggressive simultaneously for the
interaction.

We observe that, if a process receives a negative reply in response to its
request, it should become passive for the corresponding interaction, while the
requested process becomes aggressive. The message complexity of an algorithn
that disobeys this principle is always worse than a similar algorithm that obeys
the principle, since the requested process may again deny the second, third ...
requests for the same reason as it denied the first. Furthermore, a process that is
passive for an interaction should remain passive unless the other member of the
interaction sends it a request or itself participates in some interaction. A process
aggressive for an interaction should remain aggressive unless it sends a request
to the other member of the interaction.

On receiving a request from p;, p; must eventually respond to the message:
the response may be either positive, if p; is idle and is not participating in any
other interaction, or negative, if p; is not ready to participate in any interaction
or is participating in some interaction. Suppose p; has D neighbors. It may
happen that, at a certain point of computation, p; is idle, not participating in
any interaction, and aggressive for all interactions of which it is a member. but
all its neighbors happen not to be idle. All requests from p; will be denied by
its neighbors. The total number of messages that should be charged to p, is at
least 2D, if each request is replied directly. The preceding discussion has assumed
that at most one process is aggressive for any interaction. If both processes are
simultaneously aggressive for a given interaction, in the worst case, each idle
process will still induce at least 200 messages.

We consider a few common alternatives and indicate their impact on message
complexity. An alternative to direct replies is that instead of replying negatively
to p;, pi may relay the original request to another neighbor of p,. Although, this
technique may reduce the total number of messages to D + 1 (up to D relaved
requests and 1 reply message), each message would have to be longer than in the
case of direct replies and the total amount of “information bits” in this case is
greater. A request typically needs at least log NV bits, where Vis the total number
of processes, for the receiver to identify which process is the sender. (Though a
token in our algorithm carries some extra information, this information can be
stored within each of the two processes which share the token.) A reply needs
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only 1 bit. In the case of direct replies, the total number of bits that should be
charged to p; is D(log N + 1).

Using the technique of relaying requests, a request must carry information
as for which interactions the requesting process is aggressive, because a process
may be aggressive for any number of interactions in its interaction set. This
information needs at least 1 bit and in the worst case D bits. So, the number
of bits that a request carries will range from (log N + 1) to (log vV + D). In the
worst case, a request will be relayed up to D times (including the original request
sent by p;) implying that the total number of bits charged to p; is larger than
D(log N +1).

An alternative is to allow a passive process to send a solicitation message,
The primary difference between a solicitation and a request is that a process
may send multiple solicitation messages (to different processes) simultaneously.
Each solicitation may induce a request message. When more than one request
arrives, a process must deny all but one of them. In the worst case, a process may
simultaneously receive D requests and have to deny D — 1 of them resulting in
3D — 1 messages (including the D solicitation messages), which is worse than the
preceding bound. Furthermore, if we assume that a process may send at most
one solicitation message at any time, the algorithm is essentially the same as one
which allows both processes in an interaction to be simultaneously aggressive.
Once again, this modification can not improve the message complexity of the
worst case to be better than 2D.

3.1.4.3 Shortening Delay Chains

In Algorithm A, we used edge-coloring to achieve the (D + 1) upper bound on
the length of a delay chain. This appears to improve the performance of the
algorithm only if the maximum degree is relatively small compared to the size of
the interaction graph, for instance, if the interaction graph is regular (each node
has same number of neighbors) and sparse.

However, even if the graph is dense or complete, in which case (D + 1) = »,
the performance may be improved by using a specific edge-coloring. Notice that
the delay chain considered in Theorem 6 is formed when the id of the incoming
request at a process is greater than the id of its pending request. If the edge-
coloring is computed to minimize the average length of paths with decreasing
edge id’s, the response time can be improved. The authors of [Gra73] consider
a problem of ordering the edges of a graph such that the maximum length of
an increasing (or decreasing) simple path is as small as possible. Their simple
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construction provides a %n upper bound. A better bound asymptotically near
31 is proved in [Cal84). Their constructions can be used to improve the response
time of Algérithm A in the case of dense interaction graphs,

3.1.4.4 Average Case

The bounds in Theorem 6 demonstrate that the worst-case message cost of Algo-
rithm A is proportional to the maximum degree of the interaction graph while its
response time is quadratic in the maximum degree. We argue that the average-
case performance is considerably superior.

Assuming an approximately even distribution of tokens, on the average, each

process holds 2 tokens. Furthermore, a process delays an incoming request only

2
if it has a pending request with a smaller id. Hence, unlike the assumption in
Theorem 6, the length of the delay chain introduced by a request wil| usually be
much smaller than its id. According to the algorithm, the replies propagating
along a delay chain will alternately be yes and no (if a process that has delayed a
request receives a no in response to its pending request, it commits to the delayed
request); this implies that it is impossible for every process along a delay chain to
experience the worst case. From these observations, we conclude that the worst
case is very unlikely to occur and we expect that the average message cost and
response time of the algorithm will be only a small factor of their worst-case
bounds. Simulation experiments have supported this hypothesis — we present
the results from the study of simple interaction graphs. Although the results of
the experiment are hardly conclusive, they corroborate the preceding analysis.

We consider interaction graphs with 10 nodes and five different topologies:
ring, 4-regular, 6-regular, 8-regular, and complete. The maximum degrees of
the preceding graphs are 2, 4,6, 8, and 9, respectively. A ring is defined by
connecting each node to exactly two other nodes in the graph. The 4-regular,
6-regular, and 8-regular graphs are constructed from a ring by connecting every
pair of nodes which are within 2, 3, and 4 hops away, respectively. A process is
assumed to be connected to each of its communicating partners by a direct, link:
the message transmission time for each link is assumed to be exactly 1 unit of
time. We model the transition of a process from active to idle by a Bernoulli trial
with expected time a; units. We found that the outcomes seem not very sensitive
to the change of q; however, we did not investigate their relationship further.
The experimental results with @ =1 are plotted in Figure 3.3. The worst-case
message cost and response time are as defined in Section 1.2.5.

As seen from the figures, the experimental average-case metrics are consider-
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Figure 3.3: Experimental performance

ably better than the experimental worst-case metrics. In fact, the experimental
worst-case response time, which as seen in Figure 3.3 (b) is almost linear, is
considerably better than the theoretical quadratic bound derived in Theorem 6.
However, the experimental worst-case count of the number of messages sent by a
waiting process was found to be close to the theoretical bound.

3.2 Algorithm B

3.2.1 Process Interactions and Dining Philosophers

The dining philosophers problem [Dij78] is typically stated as follows {Cha84]: A
philosopher is placed at each node of a finite undirected graph, called the conflict
graph; each edge of the graph is associated with a unique fork. Two philosophers
are neighbors if an edge exists between them. A philosopher is in one of three
states: thinking, hungry, or eating. A thinking philosopher may autonomously
become hungry. A hungry philosopher can eat only when it holds all forks asso-
ciated with the edges incident to it (which implies neighboring philosophers do
not eat simultaneously). A solution to this problem, henceforth referred to as the
diners problem, is required to ensure that a hungry philosopher will eventually
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eat if every éating philosopher becomes thinking within a fintte time.

A solution to the diners problem can be embedded in an algorithm for the pro-
cess interaction problem [Cha88, Bag89a, Cho92]. For binary interactions. this
embedding yields an algorithm that is less efficient than Algorithm A. Further-
more, the embedding does not automatically satisfy fairness and modifications
to achieve SPF are not straightforward. Existing algorithms for the interaction
problem that utilize solutions to the diners problem usually adopt the following
transformation: The members of an interaction cooperatively play the role of a
philosopher such that each philosopher manages exactly one interaction. Thus
two philosophers are neighbors and share a fork if and only if the corresponding
interactions conflict (i.e. they have a common member). In order to use a solution
to the diners problem, transitions from thinking to hungry and from eating to
thinking for a process must be defined such that the eating period of any process
is finite. A thinking philosopher becomes hungry when all members of the cor-
responding interaction are waiting (in the same sense as a process is waiting in
Algorithm A, i.e. it is idle, it has not committed to any request, and it is not par-
ticipating in any interaction). The embedded diners algorithm guarantees that a
hungry philosopher will eventually eat. When a philosopher starts eating, if all
members of the corresponding interaction are still waiting, the interaction may
be started and the philosopher goes back to thinking; otherwise, the philosopher
goes to thinking state without starting the interaction. This ensures that the
eating period of a philosopher is finite.

We use a simple counterexample to show that the preceding transformation
does not satisfy SPF for the case of binary interactions. Consider a system
with three processes p;, p;, and pi and two interactions {7,j} and {j,k}. where
philosophers X and Y correspond to the respective interactions; the configuration
of the system is shown in Figure 3.4.

Figure 3.4: The interaction graph and the conflict graph of a problem instance

At some point in the computation, all three processes become waiting and
both philosophers are hungry. Without loss of generality, assume that X becomes
eating and consequently starts interaction {¢,7}. However, when Y becomes eat-
ing, p; is no longer waiting and Y goes back to thinking without starting interac-

47



tion {7,k}. Sfibsequentiy, pi and p; simultaneously become waiting and the cycle
continues such that p is infinitely often ready to participate in interaction {;.k}
but always remains waiting.

3.2.2 Alternative Transformation

We propose an alternative transformation that embeds a solution to the diners
problem and satisfies SPF for the case of binary interactions. Two processes
are neighbors if an interaction is defined between them. Similar to Algorithm A.
neighboring processes share a single token which is initially assigned to one of the
processes. Each process maintains a queue of the tokens that it holds. A process
may request another process for interaction by sending the corresponding token
as a request; an incoming token will be appended to the end of the token queue
in the receiving process. Let each process in the binary interaction problem also
be a philosopher. Thus a process, in addition to the active and idle states defined
earlier, also has dining states that correspond to the thinking, hungry, and eating
states of a philosopher.

The rules for sending and replying to requests are as follows: A process may
send a request only if it is eating and tokens must be selected in the FIFO order
defined by its token queue. On receiving a token, a process commits to the
corresponding interaction if it is also waiting (i.e. it is idle, has not committed
to a request, and is not participating in any interaction); otherwise, it denies the
request. In either case, a process cannot delay an incoming request, but must
reply to a request immediately on receiving it. When a process commits to a
request, the corresponding interaction can be started.

Once again we must define the appropriate transitions for the dining states of
a process and show that its eating period is finite. A process goes from thinking
to hungry if it is waiting and its token queue is not empty. The diners algo-
rithm guarantees that a hungry process will evgntua.lly eat. An eating process
goes to thinking if its token queue becomes empty or it becomes not waiting
(possibly because it has committed to some interaction while hungry). We prove
subsequently that the eating period of a process is finite.

The alternative transformation is more formally described in the following
state transition rules for the scheduler of each process p;. We use a variable
dstate to record the dining state of the process. Henceforth, we will abbreviate
“dstate = thinking” as thinking; similarly for hungry and eating. Initially, all
processes are thinking and pend is set to null

Rule D1: thinking and waiting and —~empty(token_q).
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1. dstate := hungry.

Rule D2: eating and waiting and —pend and —empty(token_q).
1. Remove the first token {i,5} from token_q and send it to p;.
2. pend := ;.
Rule D3: eating and —waiting. /* Prior to becoming eating, hungry p, has com-
mitted to some request. */
1. dstate := thinking.

Rule D4: eating and —pend and empty(token_q).
1. dstate := thinking.

Rule D5: On receiving a token {45} from p;.
L. if waiting
then send a yes message to p;; commit := ;.
else send a no message to p;.
2. Append token {i,j} to the end of token_q.
Rule D6: On receiving a yes message.
1. #lag := {i,pend}. /* interaction {i,pend} is started */
2. pend := null.
3. dstate := thinking.
Rule D7: On receiving a no message.

1. pend := null

Note that Rules D3, D4, and D6(3) can be combined and further stmplified.
However, the present format is adopted for simplicity in the exposition. Again, we
have omitted the rules that deal with termination of interactions as in Algorithm
A. We refer to the derived algorithm as Algorithm B.

3.2.2.1 Correctness

It is straightforward to show that Algorithm B will satisfy the synchronization
and mutual exclusion requirements and the proofs are omitted for brevity. The
fairness of Algorithm B can be proved in an analogous way as for Algorithm A.
In fact, the proof is much simpler.

Lemma 7 The eating period of a process is finite.
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Proof. An eating process becomes thinking on the execution of Rule D3, D4, or
D6. We show that one of the preceding rules must eventually be executed for an
eating process. An eating p; is either waiting or not waiting; in the latter case
Rule D3 is enabled and the result follows. Assume p, is waiting.

If token_q; is empty when p; becomes eating, then Rule D4 is the only en-
abled rule of p; and must eventually be executed. causing p; to become thinking.
Assume that token_q; is not empty. p; will send the first token from token q; to
some neighbor, say p; (Rule D2). On receiving the token, p; must immediately
deny or commit to the request (Rule D5). We assume that any request from p; is
denied; otherwise, Rule D6 will be executed and pi becomes thinking as required.
After receiving the no message from p; and resetting pend to null (Rule D7), %
will send the next token if token_q; is not empty (Rule D2). As the embedded
diners algorithm ensures that neighbors do not eat simultaneously and only eat-
ing processes can send tokens (Rule D2), p; will not receive additional tokens as
long as it is eating. It follows that the number of tokens in token_q, will decrease
monotonically and eventually become zero, at which point Rule D4 is enabled
and must eventually be executed, causing p; to become thinking. End of Proof.

Lemma 8 If a process is continuously waiting, eventually its token_q must be-
come empty and thereafter remain empty.

Proof. Suppose p; becomes waiting at some state s and remains waiting at any
state subsequent to s. If token_g, is empty at s, then p; can never subsequently
receive a token. Because if it does, it must commit to the request (Rule D35) and
violate the assumption that it is continuously waiting.

Assume token_q; is not empty at s. If p; is thinking, it will eventually become
hungry (Rule D1) and subsequently eat (the embedded diners algorithm). An
eating process eventually becomes thinking (Lemma 7) either when it becomes
not waiting (Rules D3 and D6) or its token.q becomes empty (Rule D4). The first
alternative violates the assumption of the lemma. It follows that p; eventually
exhausts its tokens. Once again, to ensure that p; remains continuously waiting,
it may never subsequently receive a token (Rule D3). End of Proof.

Theorem 7 Algorithm B satisfies SPF.

Proof. As in Theorem 5, we need to show that if any of the neighbors of p;, say
pj, becomes idle infinitely often, then p; will eventually send token {i,j} to p;.
Again, p; must participate in some interaction infinitely often; otherwise, from
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Lemma 8, taken_q; also will eventually remain empty, which is not possible. Each
time p; participates in some interaction, say {J,k}, there is at least one exchange
of the corresponding token between p; and px {Rule D5 and D6). As the token
queues are FIFO, the token for interaction {j,k} will eventually reside in token q,
and its position is behind that of the token for interaction {¢.7}. Before p; again
participates in interaction {j,k}, p;, must have sent the token for interaction {tJ}
to p;, which will commit to the request if still waiting (Rule D3), contradicting
the assumption. E'nd of Proof.

