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Abstract

Markov reward models have been employed to obtain performability measures
of computer and communication systems. In these models, a continuous time
Markov chain is used to represent changes in the system structure, usually caused
by faults and repairs of its components, and reward rates are assigned to states
of the model to indicate some measure of accomplishment at each structure. A
procedure to calculate numerically the distribution of the reward accumulated
over a finite observation period is presented. The development is based solely on
probabilistic arguments, and the final recursion is quite simple. The algorithm
has a low computational cost in terms of model parameters, and, in fact, 1t is
linear in a parameter that is smaller than the number of rewards. The approach
follows the general methodology previously developed by the authors to calculate
transient measures using uniformization, but the complexity of the final algorithm
to calculate the distribution of cumulative reward is drastically reduced.

1This work was done while E. de Souza e Silva was on leave from the Federal University of Rio de Janeiro
partially supported by grants from CNPq{Brazil) and NSF CCR-9215064.



1 Introduction

Modeling and analysis plays an important role in the design of computer and communication
systems. It allows the designer to predict the behavior of these systems and evaluate design
alternatives, in order to increase the efficiency and reliability of the system being built. In
the past ten years, much attention has been given to performability models, which represent
the performance a system can achieve during an observation period as its structure evolves
over time.

In the seminal work of Meyer [17], a modeling framework for the definition and evaluation
of performability measures was introduced. In broad terms, Meyer discussed determining the
probability that a system performs at a given level of accomplishment during an observation
period. Many measures can be mapped into Meyer’s definition of performability. As an
example, consider a Markov process that is used to model the changes in the structure of the
system as time evolves. These changes are usually caused by the failure of the systemn com-
ponents and the repairs made to the failed units. The system performance is integrated into
the model by assigning rewards, obtained from a separate performance model, to the states.
Each reward represents the steady state performance of the system when in a particular con-
figuration. In [19] there is an extensive discussion of many concepts related to performability,
and in [5] several performability measures are considered and solution techniques for their
calculation are surveyed. Many examples which illustrate the use of performability models
are presented in [23].

This paper is concerned with the calculation of an important performability measure, the
distribution of cumulative reward over a finite interval for which reward rates are associated
with states of a Markov model. In fact, this is also an interesting theoretical problem that has
applications beyond the performability area. Formally, consider a homogeneous continuous
time Markov process & = {X(¢) : t > 0} with finite state space $ = {s; : ¢ =1,---, M}.
To each state s € S we assign a reward rate from a given set of rewards {ry,..., 7541}
The random variable IR(¢), the instantaneous reward at time ¢, is simply IR(t) = ry, if
X(t) = s, where ¢(s) 1s the index of the reward rate associated with state s. The cumulative
reward during an observation period (0,¢) averaged over ¢ is

ACR(t) = % / “IR(r)dr

The problem of calculating the cumulative reward distribution has been studied by many
researchers. In one of the first papers on performability [1], Beaudry developed a method to
calculate the distribution of accumulated reward until absorption occurs for a Markov chain
with absorbing states. Subsequently, several solution techniques were developed to calculate
the distribution of cumulative reward when the generator matrix Q of the Markov process



that describes changes in system structure is lower triangular (e.g., models for nonrepairable
systems). Such techniques are discussed in [8, 9, 10, 18].

Determining the distribution of cumulative reward over a finite interval for Markov mod-
els with a general Q matrix is a more difficult problem. For these models, Laplace transform
methods have been applied [14, 16, 22]. In [4] a methodology for calculating performability
measures was developed using the uniformization technique [15]. In particular, a recursive
algorithm to calculate the distribution of cumulative reward was developed based on prob-
abilistic arguments. The procedure is best suited to cases for which the number of rewards
1s small, since its computational complexity is combinatorial with the number of distinct
rewards of the model. Donatiello and Grassi [7] combined uniformization and the basic
methodology of the Laplace transform techniques cited above to obtain a recursive expres-
sion for the distribution function of the cumulative reward. They derived a double Laplace
transform equation for the distribution and found a way to analytically invert it, and thus
no numerical inversion is necessary in their method unlike previous Laplace transform work.
Furthermore, the computational complexity is polynomial with the number of states and
the number of rewards. More recently, Pattipati et al [20] determined the distribution of
cumulative reward by numerically solving a partial differential equation that they obtained.

In this work we develop a new algorithm for the distribution of cumulative reward based
on the general methodology of [4]. The cost of the new algorithm is drastically reduced in
comparison with the one in {4], and, in fact, it is linear in a parameter that is smaller than
the number of distinct rewards. Furthermore, the algorithm is very simple to describe and
implement, and the method has a nice probabilistic interpretation.

The remainder of the paper is organized as follows. In Section 2 the notation used
throughout the paper is introduced and the necessary background needed is presented. In
Section 3 an overview of the methodology of {4] for calculating transient measures based on
uniformization is given. In Section 4 the algorithm is developed and computational issues
related to its implementation are addressed. A simple example of the application of the
algorithm is presented in Section 5. Section 6 concludes the paper.

2 Notation and Background Material

In this section we present the background material and introduce the notation that will be
used throughout the paper. We start by presenting the uniformization technique, which
was introduced by Jensen in [15] and is very useful for calculating transient measures. This
technique, also called randomization or Jensen’s method, has been widely used by many
authors, and it has been covered in books and survey articles {2, 5, 11, 12, 13, 21].



