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Abstract

We propose a simple solution to the problem of ef-
ficient stack evaluation of LRU multiprocessor cache
memeries with arbitrary associative set-mapping. H
is an cxlension of the ewisling stack evalualion fech-
niques for all set-associative LRU uniprocessor caches.
Special marker eniries are used in the stack to repre-
sent data blocks (or lines) deleted by an invalidation-
based cache coherence protocol. A method of marker-
splitting 1s employed when a data block below ¢ marker
in the stack is accessed. Using this technique, one-pass
evaluation of memory access trace yields hit ratios for
all cache sizes and sel-associative mappings of multi-
processor caches in a single pass over @ memory refer-
ence trace. Simulation ezperiments on real multipro-
cessor trace date show an order-of-magnitude speed-up
in simulation time using this one-pass technigue.

Key Words—cache memory, coherence by invalida-
tion, set-associative, simnulalion, stack evalwation.

1 Introduction

Trace-driven simulation is the most widely used
evaluation method for performance studies of cache
memories. It is more realistic and accurate than an-
alytical modeling, and more efficient than software-
driven system emulation[Chaiken 90]. For practical
purposes, trace-driven simulation is viewed as a good
approximation tool for comparing various cache mem-
ory designs. Stack evaluation is an efficient trace-
driven simulation method for two-level cache mem-
ory hierarchies[Mattson 70]. It produces performance
measures such as hit ratios for arbitrary cache sizes in
a one-pass processing of a CPU memory access trace,

*This work has been supported in part by NSF grant CCR-
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eliminating case-by-case simulations for specific cache
sizes.

When the least-recently-used (LRU) aigorithm is
used by the cache as its block replacement algorithm,
a one-pass stack processing can produce hit ratios for
all set-associative mapping schemes{Mattson 70]. We
are interested in extending this set-associative stack
evaluation technique for an LRU cache on an unipro-
cessor computer to LRU caches on a multiprocessor
computer.

There are issues regarding the validity of trace-
driven simulation for multiprocessor caches: pertur-
bation to the trace data by the tracing mechanism,
differences in trace data across different runs of the
same program, and particular system configuration
(e.g., cache sizes) under tracing. All these factors
can potentially change the global execution order of
the program(s) being traced, since they all affect the
way processcrs interact with one another, including
their relative order of arriving at some synchronization
point, their relative speed in finishing their assigned
Jjobs, and consequently their job scheduling.

It has been found[Koldinger 91] that there is in-
significant difference in simulation results due to
tracing perturbation, for both process-based coarse-
grained parallel programs and thread-based medium-
grained parallel programs; miss ratios did not vary
much between different runs of a progran, especially
for coarse-grained programs. For stack evaluation,
even though the actual ordering of memory access re-
quests may be altered by the changes in exactly which
references are cache misses due to the different cache
sizes, the changes would be slight and their effect on
simulation results insignificant[Smith 93]. Generally,
stack evaluation methods are useful in predicting the
general performance trend of cache memories, mak-
ing a helpful tool in the early design stages. They
can be used to narrow down the initially vast design
space into a few, more manageahle choices, which in
turn can be studied using other less efficient but more
accurate methods such as case-by-case simulations or



software-driven emulation,

On multiprocessors where each CPU has its own
local cache, the issue of cache coherence arises. Like
a uniprocessor cache, each cache still has to imple-
ment some block replacement algorithm, in case a
referenced block is not in the cache and no cache
space 1s available for it. Unlike a uniprocessor
cache, however, multiprocessor caches have to interact
among themselves by some cache coherence protocol
to keep all the caches consistent[Dubois 82, Dubois 88,
Stenstrom 90]. There are three categories of cache
coherence protocols: immediate-coping, invalidation,
and validation. Immediate-coping is the case where
the updating cache broadcasts the changed data to
all other caches[McCreight 84]. Invalidation, on the
other hand, does not broadcast the data; instead the
updating cache sends an invalidation message to all
other caches holding a copy of the data block, and
they discard their copies [Censier 78, Papamarcos 84,
Archibald 86, Cheong 88, Li 89, Chaiken 90]. With
the validation methods, the updating cache does not
broadcast the new data nor sends an invalidation to
other caches; before accessing any local data block, a
cache must make sure that it has acquired the latest
version of that data block. If the cache owns the block,
then it is guaranteed to have the latest copy; other-
wise, it has to contact the owner of the block (a re-
mote cache or the shared memory) in order to get the
latest version. Generally, immediate-coping is good
for infrequent writes and high degree of data sharing,
and invalidation is suitable for frequent writes and low
data sharing. A validation-based protocol incurs high
overhead and is deemed impractical.

For an immediate-coping protocol, a write to a
block in one cache does not change the presence or
absence of that block in another cache. Other CPU’s
writing will update a block if it is in cache-no effect if
it is not. From the view-point of cache evaluation, a
CPU’s local cache is unchanged by reads or writes in
other caches and stack evaluation can be applied in-
dependently for each cache. For a validation-based
protocol, the situation is similar: the content of a
CPU’s local cache is independent of those of other
caches and independent stack evaluation can be done
for each cache.

The interesting case is an invalidation-based proto-
col, where a write in one cache results in blocks being
invalidated (deleted) in other caches. In other words,
an mnvalidation by a write in one cache produces an
empty block frame in all other caches that have a
copy of the changed data block. From the standpoint
of stack evaluation, this effectively leaves an empty

block in the stacks of the effected caches.

Mattson, et al. [Mattson 70] used a special marker
entry “#” in the stack to represent an empty block
frame caused by the invalidation of an I/Q opera-
tion. All marker entries contribute to stack evalua-
tion, and the invalidated block frames in the cache
have the highest priority of being selected in replace-
ment decisions. For fully-associative LRU caches, a
marker will remain at the same position in the stack
until another data block below it is accessed, at which
time the marker is moved down to the stack position
of the newly accessed data block, and the referenced
data block is moved up to the top of the stack. For
set-associative caches, whether a marker should move,
when a data block below it is accessed, is dependent
upon whether the empty frame (more precisely, the
invalidated data block from which the empty frame
was obtained) and the newly requested data hlock are
in the same set. As two blocks can be in the same
set for one associativity and in different sets for an-
other associativity, the movement of a marker is not
obvious for arbitrary set-associative mapping. This
problem was proposed and its difficulty discussed by
Wang and Baer[Wang 91].

In this paper we propose a solution to this prob-
lem. In section 2 previous stack evaluation techniques
are reviewed, especially those that are related to LRU
arbitrary set-associative stack evaluation on unipro-
cessor caches. In section 3 we present a new method
for one-pass evaluation of multiprocessor caches with
invalidation-based cache coherence protocols, yield-
ing performance measures for all set-associative map-
pings. In section 4 we give simulation results of
the method on some multiprocessing application trace
data. Section 5 concludes with a summary.