3.2.2.2 Performance

We analyze the worst case performance of Algorithm B in terms of the complexity
of the embedded diners algorithm. For the diners problem, the message cost is
defined as the worst-case count of number of messages sent and received by a
hungry process and its response time is the elapsed time in the worst case from
the time a process becomes hungry until it becomes eating.

Theorem 8 Given a diners algorithm with message cost O(M) and response
time O(T x 7), where 7 denotes the duration of an eating period, the message
cost of Algorithm B is O(M) and its response time is O(T D).

Proof. A process may hold at most D tokens. From the proof of Lemma 7. a
waiting process that is eating will send at most D tokens until it becomes thinking.
If the process is still waiting when it becomes thinking, its token queue must he
empty and it will commit to the first request (token) subsequently received. It
has been shown that O(M) > O(D) [Cha86), so the total message cost remains
O(M).

To compute the response time, suppose interaction {¢,7} is enabled in some
state. Assume both p; and p; are waiting in this state; otherwise, at least one
of them will participate in some interaction within constant units of time. As
requests are sent by an eating process in a sequential manner (Rule D2) and
an incoming request is never delayed by the requested process (Rule D5), the
duration of an eating period will be O(D) and hence the actual response time
of the diners algorithm will be O(T'D). From the proof of Lemma 8, within
O(TD) + O{D) (= O(T D)) units of time (i.e. the response time of the diners
algorithm plus the duration of an eating period), p; will become not waiting or
exhaust its tokens and so will p;. It is not possible for both token_q; and token_q;
to become (and remain) empty, so at least one of them will participate in some
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interaction within O(T D) units of time. The response time of Algorithm B hence
is O(T D) as stated. E'nd of Proof.

3.2.3 Further Improvement

In Algorithm B, tokens are stored in a FIFO queue and sent in a sequential order
to achieve SPF. The same goal can be achieved in a more efficient, though quite
complicated, way:

Each process maintains a circular array that stores the id’s of all its neighbors:
a moving pointer indicatés which position is the current head of the circular array.
When a process becomes eating, it first sends (if still necessary) the token that
it shares with the neighbor at or nearest to the head of the array; recall that the
process may hold only some of the tokens that it shares with its neighbors. If it
receives a negative reply to the first request, the process will send all of the rest
tokens simultaneously. It then confirms whichever positive reply received first
and cancels all subsequent positive replies.

Before going to thinking, an eating process alway advances its pointer to the
next position with one exception: If the eating process becomes thinking without
sending any token (because it has been requested by other process while being
hungry and its positive reply was confirmed), then the pointer remains at its
current position. This prevents a neighbor from being ignored repeatedly.

To ensure the nice property as stated in Lemma 8 (i.e. a continuously waiting
process will eventually run out of tokens), a process that has been requested for an
interaction refurns the corresponding token as a positive reply. An eating process
that has received at least one positive reply is guaranteed to be participating in
some interaction eventually; hence, the process may keep those tokens that are
returned as positive replies with no risk of sending them again.

Finally, a process that has sent a positive reply (by returning the correspond-
ing token) to some eating process delays at most one subsequent request (while
denying all others) that was sent as the very first request by some other eating
process. After receiving a confirmation or cancellation for the positive reply, the
process takes the obvious action. It is important to note that the delay takes only
a constant time, as a confirmation or cancellation will be received in a constant
time.

The resulting algorithm is referred to as Algorithm B*. Theorems 9 and 10
can be proved in a similar way as the corresponding theorems of Algorithm B.
Note that, since a process sends all tokens except the first one simultaneously and
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each request-is responded within a constant time, the eating period of a process
is constant. =

Theorem 9 Algorithm B* satisfies SPF.

Theorem 10 Given a diners algorithm with message cost O(M) and response
time O(T x 1), where 7 denotes the duration of an eating period, the Message
cost of Algorithm BY is O(M) and its response time is O(T).

3.3 Generalized Algorithms

We have been considering the binary interaction problem, where at most one
interaction is defined between a pair of processes. The problem can be generalized
such that (a) more than one interactions may be defined between two processes
and (b) when a process becomes idle, it may be willing to participate in one
of the subset of interactions of which it is 2 member. Two processes in CSP,
for example, can synchronize via one of several matched pairs of communication
commands and these commands may be further constrained by some boolean
expressions.

Our algorithms can easily be extended to handle these generalizations. In
particular, Algorithm A can be extended as follows: We treat each interaction
between two processes as a different interaction and associate a unique token
with each of these interactions. The interaction graph becomes a multi-graph.,
where parallel edges are allowed. Fortunately, a proper edge-coloring of the graph
still suffices to prevent the algorithm from deadlock. When selecting a token. a
waiting process simply skip the tokens corresponding to those interactions in
which it is not willing to participate. Furthermore, if it receives the request for
an interaction in which it is not willing to participate, it denies the request.
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CHAPTER 4

Fault-Tolerance

We extend Algorithm A to satisfy the modified problem requirements (Sec-
tion 1.2.4) in the presence of detectable failures. In particular, the extension
guarantees SPF if there are only a finite number of failures. The technique is
applicable to Algorithm B (and the adopted dining philosophers algorithm}). To
cope with undetectable failures, Algorithm B adopts an existing dining philoso-
phers algorithm to achieve fairness and constant failure locality. We also show
that, at the cost of increasing response time, it is possible to further reduce the
failure locality.

4.1 Detectable Failures

We assume that a faulty process behaves in the detectable fail-stop model [Sch&2]
according to the following assumptions. Failure Assumption: When a process
fails, its variables are reset to their initial values and a failure message is broadcast
to each of its neighbors (this can easily be implemented using the probe facility
defined in [Sch82], which is used by a process to detect the failure of another
process). A failed process may never restart. If it does restart, the Restart
Assumption states that a designated rule is executed, by which the process sets
some of its local variables to appropriate values and it also sends an awake message
to each of its neighbors (the designated rule corresponds to the restart protocol
postulated in [Sch82]). On receiving an awake message, a process responds by
sending an ack message to the restarted process.

Assume that messages, including failure and awake messages, are delivered
in FIFO order; this assumption is subsequently relaxed. Note that although
messages are assumed to be delivered correctly, a message (including a failure
message) may still be lost. This occurs, for instance, when a process fails upon
receiving the message. We show how Algorithm A described in Section 3.1 can
be extended to satisfy the modified problem requirements. We first consider the
case of single failures and subsequently extend the solution to cope with multiple
failures.
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4.1.1 Single Failures

-

We initially assume that at most one process fails at a time and the minimum
time between successive failures is sufficiently large such that a restarted process
receives an ack message for each of the awake messages it sent.

A new variable called proper — a boolean array which is initially true — is
added to each process. If a process receives a failure message from p,, it sets
proper[j] to false; also, if a process fails and subsequently restarts, it initializes
proper to false. Subsequently, proper[j] is reset to true either if the process receives
an awake message from p; or if it receives an ack message from p; in response to
its awake message. A process sends a request to some p; only if proper[j] is true,
which ensures that it will eventually receive either a reply or a failure message
from p;. Failures need special handling in the following three contexts:

o outdated requests: A request sent by p; to p; is said to be outdated if either
pi or p; fails (and possibly restarts) after the request is sent and before a
reply is received by p;.

e outdated commitment: p; or p; fails while executing interaction {:,j}.
e token loss: a process that currently holds the token for an interaction fails.

We first consider outdated requests. Under the single failure assumption,
either the requesting process, say p;, or the requested process, say p;, has failed.
Assume p; fails. Eventually, p; will receive a failure message from p;, which is
simply interpreted as a no response to its request. If p; restarts, it will send an
awake to p; and wait for the corresponding ack. The FIFO assumption guarantees
that outdated messages from p; (including outdated requests) must be received
prior to the ack and can simply be discarded by p;. On the other hand, if p, fails,
p; will receive the request and then the failure message from p;. As detailed in
the extended algorithm, p; takes appropriate corrective action on receiving the
failure message: (a) if it had denied the request, no further action is necessary, (b)
if it had delayed the request, p; resets delay to null, and (c) if it had committed
to the request, p; resets commit to null. Also note that if p; restarts, it will also
discard any message it receives from p; prior to receiving an ack in response to
its awake message (during the period while proper[j] is false).

The problem of outdated commitments is handled similarly. If p; is partic-
ipating in interaction {#,j} and it receives a failure message from p,, it simply
assumes that the interaction has been completed.

Finally, to prevent token loss, the token assignment step is modified. Instead
of initially assigning the token for interaction {i,j} to either p; or p;, two copies
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of the token are created and each member is initialized with a copy. As a token
can be lost enly if its owner fails, it will be regenerated when the process restarts
and is re-initialized. To preserve the performance advantage of having a single
token for each interaction, we stipulate that (a) if a process acquires two tokens
for the same interaction it simply discards one and (b) if p; requests interaction
{77} and receives a token for the same interaction from p,, it discards the token
if i < j. The strategy is illustrated in Figure 4.1.

The modified algorithm is shown below, where the modified parts are under-
lined for clarity. Assuming no failures, the performance of the modified algorithm
is the same as that of Algorithm A derjved in Theorem 6.

VARIABLES:

flag;: Interaction {45} is started if flag, = {i,5} or flag; = {4,5}.

proper: a boolean array.

token_q: a queue of tokens. Each token is an unordered pair of process id’s.
ino[{i.7}]: id of interaction {,j}.

pend;: If p; has a pending request, say {7}, pend, is set to ;.

delay;: id of the process, if any, whose request has been delayed by p;.
commit;: (commit; = 5) indicates that pi has committed to a request from p;.

INITIALIZATION:

1. Edge-color the interaction graph with positive integers < (D +1). Assign
ino[{1,7}] the color (id) of edge {i,j}.
2. For each interaction, assign a copy of the associated token to each

member,

3. All tokens initially assigned to a process are stored (in an arbitrary order)
in its token_q.

4. Variables flag, pend, delay, and commit of each process are initialized to
null and proper to true.

TRANSITION RULES:
(Again, waiting is implemented by “(state = idle) and —~commit and —flag.”)

Rule 1: waiting and —pend and —empty(token_q).
/* token_q is considered empty if for every token {i,k} in token_g, proper{k]
1s false. */
1. token-selection: For the first time after the process becomes waiting,
the token at the head of token_q is selected: subsequent tokens, if
needed, are selected from token_q in decreasing order of their id’s.
Skip any token {i,k}, where proper(k] is false.
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--------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------------

(i <j)
In each case, an extra copy of token is deleted.

Figure 4.1: How an extra copy of token is removed
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2. Remove the selected token {ij} from token_q and send it to p,.
3. pend := ;.

Rule 2: On receiving a request (token {ij}) from p;.
if proper(j] and (pend # j) then
1. if waiting and —pend

then send a yes message to p;; commit := ;.
2. if waiting and pend
then if ~delay and (ino[{%,7}] > ino{{i,pend}])
then delay := j
else send a no message to p;.
3. if —waiting then send a no message to p;.
4. Append token {i,j} to the end of token_q, if it is not an extra copy.

if proper{j] and (pend = j) then /* Processes send tokens to each other.

*/

1. if (¢ > pend)
then send a yes message t0 Pyend;
commit := pend;
append the token to the end of token_q;
pend := null
else do nothing. /* Discard token and wait for a yes message. ™/

if —proper[j] then
1. Append the token to the end of token_q, if it is not an extra copy.

Rule 3: On receiving a yes message.
if proper[;] then
1. flag := {i,pend}. /* Interaction {i,pend} is started. */
2. if delay then send a no message to pyelyy-
3. pend := null; delay := null.

if —proper|j] then
1. Do nothing. /* Ignore the outdated reply. */

Rule 4: On receiving a no message.
if proper[j] then
1. if delay then send a yes message to pgejay; commit := delay.
2. pend := null; delay := null.

if ~proper[j] then -
1. Do nothing. /* Ignore the outdated reply. */
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Rule 5: On receiving a feilure message from p;.
1. proper(j] := false.
2. if (pend = j) then pend := null. /™ Interpret the failure message as a
no message. */
3. if (delay = j) then delay := null.
4. if (commit = j) then commit := null.
5. if (flag = {i,7}) then flag := null,

Rule 6: On restart. /* The designated rule for restart. */

1. proper := false.
2. Broadcast an awake message to each neighbor.

Rule 7: On receiving an awake message from p;.

1. proper[j] := true.
2. Send an ack message to p;.

Rule 8: On receiving an ack message from p;.

1. proper[j] := true.

(Again, a host process terminates an interaction by resetting its flag to null;
its scheduler detects that the flag has been reset and notifies the other scheduler
by means of an appropriate message, which resets its commit to null}

4.1.2 Multiple Failures

Assume that a process may fail at any time and may fail repeatedly. Multiple
failures imply that a failure message may itself be lost, making it harder to
identify outdated messages.

Suppose p; fails after receiving a failure message from p;- On restart, p; will
not “remember” that p; has failed. However, the awake and corresponding ack
messages can be used to reconstruct a consistent view. Assume p; restarts while
p;j 1s still failed. The absence of an ack message from p; will cause proper[j] to
remain false. This will prevent p; from sending a request to p; or from responding
to an outdated message from p;. However, it is possible for a process to receive
an outdated ack (for instance, if a failed process restarts, sends awake messages,
fails before receiving all the corresponding ack messages, and again restarts and
sends awake messages) without it being detectable as an outdated message. Every
ack message received by a process is handled as explained in Rule 8. Processing
an outdated ack creates only a temporary inconsistency because an outdated
ack must be followed by a failure message, which will appropriately reset the
state of the recipient process. Similarly, an outdated failure message cannot be
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detected and is instead handled exactly as in Rule 5. Once again processing
an outdated failure message causes only a temporary inconsistency, because a
subsequent awake message will eventually be received.

The loss of an awake or ack message can be handled in a similar way. \We
thus conclude that multiple failures do not need additional modifications to be
introduced in the algorithm.

Remark

The extended algorithm does not use any notion of “incarnation number,”
which is assumed in [Sch82). If messages may be delivered out of order, the in-
carnation numbers are sufficient to recover the order of messages to serve our
purpose. For example, when p; sends a message to p;, it appends its own incar-
nation number together with, what is in its knowledge, the highest incarnation
number for p;. Using the pair of incarnation numbers in each incoming mes-
sage, a process may easily identify an outdated message and update incarnation
numbers for its neighbors.

4.2 Undetectable Failures

In the undetectable fail-stop model [Fis85], a failed process does not execute
additional computation steps and its local variables maintain their last assigned
values.

4.2.1 Algorithms with Small Failure Locality

Although Algorithm A satisfies fairness and is very efficient, its failure locality is
not satisfactory. As the longest delay chain that can be formed in the algorithm
has a length of D + 1, it follows that Algorithm A has a failure locality of D + 1,

In [Cho92], Choy and Singh describe an algorithm for the diners problem that
has a constant failure locality of 4. The message cost and response time of their
algorithm are O(D?) and O(D? x 7) respectively, where 7 is the maximum eating
time of a process.