Consider a homogeneous continuous time Markov process X = {X(¢) : { > 0} with finite

state space S = {s; 1 ¢ =1,..., M} and transition rate matrix
—¢1 q12 QM

Q= Q'?l —:9'2 : CI2:M ’
9'1\./11 Mz -0 —qM

where ¢;; is the exponential transition rate from state s; to s; and ¢; = 37,4, ¢i; 1s the total
rate out of state s;. The uniformization method involves performing a simple transformation
on the original process, so that the state probabilities at the end of an interval (0,#) can be
obtained by analyzing a discrete time Markov chain.

The rates ¢; are uniformly bounded since the state space is finite, so we can always find
A > maxi<i<m{¢i}. Now transform the original process A" by allowing transitions back to
the same state so that the residence time in state s;, 7 = 1,..., M, before a transition (out of
s; or back to s;) 1s exponentially distributed with parameter A. Furthermore, we preserve the
probability of jumping to a state s; other than s;. This is accomplished by adding fictitious
self transitions so that with probability ¢;;/A the process jumps to state s;, j # ¢, and with
probability g;/A the process immediately returns to s; after a transition from that state.

Since the residence time in any state before a transition occurs ts exponential with the
same rate A, the transitions in an interval {0,¢) are governed by a Poisson process with this
rate. In more detail, X’ can be considered as a discrete time Markov chain subordinated to
a Poisson process as follows. Let Z = {Z, : n =0,1,...} be a discrete time Markov chain
with finite state space & and transition matrix P = I+ Q/A (where I is the M x M identity
matrix), and let N = {N(¢) : t > 0} be a Poisson process with rate A that is independent of
Z. Then X(t) = Zyg for t > 0, which indicates that the transition times occur according
to the Poisson process A and the probability of being in state s; after a jump from s; is
given by the entry p;; of P. As a consequence, if we condition on the number of transitions
n in (0,1), we can obtain the probability p;(t) that the process A" is in state s; at ¢t as

p(t) = 3 e S oy, (1)

where p(t) = (p1(t),...,par(t)) and w(0) is the initial probability vector. Equation (1) is
the basic equation of the uniformization method. In order to evaluate (1) numerically, the
infinite series is truncated to a value N, and the resulting error can be easily bounded from
the remaining Poisson terms.

One of the main advantages of the uniformization technique is its probabilistic inter-
pretation. In fact many measures of interest can be obtained based on this interpretation
(for a survey of the measures that can be calculated using uniformization see {5]). In the
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next section we review a general methodology for obtaining the distribution of accumulated
reward over a finite interval.

3 A Methodology for Calculating Transient Measures

We consider the problem of calculating the distribution of accumulated reward over a finite
observation period. The basic methodology we use was developed in [4] (see also [5]) and is
surveyed below.

Assume that the continuous time Markov chain A" of the reward model being analyzed
has been uniformized. Therefore, as indicated in the previous section, the transitions of
the chain X are governed by a Poisson process. Assume that n transitions occur during
the observation period (0,¢) at times 0 < 7 < -+ < 7, < t. These events split (0,¢) into
n + 1 intervals with lengths ¥1 = 7,Y, = 7 — ..., Yo = ¢t — 7. Figure 1 illustrates
the intervals and their lengths. The state of the process A during each of these intervals

Yl Yz Y:-a LA Yvn+1

Figure 1: Interval lengths Y;.

is given by the uniformized discrete time chain Z. The probability that the process is in s;
during the kth interval is equal to P[zx = s;] = m;(k), where w(k) = w(0)P*~! with «(0) the
initial state probability distribution vector and P the probability transition matrix of Z.

Each interval is associated with a reward which is based on the state of the process during
the interval. We assume that there are K + 1 distinct rewards vy > ro > -+ > rgyp 2 0
associated with states of the process X'. Given that n transitions have occurred in (0, ¢}, let
ki,1=1,..., K+1, be the number of intervals that are associated with reward r;, and define
k= {ky,....,kx41) and ||k|| = k1 + - -+ + kx41. Note that | k|| = n + 1 given n transitions,
and there are (A:ﬁ"l) vectors such that ||k|| = n + 1. We refer to a specific vector k as
a coloring, since assigning rewards to intervals may be thought of as coloring the intervals

with a different color for each distinct reward.

Let M(t) be the measure we wish to calculate. For example, A{(#) may be the probability
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that the reward accumulated during (0,¢) averaged over { is greater than a given value. If
we condition on n transitions and a coloring k, we have

M) =5 e‘At(At') > Tin,kM(t,n.k) (2)
n=0 ™ likil=nt1
where
I'{n, k]| = P[coloring k|n transitions] (3)
and
M(t,n,k) = M(t)|n transitions, coloring k. (4)

In order to apply (2), both I'[n, k] and M (¢, n, k) have to be calculated in an efficient manner.
For many measures of interest (see [4, 5]), simple recursive expressions can be found for
['[n, k]. Furthermore, certain measures M(t,n,k) can be determined by using the property
that a particular sample path of the discrete time chain Z influences the measure only
through the coloring of the intervals and not, for instance, through the order in which the
rewards appear in the sample path. More formally, let Gy C S™! be the set of all possible
sample paths of Z such that the first n transitions yield the coloring k. Then, for many
measures, M(¢,n, k) = M(t,n. k,v), where M(¢,n,k,v) is the measure further conditioned
on a path ¥ € Gy. In order to show this result, the probabilistic interpretation of the
uniformization procedure is exploited. That is, the independence of the Poisson process A
and the discrete time chain Z is used as well as a property of the Y; called exchangeability.