2 Previous works

In this section we review some of the previous
results in efficient cache memory evaluation tech-
niques. The seminal work on this subject was by
Mattson et al. [Mattson 70], who showed how certain
block replacement algorithms, called stack algorithms,
can have their hit ratios be calculaled for arbitrary
cache capacities in a single pass over a memory ac-
cess trace. There have been several significant ex-
tensions to the original stack evaluation techniques.
Gecsei extended it to multiple level memory hierar
chies with different block sizes for LRU replacement
and a special class of stack algorithms[Gecsei 74].
Thompson extended stack evaluation of general
stack algorithms to write-back caches and sector



caches[Thompson 87, Thompson 89]. Wang extended
write-back techniques to TRU caches for all set-
assoclative mappings[Wang 89, Wang 91].

2.1 Stack evaluation

A cache block replacement algorithm is called a
stack algorithm if, while being used, the cache con-
tents in a demand-fetched two-level hierarchy always
satisfies an inclusion property; namely, the contents of
a smaller cache is always a subset of that of a larger
cache, for any access sequence[Mattson 70]. Several
popular replacement algorithms including the LRU,
least-frequently-used (LFU), and minimal (MIN, re-
placing the block that won’t be accessed till the far-
thest future) are stack algorithms. A necessary and
sufficient condition for a replacement algorithm to be
a stack algorithm is, at any time ¢, there is a prior-
ity list Py of all previously accessed data blocks, and
if replacement is necessary, the block with the lowest
priority is chosen[Mattson 70]. Let X = z,,z0,..., 2y,
be a memory access trace from the CPU, in which z; is
the block being accessed at time . For stack replace-
ment algorithms, there is an efficient procedure, called
stack evaluation, that produces hit ratios for the en-
tire range of cache sizes with one pass over the access
trace X. As explained below, during the one-pass pro-
cessing of X, some data on block usage is collected,
and at the end hit ratios are derived from this data.

Due to the inclusion property, at any time ¢, the
cache contents, for all cache capacities, can be repre-
sented succinctly by a list Sy = [s;(1), 5:(2), ..., s:()],
where each s;(i) is a distinct block and 5; is the num-
ber of distinct blocks accessed up to time ¢ (v, < t).
The contents of a cache with a capacity of C blocks
at time ¢ is just the first C elements of S;. S; is called
the stack of the replacement algorithm at time ¢ (Block
$¢(1) is the top of the stack). Under LRU, the stack S,
is the list of all blocks referenced up to time ¢, ordered
according to most recent reference.

Let x; be the block accessed at time ¢. The stack
distance A, for z; is the position of block z, in stack
Si_1,

Iy = st—l(At)-

A, is set to oo if x; is not in S;_1, which means that
it has not been referenced before. z, is resident in a
cache of size C if and only if A; < C. The percentage
of stack distances that are less than or equal to €
during the stack evaluation of trace X is the cache’s
hit ratio for X.

To reflect the situation that z; is just accessed,
stack 5,_; has to be updated. Stack updating is

achieved by pulling z; to the top of stack, and switch-
ing subsequent stack entries according to the priority
list P, as is shown in Figure 1.
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Figure 1: General stack updating. A. z,is1in S;_y, B.
z; isnot in S 1.

Stack updating of LRU at time ¢ is simple: delete
z; from 5;_, if it is in S;_;, and push z; to the top of
the new stack. This is shown in Figure 2.
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Figure 2: LRU stack updating. A. z; isin S;.;, B. 1,
is not in S;_,.

Let n(A) be a counter for the number of times that
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the referenced block was at stack distance A during
trace evaluation. At each time point ¢, n{A;) is in-
cremented, so that at the end of trace processing, all
counters will contain the proper counts.

The number of times an accessed block is found in
a cache of capacity C is

C

N(C)= Y n(A)

A=1

and the hit ratio is given by

P (CYy=N(C)/L
where L is the total length of the trace.
2.2 Set-associative mapping

So far we have assumed that a block can oceupy any
block frame in the cache memory, i.e., the mapping of
data blocks in the cache is unconstrained. This is usu-
ally called fully-associative mapping. Unconstrained
mapping has the disadvantage of having to search the
entire cache each time a block is to be located, caus-
ing slow response to CPU’s access request. A con-
strained mapping, called sef-associative mapping, is
used in practice to reduce the search time, whereby
each block is restricted to a subset of the cache block
frames[Mattson 70].

Assume that there are 2% distinet blocks in the ad-
dress space. One commonly used set-associative map-
ping, two’s power congruence mapping, is to partition
the 2% blocks into 2% disjoint sets of equal sizes, where
0 <a <k Wecall o the set length, which indicates
set-associative mapping. Each set has 2~ blocks.
The sets are numbered from 0 to 2% — 1, and a block’s
set is determined from the « low-order bits of its block
address, i.e. by mod2®, as shown in Figure 3.

Usually the cache has an equal number D of block
frames for all sets, with the cache’s total capacity be-
ing C' = 2%- D. Such a cache is called D-way set asso-
ciative cache; when D = 1, it is called direct-mapped,
where each block has only one possible frame to reside
in the cache. When a block z is accessed, a search is
made of the D block frames of its associated set. If it

is not there, and if all D block frames are occupied, a
block replacement is made to remove one of these D
blocks from the cache.

Since the sets are disjoint, the cache can be treated
as a collection of 2 independent caches, one for each
set. The two-level cache-main memory hierarchy can
also be viewed as a collection of 2* independent hi-
erarchies, each with a cache size of D. They can be
handled separately using stack evaluation techniques.

For a general stack algorithm, stack evaluation
technique must be applied individually to each value
of the set length ov. A total of k + 1 passes of trace
evaluation are needed for all values of a between 0 and
k. For LRU replacement, however, only a single pass
trace evaluation can determine the hit ratios for all
values of «.

2.3 LRU set-associative evaluation

Under LRU replacement, the stack 5;..; is the list of
all the blocks referenced from time 0 to ¢ — 1 ordered
according to most recent reference. Stack 5¢_,(i, )
for set 7 and set length « can be determined by listing
in order all the stack entries of S;_; that belong to set
i when the set length is a[Mattson 70].

Let [2:)o = z; mod 2% denote the set that block
z; belongs to under set length @, and A% the stack
distance of x; in the stack Si_1([z¢]a,a). All stack
distances {Af} can be determined in a single scan of
the global LRU stack S,_;[Mattson 70]. Suppose the
current referenced block is x,, and the jth entry y on
Si—1 is being scanned: y = s,_,{j). Define the right
match function RM(ix,, y) as the number of consecutive
low-order matching bits in block addresses z,,y. For
example, RM(1010, 0110) = 2, RM(1000, 1001} = 0.
The block y will affect A{ if and only if y is in the
same set as &y, that is, RM(2,,y) > o.

Let {u(r)} be a set of counters for 0 < r < k. To
determine {A}} for all &, one can scan down the stack
S,_1 and increment counter u(RM(zx¢, y)) at each stack
entry y. The scanning stops when z, is found, and the
stack distance A is given as

k
A =" p(r) (1)

where 0 < o < k. If 2; is not found in S;_1, AY is
set to oo for all set lengths. After each access z;, the
stack distance counter ny(Af) is incremented for each
set length a.