Adopting the diners algorithm in [Cho92], Algorithm B satisfies fairness and
achieves a failure locality of 5. The increment of 1 in failure locality is introduced
by the fact that an eating process has to wait for the replies to its requests from
its neighbors. From Theorem 8, the message cost of Algorithm B is O(D?) and
its response time will be O(D?).
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Analogously, Algorithm B* satisfies fairness and achieves a failure locality of
6. The fa.ill.{je locality increases by 2, because an eating process may have to wait
for the reply to its first request from the requested neighbor that happens to be
waiting for a confirmation from another eating process. From Theorem 10, the
message cost, of Algorithm B* is O(D?) and its response time will also be O(D?)

4.2.2  Minimizing Failure Locality

In this section, we propose a dining philosophers algorithm that achieves the
smallest possible failure locality of 2; this algorithm has also been presented in
[Tsa93a]. The algorithm can be adopted by Algorithm B to achieve fairness and a
failure locality of 3. It should be noted that a reduction of 1 on the failure locality
may translate into a reduction of a factor of D on the number of processes that
may be affected by a failed process.

Our algorithm combines the ides of a dynamic priority scheme as in [Chas4]
with the use of a preemptable fork collecting strategy as in [Cho92]. Surpris-
ingly, if no failures actually occur, the response time of our algorithm remains
asymptotically as good as that of [Cha84], which is O(n) with n being the total
number of processes; in the presence of failures, the response time degrades to
O(n?). The response time compares favorable with those of existing algorithms
with a worse failure locality of three.

Besides its application in solving the process interaction problem with unde-
tectable process failures, the proposed algorithm is interesting in its own right.
In Table 4.1, the algorithm is compared with existing algorithms and the lower
bounds for the dining philosophers problem. In the table, ¢ is the number of
colors required to color the resources such that the resources needed by a process
have different colors, § is the maximum degree of the conflict graph, n is the total
number of processes, and U is the minimum number of process 1d’s such that
two neighboring processes have different id's. No specific time bound for the first
algorithm of Styer and Peterson is available. A subscript f indicates that the
time bound is obtained with the effect of failures taken into consideration.

4.2.2.1 Informal Description

The ideas of our diners algorithm are as follows:
¢ Dynamic Priority Scheme: A directed acyclic graph that results from

orienting the edges of the conflict graph is maintained cooperatively by
the processes. The process at the start-node of a directed edge has lower
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| Algorithms | Response Time | Failure Locality ]

Lynch 80 [Lyn80) O(c®) 0O(6) N
Chandy & Misra 34 [Cha84] | O(n) O(n)
Styer & Peterson 88 [Sty88] | Exponential 3
Styer & Peterson 88 [Sty88] | O(8ls?+1) Oflog é)
Awerbuch & Saks 90 [Awe90] | O(6%log U) 0(8)
Choy & Singh 92 [Cho92] O(8°+2), 3
Choy & Singh 92 [Cho92] O(6%); 4
Proposed algorithm O(n), O(n*}; {2
| Lower bounds | O(8) | 2 —’

Table 4.1: Comparison of algorithms and the lower bounds for the dining philoso-
phers problem

priority than the process at the end-node. Initially, an edge between two
neighbors is directed from the process with smaller id to the one with larger
id; as every process has an unique id, this orientation guarantees that the
directed graph is acyclic initially. Each time when a process becomes eating,
1t reverses all its incoming edges such that it has lower priority than each
of its neighbors; the redirection results in another acyclic graph.

¢ Preemptable Fork Collecting Strategy: A hungry process tries to first
collect all the forks shared with the neighbors that have higher priority;
these forks and neighbors are referred to as higher forks and neighbors, re-
spectively. After it has successfully done so, the process starts to collect
the lower forks that it shares with lower neighbors. A hungry process de-
lays a request from a lower neighbor only if it holds all the higher forks;
otherwise, it grants the request immediately (the corresponding lower fork
is “preempted”). It grants any request from a higher neighbor and conse-
quently grants all the requests from lower neighbors that have been delayed

(the request from the higher neighbor causes the preemption of those lower
forks).

The dynamic priority scheme ensures that, if a process remains hungry “long
enough” while some of its higher neighbors repeatedly causing preemption, then
it will eventually has higher priority than those neighbors such that no further
preemption is possible. The fork collecting strategy guarantees that the length
of any “chain of delayed requests” is at most two. This is because a hungry
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process delays a request only if it is waiting for the replies to its requests to some
lower neighbors, each of which may in turn delay the request only if it is eating.
It is interesting to note that, with the fork collecting strategy, the necessity of
acyclicity of the directed graph maintained by the algorithm is to prevent livelock
rather than deadlock as in [Cha84] among processes on a cycle.

4.2.2.2 The Algorithm

To maintain the directed graph, each process p; has a boolean array higher, with
the id’s of its neighbors as index. A true value of higher;[j] indicates that the
neighbor p; of p; has higher priority than p;; higher,[j] is set to false by p; upon
receiving a switch message from p;, which indicates that p; has started to eat.
It is possible that p; “thinks” p; has higher priority while a switch message is in
transit from p; to p;; this “conservative thought” does not affect the correctness
of the algorithm.

We postulate that each process has a variable dstate indicating its dining
state. We will abbreviate “dstate = thinking” as thinking similarly for hungry
and eating. Initially, all processes are assumed to be thinking. The code for a
process p; 1s illustrated below.

VARIABLES:
(Every array is indexed by the id’s of the neighbors of Pi. The subscript ¢ of a
variable is omitted if no confusion may rise.)

dstate: The dining state of p;: thinking, hungry, or eating.

higher: Boolean array. A neighbor p; has higher priority if higher[j] is true.
fork: Boolean array. p; holds fork,; if fork[]] is true.

token: Boolean array. p; holds the token for requesting fork,; if tokenlj] is true.

collecting: Boolean. p; is collecting forks if collecting is true.

delay: Boolean array. A request from p; has been delayed if delay[j} is true.

INITIALIZATION:

1. For each neighbor p;, where j > 4, higher,{j] is initialized to true, fork;[;]
to false, and token;[j] to true.

2. For each neighbor p;, where j < i, higher;[j] is initialized to false, fork;[j]
to true, and token;[j] to false.

3. Variables collecting and delay are initialized to false (and dstate to think-

ing).
ACTIONS:

(For the ease of presentation, we assume that each time when a process goes
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from thinking to hungry, some “internal message” is generated so that it can be
received by the algorithm to observe the transition; analogously for the transition
from eating to hungry. Each time after a process becomes eating, Action D2 will
always be enabled and executed before Action D1, due to FIFO message delivery.)

DI1: On observing the transition to hungry.
L. if Vk{fork[k])
then dstate := eating; /* Delayed requests have been handled by D2.
*
/
for each k such that —higher[k] do:
send a switeh to pi; higher[k] := true.
2. if =Vk(fork(k]) and Vk{higher{k] = fork[k])
then collecting := true;
for each k such that —higher[k] and —fork[k] and token[] do:
send a request to pi; token[k] := false.
3. 1f ~Vk(fork[k]) and —Vk{higher[k] = fork[k])
then collecting := frue;
for each k such that higher[k] and ~fork[k] and token[] do:
send a request to py; token[k] := false.

D2: On observing the transition to thinking.
For each & such that delay[k] do:
1. send fork,, to px; fork[k] := false.
2. delay{#] := false.
D3: On receiving a request from p;.
1. token(j] := true;
2. if —~eating and —collecting
then send fork,; to p;; fork(j] := false.
3. if eating or (collecting and —higher(j] and Vk(higher[k] = fork[k]))
then delay[j] := true.
4. if collecting and —higher[j] and -Vk(higher[k] = fork[k])
then send fork;; to p;; fork[j] := false.
5. if collecting and higher[;]
then send fork;; to p;; fork[j] := false;
send a request to p;; token[j] := false;
for each k such that delay{] do:
send fork,. to py; fork[k] := false.

D4: On receiving fork,;.
1. fork[j] := true;
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2. if Vk(fork[k])
then dstate .= eating, collecting := false;
for each & such that —higher[k] do:
send a switch to py; higher[k] := true.
3. if ~¥k(fork[k]) and Vk(higher[k] = fork[k])
then for each & such that —higher[k] and —fork{k] and token[#] do:
send a request to py; token[k] := false.

D5: On receiving a switch from p;.
higher[j] := false.

4.2.2.3 Correctness Proof

It is straightforward to show that the algorithm satisfies the safety requirement.
To prove the liveness property, we show that the algorithm has a response time
of O(n), if no failures actually occur, and in the presence of failures, a hungry
process will eat within O(n?) units of time if no processes within two hops away
from the process fail. We use v to denote the bound on message transmission
time.

At any state s of an execution, the algorithm maintains a directed graph G(s)
with the conflict graph as the underlying undirected graph, where the direction
of an edge between two neighboring processes is determined as follows:

The edge between p; and p; is directed from p; to p; If and only if
(a) higher;[1] is false or (b) both higher,[;] and higher,[i] are true and
there is a switch message in transit from p; to p; (upon receiving the
switch message, p; will set higher,[i] to false).

It can be shown that for any pair of neighbors p; and p;, at most one of
higher,[j] and higher [:] is false. Moreover, both higher,[;] and higher [7] are true
if and only if a switch message is in transit between p; and p;. Therefore, the
direction of an edge between any two neighbors is well defined. From the initial-
ization and Actions D1 (Step 1) and D4 (Step 2) of the algorithm, it is clear that
G(s) is acyclic at any state s in an execution of the system.

Let H;(s) denote the set of processes that are reachable from p; with respect
to (G(s); a node is reachable from another in a directed graph if (a) there exists
a directed path from the latter to the former or (b) the two nodes are the same
node. Hi(s) contains p;, the higher neighbors of p;, the higher neighbors of the
higher neighbors of p;, and so on. Let [H;(s)| denote the number of processes in
H;(s); analogously for other sets of processes.
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Lemma 9 ¥ p; does not become eating at any state between state s' and some
future state 5" inclusively, then H(s") C H(s') and hence TH (") < |H(s":
additionally, if some other process in H,(s') meanwhile becomes eating, then

Hi(s")] < |Hi(s").

Proof. When a process p;, j # i, becomes eating and reverses all its incoming
edges, no processes are made reachable from p; due to the redirection of those
edges incident to p;. It follows that H;(s") C Hi(s'). If p; happens to be in H,(s).
then it is no longer reachable from p; and hence | H;(s”)| < |Hi(s')|. End of Proof.

For a process p; that is hungry at some state s, we define Fi(s), a subset of
H,(s), recursively as follows:

1. p; itself is in Fi(s).

2. Hf pj is in Fi(s), px is hungry, and p; is a higher neighbor of p;, then p; is
also in Fi(s).

We define the level of a process in Fi(s) to be the smallest positive integer &
such that each higher neighbor of the process is either not in Fi(s) or at a level
less than k. Particularly, a process none of whose higher neighbors is in Fi{s) is
at level 1. It is clear that p; is at a level less than or equal to |Fi(s)|.

4.2.2.4 Without Failures

Lemma 10 If a hungry process holds all higher forks, then within (2v + ) units
of time the process starts to eat unless it receives a request from some higher
neighbor.

Proof. Since the hungry process holds all higher forks, it will send a request for
each lower fork that it does not hold. It takes v units of time for the request
to be delivered, possibly 7 units for the lower neighbor to finish eating, and v
units for the fork to be delivered. Unless it receives a request from some higher
neighbor and has to give up the corresponding higher fork, within (2v + ) units
of time the process will hold all needed forks and start to eat.  End of Proof.

Lemma 11 If p; is hungry at state s, then within (4v + 7) units of time the
system is at another state s such that one of the following three cases occurs:

1. p; starts to eat.
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2. Some process other than p, in Fi(s') starts to eat, implying that |H,(s")| <

|Hi(s").

3. A higher neighbor of some process in Fi(s') becomes hungry such that | H;(s"}]
< [Hi(s")] and |Fi(s")] > |Fi(s")].

Proof. Consider a process in Fy(s’) at level 1, i.e. the process none of whose
higher neighbors is in F(s'); p; may happen to be this process. Unless some of
its higher neighbors becomes hungry, it takes at most 2v units of time (which is
the transmission time of a request plus that of a fork) for the process to collect
all the higher forks and from Lemma 10, within another (2v 4 7) units of time
the process will start to eat. Note that the considered process is also in Hi(s').
which contains Fi(s"). If the process is not p;, then from Lemma 9 it follows that
| Hi(s")] < [Hi(s")].

If some of the higher neighbors does become hungry within (4r + 7) units of
time but no processes in Fi(s) eat, then it is clear that |Hi(s”)| < |H(s')|, from
Lemma 9, and [F;(s")| > |Fy(s")], from the definition of F.. End of Proof.

Theorem 11 If no failures occur, the algorithm satisfies the problem require-
ments and has a response time of O(n), or more precisely O(n(v + 7)).

Proof. Suppose p; becomes hungry at some state s. From repeated applications
of Lemma 11, it follows that p; will start to eat within (M+N+1){4v +1) units of
time, where M and N are the numbers of processes in H;(s) that become hungry
and eating respectively after state s and before p; eats. As |H(s)| is bounded by
n, the algorithm has a response time of O(n{v + 7)), or O(n).  End of Proof.

4.2.2.5 With Failures

As will greatly simplify the analysis, we first examine how a failed process may
affect each of its lower neighbors (as defined at the state when the failure occurs).
There are two possibilities:

1. The lower neighbor will hold and keep the shared fork forever within v units
of time after the failure. This occurs if (a) the neighbor currently holds the
fork and there is no request from the failed process that is in transit to or
delayed by the neighbor or (b) the fork is in transit to the neighbor and
there is no request from the failed process following the fork.
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2. The Iol_uer neighbor will lose the fork forever within (v 4 7) units of time.
This occurs if (a) the failed process holds the fork upon failing, (b) the
fork is in transit to the failed process, or (c) the neighbor subsequently
relinquishes the fork (possibly after it eats for 7 units of time) in response
to a request made by the failed process prior to the failure. According to
Action D3 of the algorithm, the neighbor will thereafter grant any request
unless itself also fails.

In the first case, the edge (and the corresponding fork) between the lower
neighbor and the failed process can be regarded as non-existing; while in the sec-
ond, since the neighbor will grant any request unless itself also fails, the neighbor
and all the edges incident to it (as well as the corresponding forks) can be regarded
as non-existing. We hence make the following claim:

Suppose a process p; becomes hungry at state s and no processes
within two hops away from p; will fail. In no risk of underestimating
the asymptotic response time for p;, we may assume that failures
occur only on the processes outside of H;(s).