In the following section we use this methodology to obtain the distribution of accumulated
reward during (0, t) averaged over t. The recursion we find is linear with the number of states,
linear in a parameter that is smaller than the number of rewards (colors), and cubic with
the truncation point N. This is a major improvement over the results presented in [4], for
which the recursion was combinatorial with the number of colors. However, the approach
still preserves the probabilistic development in [4].

4 The Algorithm

Our interest is in calculating the distribution of the total reward accumulated during (0, ¢)
averaged over t, where r; is the reward accumulated per unit time in any state associated with
it. That is, we wish to calculate M () = P[ACR(t) > r]. We may assume that r; > r > rgy
to avoid trivial cases.



4.1 Preliminary Results

Using the methodology reviewed in the previous section, we first determine I'[n, k]. Let
T';[n, k] be the probability of a coloring k given n transitions and the state visited after the
last transition is s. Then ['y[n, k] can be obtained recursively as follows. If s’ and s are the
states visited after the (n — 1)st and nth transitions, respectively, then the coloring k after
the nth transition is equal to the previous coloring except that the entry corresponding to
the color associated with s has been incremented by 1. Conditioning on the state visited
after the (n — 1)st transition and recalling that state transitions are governed by Z, we have

FS [n, k] = Z Psr[n - 1,1{ - 16(5)][)515. (5)
s'eS

Here ¢(s) is the index of the reward (color) associated with state s, and 1., is a unit vector
of length i + 1 with 1 in position ¢(s). The initial conditions are

7s(0) ifi = c(s)

L,[0,1;] = { 0 otherwise 0

where 7,(0) is the probability that the process starts in state s. From the definition of
I';[n, k| we have

Pln,k] = 3 Tyfn, k). (7)

seS

This recursion for ['[n, k] was obtained in [4].

We now determine M(t,n,k) = P[ACR(t)|n,k]. Given n transitions and a coloring k,
let the random variable (; be the sum of the lengths of intervals associated with reward
ri. Figure 2 illustrates the intervals corresponding to two different rewards for a particular
sample path v € Gx. Clearly we have

1 K+1

ACR(t)[n, k = — Z ""iCi- (8)

t =1

Let Uy, Us, ..., U, be independent and identically distributed random variables uniform
on (0,1), and let Uy, Upay, ..., Uy be their order statistics (for notational convenience set
Uy = 0 and Upny1y = 1). It is well-known that, conditioned on n events during (0,1), the
time of the ith transition 7; has the same distribution as #U/(;j. Therefore, we may make the
identification ¥y = tUy),Ys = {(Ug) — Uny), ..., Yoy = (1 — Upy). Although the Y] are
dependent random variables, they are ezchangeable (3], i.e., the joint distribution of the Y;
1s invariant under any permutation of 1,...,n <+ 1.

As a consequence of the exchangeability property of the ¥; and the fact that the Poisson
process A and the discrete time chain Z are independent, we may group intervals with the
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Figure 2: Rewards associated with intervals for a sample path v given n transitions.

same reward in sequence when determining the distribution of ACR(t) given n transitions
and a coloring k, so that the first k; intervals have reward ry, the next %k, intervals have
reward 73, and so on. Note that if k; = 0, then no interval has reward r;. Suppose that the
vector k has L + 1 nonzero entries, i.e., only L + 1 distinct colors out of the possible K + 1
were used to color the n + 1 intervals. Let £(1) < --- < £(L 4 1) be the indices of these
colors, and define n; = Zle keqy for 3 = 1,..., L. Figure 3 illustrates the notation used and
shows the intervals and this coloring.

From the above discussion we may make the identification
ACR(t)|n,k =
1
n [re Uty + re@tWUinsy = Un)) + -+ + remyt(Upnsy — Utng 1) + reqrant(l = Ugnyy)]

Therefore,

L
ACR(t)n, k = D (res) — re(i+1))Utnyy + Te(z41), (9)

=1



tUn,) tUnm, tUn, tUinp)

el i L y | ] ] i ] ] | J

0\ / \ v /\ v—/ \ / t

V
k &(1) k &) k £(3) kg (L)
intervals with intervals with intervals with
reward reward reward
Teq) Te@ Te(3) Tt (L)
v /

V
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Figure 3: Intervals given n and k.

so that
L

P[ACR(t) > Tln,k] =F Z(Tﬁ(j) — Tg(j+1))U(nJ) > r— rﬁ(L-l—l) . (10)
j=1
From (10) we see that in order to find M(¢,n,k) = P[ACR(¢) > r|n, k], we need to obtain
the distribution of a linear combination of uniform order statistics on (0,1). A solution to
this problem was found by Weisherg [24] (see also [4]). The following is a direct consequence
of the results of Weisberg.

Lemma 1 Forn > 0 and ||k|| =n + 1, we have

S f'(ki_l)(riak)
P[ACR{¢ k= =———=
where m is the largest index ¢ such that r; > r and fi(k‘_l) is the (k; — 1)st derivative of the
Sfunction

, (11)

file, k) = I:Eic(; T;)Tj)kj

IF
(we define £ = f; and {0 =0 for 1 <0).