3 Multiprocessor LRU set-associative
evaluation

As with uniprocessor caches, we want to make a
one-pass scan of the fully associative LRU stack S;,_;
and get stack distance A¥ of every set-associative
mapping (or set length) o for multiprocessor caches.
As mentioned earlier, an invalidated block in the stack
is represented by a marker entry. If a data block be-
low a marker in the stack is accessed, the marker may
need to be moved down to a new stack location, de-
pending on whether the accessed data block and the
marker are in the same set. The newly accessed data
block is always moved up to the top of the stack.

With fully-associative caches, the movement of a
marker is simple. If there is one marker above the ac-
cessed data block in the stack, the marker is moved
down to the stack location of the data block. If
there are two or more markers above the accessed
data block, then only the top-most one is moved
down to the data block’s stack location, while the
other markers remain in their locations[Mattson 70,
Thompson 87]). To update LRU stack S;_;, we scan
down the stack until z; is found or the stack is ex-
hausted, remembering the location of the first marker
along the way. This is shown in Figure 4A. In case the
accessed block is not in the stack, the top-most marker
is removed from the stack, as is shown in Figure 4B.
One can easily see it is the correct way to update a
stack with markers, by considering each case where
the cache size is at least as big as the stack position of
the i-th marker in the stack but less than that of the
(7 + 1)-th marker in the stack, before stack npdating.

To update an arbitrary set-associative LRU stack
with markers, We will employ a method called marker
splitting.

3.1 Marker splitting

When a data block has just been invalidated, it
becomes a marker that has presence in (k + 1) sets,
for set length o ranging from 0 to k. These are the
sets that the invalidated data block would be in for
each set length. We represent each marker m with
a 2-tuple (b, v}, where b is the block address of the
original data block that was invalidated, and v is a
(k + 1) element vector whose elements are either 0 or
1: 9[]] = 0,1for 0 < i < k. We shall call b the address,
and v the covering vectlor, respectively, of the marker.
m represents a marker presence in set (b mod 2%) of
set length o if its vfa] = 1. When a data block b
1s invalidated, it changes into a marker m = (b,v)
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A, xyis in stack
m; moves down and m stays.

B. xyis not in stack
m) is deleted and m 5 stays.

Figure 4: Constructing fully associative LRI stack
with marker(s)

with v set to 1's: off] = 1 for 0 < i < k, repre-
'senting (k 4+ 1) singular, indivisible markers in each
set length. Let |m| be the number of singular mark-
ers m is composed of: {m| = ELO v[i]. A marker
is composile if it denotes multiple singular markers
for different set lengths. Two markers are disjoini if
the dot product of their covering vectors is zero, i.e.
Ef:o v1[f] x v3[f] = 0. Disjoint markers do not have
presence in the same set for any set length.

When a data block in the stack is accessed, and
there is one marker m above it in stack, with m =
(&, v), then m is split into two disjoint markers m’ =
(b,v') and m” = (b,v"), with |m| = |m'| + [m”|. m'
represents the original marker’s presence in the [m’|
sets that do not contain the data black, while m* de-
notes the original marker’s presence in the |m”| sets
that contain the currently accessed data block. m’ re-
places m, and m" is moved down the stack to where
the data block resides; this is illustrated by Figure 5A.
If either m' or m” is empty (|m’| - |m"| = 0), there is
no splitting: m either moves down or stays where it
is, depending on which one of m’ and m" is empty.

If, when a data block in the stack is accessed, there
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Figure 5: Constructing set-associative LRU stack with
marker splitting

are multiple markers above it in the stack, the situ-
ation becomes a bit more complex. Unlike the fully
associative case, where we only need to remember one
top-most marker, here we have to remember the top-
most singular marker for each set length. Since each
marker above the accessed block in stack might con-
tain some singular marker that is in a same set as
the data block for some set length, we must examine
each one of them and remember the top-most singular
marker for each set length along the way. Remember
that for each set length, we only want to move down
the top-most singular marker, while keeping other sin-
gular markers in place.

Details of the stack updating procedure is given in
section 3.2. Here we summarize the three possible
ways of adjustment of a marker which is above the
accessed data block in the stack:

+ marker remains unchanged and in the same loca-
tion; i.e., the marker and the referenced block are
not in a same set for any set length, or for any
set length that they do share the same set, there
was a singular marker above in the stack.

¢ marker remains unchanged but is moved down to

the data block’s stack location; i.e., the marker
and the referenced block are in the same set for all
set lengths which the marker has a valid singular
marker, this singular marker is the top-most one
in the stack for its set length.

¢ marker gets split into two disjoint markers; one
of them remains in the same location, the other
is moved down to the data block’s stack location.

The outcome depends on the addresses of the data
block and the marker, the covering vector of the
marker, and the existence of other markers that are
above the current marker in the stack.

3.2 Stack updating

Suppose there is only one marker m = (b,v)
above the accessed block z; in the stack S;_;. Let
# = RM(x(,8). Hov[i) =0forall0 <i<r misa
non-existent marker to block z; (m" is empty), and
hence can be treated as a normal data block. If 3 j
with 0 < § < r and o[f] = 1, but v[5] = 0 for all
r < i < k, then m is in the same set as z; for every
relevant set length (m’ is empty); in this case m is
moved down to the stack location of z,. If 3 4, j such
that 0 € i < r < j <kandv[f] =1 = v[j], then m
is replaced by two disjoint markers m’ = (b, 2’) and
m' = (b,v"), whereby

S = { 0 H0<i<r
v[i] ifr<i<k

. v[f] f0<i<r
vl = {0 ifr<i<k

m’ replaces m in the stack, and m" is moved down
to that of z,, as shown in Figure 5A.

If z, is not in stack S,_,, m’ still replaces m, but m"
is thrown from the stack. This is shown in Figure 5B,

If there are multiple markers above an accessed
block in the stack, then for each set length, the top-
most singular marker that shares the same set with
the accessed block needs to be moved to the location
of the data block. All the top-most singular markers
in stack 5;_; are collected during the search for z,
and, upon finding z,, they are placed at x,’s location,
The general procedure 1s: search stack S;_; for the ac-
cessed data block z;, and whenever a marker is found,
be it composite or singular, check if it contains any sin-
gular marker that shares the same set with =, for a set
length, for which a singular marker has not been seen
vet. If there are no such singular markers, leave the
current marker intact. Otherwise, collect all eligible



singular markers, and remove them from the current
marker; if the current marker subsequently becomes
empty, delete this marker entry from the stack.

Finally, when the data block z; is found, all the
collected singular markers are grouped into one com-
posite marker and it replaces r; in the stack, while z;
is moved to the top of the new stack S;. Since these
singular markers share some set with #;, and these
sets are for different set lengths, each of them can be
represented by a marker (xy, v); the covering vector v
has only one non-zero element (of value 1), whose in-
dex is the set length for which the represented singular
marker shares the same set with block #;. Therefore
they can be put into one composite marker (z.,v),
whose covering vector is simply the sum of those cov-
ering vectors of the collected singular markers.