Regarding the effect of a failed process on its higher neighbors, we observe
that, if a process, particularly one that is in H;(s), loses a lower fork forever due
to the failure of some lower neighbor, it will behave like a normal process except
that it will never eat. In particular, when holding all higher forks, the process
will attempt to collect all lower forks and in the meantime delay any request from
a lower neighbor.

Lemma 12 [If a hungry process holds all the higher forks and no processes within
one hop away will fail, then within (2v + ) units of time the process starts to eat
unless it receives a request from a higher neighbor.

Proof. The lower neighbors of the hungry process behave as in Lemma 10, as

they are one hop away and assumed not to fail. End of Proof.

Lemma 13 If p; is hungry at state s’ and no processes within two hops away
from p; will fail, then within ((|Fi(s")| + 1)v + 2v + 1) units of time the system is
at another state s” such that one of the following three cases occurs:

1. p; starts to eat.
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2. Some process other than p; in Fi(s') starts to eat, implying that |H.(s")| <

| Hi(s")}

3. A higher neighbor of some process in Fi(s") becomes hungry such that that
[Hi(s") < |Hi(s)] and |Fi(s")] > |Fi(s")].

Proof. Assume no higher neighbors of the processes in Fi(s') become hungry
within ((|Fi(s')] + 1)v + 2v + 7) units of time from state s’. Recall that failures
can be assumed to occur only on processes outside of H,(s'), each of which may
be lower neighbors of some processes in H;(s') and/or in Fi(s").

Within (1 + 1) units of time each process in Fi(s") at level 1 should hold all
its higher forks; Lemma 12 is applicable unless each process has a fatled lower
neighbor outside of Hi(s'). In any case, each process at level 1 will acquire all the
lower forks from the processes at level 2 unless some process at level 2 has become
eating, implying Case 1 or 2 has occurred. Within (1 + 2)v units of time each
process at level 2 should give up its lower forks to the processes at leve] 3 (unless
it has become eating). Within (1+3)v units of time each process at level 3 should
hold all its higher forks. Reasoning along this line, within (1 +{Fi(s")))v units of
time Lemma 12 will be applicable to either p; which is at a level < |Fi(s")| or some
of its higher neighbors at the immediate preceding level; note that no processes
within one hop away from either process may fail according to the hypothesis of
the lemma. Within ((|Fi(s")| + 1)v + 2v + 7) units of time from state s', one of
the two processes starts to eat or some other process in Fi(s') has become eating.
The rest is analogous to the proof of Lemma 11. End of Proof.

Theorem 12 The algorithm satisfies the problem requirements with a failure lo-
cality of 2 and has a response time O(n?), or more precisely O(n%v + nr).

Proof. Suppose p; becomes hungry at state s and no processes within two hops
away from p; will fail. At any state s’ between state s and the state when Di
starts to eat, Fi(s') C Hi(s) and hence |Fi(s)] € |Hi(s)| from Lemma 9 and
the definition of F;(s’). From repeated applications of Lemma 13, it follows that
pi will start to eat within (M + N + 1)((|Hi(s)| + 1)v + 2v 4 7) units of time.
where M and N are the numbers of processes in H;(s) that become hungry and
eating respectively after state s and before p; eats. As |H(s)| is bounded by n,
the algorithm has a failure locality of 2 and a response time of O(n%*v + nt), or

O(n?). End of Proof.
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4.3 Remarks

The response time of the extended Algorithm A for detectable failures is bounded
above by D?* 45D, while those of Algorithms B and B* (using the dining philoso-
phers algorithm in [Cho92]) for undetectable failures are O(D3) and O(D?).
respectively. The three algorithms are real-time [ReiS84a] in that their worst-
case (message costs and) response times are independent of the total number of
processes 1n the system; rather they depend only on the maximum number of
interactions of which some process is a common member. To the best of our
knowledge, these are the first real-time algorithms for this problem which satisty
strong fairness and can cope with process failures. Some of the results in this
and the preceding chapters have also been reported in [Tsa92b, Tsa93b].

Table 4.2 shows how our algorithms compare with existing algorithms for
binary interactions. The response times of some existing algorithms have not been
analyzed, in which cases we provide the lowest possible bounds. The algorithm in
[Bag89b] may achieve the indicated response time and failure locality if it adopts
an assignment of interaction id’s similar to that of our first algorithm.

Strong 1 Failure
Algorithms Message Cost | Response Time | Fairness | Locality
[Sch82] O(n) > 0(n) No O(n)
[Buc83] 0(D) > O(n) No O(n)
[Sis84] (D) O(D*L) Yes o(D)
{Ram87b] o(D) > O(n) No O(n)
(Bagsob| 0(D) oY | No| [0(D)
[Cho92] (D) O(D?) No O(D)
[Cho92) O(D?) O(D?) No 4
Algorithm A 2D+2 D?+5D Yes O(D)
Algorithm B O(D?) o(D?) Yes 5
Algorithm B* O(D?) O(D?) Yes 6

Table 4.2: Comparison of algorithms for binary interactions
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CHAPTER 5
Fairness and UNITY

We give a brief introduction to the UNITY formalism, including its program
model and logic. We then show that strong fairness properties can be expressed
in UNITY; in fact, we shall prove a general result on the expressive power of
conditional UNITY properties, from which the preceding result follows. Exist-
ing results about the expressive and deductive powers of UNITY logic are also
summarized. Finally, we prove that UNITY logic is relatively complete for prov-
ing strong fairness properties. These new results have also been reported in
[Tsa93c, Tsa92a).

5.1 An Introduction to UNITY

35.1.1 Program and Execution Model

A UNITY program essentially consists of a finite set of variables, an initial pred-
icate that specifies the initial values of the variables, and a finite set of condi-
tional multiple assignment statements. The execution (computation) of a pro-
gram starts from a state that satisfies the initial predicate and goes on forever, In
each step, an assignment statement is selected nondeterministically for execution
subject to the fair selection constraint that each statement is selected infinitely
many times. The execution of an assignment statement always terminates and
its effect on the current program state is deterministic.

We fix a program F for the rest of the exposition unless otherwise stated. Let
R denote an arbitrary execution of F and R;, i > 0, denote the i-th component
of R. Each R; is a pair of R;.state and R;.label, where R,;.state is the state of
the program before the i-th step (steps are numbered from 0} and R;.label is the
name of the statement selected for execution on the i-th step. p[Ri] is true if
predicate p holds at R;.state; in particular, Init[Ry] is true, where Init denotes
the initial predicate of F.
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5.1.2 Programming Logic

UNITY logic is based on Hoare triples, namely assertions of the form {r}s{q}
[Hoa69], which asserts that the execution of statement s at any state where P
holds will result in a state where ¢ holds. In the logic, a property of program
£ is mainly expressed in the form of “p unless ¢ in F”, “invariant pin 7,
“p ensures ¢ in F”, or “p > qin F". The “in F* part is usually omitted. when
the program name is known from the context. The logic relations are defined as
follows:

p unless gin F = (Vs:sin F i {pA=g}s{pVq})

invariant p in F = (Init = p) A (p unless false in F)

p ensures g in F' = (p unless ¢ in F) A (Is:sin Fu{pn —~g}s{q})
Another useful form of property “stable p” is defined as “p unless false™.

Program F has property p —+ ¢ if and only if the property can be derived by
a finite number of applications of the following inference rules:

{promotion) _p choures g
p—q
(transitivity) P g

pmr
(Ym:me W: p(m) — q)
(m:me W:p(m)) - ¢

As seen convenient for our purpose, we give names to the first conjunct in the
definition of invariant and the second conjunct in the definition of ensures:

(disjunction) For any set W,

initially p in £ = nit = D

Pestgin F = (Is:sin F:: {STApA ~q}s{q})
Hence, .

invariant p = (initially p) A (p unless false)

p ensures ¢ = (p unless q) A (p est q)

Substitution Axiom

If p = q is an invariant of a program, p can replace ¢ in all prop-
erties of the same program. In particular, any invariant can replace
true and vice versa.

To illustrate the use of these various forms of properties, some examples are
in order:
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1. Yz <L k unless z < k™ says that the value of z is non-increasing.

2. “invaFiant z > 0” says that the value of z is non-negative at any point of
a computation, or simply, z is always non-negative.

3. %2 > 0 z = 0" says that if z is positive at any point of a computation
then it will eventually become 0 at a later point. However, it does not sav
that z will not become negative before it becomes 0 (which may be enforced
by adding “z > 0 unless z = 0").

Notation

It is a UNITY convention that free variables of a property, e.g. k in the first
example, are assumed to be universally quantified.

5.1.3 Theorems

A UNITY theorem is in the form of an inference rule “%” (A may be empty),
asserting that property Q given in the conclusion can be deduced from the set
of properties A given in the premise; A and Q) may contain properties that are
simply predicates on program states!. For instance, below is the famous PSP
(Progress-Safety-Progress) Theorem:

p+— q, 7 unless b
(pArY—(gAT)V D

The above theorem is in fact a theorem scheme and can be instantiated for
different programs. A theorem is said to be “a theorem of program F" if the
properties in its premise and conclusion are intended to be properties of a program
named F.

We list a number of theorems which will be used in subsequent sections.

Reflexivity and Antireflexivity of unless

p unless p -p unless p

Consequence Weakening of unless

p unless ¢, ¢ = r
p unless r

In fact, “initially p” is simply a predicate.
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Conjunétion of unless

p unless q, p’ ensures ¢
(p A p') ensures (p A g')V (' A g)V (gA¢q)

Simple Conjunction of unless

p unless ¢, p’ unless ¢'
(pAp') unless (qV q')

Disjunction of unless

p unless ¢, p’ ensures ¢'
(pV p') ensures (-p A ¢')V (~p" A q) V (g A ¢)

Simple Disjunction of unless

p unless g, p’ unless ¢'
(pV p') unless (qV ¢')

A corollary of the preceding two theorems is “true unless p”.

Implication Theorem? of —

invariant p = ¢
pr—=4q

Finite Disjunction of —

p—q,p—q
pVp —qVvy

Cancellation Theorem of —

pogVbb—r

pr—=qVr

Let M denote a (ranking) function from program states to a well-founded set
under relation <.

Induction Principle of —
PAM=m)— (pA(M <m))Vq
pr—yq

?We have replaced the premise “p = ¢” in the original theorem by “invariant p = ¢”,
extending the applicability of the theorem.
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5.1.4 Program Composition

-

We are interested in the most common type of parallel composition called union.
The union of two programs F and G is denoted by F|G. The set of variables
(statements) of FG is the union, as the name suggests, of the sets of variables
(statements) of F'and G. For convenience, each component program of a COMpOs-
ite program is called a module. Variables belonging to more than one modules
are termed shared variables. One important constraint on such kind of program
composition is that each shared variable should be declared and initialized “con-
sistently” by the sharing modules. In a computation of F|G. each statement
of For G must be selected infinitely often. A computation of F is no longer a
computation of F[G, since the statements of G are not selected: analogousiy for
G. A predicate is a local predicate of F if it mentions only variables that can be
modified by F alone.

The following four theorems on composing properties of individual programs
will be useful in the next chapter:

Union Theorems

a unless b in F, stable ¢ in G
a unless b in F|G.

invariant a in F, stable ¢ in G
invariant a in F|G

a ensures b in F, stable a in G
a ensures b in F||G

If any of the following properties holds in F, where p is a local
predicate of F, then it also holds in F|G for any G: p unless q,
p ensures ¢, and invariant p.

Remark

As pointed out in the original work of UNITY {Cha88], for the above theorems
to work, any invariant that is used in applying substitution axiom to deduce a
property of one module should also be proved to be an invariant of the other
module.

5.1.5 Conditional Properties

Conditional properties are another form of UNITY properties. Properties in
terms of the relations defined in Section 5.1.2 are unconditional properties; for
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convenience, we also treat predicates as unconditional properties. A conditional
property consists of a hypothesis and a conclusion, each of which is a set of
unconditional properties. A program F'is said to have a conditional property if.
given the hypothesis as a premise, the conclusion can be proved from F, i.e. every
property in the conclusion can be deduced from the properties in the hypothesis
plus those directly provable from F.

Assume that program Fhas a conditional property “Hypothesis: A Conclusion:
¢. It follows from definition that “A—EA—” is a theorem of F, for some A which is
a set of properties provable from F.

5.2 Expressiveness of UNITY

For the purpose of subsequent sections, we adopt the notion of strongest invariant
[San91a, San91b] to incorporate the power of the substitution axiom into the
definitions of the UNITY logic relations.

The strongest invariant (of program F), denoted as S/, is defined as the
strongest solution of X in the following equation:

(Init = X)A(¥s:sin F: {X}s{X}).

SI characterizes the set of reachable states, i.e. the program states that may
appear in some execution of F. (Consequently, SI[R;], i > 0, is true for any
execution R of F.)

Based on SI, the fundamental logic relations are defined as follows:

punless gin F = (Vs:sin Fu {SIApA-g}s{pVq})

initially pin F = Init = p

invariant p in F = (initially p in F) A (p unless false in F) (= S = p)
pestgin F = (Is:sin F:: {STApA-g}s{q})

p ensures qin F = (p unless ¢in F)A (p est ¢ in F)

“p + ¢” is as defined in Section 5.1.2.

Now, in stead of substitution axiom we have substitution theorem; in partic-
ular, we have the following special case:

Substitution Theorem (Specialized) [San91a]

SI can be replaced by true and true by SIin any property.
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5.2.1 Unconditional Properties

We define a set of operational properties with respect to an arbitrary execution
R of program F®:

REpunless® ¢ = (Yi:i>0:(pA ~9)[R] = (pV )[Rigy])

R |= initially” p = p[Ry)

R k= invariant” p = (R k= initially” p) A (R = p unless™ false) (= (vi:
i 20 p[R])

RiEpetlqg =(Fs:simFu(vi:i>0: ((p A @) R A R label = 5) =
q[Rits]))

R = p ensures™ ¢ = (R = p unless” ¢) A (R = p est? q)

REp=tqg = (Vi:i>00p[R]= (35:5> i ¢R)).

The following lemma states the operational implication of unconditional prop-
erties and hence the expressive power of the fundamental logic relations. (a}, (c}.
and (f) in the lemma are known results; in fact, their converses are also true

[Jut89, Kna92, San9la]. These three results are restated in Lemma 16 using
linear time temporal logic notation.

Lemma 14 (a) If “p unless q” is provable from F, then for any execution R of
F, R k= p unless® q.

(b) If 4nitially p” is provable from F, then for any erecution R of F, R =
initially” p.

(c) If “invariant p” is provable from F, then for any erecution R of F. R
invariant” p.

(d) If “p est q” is provable from F, then for any erecution R of F, R = p estt q.
(e) If “p ensures q” is provable from F, then for any ezecution R of F, R =
p ensures® gq.

(f) If “p — q” is provable from F, then for any execution R of F, R=p —t q.

Proof. The proofs of (a), (¢c), and (f) can be found in [Jut89, Kna92, San9la).
We shall prove (d); (b) is trivial and (e) follows from (a) and (d).