(12)

Proof: Recall that £(1) < --- < £(L + 1) are the indices corresponding to the nonzero
entries of k. If £(1) > m, then ree1y < -+ < rgqy < r. Thus P[ACR(?) > r|n, k] = 0,

8



and equation {11) holds since f,-(ki_l) =0for:=1,...,m. Now consider the case for which
£(1) < m. When rg(r4q) < r, then Weisberg’s result applies and is

I (ke —1) i
Geg: Tegay— T ,k
P[ACR(t) > rln, k] = Y =Y ((k‘f‘j” 151“*“*” ) (13)
P e — 1!
€3 <m

where, for {(7) < m, ge(;) is the function

& = (v = regm)]

geiiy(z, k) = (14)

L kegiy
Hf—:}.l [2 = (e = rectn))]
1#j

Since k; = 0 for ¢ & {&(1),...,6(L + 1)}, it is easy to see that evaluating gél&)(m,k) (for
I =0,1,...) at the point rsj; — r¢(z41) is equivalent to evaluating ff(a)(:c,k) at the point

re;)- Also, the sum of the fi(k‘_l) can be taken over all ¢ = 1,...,m and not just over the

£(7) < m, since fz-(k"ml) = 0 when k; = 0. Thus (11) holds in this case.

When r¢z44) > r, then P[ACR(Z) > r|n, k] = 1 since all n + 1 intervals in (0,7) have
rewards that are greater than r (see Figure 3). To show that this case is covered by (11}, first
suppose that r is one of the K +1 rewards. Then, by the definition of m, it is the mth reward,
ie.,r, = (and also k,, = 0). Consider the vector k+1,,. The rewards corresponding to the
nonzero entries of k 4+ 1, all have value at least r, so that PIACR(¢) > rln+1,k+1,.] = 1.
Thus we need only show that this distribution satisfies (11). Since m is the largest index
with a nonzero entry in k + 1,, and r,, = r, Weisberg’s result applies. The mth entry of
k+1,is1,so

m—1 fi{kl’—l)(ri,k_;r_ lm)

PIACR(t) > rln + 1,k + 1] = 3 G ek L) (15)
i=1 1 i
For ¢ # m, we have
(=) @y
i :k‘l'].m, = — - = — — = f; ',k
ek ) = I e T e
J#ELm E

(all derivatives are also identical). Furthermore, f{*=~1(z k) = 0 since k,, = 0, and

‘ (m - ?‘)ﬂ+1
m(r K+ 1) = —= =0
j ( ) H]}:_l]_ (.’):'—T'j)kj
J¥Em r=r

Substituting these results into (15), we see that (11) holds.
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If r is not one of the rewards, we consider a new system with K + 2 rewards, namely,
the original K + 1 rewards plus the additional reward r. Using the notation * for quantities
associated to the new system, weseethat m*=m+ 1, v . =r,and rf =r;fore=1,...,m.
Let k* be the i + 2 vector such that & = k; for ¢ = 1,...,m and k7 = 0 otherwise {also
recall that &; = 0 for 7 > m). Then the cumulative reward in the new system given n and
k™ is clearly the same as the cumulative reward in the original system given n and k, and
so P[ACR(t) > r|n,k] = P[ACR™(¢) > rin,k*|. Applying the previous result to the new
system, we have

me 1) e
P[ACR*(t)>T|n,k*] :th - (Tzi )

t=1 (kl - 1)'
Now k. = 0, so the term corresponding to m* in the above sum is 0. Furthermore, r; = r;
and kf = k; for e =1,...,m, and k; = 0, £ = 0 otherwise. Thus, for : =1,...,m, we have

. . z-—-r)" z—r)"
k)= = B = i)
ij'};'[) (JL‘ — T"J) kj’ﬂ‘;‘o 7

Therefore, (11) also holds in this case. O

The functions fi(l)(:c, k) can be evaluated from the following recursion.

Lemma 2 Let j be an index such that k; > 1. For |klf=n+1>1m>1)
1z, k)

{!
(-1 o (i-1) ) .
U (k-1 k) (o) ket
T —r; (I—1)! (1—1) T —r, !
(16)
S k- 1) k- 1) _
(A AT v=J
Forllkj=n+1=1m=0, ki=1)and >0
1N A k)
e,k ‘(__) o P
# — T —T; (1—1) (17)
0 L=
The initial conditions are (forn =0,k =1,1=0)
1 . .
Z—r; 7
(k) = : (18)
1 i=



Proof: First consider the case n > 1. We prove (16) by induction on /. We have from the
definition of fi(z,k) in (12) that

&

- r . .
( ) fi(O)(»'Uak—lj) i # ]
k)= VT
(e - f N2 k-15)  i=j
which is (16) for I = 0.

Now we assume that (16) is valid for / — 1 and prove it for /. Rewriting (16) for the case
1 # 7 we have

@) P (k)

(=) =) oo @I Ty T (20)
Differentiating both sides of (20) gives
A7, k) Dlwk) 7@k
G- ey T T
{i-1) () (i-1)
iz, k1) [0k —1;) £ (x, k- 1)
o e g a—ai @
Combining terms yields
(i-1) ) {i-1) _ (0 1.
lfi (mak)+($7rj)fi (ka) :lfm (xak_l.?)_{__(l__r)fz ($7k ]'J) (22)

(- 1) (1)

Finally, dividing both sides of (22) by I{z — r;) and rearranging terms, we obtain (16) for
s

(- 1) (-1

Equation (16) for ¢ = j is proved in a similar manner.