H the data block 2, is not in stack §,_1, all collected
singular markers are discarded.

The LRU stack updating procedure for stack 5;_,
while scanning stack for z = z, is as follows:

Stack updating procedure

Let w be a k+1 element integer vector initialized
to all zero.

Scan down the stack S;_; and do the following
at each entry E = s,_1(j) until x = z, is found or
S¢—1 is exhausted:

If E = (bv) is a marker, let r = RM(z,b),
U={il0<i<r) A il=11W={i|
(0 < i<} A (w[i] = 0) }. Change E’s covering
vector v into

A~ _fJ o if: € Un w
vlil = { u[i] otherwise
Change vector w into
.1 ifieUw
wli] = { wli] otherwise
Leave marker F where it is if v is not an all-zero
vector; remove E from the stack if v is all-zero.
If E is a data block but E # &, continue.

If £ is a data block and E = x, then replace
s¢—1(7} by a new marker m = (z,w) if w is not all
zero, and put block x on top of the stack. Break out
of the loop.

If S;_1 is exhausted but = is not in the stack,
throw away the collected vector w, and just pull  to
the top of the stack.

The updated stack $;_; is 5.

Example

There are two markers above a referenced data block
z = 0101 in the stack. The first marker is (8, v;)

= (1101,11001), and the second marker is (bz,v3) =
(1001, 10011). All vectors are listed with their high-
est element first. For example, v1[4] = 1,v[3] =
1,1.?1[2] = 0,1)1[1] = 0,1?1[0] = 1. RM(I',b1) = 3.
RM(x,b3) = 2. Initially w = 00000. After scanning
by, by = (1101, 10000}, w = 01001. After scanning b,
bs = (1001, 10001), w = 01011, When z is reached, =
is moved to the top of the stack, and a new marker
{0101,01011) is put in z’s previous slot.

Theorem 1 The stack updating procedure correcily
places markers for all set lengths.

Proof. 1t is clear, from the stack updating proce-
dure, that the vector w records which set lengths have
already had a marker in the same set as 2. That is, for
each set length oo with 0 < o < k, w[a]) = 1if and only
if we have already seen at least one marker in the stack
belonging to its set [z],. The changing of the covering
vector v of each marker E = (b, v) encountered by z in
the stack is to take away all the first markers that are
in the same set with block z for some set length. The
change to the vector w is to add those newly found
first markers. If ¢ is found in the stack, then these
first markers should all be moved to the location of
r, which is what the replacement of & by m = (z, w)
does in the procedure. If z is not found in the stack,
then all these first markers should be removed from
the stack. O

3.3 Stack distance counting

We have just shown how to update the global LRU
stack. In this section we discuss how to calculate stack
distances for all set lengths, These two operations,
stack updating and stack distance counting, are in fact
carried out simultaneously during stack scanning.

First let us define a couple of simple and useful
functions. The trailing one function TO(v, k) on vec-
tor v is the set of indices of the last element in each
string of consecutive 1’s in v that are less than or equal
to k. That is, TO(w, kY = { i [ {w[i] = DA (i <
By A (vfi + 1] = 0)) v (i = k))}. For example,
TO({10010110}, 7) = {2, 4, T}, and TO({01010111},
7) = {2, 4, 6}.

Define the trailing zero function TZ(v, k) on vector
v to be the set of indices of the last element in each
string of consecutive 0’s in v that are less than £. That
s, TZ(v, k) = { ] i< YA = 0)A([i+1] =
1}}. For example, TZ({10010110}, 7) = {0, 3, 5}, and
TZ({01010111},7) = {3, 5}.

Let {g(r)} and {v(r}} be two groups of counters
for 0 < r < k. To determine {A?} for all @, scan



down the stack 5,_; until z = #, is found or the stack
is exhausted. Suppose the current stack entry being
examined is the jth entry in stack S;_1: £ = s;_1(j).
If E is a data block, increment counter p(RM(z, E)).
If I is a marker (b, v), consider values of r = RM(z, b)
and v[i]’s. If v[z) = O forall 0 < 7 < 7, marker E is non-
existent to block z, do nothing. Otherwise, increment
#(é) for all i € TO(v, r) and v(f) for all j € TZ(v,r). If
z is found in the stack S,_;, then each stack distance
Af is given by

k
A =) (ulr

where 0 < o < k. If 5,1 is exhausted and z is not
found, all stack distances A¢ are set to oo. As in the
uniprocessor case, the stack distance counter ny(A$)
is incremented for each set length «.

) —w(r)) (2)

Numerical example

There are three data blocks and two markers above
a referenced data block » = 0101 in the stack. The
three data blocks are 2; = 0111, 25 = 0000, 25 = 0001.
The markers are (b, vy1) = (1101, 11001), (b2, vs) =
(1001,10011). The order of their appearance on the
stack is, from top down, xy, by, 23, ba, x3, z. As before,
all vectors are listed with their highest element first.
Initially, p# = 00000, v = 00000.
scanning £1: RM(z,z1) = 1, g = 00010, ¢+ = 00000,
scanning by : RM(z,b1) = 3, ¢ = 01011, v = 00100.
scannmg z3: RM(z,x2) = 0, p = 01012, v = 00100,
scanning by : RM(x, by) = 2, p = 01022, » = 00100.
scanning xa: RM(r,z3) = 2, & = 01122, v = 00100,
When z is reached, the stack distances are, according
to Equation (2),

0=5 A'=3A=1 A% =1 A%*= 0.

Theorem 2 Fquation 2 correctly computes the stack
distances AL,

Proof. When the stack entry is a data block, Equa-
tion (1) applies. So we only need to consider the case
where the current stack entry is a marker. We depict
in Figure 6 the covering vector of a marker £ = (4,v)
encountered during stack scanning for block z, with
the left-most rectangle representing the kth vector el-
ement and the right-most one representing the Oth vec-
tor element. A shaded rectangte denotes an element
of value 1, and an unshaded one denotes an element
of value 0. Here » = RM(x,d). Notice that all rect-
angles indexed from 7 up to & are all unshaded (zero
elements), since they are irrelevant to .

It is clear that marker F represents an empty entry
in the same set as x for set length a (i.e., {z],) if
and only if the ath rectangle in the figure is shaded.
Thus exactly these set lengths, whose corresponding
element in the figure is shaded, should increment their
respective stack distance counters by one. For the
specific depiction in Figure 6, these set lengths are
a,i,p,p—1,and 1.