3We have defined “p unless’ ¢", “invariant® p”, and “p —L ¢” in such a way that they

are semantically equivalent to linear time temporal properties: “O(p = (p W q))”, “Op”. and
“O(p = Ogq)” respectively.
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pestgin F

(3s:sin F: {STApA=~g}s{q})

(We shall omit the range of an quantified variable. which is known
from the context.)

(35 2 (VR i ((SI A p A —g)[R] A R;.label = s) = q[Riy1])

(Is = (VR i: ((p A ~q)[R] A Rilabel = s) = Q[Rn+1]>

(VR {Fs (Vi ((p A ~q)[Ri] A Rilabel = s) = g[Rie ]}
(VR:RkEp estL q)

N4 4§

End of Proof.

The operational properties implied by “p unless ¢" and “p— ¢ areillustrated
in Figures 5.1 and 5.2, respectively.

] | -

p

Y

q

Figure 5.1: The operational implication of “p unless q"

P

L -
[ 1 ' [ —

q

Figure 5.2: The operational implication of “p — ¢”

‘The implied operational property may be considered as being “specified” by
the corresponding unconditional UNITY property. Of particular umnportance,
“p =L g7 specifies exactly the same property on an execution as that by the
temporal logic formula “O(p = O¢)”, which perhaps is the most common form
of liveness property. Consequently, properties of the form “‘OCp” (= “O(true =
Op)7) can be expressed by “true — p”. With the assistance of an auxiliary
predicate, properties of the form “OOp” can be expressed by “true — pAb

stable p A ", where b is an auxiliary predicate [Mis90].

5.2.2 Conditional Properties

No result analogous to Lemma 14 for conditional properties has been provided
in the literature. The hypothesis and the conclusion of a conditional property, in
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general, may.contain properties of different programs (which facilitates composi-
tion of program properties). As we are interested in the operational implication
of conditional properties, we restrict our attention to those involving properties
of a same program.

An operational implication that has been suggested for “Hypothesis: .\,
Conclusion: A;” is as follows: The operational properties corresponding to A, are
satisfied by all executions of the program implies those corresponding to A, are
also satisfied by all executions; or equivalently, either the operational properties
corresponding to A; are not satisfied by some execution of the program or those
corresponding to A, are satisfied by all executions. This implication is very weak
and does not reflect the expressive power of conditional properties.

In this section we deduce a stronger operational implication from “Hypothesis:
A; Conclusion: A", asserting that “for every execution of the program, if the
operational properties corresponding to A; are satisfied by the execution then
those corresponding to A, are also satisfied by the execution.” This result extends
the class of operational properties that can be specified in UNITY. In order to
prove the stronger result, we must first investigate the soundness of UNITY
theorems (and inference rules). A UNITY theorem in the form of “%” states
that property ) can be deduced from the properties in A (A and @ may contain
properties that are simply predicates). Assume that a program has conditional
property “Hypothesis: A Conclusion: Q7. It follows from definition that there
is a set of properties A’ directly provable from the program such that "'\‘UTA' is a
theorem.

We prove the following strong soundness result: If % is a theorem, then for
every execution of the program In question, the operational properties corre-
sponding to A are satisfied by the execution implies the one corresponding to
¢ is also satisfied by the execution. From this soundness result, the stronger
operational implication of conditional properties follows immediately.

5.2.2.1 Proving UNITY Theorems

To prove a UNITY theorem, one resorts to the following:
1. the underlying calculus for predicates on program states,
2. the definitions of unless, initially, invariant, est, and ensures,
3. the definition (and hence the three inference rules) of —, and

4. the inference rules for Hoare triples:
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'.. {p} s {true}

{false} s {q}
{p} s {false}
-p
(Vi = {p} s {g;})
{(V7 = p;)} s {{V) 2 ;)
(Vi {p;} s {a})
{(37 i)} s {375 q5)}
P’=> P, {P} 8 {Q}s q = q’

{r'} s {q'}

In each step of the proof, a property is deduced from a number of others. each
of which is either included in the premise or deduced in a previous step; soine
property may be deduced from an empty set of properties, imcluding a logically

valid predicate and a property that can be derived using the first two rules for
Hoare triples. When +— properties appear in the premise, it is often necessary to
do a structural induction on the length of the proof of a — property; sometimes
more than one levels of induction are required. In the base case and the induction
steps of the inductive proof, one in turn proves various simpler theorems. A
proved theorem may be applied as an inference rule in the proof of another
theorem; the application is viewed as a “macro” proof step, which can be replaced
by the proof of the theorem applied.

For convenience, a theorem is said to be simple if it can be proved without
using the aforementioned structural induction. The Conjunction Theorem of
unless and ensures, the Implication Theorem?*, and the Cancellation Theorem of
~— shown below in this order are all simple theorems.

p unless q, p' ensures ¢'
(pAp') ensures (pA )V (P'A )V (gA¢)

invariant p = ¢
p—9q

p—gVbdb—r

p—gVr

*Again, we have replaced the premise “p = ¢” in the original Implication Theorem by
“invariant p = ¢”.
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Particularly, the Conjunction Theorem of unless and ensures can be proved
using the definitions of unless and ensures and the conjunction, pre-condition
strengthening, and post-condition weakening rules for Hoare triples; while the
Cancellation Theorem can be proved using the Implication Theorem (which is

assumed to be a proved theorem) and the transitivity and disjunction rules for
—+,

The PSP Theorem shown again below, on the other hand, has to be proved
using structural induction:

p— q, r unless b
(pAT)— (gATIV

In the base case of its proof, one typically will apply the Conjunction Theorem of
unless and ensures; while in the induction steps, one may apply the Cancellation
Theorem.

5.2.2.2 Strong Soundness of UNITY Theorems
Following the inference rules for —, we propose analogous rules for %

p ensures” ¢
pty
p HL q’q HL r
p !—)L T
(Vm:m e W p(m) —L g
(Im:m e W p(m)) »L g

(promotion)

(transitivity)

(disjunction) For any set W,

The soundness of the preceding inference rules for +% can be verified using
the definitions of ensures’ and —% and the fairness constraint in the program
execution model.

Below are the operational versions of the Implication Theorem and the Can-
cellation Theorem, which can be proved from the definitions of invariant’ and
ensures” and the inference rules for —L. These results will be needed in the
proof of Lemma 15.

invariant” p = ¢

Pty

p—Yqvbb—Lr

ptgvr

Lemma 15 For any erecution R of F, if R = p =L g, then p —L ¢ can be
deduced using the promotion, transitivity, and disjunction rules for —=-.
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Proof. We postulate an auxiliary program variable that is initialized to 0 and
is incremenfed by 1 in each step of an execution of F. Given an execution R
of Fsuch that R = p —% ¢, we can construct from o a function 8. mapping
from program states to positive integers, such that & is defined only when p A —yg
holds and it counts the number of steps to the nearest future state where g holds.
Hence, § satisfies the following two conditions:

(Vi:i20:2((pA-g) = (Fa: (6 = a)))[R))
Vi:iz0:(8=a)R]=(qV(6< a))[Ria])

The rest of the proof is similar to that of the relative completeness of UNITY
in [San91la]. We need to show that, from the preceding two conditions of § we
can deduce p —% g using the three inference rules for -~

(Vai: (6 = a) ensures® (g Vv (6 < @))) , from the second condition.

Ve (§=a) L gV (§<a)) , promotion on the above.

(Va i (6 = a) mL g) , induction on the above (proved
separately below).

(Ba:(6=a)) Ly , disjunction on the above. (1)

invariant (p A ~¢) = (Ja :: (6 = a)) , rewriting of the first condition.

pA—g =t (Fa:(6=a)) , Implication Thm. on the above.

pA-g Ly , transitivity on the above and (1).

pAgrLlyg , Implication Theorem on
invariant (p A ¢) = ¢.

p =ty , disjunction on the above two.

The detail of the inductive proof step is as follows:

Base case: (6§ = 1) —% ¢. (From the second condition and that the minimum
value of é is 1.)

Induction step:

(VB:B<a:(§=8)Ly) , hypothesis.

(30:8<au{§=p) Ly , disjunction on the above.
(Va:u(6=a) L gVv(6<a)) ,given.
(Va:: (6 = a) =L g) , Cancellation Theorem on the above two.

End of Proof.

We use Q to denote the operational property that corresponds to an uncon-
ditional UNITY property Q in the sense of Lermma 14; analogously, for a set of
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properties. For convenience, the corresponding “operational property” QL of a
predicate Q;denotes Qitself. “R = AL where AL is a set of properties, denotes
that “for each Q¥ in AL, R = QL". We stipulate that "R | Q" actually means
“QUT if @ is simply a predicate.

Theorem 13 (Strong Soundness) If § is a theorem of F, then for any ere-

cution R of F, R = A" implies R = QF,

Proof. From the assumption, there exists a proof of % in UNITY. To prove
that R = A% implies R = QF, we simply imitate step by step a given UNITY
proof of %. We start with a set of operational properties AL that correspond
to the properties in A: in each proof step, an operational property is deduced
that corresponds to the property deduced in the corresponding step of the given
UNITY proof. It remains to show that, for each inference rule applied in the
UNITY proof, the corresponding rule for the imitating proof indeed exists and
is sound. We observe immediately that the underlying calculus for predicates on
program states used in the UNITY proof is equally applicable to the imitating
proof.

For the case of simple theorems (as defined in Section 3.2.2.1), we only need
to (a) replace the applications of promotion, transitivity, and disjunction rules for
— by those of the corresponding inference rules for < and {b) the application
of an inference rule for Hoare triples by that of its operational counterpart shown
below:

{p} s {true} p[Ri] = true[Ri]

{false} s {q}  false[R] = ¢[Rip]
{p} s {false}  p[R] = false[Ri,:]

-p -p[Ri]
(Vj = {p;} s {g;}) (Vi = ()R] = (g;)[Rinn])
V7 ap)} s (i)} (2 p))[RT = (% = )| Rind]
(V7 {p;i} s {g}) (V5 = (p)[Rs] = (g)[Riva))

{Fap) s {F =)} (G )R> (3 = ¢)) Rema]

P=p{pts{a} ¢g=¢d p'=p plR]=qRi) qg=¢
{r'} s {¢'} P'[Ri] = ¢'(Risi]

It is clear that the inference rules in the second column are sound; the inference

L

rules for —* are also sound as indicated previously,
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For theorfms that are not simple, the structural inductions on — properties
in the UNITY proof can be translated into inductions on the corresponding +—*
properties thanks to Lemma 15. End of Proof.

5.2.2.3 Operational Implication of Conditional Properties

Theorem 14 If “Hypothesis: A; Conclusion: A,” is provable from F, then for
any ereculion R of F, R = A implies R |= AL.

Proof. We consider each property in A, separately. Fix a property Q in A,.

The assumption of the theorem implies that there is a set of properties A\,
provable from F such that Al'é’—él is a theorem of F. From the Strong Soundness
Theorem, it follows that R = AL U AL implies R k= QF. As properties in A; are
provable from F| for any execution R of F, R = AL (Lemma 14). Consequently,
for any execution R of F, R k= AL implies R = Q~.

Putting the result for each property in A; together, we conclude that for any
execution R of F, R = Af implies R |= AL, End of Proof.

The operational properties corresponding to unless, initially, invariant. and
-+ properties (excluding est) are expressible in the usual linear temporal logic
notation, so are their boolean combinations. The following concluding theorem,
which is an immediate corollary of Theorem 14, identifies the class of operational
properties that can be specified in UNITY. Note that unconditional properties
can be treated as conditional properties with empty hypotheses.

Theorem 15 Suppose P, 1 < i < m, and @i, 1 <1 < n, are unless, ini-
tially, invariant, or — properties. If “Hypothesis: PP, ..., P, Conclusion:
Q1. Q2,...,Qn" is provable from F, then for any ezecution R of F, “R = (PE A
PEAN...APE)Y= (QEAQEA...AQL)”.

Together with the results on unconditional properties, it follows that a strong
fairness property “0O0p = OO¢” can be expressed by “Hypothesis: true — p
Conclusion: true — ¢”.

5.3 Deducing Fairness Properties in UNITY

An algorithm that satisfies a strong fairness property may be described in the
UNITY program model which assumes a weaker notion of fairness. The availabil-
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one can deduce in temporal logic “(Q0p v OO¢) = Q. As “OOp v OO =
“0O(p V ¢)75 “(OCp v OOq) = Q7 is equivalent to “OO(p V ¢) = Q7. Recall
that “OO(p V ¢)” can be expressed as “true — p V ¢” in UNITY. Hence. we
propose the following rule:

Disjunctivity of Infinitely Often

Hypothesis: true — p Conclusion: @, Hypothesis: true — ¢ Conclusion:

Hypothesis: true — p v ¢ Conclusion: Q

The rule is formulated in its present form due to the fact that there is no
notion of disjunction of properties in UNITY.

In temporal logic, one can prove “OCp = OC¢” by showing that “OOp A
O0=g = false”. Recall that “O0-¢" can be expressed as “true ~— —g A b,

stable —¢ A b”, where b is some auxiliary predicate. We therefore propose a
second rule:

Proof by Contradiction

Hypothesis: A, true — —g A b,stable —~¢ A b Conclusion: initially false
Hypothesis: A Conclusion: true — g

The above two inference rules are not provable in UNITY but can be justified
by Theorems 14 and 16 in last chapter.

Notation

For brevity, we shall use temporal logic notations to abbreviate certain UNITY
properties.

"o

“COp™ abbreviates “true — p”; “O0p” abbreviates “true — pAb, stable pA
b”, where b is some auxiliary predicate.

“OCp = OO¢” abbreviates “Hypothesis: true v p Conclusion: true r—q”.
The alternative form “OOp = OOg¢" abbreviates “Hypothesis: true — p A
b,stable pAb Conclusion: true — gAY, stable ¢ Ad”. These abbreviations ex-
tend to conditional properties where the hypothesis and conclusion contain more
than one properties.

6.2 Specification of the Problem
We adapt the UNITY format of problem specification [Cha88]. In particular,

we express a conditional property simply as an unconditional property when the
hypothesis of the conditional property is empty (or true).
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Ana,logou:sr to Section 2.3, let USER refer to a program which contains a
set of asynchronous processes and OS refer to the scheduler that implements
synchronizations among the asynchronous processes in USER. The composite
program USER|OS is referred to as P.

We assume processes in [/SER are numbered from 1 through » and the i-th
process is denoted by user;; analogously for processes in OS. p; = user,[os;
denotes the ith process in P. Again, we shall refer to a process in U'SER as
a user, a process in (OS as an os, and a process in P as a process. A binary
interaction between user; and user; is represented by {i,j}. T is the fixed set of
all binary interactions defined among users; each element of T is a two-element
subset of {1,2,...,n}. Two different interactions are said to be conflicting if they
have one common member. The set of all interactions of which a user (or looselv.
a process)is a member is referred to as the interaction set of the user (process).