Now consider the case n = 0. The initial conditions (18} are obtained directly from (12).
Then equation (17} is trivially obtained by taking the derivatives of (18). O

Equations (5) and (16) are sufficient to evaluate M(f) recursively from (2). However,
using these equations would lead to computational requirements that are combinatorial in
the number of different rewards, since both I'[n, k] and M (¢, n, k) would have to be evaluated
for all combinations of vectors k such that ||k|| =n+1forn =10,..., N {recall that N is the
truncation point of the infinite series in (2)). In what follows we show that a simple recursion
with computational requirements that are only linear in the number of states, linear in a
parameter smaller than the number of colors, and cubic in N can be found.
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4.2 The Recursion for P[ACR(t) > r]

For n = 0,1,..., let K, = {k: ||k|]| = n + 1}. We first define subsets of K, that give a
grouping of vectors k and are the key to obtaining the new recursion for P[ACR(t) > r].

Definition 1 Forn >0,¢=1,...,m, let

Gyli,n] ={k € Ky, : ki = g}, g=0,...,n+1.

It follows from the definition that G,[i,n], ¢ = 0,...,n + 1, is a partition of X, for each 1.
As an example,if n = 1,7 =1 and K = 2 (the case of 3 rewards), we have

Go{1,1] = {(0,2,0),{0,1,1),(0,0,2)}
Gl[lvl] - {(1,1,0),(1,0,1>}
Gq(1,1] = {(2,0,0)}.

Definition 2 Forn>0,1=1,...,m,s€ S, let

Fg,S[ian]:{kEGg[iun]:kc(s)>0}1 g:071n+1

In the above definition recall that ¢(s) is the index of the reward associated with state s.
From these definitions the following equalities hold.

{(a) For ¢(s) = ¢ and for any g, we have

{k+ L) s k € Gylt,n]} = Gopali,n + 1] = Foyy st n + 1], (23)

{b) For e(s) # ¢ and for any g, we have
{k + lc(s) k€ Gg[z',n}} = Fg,s[i,n + 1] (24)

To prove (a) and (b), first consider (23). If ¢(s) = ¢, adding 1 to the ith entry of all vectors
k € G,[t,n| gives all possible vectors in Gy41[t,n + 1], where n also increases by 1 when k;
is incremented. This yields the first equality in (23). The second equality holds since, by
definition, k) = ki = g + 1 > 0 for vectors k € Gyiq[i,n + 1]. If ¢(s) # 2, adding 1 to the
c(s) entry of a vector k € G,[7, n| does not alter the value of k;. Thus the new set of vectors
obtained in this manner are associated with the same value of ¢. However, these vectors
satisfy k) > 0, and so they belong to [ ;[i,n + 1].
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The basic idea of the algorithm we develop is to find recursions over sets of vectors k,
instead of recursions that consider each vector in isolation. This motivates the following
definition.

Definition 8 Forn>0,i=1,...,m,s€8,9g=0,...,n+1,12>0, let

O(r: K
Lginl)= Y Lnlgh 0k (25)

keGglin]

Recall that I';[n, k] is the probability of the coloring k and the last state visited is s given
n transitions. Therefore, if k5 = 0, then Ty[n, k] = 0. But kyy = 0ifk € (,4[¢,n] and
k ¢ F,.[i,n]. As a consequence, (25} can be written as

(Tn k)

Q[g,,n,1) = Z T,[n, k] (26)

keFy s [i,n]

We now use the recursions for I';[n, k] and f"(r; k) given by equations (5) and (16),
respectively, in equation (26) to show that the vector

g, i,n, 0] = (Qlg, 0,00, .., Qsy, g, 1,1, 1) (27)

can be calculated recursively. In the following we define Q,[g,7,7,{] = 0 for n < 0 or g < 0,
and we also note that Q[g,7,n,{] = 0 for [ < 0 from the definition of fi('!)(w,k).

Lemma3 LetseS,i=1,...,m,¢g=0,...,n+1. Forn>1, and forn=0and{ >0

Qslg,t,m, 0] =
{ ({Q[g,i,ﬂ —1,1- 1] +wi9{g:i:n - l:H}P{: '5] - Qs[gv‘iana‘l_ 1]) /wi,c(s) C(S) '_)'é(z )
28
{20g —1,t,n—1,1 -1} +w;R2[g—1,i,n - 1,{]} P[: 5] ¢(s) =1

where w; ; =1, —r; fori # j, w;=r; —r, and P[: s] is the sth column of P.
The initial conditions are (forn =10,1=10)

74(0)wiae cls) # iy g = 0
005,00 = { 0 e (29)
7:(0) c(s)=1,¢9=1

where 7,(0) is the initial probability of state s.
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Proof: First assume that n > 1. We have to consider the two cases ¢(s) # ¢ and ¢(s) = 1.
For ¢(s) # ¢, using (5) and (16) (for ¢ # j), we have

{1-1)
. 1 fi T'iak_lcs
Ulg,yn,d] = Y] Ers'[”‘lﬂk_lc‘s)]ps's( ) ((:...1)! )

kEFg,s[i,n] Fes W@',c(s)

(0
Wi S k= 1y
+ E E Ps’[n - 17k - 16(5)]ps’s (LU' { )) f ( T ( ))

keFy :[in) s'es

-1y,
Y W k]( N(s)) Ji (k) (30)

KEF, [in] ({-1!