Suppose at first u(r) = v{r} = 0 for each r. Then
after evaluating the first marker,

k

> (ulr) - v(r))

r=oa
is equal to 0 if the ath rectangle is not shaded, and
is equal to 1 if it is shaded. Generally, suppose a new
referenced block x has been searched in the stack, and
pt(r),vT(r) are the new counter values. By the same
reasoning, it follows that

Z (ut(r)-vt

if the current ath rectangle is not shaded, and = 1if it
is shaded. This means Equation (2) correctly counts
stack distance when the stack entry is a marker. O

k

Z (p(r)—vir) =

Coverlng Vector
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Figure 6: Counting of u(r), v(r)

The stack distance contributed by markers for each
set length o can be counted directly during stack scan-
ning. Let A{a) be the stack distance counter for mark-
ers of set length . When E is a data block, incre-
ment counter p(RM(z, F')) as before. When F is a
marker (b, v}, increment A{a) forall a € { ¢ | (0 <
it < RM{z, b)) A (v[§] = 1)}. For Figure 6, coun-
ters A(a), A(7), A(p). A(p~1), A(1) are incremented. We
have another way to calculate the stack distances:

Theorem 3 The stack distance AT is also given by

k

AF =37 p(r) + Aa) (3)

re=o

Proof. Incrementing of counter A{a) remembers
the number of times the ath rectangle is shaded during



the stack scanning process. This 1s exactly the num-
ber of times an empty entry has appeared in set [z],
before r is found. Hence, counting both data blocks
and empty entries, the sum of the right-hand side of
equation (1) and A{e) gives the total stack distance of
z for set length «. O

Numerical example
We use the same example. Initially, 4 = 00000, A =
00000.
scanning r;: RM(z, 1) = 1, ¢ = 00010, X = 00000.
scanning by : RM(z,b1) = 3, ¢ = 00010, X = 01001.
scanning rz: RM(z, z2) = 0, » = 00011, A = 01001.
scanning by : RM(xz,b2) = 2, p = 00011, X = 01012.
scanning r3: RM(z,z3) = 2, ¢ = 00111, A = 01012.
When z is reached, the stack distances are given by
Equation (3) as

AP=5A'=3 A2=1,A%=1,A%=0.

This is the same result as before,

All the auxiliary functions TZ(v, k), TO(v, k) and
RM(z,b) used in stack distance counting and stack
updating are simple operations. So the time spent in
processing a marker stack entry is not much more than
that spent in processing a data block entry.

3.4 Time complexity

Our one-pass evaluation saves time in two aspects:
the trace data needs to be read only once, and the
stack processing is only done once for each access.
What we do with arbitrary set-associative evaluation
is use one composite marker to represent all k+ 1 pos-
sible singular markers, and split it when we have to.
The number M, of markers in the stack, is bounded by
M < (k+1)I, where [ is the number of effective block
invalidations, the invalidations that actually find their
target blocks in the stack. Under the assumption that
the rate of actual invalidations is not high in real appli-
cations, the number of markers produced in the stack
will not be very large. Once a marker becomes singu-
lar, it will not split further. Therefore the stack does
not grow indefinitely because of marker splitting. In
addition, markers never ascend in the stack; they tend
to descend in the stack as data blocks below them in
the stack are accessed. Whenever a marker becomes
the last entry of the stack, it can be dropped. The ex-
tra work needed in arbitrary set-associative evaluation
is simple; the vector operations in singular marker col-
lection and stack updating can be done with efficient
bit operations on the stmulating machine.

As the method requires sequential scanning of all
stack entries above the accessed block in the stack, it

defies efficient search data structures such as balanced
trees for the representation of the stack. However, as
we will see later in simulation experiments, with the
exception of general hash tables which can be used
by almost any stack evaluation method, sophisticated
data structures such as search trees do not noticeably
reduce the overall simulation time of a stack evalua-
tion method!. This is because the locality property
of CPU access produces on average short stack dis-
tances, making linear search of the stack quite inex-
pensive. Moreover, if most references are near the top
of the stack, stack searching does not “see” many of
the markers on most references.

4 Simulation

We have implemented both the arbitrary set asso-
clative evaluation algorithm and the conventional sin-
gle set associative evaluation algorithm, in order to
compare their performances. In this section we report
simulation experiments on some real multiprocessor
trace data. We are mainly interested in the compari-
son of simulation times in getting stack distance dis-
tributions for all set lengths on a given block size. The
characteristics of the trace data are given, followed by
a detailed description of algorithm implementations.
The simulation results are given in the end.

4.1 ‘Trace data

Three traces of parallel applications are used:
Weather, Simple, and FFT. They were obtained
using the IBM postmortem scheduling method
and represent a possible execution on a 64-
CPU multiprocessor{Cherian 89, Chaiken 90]. The
Weather application partitions the earth atmosphere
into a three dimensional grid and uses finite-difference
methods to solve a set of partial differential equa-
tions describing the system state. The Simple ap-
plication models the behavior of fluids and also uses
finite difference methods to solve equations on hy-
drodynamic behavior. FFT is a radix-2 fast Fourier
transform application. FEach reference record con-
sists of a one-byte CPU number {ranging from 1 to
64), a one-byte operation code (for data/instruction
read/write), and a four-byte memory address. The
length of each trace, 1.e., the number of references,
is respectively 7461123(FFT), 27172624(Siumple), and
31777053(Weather).

}Thompson first observed this phenomena while comparing
different data structures in the implementation of stack evalua-
tion of uniprocessor write-back caches[Thompson 87).



4.2 Implementation

We will compare the run-time efficiency of the one-
pass evaluation algorithm for all set-associative map-
pings with that of conventional multiple-pass evalu-
ation algorithm for a single set-associative mapping.
The data and instruction accesses are “unified”; i.e.,
we treat them as being cached together. To obtain
fair and convincing results, we tried to make each im-
plementation of an algorithm run as fast as possible.

Preliminary tests showed that, for the single
set-associative algorithm, an implementation of the
linked-list stack structure without using hashing ran
significantly slower. So we applied the hashing tech-
nique in all the implementations and do not con-
sider any non-hashing implementation for perfor-
mance comparisons.

4.2.1 Single set-associative algorithm

For a set-associative cache, space is partitioned ac-
cording some congruence set-mapping scheme; differ-
ent sets are independent of one another. This trans-
lates to one (sub)stack for each set. So the conven-
tional single set-associative algorithm maintains as
many stacks as there are different sets in the trace
data. Of course, the total number of distinct blocks
(hence stack entries for valid data blocks) is the same
regardless of the associativity.

One simple technique for efficient stack simulation
1s to maintain a hash table of all data blocks currently
residing in the stack[Thompson 87]. It helps elimi-
nate fruitless searches for blocks not even in the stack.
Hashing proves to be very effective on uniprocessor
traces/Thompson 87].

We use a two-tevel hashing table to hold all valid
data blocks currently in stacks. It should provide
faster look-up than one-level hashing, particularly
when the number of distinct blocks is not small. At
the beginning of each stack search, the program first
determines whether the referenced block is currently
in the corresponding stack (by looking in the hash
table), and whether there are any marker entries in
the stack (by checking a counter variable). If neither
holds, then there is no need to search the stack.

The two-level hashing table, shown in Figure 7, is
organized for a set length @ under study. For a block
number b, its associated set number s = b mod 2¢
is used to probe the first level to find the set of the
block, and its block number & to probe the second level
to find the block itself. The reason for using a hash
table on set numbers is as follows: when the value of
o s not trivial, for example & = 20, the number of

10

—

|
T
OJ

[T 41

q -"D_'D
R/__/

Block numbers

O 1

N~

Set numbers

Figure 7. Two-level hash table

different sets is not small. An array indexed by set
numbers requires a lot of space, some of which may
be unused; a dynamically allocated linked-list has a
relatively long search time.