Each user and the corresponding os share two variables: state and flag. state
may assume the value active or idle. Interaction {i,j} is started if one of its
members, say p;, sets flag; to {7,j} and is terminated if flag is set back to nuil for
both p; and p;. We say a process is engaged if some interaction in its interaction
set is started. The relationship of users, os’s and their compositions is shown in
Figure 6.1.

1 [}
I F o
| user; [ ~luser; | |
I 1 1 1
flag; state; ! ! flag;,state;
I . I
I 05y i ) G8; )
I [} i I
L oo o o = = J | d
Di b;

Figure 6.1: Compositions of users and os’s

We define some frequently used predicates:

idle; = (state; = idle), analogously for active; (d1)
enable ™ = (idle; A idle;) (d2)
starti®} = (flag, = {i,5} Vv flag; = {,7}) (d3)
engaged; = [3j: {4,7} € T :: start{®}] (d4)

As usual, all properties are assumed to be universally quantified over all values
of their free variables (e.g., process indexes usually appear as free variables). For
brevity, we shall hereafter omit phrases such as “{i,j} € I” when no confusion
may rise.
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= pASIN-gA(M=m)— (M <m)Vq
, Lemma 16.

= pAgA(M=m)— (M <m)Vq
, substitution theorem.

The third premise can be further rewritten as p A (M = m) — (M < m)V g
due to the following results:

PAGA(M=m)— (M <m)Vgq ,given.

pAGA(M =m)— ¢ , implication theorem on g A --- = ¢.
pAM=m)— (M <m)Vgq , finite disjunction on the above two.
pAM=m}— (M <m)Vg , given.

PA~GA(M=m)—pA(M=m) ,pA-gA(M=m)=pA(M=m).
pA~gA(M=m)— (M <m)Vgq |, transitivity on the above two.

We now proceed to the second step, i.e. to prove the following inference rule:

SF-UNITY

M < m unless ¢
pAM=m)— (M <m)Vyg
Hypothesis: true — p Conclusion: true — ¢

M < k unless g , the first premise.

M < m unless ¢ , simple disjunction over all & < m.

true — p ' , the hypothesis in the conclusion.

M<mw— (pA(M<m))Vyq , PSP theorem on the above two.

pAM=m)— (M <m)Vyg , the second premise.

pA(M=m)— (pA{M <m))V g |, cancellation on the above two.

P+ g , induction on the above.

true v ¢ , transitivity on true +— p and the
above.

End of Proof.

In the process of proving Theorem 16, we obtain the inference rule SF-UNITY
for deducing strong fairness properties in UNITY.

Operationally, SF-UNITY can be reasoned as follows: The value of M is non-
increasing in the absence of ¢. An occurrence of p will either decrease the value
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of M or establish ¢. Due to well-foundedness of M, enough occurrences of p
will eventually establish ¢; and infinitely many occurrences of p will guarantee
infinitely many occurrences of ¢.

SF-UNITY is sound, which follows from its proof in Theorem 16. [t is rela-
tively complete, from the proof of Theorem 16 and the relative completeness of
the specialized B-REAC. We summarize by the following theorem:

Theorem 17 Rule SF-UNITY is sound and relatively complete for proving strong
fairness properties of a UNITY program.

Remark

A referee of one of our submitted papers suggested that the first premise of
SF-UNITY can be weakened such that the following is also a valid inference rule:

M < m unless (pA(M <m))Vyq
pAM=m)— (M <m)Vyg
Hypothesis: true — p Conclusion: true — ¢

The proof of this inference rule is almost identical to that of SF-UNITY. The
modified rule allows the ranking function M to be chosen such that its values
may increase as long as p holds. In contrast, SF-UNITY disallows this behavior:
however, this does not prevent SF-UNITY from being relatively complete!®,

5.3.3 Specialized Rules
The inference rule SF-UNITY covers three useful special cases:

pP—4q
Hypothesis: true — p Conclusion: true — g

Define a function M from program states to {0,1} such that M = 1 if and
only if ¢ is true.

13The completeness proof of B-REAC in [Man91] (page 121) constructs a ranking function
such that a program state, where p holds while ¢ does not, is mapped to a maximal (not
maximum) value in the range of M. So, when p is true while ¢ is not, the value of M cannot
increase unless ¢ becomes true.
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(B = AJ Our strategy consists of two steps: The first is to show that there
exists a relafively complete inference rule in MP, say R, for OOp = Alyg such
that each premise of R has an equivalent unconditional property in UNITY.
The second step is to show that the equivalent properties indeed allow us to
deduce “Hypothesis: true — p Conclusion: true —¢". Consequently. for anv
property of the form “0OCp = OO4¢” that is provable in MP, we can find a set
of unconditional properties in UNITY which can be used to deduce ~Hypothesis:
true — p Conclusion: true — ¢”.

The following inference rule is defined for MP:

B-REAC
O(r= (¢ Vq))
{e A (M =m)}F{(pA (M Xm))Vq}
O(pAp A(M =m)) = (M <m)Vq)]
Of(r AOOp) = Og]

where ¢ is an auxiliary predicate and M is a ranking function from program
states to a well-founded set under relation <!°, B-REAC is sound and relatively
complete for deducing properties of the form “O{(r A OCp) = Og|”. We simply
let rbe true to obtain a sound and relatively complete inference rule for O(0Cp =
<¢}, which is equivalent to O0p = 0O 4. We can rewrite the second premise as
{p A (M <m)}F{(pA(M <X m))V q} due to the following results:

{oA (M =R)}F{(eA (M Zk))Vge} given.
{eA (M 2m)}F{(eAN(M % m))Vq} ,disjunction over all k, k < m.

{e AM 2m)}F{{eA(M 2m))Vq} , given.
{oA(M=m)}F{{(p A(M Xm))V q} ,strengthening the precondition.

The specialized inference rule is as follows:

Qe V q)

{oA(M Xm)}F{{pA(M Xm))Vq}
QllpApA (M =m)) = O(M < m)V g)
aop = OOg

Although the first and third premises have equivalent expressions in UNITY,

the second does not. We seek to restate the second premise in the form “{SIAaA
~b}F{aV b}”. The completeness proof of B-REAC {Corollary 7.1 in [Man91]),

10The domain of M in general has to be finite sequences of states. As we will restrict p,q,r to
be predicates on program states, it suffices for M to be a function with program states as its
domain [Man91].
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with r replaced by true, shows that it suffices to choose ¢ such that - holds
at a program state if and only if the state is reachable and it satisfies —q. I.e.
@ = (8I A —¢)''. We can substitute SI A —¢ for ¢ in each premise of the
inference rule while preserving its soundness and relative completeness'?, After
substitution, the inference rule becomes as follows:

O((SIA—q) V q)

{(M X m)ASTA-g}F{((M =% m)ASIA-q)V g}
D[(p/\S[/\"q/\(Mz m)) = O(M < m) V ¢)]
OCp = OCgq

Each of the premises can be rewritten such that it corresponds to a UNITY
property, as shown below:

D((SI A—q) Vv q) , the first premise.

= DO(SIvyg) , predicate calculus.
= invariant $/ V¢ , Lemma 16.

SI = 5Ivgq , the definition of invariant.
= frue , predicate calculus.

The first premise can be dropped.

UM X m)ASTA-q}F{((M 2 m)ASIA~g)V q}

, the second premise.

= {SIAN(M 2m)ASIA =g} F{({M < m) A STy v ¢}
, predicate calculus.

= (M <X m) A SI unless q
, definition of unless.

= M =X m unless q
, substitution theorem.

D(pASIA =g A (M =m)) = O((M <m)V q)]
, the third premise.

"'The very definition of ¢ chosen in the proof is as follows: ¢ is true at a program state
s if and only if there exists a reachable state s’ satisfying r and a ¢free segment (a finite
subsequence of some computation, each state of which satisfies —¢) leading from s’ to 5. As we
have taken r to be true, the definition collapses down to ST A —g.

127 consequence of replacing ¢ by SI A —¢ is that the choice of the ranking function will be
more restricted.
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ity of an inference rule for deducing strong fairness properties in UNITY would
facilitate the-verification of such an algorithm.

We prove, for a given UNITY program, the equivalence between the prov-
ability of conditional property “Hypothesis: true — p Conclusion: true — q
in UNITY logic and that of “O0p = 00¢” in Manna and Pnueli’s temporal
logic (referred to as MP in this section) [Man91]. Part of our proof is based on a
relatively complete inference rule in MP for deducing strong fairness properties.
In the process, we obtain a relatively complete inference rule for proving strong
fairness properties in UNITY.

5.3.1 UNITY and Temporal Logic

The basic model for programs in MP {which is, again, Manna and Pnueli’s tem-
poral logic) is that of fair transition system. Asa UNITY program is essentially a
fair transition system with weak fairness assumption®, MP is suitable for proving
properties (about the set of computations) of a UNITY program. MP is sound
and relatively complete for deducing properties that can be specified by linear
time temporal logic formulas with temporal operators such as O, ¢, and W {weak
until)®.

We restate the known results about the soundness and relatively completeness
results about UNITY in Lemma 167. We say a temporal formula is valid (with
respect to a program) if it is satisfied by every execution of the program.

Lemma 16 For a given UNITY program,

(A) “p unless q” is provable if and only if “O(p = (p W ¢))” is valid (or,
equivalently, is provable in MP),

(B) “invariant ¢” is provable if and only if “Oq” is valid (or provable in MP ),
and

(C} “p — q7 is provable if and only if “O(p = <©q)” is valid (or provable in
MP).

SEach assignment statement of a UNITY program defines a state transition that is always
enabled. The fairness constraint in the UNITY program execution model corresponds to the
weak fairness (justice) assumption in the fair transition system.

®The definitions of O and © can be found in Section 2.2.2. For our purpose, W is used only
in properties of the form “p = (p W ¢))” which is exactly the same as “p Unless ¢” introduced
in the same section.

"The syntax of the language used in UNITY to express predicates on program states is
not given in [Cha88]. As in MP, for the relative completeness to hold, one typically needs to
assume that the language is capable of stating facts about the integers and expressing solutions
to fixpoint equations. More discussion on this issue may be found in [Man91, Rao91].
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The corresponding properties between UNITY and MP in the above lemma
can be considered equivalent. We write ‘p— g = O(p = Og)” to denote this
relationship between the two properties; analogously for the other two pairs of
properties. A useful special case of (C) is that frue v p = OCp.

We write “A + @7 (for both UNITY and MP) to denote that Q can be
deduced using the list of properties in A as premises. Given a UNITY property
P, let P denote the equivalent property in MP (in the sense of Lemma 16). As
shown in Section 5.2, Lemma 16 and the soundness of the UNITY proof system
have the following implications:

Suppose Py, P,, .. Pn, ¢} are unless, invariant, or — propertres Pl I T
P, FQ lmphes that P1 APANB > Q is valid. Observe that P, A Py A
P, = Q is a temporal formula in MP. As the formula is valid, it follows that

+ Pl A P2 AP, = Q due to the relative completeness of MP, which itself
implies Pl, Pg, R Pﬂ - QS. The above analysis is summarized by the following
lemma: :

Lemma 17 Let Py, P, ..., P, Q be properties that are e:cpressed in terms of
unless, invariant, and —. If P, P,,..., P, F Q then Pl,Pg, L P F Q

5.3.2 Relative Completeness

Theorem 16 For a given UNITY program, the following two statements are
equivalent:

(A) “Hypothesis: true — p Conclusion: true — ¢” is provable.

(B) “0Cp = TOOq” is provable in MP (which is equivalent to that OOp = OOgq
15 valid).

Proof. (A = B)® Statement A says that there is a proof in UNITY of true — gq,
where true — p is assumed. Note that each property in the proof is unconditional.
It is clear that we can extract from the proof a list of properties Py, P, ..., Py,
each of which is an invariant, unless, or — property proved from the given
program, such that true — p, P, P,...,P, F true — ¢q. From Lemma 16,
P, P,,... B, are provable in MP from the given program; and, from Lemma 17,
it follows that OOp, Py, Py, ..., P, + OOq, which implies 21, £s,..., P, F 0C0p =
alg.

8MP respects the generalized deduction theorem: AF P = Q if and only if A, PF Q.
In fact, a much simpler proof can be obtained by applying Theorem 14 and the relative
completeness of MP
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PAg— =gV g . implication theorem on PAG= true.
PAM=1)— (M < 1)vgq , from the above and definition of M1

PA~G— g , ,p/\—:q:»pandthepremisep}—»q.
PAM =0) — (M <0)v ¢, from the above and definition of \/
PAM =m) — (M < m}V ¢ |, from the above and (1). (2)
(M <1) unless ¢ . from true unless q.

(M <0) unless ¢ , from —q unless q.

(M < m) unless q » from the above two.

The inference rule is valid » from the above, (2), and SF-UNITY.

true — —p V g, —=p unless q

Hypothesis: true — ? Conclusion: true — q

For the proof, define a function A again with range {0,1} such that A/ —
1 if and only if p is true. The rest is similar to the previous inference rule,
Operationally, the first premise implies that there are infinitely many occurrences
of either =p or ¢; only the first case needs to be considered. The hypothesis says
that there are infinitely many occurrences of p- It follows that p changes from
false to true for infinitely many times, which will trigger as many occurrences of
¢ thanks to the second premise.

P = —p, ~p unless q
Hypothesis: true ~—s p Conclusion: true — g

pr -pVg , from the first premise and np=-pVa.
“p— —pVyg |, implication theorem on p = -pVg.
irue = —p V ¢ , disjunction on the above two.

The validity of the last special case therefore follows from the second special
case.
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CHAPTER 6
UNITY Proof of Fair Algorithms

To illustrate the use of the results from last chapter in the formal specification
and verification of reactive systems with strong fairness properties, we give a
formal specification of the binary interaction problem with SPF and prove the
correctness of a variation of Algorithm A. Other fair algorithms can be proved in
a similar way.

6.1 Preparation

6.1.1 Modeling Distributed Systems

We model a distributed system with message-passing by a UNITY program in a
manner analogous to that of Section 2.2.3:

The UNITY program consists of component programs that are functionally
divided into two categories: processes which do significant computations and
channels which simply relay messages. Distinct processes have disjoint sets of
variables and so do distinct channels; variables may be shared only between a
process and a channel. A sender process may send a message to a receiver process
by depositing the message in a message queue shared by the sender and a channel:
the channel then delivers the message by removing the message and depositing
it in another message queue shared by the channel and the receiver process.

6.1.2 Plausible Inference Rules

Though we are equipped with a relatively complete inference rule SF-UNITY
derived in Section 5.3 for proving strong fairness properties, the ranking function
in the rule may be very complicated for certain fairness properties. In accordance
with the results in Sections 5.2 and 5.3, we shall propose two inference rules to
facilitate the proof of fairness properties.

In an usual logic system, given “P, = @” and “P, = ", one should be able
to deduce “(P, V P;) = Q”. In particular, from “0Cp = Q" and “00¢ = Q7
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6.2.1 Spetification of USER (the Given)

This part specifies the behavior of the USER program at its interface with the OS
and also specifies some properties that are guaranteed when USER is composed

with the OS.