Exchange the order of summation in the two first terms of equation (30) and note that,
since ¢(s) # 1, {k — 1) : k € Fy,li,n]} = G,[i,n — 1] from (24). Therefore, we can rewrite
equation (30) as

) Zpss Z Ps’[nlak]ﬁj—_—i_(ﬁi{_)

s'es keGy[i,n—1] (1 1)!

Qs[g,i,n,l] = (

Wi e(s)

0.
( ) S Y FS,[nmLk]ip"—w
wl (.(S b

s'es keG,[t, n—l]

—( 1) O L) (31)

Wi e(s) keFy s[iyn] ( )

Equation (28) for ¢(s) # ¢ is found by applying (25) and (26) to the three terms of equation
(31) and rewriting the result in terms of vector operations.

For ¢(s) = i the development is similar. Using (5) and (16} (for 7 = ) yields

.(1—1) ] k— 1
Qs[gi?‘.?nﬂ l] = E Z I‘S’[n -1,k — lc(S)]ps’s fi ((T;”— 1)! C(S))

KEF, .[in} 5'€S

f(l}(rz:k - 11: s )
+ Z Z Lon—1,k — Lg]psswi 0 €)), (32)

keF,  [in] s'€S

Exchange the order of summation in the two terms of equation (32) and note that, since
ofs) =1, {k = 14y 1 k € F,[i,n]} = Gy_1[i,n — 1] from (23) to obtain

.(1—1) .
Ulgiml] = Do L ol ke ek

S'ES keGgo1[in—1] (1)t

‘(Z) iy
+wj Z Ps's Z: Fs’[n -1, k]L—% (33)

s'eS keGg_1[i,n—-1]
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Finally, apply (25) and write the result in terms of vector operations to obtain (28) for
c(s) =t

Now consider the case n = 0. Since n is the number of transitions of the uniformized
process during the observation period, n = 0 indicates that no transitions occurred and the
process remained in its initial state. Note that Ko = {14,...,1x41}, G1[:,0] = {1;} and
Goli,0] = {1; : j # ¢}. From (6) and (25) we obtain

GO Lk
’JTS(O)L%?-,——) for c(s) #1,g=0and for e(s) =¢,9=1

Qslg,2,0,{] = (34)

0 for ¢(s) =1, g =0 and for ¢(s) #1¢, 9 =1

Since Q,{g,%,n,]] = 0 for n < 0 by definition, then equation (28) (for n = 0 and I > 0)
follows from (17) and (34). The initial conditions (29) follow immediately from (18) and
(34). m]

It should be observed that §,[g,7,n,!] = O for certain values of s, g, ¢, » and [. Tor
example, it was already shown that £,[g,¢(s),0,{] = 0 for { > 0 and arbitrary g (see (28)).
Now assume that ¢(s) = ¢ and ¢ = 0 with n and [ arbitrary. In this case k; > 1, and
so (Gioli,n] = @ from Definition 1. As a consequence, Q,[0,¢(s),n,{] = 0. Using similar
arguments, we also see that Q,[n + 1,2, n,!] = 0 for the case ¢(s) # ¢.

From the values of the vector £2[¢,7,n,[], we can calculate the measure P[ACR(t) > r].
Let [|£2[g,t,n,1]|| = Xses Qslg,¢,n, 1] for all g, 2, n, L.

Theorem 1 The disiribution of the total reward accurnulated during (0,1) averaged over t
is qiven by
= o (M)

PIACR(t) > 1] =} ¢ > 2 120g,i,m,9 = 1]l (35)

n=0 ' 1=1 g=1

Proof: With M(¢) = PIACR({) > 7], from (2) we have

P[ACR(t)>r]:§: M(At. X Tl KPIACR( > i id (36)

Now we evaluate the sum over the set X,, on the right hand side of (36). Substituting (7)
and (11) into (36), the sum can be rewritten as

f(k U(r- k)
3" Dln,k]P[ACR(2) > rln,k] = > > Tun, K] ZT{),I

ke, kekKk,, s€&
(k -1) ,
oD DR L LI R
1=1 s€8 keKn ( )
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The exchange of summation in the last equality of (37) is valid, since. by definition, the value
of m depends only on the values of the rewards r;, 1 = 1..... K + 1, and 1s independent of
the set X, and the state space S.

From Definition 1, for any + = 1,...,m and n > 0, the sets G,[¢,n]. g = 0,...,n + 1,
form a partition of X,,. Therefore,

(ki—1) r;,k ™ (k1) rik
LS Tt

ZZZPnk]

=1 s&5 kekK,, i=1 58 ntl . ki
kGUg':e Gglin]

m n+l (ku‘ll -k
- Yy % Fs[n,k]—f’(.ki_(%’! s

i=1 s€8 g=0 keG,li,n]

Since k; = 0 for k € Gofi,n] and f(z,k) = 0 for I < 0, the terms corresponding to the
index ¢ = 0 vanish. Hence, recognizing £, from equation (25), we have

n+1
> Tln,k]P[ACR(¢) > r|n, k] = ZZ S Qg d,m,9 — 1) (39)
keX, 1=1 568 g=1
Exchanging the order of summation and substituting the result into (36) gives (35). 0

Equation (35) can be simplified by recalling that, when ¢ = n + 1, the only Q,lg,¢,n,]]
that are nonzero are those for which ¢(s) = ¢, so that

> At &
PIACR(t) > r] = Ze"M(fn) Z{ZHQ" lg,5,mg =1+ . Q:[n-}-l,i,n,n]}.
n=0 Coa=l s:e(s)=1

(40)

In many situations evaluating the tail of the distribution of ACR(?) is of interest. That
is, we wish to calculate the probability that the accumulated reward averaged over the
observation period is greater than r, where r is close to the largest reward 71 In fact, if
7 > 71 > rq, then m = 1. In this case, from Definition 3 and the definition of F(z, k), it is
easy to see that ||§2[g,7%.n, g —1]}| is the probability that ACR(¢) > » when the model spends
¢ intervals in states with the largest reward given n transitions.