At the first level, there is an array of p pointers,
each one of which points to a list containing distinct
set numbers with equal value mod p. The set num-
ber lists dynamically grow when new set numbers are
encountered in trace. It is more efficient than static
allocation of hash table entries for all possible sets;
some application traces might not utilize all possible
sets, especially for big values of set length . Not
shown n the figure, each element in the set lists has a
pointer to the substack (implemented with either a list
or a tree, see sectiond.2.2) of the set whose set number
is contained in this element.

At the second level, each element in the set lists
contains ¢ pointers, each of which points to a list of
elements containing block numbers with equal value
mod ¢g. These block number lists dynamically grow
(when a new data block is referenced) or shrink (when
an existing data block 1s invalidated) during trace pro-
cessing. When a valid data block in a stack gets
zapped, its corresponding block element is deleted
from the second level in the hash table.

As stated before, any marker at the tail of the stack
is void and is promptly dropped by all implementa-
tions. This eliminates unnecessary memory consump-
tion and improves algorithm performance.

To save space, instead of using an array of coun-
ters with fixed dimension and having a lot of zero el-



ements, stack distance counters are also dynamically
implemented with a linked-list, sorted with increas-
ing stack distance value. Even though incrementing a
counter is nc longer done in constant time now, thanks
to locality in memory reference, stack distances tend
to be small, and the time spent in looking for the right
counter is negligible. We found virtually no difference
in execution time of simulation whether array counters
or link list counters are used.

4.2.2 Data structures for stack implementa-
tion

The most natural data structure for a stack is a linked-
list of entries, where the stack updating procedure is
readily carried out by entry deletion from the middle
of list and entry addition to the head of list. The
program for a linked-list stack is a simple one.

The potential drawback with a list is its linear
search time; this might be significant for traces such
as data base applications with long average stack dis-
tance. However, as we will see in our experiment re-
sults, a simple linked-list competes well with other
complex data structures; thanks to reference locality,
the referenced data block tends to be close to the stack
head.

Sophisticated data structures with lower asymp-
totic time complexities such as binary search trees can
be used to implement the stack. Bennett and Kruskal
used the leaves of a fixed-structure sparse tree to rep-
resent stack entries, and Olken used an AVL balanced
search tree to represent stack entries with both the
external and internal tree nodes (see [Thompson 87]).

In a binary search tree stack implementation, all
data blocks 1in the left subtree of any node are higher
in the stack, while those in the right subtree are lower
in the stack. The embedded stack order is the inorder
traversal of the tree. The tree node containing the cur-
rently referenced data block can be quickly found with
the hashing table, in which each element in the block
lists has a pointer to the corresponding tree node. The
stack distance of a data block can be found by walk-
ing up the tree to the root and counting the number of
tree nodes to the left along the way. This can be done
by storing in each tree node the number of nodes in
its left subtree[Thompson 87]. Alternatively one can
store in each node the number of nodes in the subtree
with itself as the root.

In order to know if there is any marker on the left
(i.e., ahead in the stack) while walking up the tree
from the currently accessed node, each node also stores
the number of marker nodes in its left subtree. Finding
the left-most (i.e., top-most in the stack) marker node
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requires a walk down from the root in the tree.

Stack updating 1s achieved through normal node
deletion and insertion in binary search trees; only here
node insertion always occurs on the left end of the tree,
which corresponds to the stack head.

Because of the extremely biased node insertion, the
search tree can quickly degenerate into a linear list. In
fact, it becomes the reversed stack, performing much
worse than a simple linked-list stack which benefits
from reference locality. A search tree with rebalancing
is desirable. Among the many kinds of search trees,
three are considered: AVL tree[Wyk 88] and red-
black tree (also called 2-4 tree)[Guibas 78, Wyk 88]
are balanced trees, and splay tree[Sleator 8] is a self-
adjusting tree.

It was observed[Guibas 78] that AVL and red-black
trees have similar performance for basic operations
{node rotation) on some sequence of 20,000 random
accesses. There was no comprehensive performance
comparison for splay trees. We implemented these
three data structures and informally tested them with
some random input data. For short sequences of ran-
dom accesses, red-black tree performs the best and
is twice as fast as AVL tree; for a long sequence of
200,000 random accesses, the splay tree is the fastest,
while AVL tree remains the slowest.

It has been proven[Sleator 85] that, in terms of
amortized time, which is defined as the time per op-
eration averaged over a worst-case sequence of oper-
ations, a splay tree is within a constant factor as ef-
ficient as any uniformly balanced tree and any fixed
search tree for a sufficiently long sequence of accesses;
more interestingly, the time to access an item is ap-
proximately the logarithm of one plus the number of
distinct items accessed since the last time the given
item was accessed[Sleator 851. Based on the theoreti-
cal results and our preliminary experiments, we choose
the splay tree to implement the stack.

Splay tree

The splay tree a self-adjusting binary search tree. The
central idea is splaying, a restructuring heuristic that
moves a designated node to the root of a tree through
a series of rotations which approximately halves the
depths of all nodes along the path. All tree oper-
ations, including access, insertion, and deletion, are
implemented using splaying[Sleator 83]. Splaying can
be done both bottom-up and top-down. Bottom-up
is appropriate if there exists direct access to the node
at which splaying is to occur, while top-down if effi-
cient for a to-be-splayed node which has to be searched
from the root. Details are described in [Sleator 85].
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Figure 8: Stack distance calculation

We will use the bottom-up splaying for the data block
obtained through hashing, and top-down splaying for
the left-most marker node in the tree.

Separate marker-list

If there is any marker node to the left of the currently
accessed data block in the tree, a top-down search has
to be initiated to locate the left-most marker node.
Olken[Thompson 87] suggested the use of a separate
list to store the markers, sorted by the last access time;
the tree at any time only contains valid data blocks.
The benefits of this approach are that locating the
top-most marker in stack is a constant time operation,
and that 1t 1s easy to check whether there is a marker
above the currently referenced data block by simply
comparing their last access times. The drawback is
slow invalidation: when a data block is zapped by an
invalidation, before we only need to locate the data
block node in the tree by hashing and change its flag to
make it a marker, taking almost constant time; now we
have to delete the node from the tree, and put it into
the proper position (by sorted last access time) in the
marker-list, not a constant time operation anymore.

We implemented the stack with splay tree using
both approaches. There 1s a better way to implement
the separate marker-list, though. Instead of using last
access time, we use, equivalently, the actual stack po-
stlion of a marker in the stack as its sorting key in the
marker-list. As the stack distance has a much smaller
value than the (potentially unbounded) trace length,
the space needed to hold a key is less.