For each user, the variable state is initialized to active and flag to null. An
idle user may become active only after some interaction in its interaction set is
started, i.e. it is engaged — (ul). No user may start an interaction — (u2). Anyv
started interaction will eventually be terminated (by some of its members) —

(u3l).

idle; unless (37 :: startl®5}) in USER {ul}
stable (flag; # {¢,7}) in USER (u2)
start$7t s —starttii} in P (u3)

Note that (u3) should have been specified as a conditional property with true
"as its hypothesis. From (u2), (u3), and two other properties (pp2) and (ol) to
be defined next, one can deduce that

engaged,; — —engaged,; in P (ud)

6.2.2 Specification of P (the Composite)

This part specifies the synchronization, mutual exclusion, progress, and the ad-
ditional SPF properties that must be provided by the composition of USER and
0S.

The synchronization property requires that only enabled interactions can be
started — (ppl) and the mutual exclusion property requires that conflicting in-
teractions cannot be started simultaneously — (pp2). The progress property
requires that if an interaction {i,j} is enabled, either p; or p; will eventually par-
ticipate in some interaction — (pp3).

—start?} ynless enable!™} in P (ppl)
invariant (j # k) = —(start{"7} A start{™¥}) in P (pp2)
enable™} — [3k :: start %) v startlik}] in P (pp3)

Additional Property

The additional SPF property is specified as follows; recall that SPF subsumes
(pp3).
SPF = OCready; = OOengaged;, where ready; = [3j :: enable "]
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6.2.3 Constraints on OS (the Solution)

The only shared variables between user; and os; are state; and flag,. For each
os, state is initialized to active and flag to null (consistent with the initialization
in USER). An os may not terminate an interaction — (ol). Moreover. an os
may not change the state of a user — (02.1) and (02.2).

stable (flag; = {¢,7}) in OS {ol)
stable active; in OS {02.1)
stable idle; in OS (02.2)

6.2.4 Simple Refinement of the Specification

According to the problem specification, an interaction, say {1,j}, is started when
flag, is assigned the value {7,7} by p; or flag; assigned {i,j} by p;. However, neither
pi nor p; 1s allowed to do so unless both processes are idle (otherwise (ppl) may
be violated) and not engaged (otherwise (pp2) may be violated), which involves
determination of the local states (the values of flag’s, in particular) of other
processes that can be communicating partners of p; or p;. Since inspecting of
the values of the local variables of other processes is, by definition, not allowed
in the program text of a process, the states of other processes must be reflected
through the values of the local variables of p; or p;, i.e. by some local predicate
of p; or p;.

Hence, we postulate a local predicate Lfi'j} of os; for interaction {i.j} and

propose the following refinement of the specification, where L%} abbreviates
t ¥ b

invariant L,{i‘j} = enable ™} A —engaged; A ~engaged (kpl)
(flag; # {i,7}) unless L,{i'j} (kp2)
startUt A < LUA} ynless —start!™3} A L1} where k # 1 (kp3)
L,{i’j} ensures (flag; = {i,7}) (kp4)
DOready; = OO[35 = LW} (kp5)

Theorem 18 (kpl)-(kp5) imply (ppl), (pp2), (pp3), and SPF.

Proof. (kpl) and (kp2) imply (ppl), by consequence weakening for unless.

(kp4) and (kp5) imply SPF which subsumes (pp3), by disjunction theorem
on {kp4), the fact that p ~ ¢ implies OCp = OCq, and that OOp = OOg and
0Og = OCr imply OCp = OO0y,
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It remairs to show that (kpl), (kp2), and (kp3) imply (pp2); the proof utilizes
a property that has so far not been explicitly stated as a UNITY property:

—start i} A sstart 4 unless (start{ii} A —startiflby v (astart (9} A stare {50 ).
where {i,5} # {k,!} (kp6)

(kp6) asserts that at most one interaction is started in each computation step
due to the interleaving model and that each process has one flag variable.

~starti*} unless [k}

, simple conjunction on (kp2) and rewriting (change of variables).
start B3} A LIk} A —startlih} ypless —start U} A 2 LUAY A = gpqri(H)

, conjunction on the above and (kp3).
invariant start{ii} = [}

, from (kpl) and startiiv} = engaged;.
starti} A —startUk} ynless —startlidl A —startiin}

» substitution axiom on the above two and consequence weakening.
—start7} A startU* unless —start (9} A —start {34}

, similar to the proof of the above.
(—start(} A —start VR v (start {99} A <startURY) v (mstart (9} A starelish)
unless false

, disjunction on (kp6) and the above two.
~(start 9} A start{75}) ynless false

, Tewriting of the above.
invariant —(start{%3} A start{#1)

, from the above and the initial condition. End of Proof.

6.3 Verification of a Solution

6.3.1 The OS

We present the program of an os using Algorithm A (Section 3.1) with a simpler
token selection strategy: a process always selects a token from the head of its
token queue. For simplicity, os; has a single input queue input; for all messages
sent from its neighbors; some other os sends a message to os; by appending the
message to input;. os; sends messages to other os’s in an analogous manner. The
input queues shared among os’s can be further “decoupled” such that any pair
of os’s do not share variables directly as required by the problem specification.

Variables of os;:
(Variable subscripts are omitted, as is the declaration for some variables whose
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purpose is obvious.)

flag: shared with user,: see problem specification.

token_q: a FIFO queue of tokens. A token is an unordered pair of process id's.
Initially, each token is arbitrarily assigned to one of the processes named in
the token.

inofij}: id of interaction {7,j}. Conflicting interactions are assigned different id's.

pend: id of the process requested for interaction. Initially null.

delay: id of the process whose request is delayed. Initially null.

partner: set to jif the process is about to participate in interaction {7} Initially
null,

Isstarter: set to true when the process starts an interaction; reset to false when
the termination of the interaction is detected., Initially false.

Statements of os;:

((a) A boolean variable is also used as a predicate, e.g. partner is frue if and only
if partner # null; analogously for pend and delay. (b) “Send(request{ii})” ab.
breviates “Enqueue(inputj, request"71)" and “Receive(request i}y A ... .7
abbreviates “(head(input;) = request I A .. input; := tai(input,);--."; sim-
ilarly for messages yes, no, and done.)

R1: /* Requesting an interaction */
idle A —partner A —~pend A (head(token_q) = {i,j})
— token_q := fail(token_q);
pend := j Send(request 1),
R2: /* Refusing a request */
Receive(request"7}) A (=idle V partner v {pend A (ino[7, ] < ino[7, pend]))v
delay)
— Enqueue(token_q,{i,j});
Send(notH});
R3: /* Delaying the reply to a request */
Receive(request {73} A (pend A (ino[i, j] > ino[z, pend])) A —delay
—+ delay := 5, /* The token is enqueued is a later step. */
R4: /* Accepting an incoming request or a delayed request*/
R4.1: Receive(request{"7}) A idle A —partner A —pend
— Enqueue(token_q,{i,});
partner := j; Send(yes{"});
R4.2: Receive(no®Pen}) A delay — pend := null;
partner := delay; Send(yes{d¢lay}).
Enqueue(token_q,{i,delay});

98



- delay := null;
R3: /* Relimquishing a request */
Receive(nol"Pend}y A ~delay — pend := null;
R6: /* Starting an interaction */
R6.1: Receive(yes"P®Md1) A —delay — isstarter := true; flag := {i,pend};
partner := pend; pend := null:
R6.2: Receive(yes"Pe"d}) A delay — isstarter := true; flag := {i.pend}:
partner := pend; pend := null;
Enqueue(token_q,{i,delay});
Send(not"9¢123¥}). delay := null;
R7: /* Detecting the termination of an interaction */
R7.1: isstarter A —~flag — isstarter := false;
Send(done{i‘partner}); partner := null;
R7.2: Receive(done P>ty _ partner := null;

6.3.2 Correctness of the 0§

We shall omit the proofs of some properties that are straightforward. In partic-
ular, we assume the validity of such invariants as “either there is no instance of
requestt™} in input; or there is exactly one instance of requestt} in input.”. We
write “request"7} ¢ input;” to denote the latter case; this convention applies to
other messages and also to tokens in a token queue.

For brevity, the arithmetic addition “+” will sometimes be applied to a series
of predicates, in which case we identify the boolean value “false” with integer *0”
and “frue” with “1”; e.g. @ = b + ¢ means that a is true if and only if exactly
one of b and ¢ is true. We shall also make assertions about the “position” of a
message or token in a queue, the head of the queue being position one. Again,
we omit the phrase “in P”, when stating properties of P.

It is clear that “(head(input;) = yes{i})” should play the role of LI"*, which
was assumed to be a local predicate of p; indicating that p; knows interaction {,j}
is enabled and neither p; itself nor p; is participating in any interaction. We thus
identify the two predicates and replace L,{"’} in (kpl)-(kp5) by “(head(input,) =
yesthy”,

6.3.2.1 Safety Properties
Theorem 19 (flag; # {i,7}) unless (head(input;) = yes(¥7}). (kp2)

Proof.
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(flag, # {i,j:}) unless (head(input;) = yes{ii)) in 08
, from the definition of unless and the program of OS.
stable (flag; # {i,;}) in USER
, from (u2).
The theorem follows
, union theorem on the above two. End of Proof.

Theorem 20 startiti} A ~(head(input;) = yesU¥) v head(input,) = yes{rih
unless —startiti} A ~(head(input;) = yeslikl v head(input,) = yest" ) ywhere
k #1i. (kp3)

Proof. Analogous to the proof of the preceding theorem only with more invariants
involved. End of Proof.

We next prove a series of lemmas leading to Theorem 21 which states (kpl).

Lemma 18 The following predicates are invariants in P.

(a) (pend; = j) = (request{®s} ¢ input;) + (delay; = i) + (yes?™} € input,) +
(nolii} g input;) (when p; has a pending request to p;, either the request has not
been received or the request has been delayed or a reply has been sent by p;),
(b) pend; = —partner;,  (c) delay; = pend;, and  (d) isstarter; = partner;.

Proof. The proof of each invariant follows exactly the same line. We show a
proof of (b).
initially pend; = —partner, in OS
, from the program of OS.
stable pend; = —partner, in OS
, from the definition of stable and the program of OS.
invariant pend; => —partner; in OS
, from the definition of invariant and the above two,
stable pend; = ~partner; in USER
, since the predicate is local to Q8.
invariant pend; = —partner,
, union theorem on the above two. End of Proof.

Lemma 19 (a) invariant ((partner, = i) A —isstarter;) = (yes{'3} & input,) +
((partner; = j) Aisstarter;) + (donel™’} ¢ input}.

As a consequence of (a) and Lemma 18:

(b) invariant (yes{"} ¢ input,) = pend; A—partner; A((partner; = i) A-isstarter; ).
(c) invariant (partnen_;-_: J) A isstarter; = (partner; = i) A —isstarter;.

(d) invariant (done{"} ¢ input;} = ((partner, # j) V —isstarter;) A ((partner, =
i) A —isstarter;).
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Proof. Case (a) can be proved by an analogous argument as in Lemma 3.
The conjunction of the predicate in (a) and all the predicates in Lemma 18 is
an invariant in P. Other invariants of the lemma follow from rewriting of the
preceding conjunction and the substitution axiom, by substituting true for the
predicates in Lemma 18. End of Proof.

Lemma 20 invariant (flag, = {i,j}) = (partner, = j) A (partner, = i).

Proof.

stable (flag; # {i,7}) in USER
, from (u2).
stable (partner, = 7) Aisstarter; in USER
, since the predicate is local to OS.
stable (flag; = {7,7}) = (partner; = j) A isstarter; in USER
, disjunction on the above two.
invariant (flag; = {i,7}) = (partner; = j) A isstarter; in OS
, by an analogous argument as in Lemma 19 while using the
invariants of Lemmas 18 and 19 in the application of the
substitution axiom.
invariant (flag; = {i,7}) = (partner; = j) A isstarter; in P
, union theorem the above two.

The lemma follows
, from the above and Lemma 19(c). End of Proof.

Lemma 21 invariant pend; = idle; A —partner,.

Proof.

idle; unless partner; in USER

, consequence weakening on (ul) and Lemma 20.
—partner; unless false in USER

, Tpartner; is Jocal to OS.
idle; A —partner; unless false in USER

, conjunction on the above two.
-pend; unless false in USER.

, —pend; is local to OS.
—pend; V (idle; A —partner;) unless false in USER,
1.e. stable pend; = idle; A —partner, in USER

, disjunction on the above two.
invariant pend; = idle; A —partner, in OS
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, similar to Lemma 18,
The lemma Tollows
» union theorem on the above two. End of Proof.

Lemma 22 invariant (yes{hit ¢ input,) = idle; A (partnerj = 1) A —partner,.

Proof. Similar to Lemma 21, End of Proof.

Theorem 21 invariant (head(input;) = yest™ih) = enablefin} A —~engaged . A
—engaged ;. (kpl)

Proof.

invariant (yests} ¢ input,) = (idle; A ~partner;) A (idle; A (partner; = i)
» from Lemmas 19(b), 21, and 22.

invariant (head(input,) = yesUity = (idle, A ~partner;) A (idle; A (partner; = ;))
, from the above and (head(input;) = yestii}) = (yes™7} € input,).

invariant (head(input;) = yes(™}) = (idle; A idle;) A (-partner;) A (partner; = i)
, rewriting of the above. _

invariant (head(input,) = yest7}) = engble (il

—[3k :: flag, = {4, k} Vilag, = {i,k}} A-[3k flag; = {5,k} v flag, = {7. k}]
, from the above and Lemma 20.

The theorem follows

» from the above and the definitions of engaged; and engaged i
End of Proof.

6.3.2.2 Liveness Properties
Theorem 22 (head(input;) = yes}) ensures (flag; = {1,5}). (kp4)

Proof.
((partner; = i) A —isstarter;) A (head(input,) = yest™ 1) ensures (flag; = {i,7})
in OS
, from the definition of ensures and the program of OS.
stable ((partner; = i) A ~isstarter;) A (head(input;) = yes™}) in USER
, since the predicate is local to OS.
((partner; = i) A -isstarter;) A (head(input,) = yes'1}) ensures (flag; = {i,5})
, union theorem on the above two.
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(head(input;} = yes{'}) ensures (flag, = {i,5})
-, substitution axiom on the above and Lemma 19(b}.

End of Proof.

We now prove a series of lemmas leading to Theorem 23 which states {kp3).

Lemma 23 (a) invariant ({i,j} € token_q,) + (request!™s} € input;) + ({i.j} =
{delay, i 1)+ ({11} € token_q;) +(request® € input,)+ ({7 = {1.delay.}) = |

(b) ({#,7} € token_q,) unless (request{™} € input ;).
(c) (request{™} € input;) unless ({i,7} € token_q;) vV ({i,5} = {{,delay;}).