4.3 Computational Requirements

We now discuss the computational complexity of evaluating (35} in order to calculate the
distribution of cumulative reward over a finite interval (0,¢) averaged over t. From (35) we
observe that the main computational effort is spent in the evaluation of ,[g,%,n,g9 — 1], for
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i=1,....mg=1,...,n+1,n=0,..., N, where we recall that /V is the truncation point
of the infinite series in (35) in order to obtain the desired error tolerance.

From (28) we see that ,[g,¢,n,{] can be evaluated using a simple recursion. For a given
value of 7, the recursion should be carried out from n = 0 to NV and, for each n, from g = 0
to n + 1, starting from ,[¢,4,n,0] (for any s), i.e., for a given 2, n and g, the first elements
to be evaluated are those for which / = 0. Each value of Q,[g,7,n,{] requires a simple vector
by vector multiplication, where one of the vectors is a column of the matrix P. Since P
is usually sparse, this operation requires roughly d multiplications, where d is the average
number of nonzero entries in a column of P. Thus, to obtain the vector §2[g,i,n, ], we need
O(dM) multiplications, where recall that M is the dimension of the state space.

Considering all necessary values of 2 for a given 1, clearly we have a total of O(dM N?)
multiplications. Finally, considering i = 1,...,m, we have O(mdM N?*) multiplications,
where m < K + 1. Therefore, the combinatorial complexity in the number of rewards of the
algorithm in [4] has been reduced to a linear complexity. We also note the low polynomial
order of the other model parameters, namely N3, M and d. Furthermore, as mentioned
above, often our interest is in the tail of the distribution of ACR(¢). That is, for many
performability models, we are interested in evaluating the probability that the system has a
total reward that is close to the maximum possible reward obtained, for instance, the reward
received when all components are fully operational. In this case, from its definition, m 1s
close to the index of the largest reward, so m is equal to or near 1.

We now consider the storage requirements. We note that the computation of 2 can
be done independently for any value of ¢. Figure 4 illustrates the recursion for §2. In this
figure, each dot represents a vector £2[g,7,n,![], and the arrows indicate the values needed to
calculate a vector. It is easy to see that, for a given n, only the values of £2 for n — 1 need
to be stored. Therefore, a total of N? vectors of dimension M are necessary, independent of
the number of rewards of the model.

4.4 Implementation Issues

In section 4.2 we presented the details of an algorithm to calculate the distribution of cumu-
lative reward averaged over the observation period. In this section we discuss some useful
implementation details.

Although the rewards associated with the states can be equal to any real number, it is
convenient to scale the rewards such that they are all nonnegative and the smallest reward
is equal to 0. This can be done by replacing »; (and r) by r; — rx 4y (and r — rgq ).
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Figure 4: Recursion for 1.

From Lemma 3 it is clear that w;; can have arbitrary small values (and so 1/w;; in (28)
is large) if wy = vy — r 1s small (say, w; < 1). Conversely, w; can be large if the values of
w; ; are large. This may cause overflow problems for large values of V. In order to alleviate
this problem, our objective is to find a scaling such that the multipliers in (28) are always
less than or equal to 1. To this end, we scale the values in recursion (28) as follows. We
first scale the rewards by dividing all values r; and r by wy, and then let w? = w;/w; for
t = 1,...,m. Note that w}, the largest value of the w}, is equal to 1. Now we make the
following definition.

Definition 4 Let

g, iyn, 1] = D00, [g i n, 1) (41)
and w
W gy = , (42)
<(2) Wie(s)

where w = min; j{w;;}, 1 <1 <m, 1 <j<K+1,t# 5.
Note that wf < 1 and w} ) < 1,7 = 1,...,m, after rescaling. It can easily be shown
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that the recursion in (28) can be rewritten as (see [6] for details)

Mg,1,n,1] =

Wiy {w2[g,5,m —~ 1,1 = 1] + w0 2°[g,6,n — LY Pl s] = Qg i,n, 1= 1)) i # o(s)
(43)
{wn*[g - 17?:7” - 17l - ]'] +w:9*[g - 17%.,?’.! - 11"’]}1)[ S] 1= C(S

The initial conditions are similar to those in equation (29), except that 1/w; (s is replaced
by wy (5. From the values of §2%, we obtain P[ACR(t) > r] as follows. Let o be the smallest

—Nfa

positive integer such that w is smaller than the overflow value. For n =0,..., N, let

@(n):i{ 3 1$2°[g,%,m,9 — 1]|| + Z Q:[n-l-l,i,n,n]}.

i=1 |g=1 siels)=i

Then P[ACR(t) > r|n] = w™"O(n) by (40) and (41). Now define the function @, (%) recur-
sively as @n(k) = w™™%p,(k — 1) where ,(0} = O(n). Clearly, P[ACR(t) > r|n] = pa(a),
and so @, (o) < 1. Note that w™/* > 1 and is less than the overflow value, and @, () is a
nondecreasing function of x which is upper bounded by 1. Thus all the quantities involved
in the operations always remain below the overflow value.