The stack updating affects the mark-list in the fol-
lowing way: when a data block is accessed which is
not in the stack, then the first marker (if any) in the
marker-list is thrown away; when a valid data block is
accessed, and its stack distance is bigger than that of
the first marker, then the stack distance of this first
marker is set to the data block’s stack distance, and
moved down the marker-list to its proper new position,
keeping the list ordered by distance keys. Clearly, the
stack distances of all other markers are unchanged.
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The remaining question is how to calculate the
stack distance of a valid data block, since walking
in the tree can only tell how many nodes are to its
left in the tree, i.e., how many valid data entries are
above it in the stack. Suppose that a data block
ig the d-th node in the inorder traversal of the tree,
and the marker-list has elements with stack distances
my < mg < ... < my, we want to find the real stack
distance sd for this data block. Let m; < sd < m;yq,
then among the first sd stack entries, ¢ of them are
marker entries, and the remaining {sd — ) are data
block entries, as shown in Figure 8. We know there
are exactly d data blocks in the range, hence sd = d+4+.
From m; < sd = d + 1 < 5,41, we have

my =1 <d< s — (i +1),

the criterion for finding ¢.

4.2.3 Arbitrary set-associative algorithm

From the description of the arbitrary set-associative
algorithm before, one clearly needs to collect the rel-
evant dirty level variables for all the set lengths from
higher entries in the global stack. Each entry above
the currently accessed block entry in global stack may
contain some of those required dirty levels, and has to
be examined. A linear list is therefore a natural data
structure choice for the global stack. Implementation
of this algorithm is simple and similar to the linked-
list implementation of single set-associative algorithm,
but using one global stack instead of many substacks.
It involves slightly complicated bit-vector manipula-
tion when the current stack entry under scanning is
a marker. Every 0/1-bit vector (such as covering vec-
tors) is just an integer variable, taking up little ex-
tra. memory than the single set-associative algorithm.
The vector operations in the algorithm are done with
concise and efficient bit-wise operations of the C pro-
gramming language.

As above, a two-level hashing scheme is used to at
the beginning of each stack search to quickly check
whether the referenced data block is in the stack.
Since there is no specific set-associative mapping here,
we pick an arbitrary hashing function, instead of a
congruence set-mapping scheme, for hashing at the
first-level. To the arbitrary set-associative algorithm
which only processes a trace only, we believe the choice
of a hashing function is not crucial.

Stack distance counters are stored in linked-lists,
with one list per set length, for up to a maximum
of 33 lists. As before, markers are dropped as soon as
there is no valid block entries below them in the stack.



4.3 Simulation results

The stack simulation algorithms have simple logic
and control flow, and execution time is mostly spent
in memory manipulation and data input, not complex
CPU ocperations. Using the Unix code-profiling tool
gprof indicates that for the arbitrary set-associative
algorithm, its disk I/O accounts for about half of the
entire running time. Since all trace files have the same
data format, and reading trace data is an integral part
of any trace-driven simulation, we count [/O time as
part of the entire simulation time. The ever-increasing
disparity of speed among CPU, main memory, and
I/O can make [/O become a more important factor in
trace-driven simulation.

4.3.1 Output data

All the stmulation programs produce exactly the same
output, 1.e., stack distance distributions, on all input
traces and various block-size specifications, verifying
not only the correctness of our one-pass algorithm,
but also that all the implementations for single set-
associative evaluation using different data structures
are done right.

4.3.2 Memory

From the description of arbitrary set-associative al-
gorithm, it is clear that its memory consumption is
just a little more than that for the linked-list stack
structure implementation of single set-associative al-
gorithm. Specifically, each stack entry uses one more
integer field (4 bytes) to hold the covering vector. Us-
ing the Unix command top, we find that the total
program size (code + data + stack) of the arbitrary
set-associative algorithm is approximately the same
as that of the single set-associative algorithm with the
linked-list stack implementation.

The splay-tree stack implementations of single set-
assoclative algorithm have three more fields per each
stack entry than the linked-list implementation (one
more pointer field and two more integer fields). Their
run-time memory size is about 20% more than their
linked-list counterpart.

The number of marker entries in the arbitrary set-
assoclative program can also be more than that in the
single set-associative program. But experiments show
the number of extra marker entries in the algorithm is
quite insignificant. One reason is that we keep drop-
ping the marker at the tail of the stack, to prevent
their number from growing; another reason: the num-
ber of markers might be scarce anyway.
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Table 1: Simulation times on FFT (including 1/0)

b mul  sinlink sin.splay  sin.mlist
13 86.9 764.4 764.0 765.8
12 86.1 800.3 803.3 805.1
11 87.9 853.0 849.2 866.9
10 91.8 899.3 904.3 901.7

9 96.7 9290.9 936.6 940.5

8 | 100.2 1001.7 991.2 985.5

7 | 108.3 1017.1 1023.1 1030.3

6 | 1074 1064.8 1071.1 1087.1

5| 1134 1111.8 1120.7 1147.0

4 123.4 1171.8 1176.8 1204.8

3| 118.2 1249.2 1250.0 1301.8

2 | 111.7 1297.7 1314.7 1317.8

1 116.1 1373.1 1393.0 1395.1

Block-size = 2% bytes. Run-time in seconds.

4.3.3 Running time

Simulations were run on a lightly loaded Sun SPARC-
Station 10. As there is little disturbance from other
activities on the machine, the measurements were sta-
ble and repeatable. We use the Unix fzme commmand to
measure the execution times of each simulation, and
the real times are very close to the sums of user times
and system times, due to light load on the test ma-
chine. The arbitrary set-associative algorithm runs
much faster than the single set-associative algorithm
on all three traces.

Tables 1, 2, 3, and 4 illustrate the running times of
the various implementations of the algorithms for the
three traces. These results are from tests done for a
typical CPU. For each trace, we randomly selected a
number of CPUs and did stack simulation on them;
their results were nearly identical. It is probably due
to the fact that the traces were produced in a very
symmetrical way (see [Cherian 89]).

The tests are done for a variety of block sizes. The
first columns (b) indicate the base-2 logarithmic values
of block sizes. The second columns (mul) are the run-
ning times of the arbitrary set-associative algorithm;
rest columns are the running times of the single set-
associative algorithm implemented with various data
structures (sin.link for linked-list, sin.splay for splay
tree, and sin.mlist for splay tree with separate marker
list).

Tables 1, 3, and 4 include the disk ifo time of
trace-reading in the total simulation time for the three
traces, and Table 2 excludes that from the simulation
time of FFT trace. Compare Table 1 and Table 2, we
see that i/o played a small role in the simulations.
Overall, our arbitrary set-associative algorithm ran
approximately ten times faster than all implementa-
tions of the single set-associative algorithm.



Table 2: Simulation times on FFT (excluding i/0)

b mul  sinlink sinsplay  sin.mlist
13 64.8 742.3 741.9 743.7
12 64.0 756.1 759.1 760.9
11 65.8 786.8 783.0 800.7
10 69.7 811.0 816.0 813.4

9 74.6 819.5 826.2 830.1

3 78.1 869.2 858.7 853.0

7 86.2 B862.6 868.6 875.8

[} 85.3 888.2 894.5 910.5

5 91.3 913.1 922.0 948.3

4 | 101.3 951.0 956.0 984.0

3 96.1 1006.4 1007.2 1059.0

2 89.6 1032.8 1049.8 1052.9

1 94.0 1086.1 1106.0 1108.1

Block-size = 2% bytes. Run-time in seconds.