Proof. Similar to Lemma 18. End of Proof.

Lemma 24 (a) (msg € input,;) — (head{input;) = msg) in P, where msg denotes
an instance of request{®i} yes{iil polidd op doneli7},

(b) (requesti™3} € input;) — ({i,j} € token_q;) V ({i,j} = {i,delay;}).

(c) (pend; = j) — (yes'™} € input;) V (not™} € input;).

(d) pend; — —pend;.

(e) delay, — [3j :: yest™i} € input; V yes{™7} € input,).

(f) partner; — —partner; A —pend,.

Proof. We show only the proof of (a).
Let pos(input,,msg) denote the position of msg in input,; pos(input, ,msg) is
some large enough constant if msg & input,.
(msg € input;) A (pos(input;, msg) = m) ensures
({msg € input;) A (pos(input;, msg} < m)) V (head(input;} = msg)
, by a similar argument as in Theorem 22 while using invariants
from Lemmas 18, 19, and 23 in the applications of substitution

axiom.
(msg € input;) — (head(input;) = msg)
, induction on the above. End of Proof.

Lemma 25 ©0({i,]} & token_g,) = OO({i,j} € token_q,).

Proof. The lemma says that if from some point on in a computation token {i.j}
is never stored in token_q; then it will eventually be kept in token g, forever. It
can be proved from Lemmas 23, 24(b)}, 24(c), and 18(c). End of Proof.

103



Lemma 26 LOD[V]‘ i (flagy = {i,j} v flag, = {i,j})] = OO(—partner; A
—~delay,).

Proof.
—partner; unless [3j :: yes{iv} ¢ input; v flag; = {i,j}].
, stmilar to Lemma 21.
OOpartner; = OO[3; i yestiil ¢ input; V flag; = {i,j}].
, special case of SF-UNITY on the above and Lemma 24(f).
(37 = yes™) € input; v flag, = {i,5}] — [3j : flag, = {i,5) v flag; = {4,5}].
, from Theorem 21 and Lemma 24(a).
DOpartner, = 0OO[35 : flag, = {4, ) Vlag, = {i,}].
, from the above two.
OOlVj = ~(flag; = {i,j} Vflag, = {i,;})] = <&0O(-partner,;)
, Tewriting of the above.
QA i ~(flag; = {i,5} v flag; = {i,5})] = O0O(—delay,)
, from Lemma 24(e).
The lemma follows
. from the above two. End of Proof.

Lemma 27 OQVj i ~(flag; = {4,j} V flag, = {4,5})] A OOidle; = OQidle,.

Proof. The lemma follows from (ul). End of Proof.

Lemma 28 OCidle; = OO(idle; A —~partner; A —-pend,).

Proof.
OOidle; = DO((idle; A —partner; A -pend;) V (idle; A —partner; A pend, )V
(idle; A partner;))

, case analysis. (1)
(tdle; A —partner; A pend;) unless (idle; A ~pend,)

, similar to Lemma 21.
(idle; A —~partner; A pend;) — (idle; A —pend,)

» PSP theorem on the above and Lemma 24(d).
(idle; A —partner; A pend;) — (idle; A —partner; A ~pend;) v (idle; A partner, A
—pend;)

, rewriting of the above.
OO(idle; A —partner; A pend;) = DOO((idle; A —partner; A —pend;) V (idle;A
partner; A —pend,))

, special case of SF-UNITY on the above. (2)
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idle; A partner; — —partner; A —pend,
-, from Lemma 24(f}.

OO (idle; A partner;) = OO((idle; A —partner, A —pend,)V
(—idle; A —partner; A —pend,)).

, special case of SF-UNITY on the above and case analvsis.
D&idle; = OO((idle; A —partner; A ~pend,) V (—idle; A —partner; A —pend,))

, from (1), (2), and the above.
[t remains to show that OOidle; A TO(-idle; A —partner; A —pend,) =
8O (ddle; A —partner; A —pend;).
(—idle; A —partner; A —pend;) unless (idle; A —partner, A —pend,)

, similar to Lemma 21.
Q&idle; A OO(—idle; A —partner; A —pend;) = OO(idle; A —partner; A —pend.)

, from the above.
(From —p A q unless p A g it is easy to deduce that OO(-p A ¢) A OOp =
ad(p A g).)

End of Proof.

Lemma 29 $O(idle; A —partner; A —delay;) = COempty(token_q,).

Proof. We prove 00— ((idle;A—partner,A—delay;)Aempty(token_q,)) = OO (idle;
A —partner; A —delay,), which is equivalent to OO(idle; A —partner; A —delay;) =
<O((idle; A —partner; A ~delay;) A empty(token_q;)), and hence the lemma.

Let maxid; be the maximum token id among the tokens in token_g; plus the
token {,pend;} if pend; is not null maxid; is some small enough constant, say
one less than the smallest token id among all tokens, if token_q; is empty and
pend; is null.

Let maxpos; take on the value of the position of the token with id maxid; in
the imaginary queue formed by inserting {i,pend;} in the head of token_q; (no
token is inserted if pend; is null); maxpos; is some large enough constant, say one
plus the total number of tokens, if maxid; is the aforementioned small constant.

Define M; to be the pair (maxid,, maxpos,;}). M; is a function from program
states of P to a well-founded set of pairs of integers under <, where < is the
usual lexicographic order.

(idle; A —partner; A —delay;) A empty(token_q;) unless —(idle; A —partner;A
~delay,)

, similar to Theorem 20. (1)
(idle; A —partner; A —~delay; A pend;) A (M; = i) unless
(—(idle; A —partner; A ~delay;) V (M; < 1)) V empty(token_q;)

, similar to Theorem 20.
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(idle; A —partper; A —delay; A pend;) A (M; = m) —
—(idle; A —partner; A —delay;) V (M; < )V empty{token_q,)
, PSP theorem on the above and Lemma 24(d). (2)
(idle; A —~partner; A ~delay, A —pend;)} A (M; = #1) > =(idle; A —partner;A
~delay,) V ((idle; A —partner; A ~delay; A pend,;) A (M; = ) v empty(token_q,)
, similar to the proof of the above.
(dle; A —partner; A —delay; A —pend;) A (M; = 17t)
—(idle; A ~partner; A —delay;) V (M; < 17) V empty(token_g;)
, cancellation theorem on the above two.
(1dle; A —partner; A ~delay;) A (M; = ) — —(idle; A —partner; A ~delay,)V
(M; < m) V empty(token_g;)
, disjunction on the above and (2).
(idle; A —partner; A —~delay;) A (M; = i) — ((idle; A —partner; A ~delay,)A
(M; < 7)) vV (—~(idle; A —~partner; A ~delay;) V empty(token_q;))
, rewriting of the above.
idle; A —partner; A ~delay; — —(idle; A —~partner; A ~delay;) V empty(token_q,)
, induction on the above.
—(idle; A —partner; A —delay;) — —(idle; A —partner; A —delay,)
, implication theorem on “invariant p = p”.
true — —(idle; A —partner; A —delay;) V empty(token_g;)
, disjunction on the above two.
true — ((idle; A —partner; A —~delay;) A empty(token_q,))V
—(idle; A —partner; A ~delay;)
, rewriting of the above.
OO-((idle; A —partner; A ~delay;) A empty(token_q,)) =
O&—(idle; A —partner; A —delay,)
, special case of SF-UNITY on the above and (1). End of Proof.

Lemma 30 OC(idle; A —pend; A —partner;) = OC({i,7} ¢ token._q,).

Proof. Let pos(token_q,,{7,j}) take on the value of the position of token {i,j} in
token_q;; pos{token_q;,{7,j}) is some large constant if {7,j} ¢ token_q,.

Define N!i'j} to be the pair (pos(token_g;, {1,7}), —|token_q,|), where |token_g,]
is the number of tokens in token_g;. N,{"j } has the well-founded property as M,
does in Lemma 29.
(N?'j} < i) unless ({i,j} & token_q;).
, similar to the proof in Lemma 29.
(idle; A —pend. A —partner;) A (N,{i’j} =) — (Nf"j} <)V ({i,j} € token_q;).
, similar to the proof in Lemma 29.
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The lemma follows
-, SF-UNITY on the above two. End of Proof.

Theorem 23 OCready; = OC[Ij :: head(input;,) = yesttil v head{input;) =
yes (9. (kp5)

Proof. It suffices to show OOCready, A ~OC[3; :: head(input,) = yestt v
head(input;) = yes{™}] = false, i.e. OOready, A CO[Yj :: —(head(input,) =
yes{il v head(input;) = yes{"j})] = false.
[Vy :: flag; # {¢,7} Aflag, # {i,7}] unless
[3j :: head(input;) = yes™} v head(input,) = yesi®i}]

, simple conjunction on Theorem 20.
(35 = flag, = {i,j} V flag, = {i,7}] = [Vj :: flag, # {i,} Aflag; # {i.5)]

, rewriting of {u4).
a¢[3j = flag; = {4,5} vflag, = {i,j}] =
O[3y it head(input;) = yesihit v head(input;) = yesi®i}]

, special case of SF-UNITY on the above two.
OOV :: ~(head(input;) = yes{"} v head(input;) = yest™i})] =
OOV = ~(flag; = {i,j} V flag; = {1,5})]

, rewriting of the above.
OCready; A OOV :: ~(head(input;) = yesi™} v head(input;) = yestt?})] =
[3k :: QOidle, A Oidle; A OOV :: ~(flag; = {4,7} Vflag; = {4, })]]

, from the above and the definition of ready;.
QOready; A OT[V] :: ~(head(input;) = yes{™) v head(input;) = yest™})] =
[(3% :: OO(idle;x A —pend, A —partner,) A OO(idle; A —partner; A ~delay, )]

, from the above and Lemmas 26, 27, and 28.
OCready; A OO[V] :: ~(head(input,) = yes™} V head(input;) = yes{1)] =
(3k :: OC({i, k} & token_q,) A CO({i,k} € token_g;)]

, from the above and Lemmas 29 and 30.
OCready; A OQ[V] :: ~(head(input,) = yes{™} V head(input;) = yest™i})] =
(3k :: OO({1,k} & tokenq;) A CO({i, k} € token_g,)]

, from the above and Lemma 25.
OO({1, k} & token_q,) A OO({¢,k} € token_q,) = false

, from “00-p A OOp = false”.
OOready; A OOV :: ~(head(input;) = yes™} v head(input;) = yes'™3})]
= false.

, from the above two.

End of Proof.

This completes the proof of the variation of Algorithm A.
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CHAPTER 7

Conclusion

We have studied the process interaction problem with additional strong fairness
and fault-tolerance constraints. The problem was considered an abstraction of
the most non-trivial task in implementing languages such as CSP and IP for
distributed programming, i.e. the task to schedule or coordinate the symmetric,
nondeterministic, and synchronous communications among a set of processes. A
scheduler was required to satisfy three basic properties, including synchroniza-
tion, mutual exclusion, and progress requirements.

Strong fairness properties were added, as they are crucial for the correctness of
certain programs in the concerned programming languages. We have examined
strong process fairness and strong interaction fairness in a great detail. Both
negative and positive results were obtained.

Fault-tolerance capability of a scheduler is important, as in a distributed archi-
tecture some processor that is executing a process may fail while other processors
remain functioning; it is desirable to minimize the effect of a failed processor on
the entire system. We have considered two important failure models, namely the
detectable fail-stop and the undetectable fail-stop models. In each model, we
presented algorithms that can cope with process failures to a certain degree.

We also explored the use of UNITY in a formal treatment of the process
interaction problem. In particular, the soundness and relative completeness of
UNITY logic was extended to strong fairness properties. We believe that the
results will also be useful for the formal specification and verification of other
reactive systems that need to exhibit certain strong fairness properties.

We now conclude with a list of main contributions of the dissertation and a
number of possible directions for future research.

7.1 Contributior_ls

The main contributions of the dissertation are summarized as follows:
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1. We showed that, in general, strong interaction fairness (SIF) is impossible
for bin&ry and hence for multiway interactions and strong process fairness
(SPF} is impossible for multiway interactions. We demonstrated the use of
branching time temporal logic in obtaining a formal proof of the impossi-
bility results.

2. We devised an algorithm for binary interactions that satisfies SPF and has
best known message cost, bounded by 2D + 2, and response time, bounded
by D*+5D, where D is the maximum number of interactions of which some
process is a common participant. The algorithm was extended to guarantee
SPF in the presence of a finite number of detectable fail-stop failures.

3. We proposed a transformation of the binary interaction problem to the
dining philosophers problem that ensures SPF. Adopting an existing solu-
tion to the dining philosophers problem in the proposed transformation, we
derived another fair algorithm that has a constant failure locality in the
presence of undetectable failures. The response time of the derived algo-
rithm is further improved to O(D?), which is asymptotically as good as
that of the first algorithm. We also showed that at the cost of response
time the failure locality can be further reduced.

4. We proved the operational implication of conditional UNITY properties. In
particular, a strong fairness property of a program can be specified in the
form of “Hypothesis: ¢rue — p Conclusion: true — ¢", which implies that
“OCp = OO is true for every execution of the program. The result was
applied to the specification of the process interaction problem with strong
fairness.

5. We established the equivalence between the provability of conditional prop-
erty “Hypothesis: true — p Conclusion: true — ¢" in UNITY logic and that
of “O0p = OC¢” in Manna and Pnueli’s temporal logic, which is known
to be relatively complete. In the process, we obtained a relatively complete
inference rule for proving strong fairness properties of a program in UNITY.
We also proposed two plausible inference rules to facilitate the verification
of strong fairness properties. The results were applied to verifying the SPF
property of a variation of our first algorithm.

7.2 Future Research

We suggest the following possible directions for future research:
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* Lower-Bounds: As is evident from the literature and this dissertation.
there is a close relationship between the process interaction problem and
the dining philosophers problem. The tight lower bound on the response
time of dining philosophers algorithms has long been an open problem.
so has that of algorithms for process interactions. The existence of an
efficient transformation from the process interaction problem to the dining
philosophers problem indicates that the lower bound for the former problemn
is at most as large as that for the latter. However, it is not clear if it would be
possible to design an algorithm for process interactions that has a response
time better than that of the best known dining philosophers algorithm.

* Automated Verification: In the proof of the impossibility of SIF for
binary interactions, we constructed a problematic execution of any solution
that meets the basic problem requirements. It might be possible to prove
the impossibility result by a model checking procedure, showing that there
is no program, i.e. model, for the problem specification with SIF. The main
task would be to extend some existing model checking procedure to handle
compositional specifications.

¢ Formalization of Fault-Tolerance: Formal specification and verification
of fault-tolerant programs has become an important subject of research.
One of the common approaches is to view failures as the behavior of the
“environment” of the fault-tolerant program, which is a reactive system
that has to tolerate the faulty behavior of its environment. This approach
may be generalized to handle problems like the process interaction problem
where the solution sought after is actually a reactive system. The relevant
failure assumptions need to be incorporated into the original specification
of the non-faulty environment.
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