Clearly, the value of w can be made arbitrarily small (and so w™" can be made arbitrarily
large) if the values of two distinct rewards that are greater than r approach each other.
However, in this case, we can merge the rewards into a single value and obtain bounds for
the final solution. Intuitively, if the reward values hardly differ, the bounds should be tight.
In other words, suppose that the normalized values r, and r, (for p < ¢ < m) differ by, say,
a few percent. If we set both rewards to r, we obtain an upper bound on the final solution.
On the other hand, setting hoth rewards to r, gives a lower bound. Details concerning these
and other implementation issues are presented in [6].

5 Example

Tn this section an example of the application of the algorithm to a simple performability
model of a repairable computer system is presented. The system consists of two processor
clusters, each containing two processors, connected to three memory units. The processors
operate independently of each other and generate requests for accessing data stored in the
memory modules. At most one outstanding request from each processor is allowed at any
time, i.e., a processor has to wait for a request to be satisfied before making a new memory
access. The processors are assumed to be fast enough so that they generate a new memory
request as soon as the previous one is satisfied. Furthermore, the probability that a processor
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generates a request for data stored in a particular memory module is the same for all modules,
and the time to complete a memory access is exponential.

Each component fails independently of the other components in the system, and no
failures are possible once the system is down. However, when a processor in a cluster fails, 1t
affects the operation of the other processor in the same cluster, and the entire cluster becomes
inoperative. The (exponential) rate at which processor and memory failures occur is 1 per
120 hours and 1 per 240 hours, respectively. Repairs are done to the failed components one
at a time with (exponential) rate g = 0.125 components per hour, and priority 1s given to
the repair of a processor. The system is considered up when at least one processor cluster
and one memory unit is operational. Our goal is to calculate the total number of memory
requests completed during an interval (0,¢) averaged over £.

The model that captures the changes in the structure of the system over time has 11
states, and 6 of the states represent an operational system, each with a different number
of processors and memories working. For each configuration of processors and memories, a
performance model is built to obtain the reward rates, which are the number of requests
completed per unit time. The performance model is a simple single chain closed queueing
network, with the number of queues equal to the number of working memory modules and
the number of customers equal to the number of operational processors. The 6 distinct
rewards r; = 2.00, r; = 1.60, rs = 1.50, r4 = 1.33, 75 = 1.00, r¢ = 0.00, are obtained (these
values are scaled with respect to the average memory access time).

Figure 5 shows P[ACR(t) > «], the probability that the total number of memory requests
processed in (0,t) averaged over time is at least o, where « is given as a percentage of the
throughput achieved when the system is fully operational. In that figure the results are
plotted for two values of ¢ (120 hours and 240 hours) when the repair rate is g and 2x. Note
that the probability of achieving more than 94% of the maximum capacity of the system
does not vary much for the two values of ¢ plotted, but it increases substantially when the
repair rate doubles (the values increase from 0.659 to 0.916 for ¢ = 120 and from 0.621 to
0.949 for t = 240, respectively). However, the probability of achieving more than 98% of the
maximum system capacity is very low, and it remains below 0.5 even when the repair rate

is doubled.

For comparison, the cumulative operational time distribution averaged over time is also
plotted for ¢ = 240 for the two values of y (these curves are the dotted lines in the figure). In
this case, a is the percentage of the total observation period during which the system remains
operational. This distribution is calculated by assigning a reward of 1 to the operational
states in the model and a reward of 0 otherwise. From the figure note that, although the
probability that the system is operational for more than 98% of the time is high (above 0.95
for the highest repair rate), the probability that it achieves more than 98% of the maximum
throughput during the observation period is very low, and it is even below 0.4 when ¢ = 240.

20



Q9 fF-------- e mm - o - <7

' . W
CBf-------- R & -

. f .

Q7F-------- I T LI - - - -
, . s

«repalr rat&

PIACR(t) > o]

‘aqual to p
08 |- --ornee R 1
repaif rate
egual «to 24
Y e PR
oo . i ;
0.8 0.84 0.88 0.92 0.96

¢4

Figure 5: Distributions of cumulative reward and cumulative operational time.

However, the probability of achieving more than 90% of the total throughput is high. This
illustrates the difference between the distribution of cumulative operational time and the
distribution of cumulative reward.

Finally, note that the value of m in equation (35) is 1 for most of the points that are
plotted and at most 2, since our focus is on the tail of the distribution. This corroborates
the previous observation in Section 4.

6 Conclusions

The main contribution of this paper is to develop a new polynomial algorithm for calculating
the distribution of cumulative reward over a finite observation period using only probabilis-
tic arguments. The development is based on the uniformization technique and the general
methodology presented in [4] to calculate performability measures. The new algorithm rep-
resents a drastic computational improvement over the previous algorithm reported in [4].
In addition to the probabilistic foundations of the algorithm, the recursions are very sim-
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ple, have low computational cost and are easy to implement. In fact, the algorithm has
been included as part of a set of tools based on uniformization to evaluate performability
measures.
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