For the single set-associative algorithm, the linked-
list implementation with hashing performs best, con-
firming previous studies on uniprocessor stack simu-
lation implementations [Thompson 87]. For the splay
tree version, we did a faithful implementation of the
original data structure, not dealing specially with the
fact that all insertions occur at the left end. Special-
izing the implementation to exploit this characteristic
might speed up execution, but the potential gain is
probably small.

Ideally, one wants to implement the stack with all
other balanced tree structures {AVL, red-black) and
compare their performances. However, our simulation
results indicate that any improvement using sophis-
ticated data structures will be minimal and hardly
worth the effort.

For completeness, we also ran the algorithms on
randomly generated long synthetic trace data. The
same magnitude speed-up in simulation time on the
part of arbitrary set-associative algorithm over the sin-
gle set-associative algorithm still holds. This indicates
the stability of the algorithm’s performance on differ-
ent traces.

As most trace files are quite large, they are often
stored in compressed format and are uncompressed
on-the-fly for a simulation. We piped the results of
uncompressing some *.Z files into the various simula-
tion programs and did not see any noticeable change in
simulation time. The reason is that the “uncompress”
program runs faster than the simulations, the overall
speed of the pipeline still depends on the simulation.
Therefore using compressed trace files will get almost
the same speed-up result for the above simulations.

We did one more comparison. Instead of using one
process to run the single set-associative algorithm for
each set length, we lumped all of them into one pro-
gram, which controls multiple independent groups of
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Table 3: Simulation times on Simple (including i/o)

b mul  sin.dink
13 | 296.5 3231.6
12 | 302.1 3436.1
11 | 318.3 3644.3
10 | 350.3 3897.3

9 | 409.0 4131.6

8 | 428.0 4304.5

Run-time in seconds.

Table 4: Simulation times on Weather (including i/o)

b mul  sin.link
13 | 350.2 3798.2
12 3736 4024.1
11 408.7 4298.1
10 | 483.1 4599.2

9 h67.4 4912.1

8 582.4 5167.4

7 584.4 5416.7

Run-time in seconds.

stacks, one per each set length. On each trace refer-
ence, the program sequentially does stack processing
on all the stacks. This considerably reduces the 1/0
time of the single set-associative program. But its
memory consumption is, however, much larger than
that of the arbitrary set-associative simulation. This
excessive space requirement can become a big bur-
den when testing large traces with many distinet ad-
dresses. While testing the Weather trace, this kind of
simulation failed to finish in a reasonable amount of
time.

As a one-pass evaluation method, the arbitrary set-
associative algorithm can be run on-the-fly, 1.e., simul-
taneously with a trace generating program[Hill 89],
and the saving of a long trace data onto disk can be
avoided. This kind of on-the-fly simulation is espe-
cially useful, when the amount of distinct addresses in
the trace can be safely accommodated by the main
memory, but the entire trace is extremely long, in
which case the required disk space could be over-
whelming. As the disk space needed for trace stor-
age is becoming too large even for a short operating
period of time of a moderately fast computer nowa-
days, investigation of on-the-fly techniques is becom-
ing necessary[Baer 91]. Qur arbitrary set-associative
algorithm is also an applicable tool in this regard.

4.3.4 On concurrent simulation

One might consider concurrently running all the sim-
ulation programs of the single set-associative algo-
rithm, using the Unix piping mechanism to pass trace



data sequentially from the first simulation program
through other simulation programs, relieving them of
the necessity of getting trace data through slow disk
1/0. The problem with this concurrent-execution ap-
proach is again the encrmous amount of main mem-
ory required. The memory demand of each single set-
associative program is approximately equal: each uses
the same number of stack entries for valid data blocks;
and the difference in the number of stack entries for in-
valid data blocks (markers) is small, since the number
of markers is kept small in any stack by the dropping
of markers from the tail of stack. For K set lengths,
the main memory demand of the concurrent simula-
tion is approximately K times that of the sequential
execution. For small block sizes (hence large set length
ranges), that becomes a serious burden on the testing
machine’s memory system. Excess demand on main
memory can cause frequent memory paging and con-
text switching in virteal memory, generating new disk
I/0 for paging and swapping. Consequently, the real
running times of the simulations would be much larger
than the sums of their respective user times and sys-
tem times. Our test on the FFT trace found that
the overall running time of this kind of concurrent
simulation was comparable to that of the sequential
simulation.

As our arbitrary set-associative algorithm uses al-
most the same amount of memory space as the sin-
gle set-associative algorithm, while one does concur-
rent simulations with the single set-associative al-
gorithm on one trace, we can instead run concur-
rent simulations on different traces with the arbitrary
set-associative algorithm—using the same resources of
CPU, memory, and time to simulate more traces.

4.3.5 Example of Simulation Results

With the new simulation algorithm, we can get miss
ratios for arbitrary cache size (in number of fixed-size
blocks) and arbitrary set-associative mapping function
in one-pass trace processing. Figure 9, illustrates,
regarding a particular CPU for all traces, the rela-
tionship between miss ratio and set length o on a
cache of 128 blocks, each block with 64 data bytes.
For a given cache size, generally (but not always) the
fully associative mapping has a lower miss ratio than
a set-assoclative mapping; but occasionally some set-
associative mapping has the same or even lower miss
ratio than the fully-associative, such as o« = 3 on trace
FFT and o = 2 on trace SIMP as shown by Figure 9.

Various performance quantities can be studied us-
ing the stack distance distribution data obtained from
the efficient one-pass simulation. For example, given
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Figure 9: Miss ratio v.s. o for a cache of 128 64-byte

blocks.

the cache capacity, one might need to find the optimal
set-associative mapping scheme that has the lowest
miss ratio. Figure 10 through Figure 19 illustrate, for
the same CPU as above, the relationship between the
set length o that yields the minimum miss ratio, and
the cache size C' in number of blocks (the z-axis uses
the base-2 log C'). Each figure is for a specific block
size, ranging from 4-byte block to 8192-byte block.
When there is a tie in minimum miss ratio, we break
the tie by choosing the & with a larger value, since
for a fixed cache size, more sets (i.e., larger a) provide
quicker cache searching.

5 Summary

We show that efficient stack analysis can be ex-
tended to arbitrary two’s power congruence set-
associative mapping for LRU caches on multiproces-
sors. For block addresses between 0 and 2¥ —1, instead
of running stack evaluation on the same trace k& 1
times for all the possible set lengths, one run of stack
evaluation on the trace can give us the same hit ra-
tio function for all set lengths. Thanks to the locality
property of CPU access in real applications, the neces-
sity of using a simple linear list stack structure for the
arbitrary set-associative evaluation does not compro-
mise its simulation time. Simulation on real multipro-
cessor trace data show an order-of-magnitude speed
up by our algorithm in simulation time.
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