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Ahstract

We present critical-sink routing tree (CSRT) constructions which exploit availlable critical-path infor-
mation to yield high-performance routing trees. Our CS-Steiner and “Global Slack Removal” algorithms
together modify traditicnal Steiner tree constructions to optimize signal delay at identified critical sinks.
We further propose an iterative Elmore voufing tree (ERT) construction which optimizes Elmore delay
directly, as opposed to heuristically abstracting linear or Elmere delay as in previous approaches. Ex-
tensive timing simulations on industry [C and MCM interconnect parameters show that our methods
vield trees that significantly improve (by averages of up to 67%) over minimum Steiner routings in terms
of delayvs to identified critical sinks, ERTs also serve as generic high-performance routing trees when
no critical sink is specified: for #-sink ness in standard 1C (MCM) technology. we improve average sink
delay by 19% (62%) and maximum sink delay by 22% (52%) over the minimum Steiner routing. These
approaches provide simple, basic advances over exisling performance-driven routing tree constructions,
including the recent works of [1, 9]. Our results are complemented by a detailed analysis of the accuracy
and fidelity of the Elinore delay approximation: we also exactly assess the suboptimality of aur heuristic
tree constructions. In achieving the latter result. we develop a new characterization of Elmore-optimal
routing trees, as well as a decomposition theorem for aptimal Steiner trees, which are of independent
nteresi.

1 Introduction

Due to the scaling of VLSI technology, interconnection delay has become a dominant concern in the design
of complex, high-performance civcuits [12, 33]. Performance-driven layout design has thus become an active
area of research over the past several vears. In this paper. we develop a new cretecal-sink problem formulation

and new solutions for performance-driven routing tree design.

For a given signal net, the typical goal of performance-driven routing is to minimize average or maximum
source-sink delay. Much early work implicitly equates optimal routing with minimum-cost Steiner routing.
For example, Dunlop et al. [13] use static timing analysis to yield net priorities, so that the highest-
priority nets may be routed by minimum Steiner trees. leaving lower-priority nets to subsequently encounter
blockages. Jackson, Kuh, and Marek-Sadowska [20] and Prastjutrakul and Kubitz [27} have given approaches

which are tuned to building-block lavout and allow prescribed upper bounds on individual source-sink delays:
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the former work also incorporates a hierarchy-based net ordering. For minimuim Steiner tree routing, the
1-Steiner method [21] is the best-performing heuristic, and we therefore use it as a basis for comparison

below.

In [8], Cohoon and Randall proposed a heuristic which simultaneously considered both the cost (total
edge length) and the redius (longest source-sink path length) of the routing tree. A more general formulation
was given by Cong et al. [9], wherein a parameter € guides the tradeoff between cost and radius minimization;
the same authors in [9] proposed the “provably good” BRBC (bounded-radius, hounded-cost) algorithm,
which affords both cost and radius simultaneously within constant factors of optimal. The BRBC method
and works of Awerbuch et al. [3] and Khuller et al. [22] all achieve a smooth cost-radius tradeoff via the
same basic idea: (1) make a depth-first traversal of the minimum spanning tree over the signal net, and
(ii) if the accumulated path length from the source to some sink becomes too large, modify the tree to
reduce that particular source-sink path length. The cost-radius tradeoff may also be viewed as one between
competing mininmm spanning tree (MST) {or minimum-cost Steiner tree) and shortest-path tree (SPT)
constructions. Using this perspective, Alpert et al. [1] recently proposed the AHHK algorithm, which
achieves a direct MST-SPT tradeoff. Finally, Cong et al. [10] have recently proposed the use of rectilinear
Steiner arborescences [29], or A-trees; these are essentially minimum-cost SP'I's with Steiner points allowed.
Since the delay performance of the AHHK algorithm is considerably superior to that of the BRBC or A-tree

constructions [1], below we shall use AHHK as another basis of comparison with our new methods.

1.1 Motivations For Critical-Sink Routing

In performance-driven layout for cell-based designs, timing-critical paths are determined by static timing
analysis, and modules in these paths are then placed close together (see, e.g., [12, 17, 19, 25, 26, 33]).
The static timing analysis thus iteratively drives changes within botl the module placement and the global
routing plases. Qur contribution stems from carefully considering routing tree constructions within this

overall performance-driven layout process.

In general, existing performance-driven placement algorithms may be classified as either net-oriented
or path-oricnted.  Net-oriented placement typically uses centroid-conmected star cost [32]. probabilistic
estimates of Steiner tree cost [19], minimum spanning tree cost [12] or the bounding box semiperimeter
[26] to estimate wire capacitance and signal delay for a multi-terminal net. From this information, eritical
timing paths between primary inputs and primary outputs are computed, after which module placements
are updated to reduce these “net-hased” objectives for signal nets along the critical paths. By contrast,
path-oriented placement considers delay between the source and a particular critical sink of a multi-terminal
net. The critical sink is typically deternined via timing analysis using known module delays and estimated
path delays. For example, Lin and Du [25] use a linear delay approximationso that their method updates the

module placement to reduce the rectilinear distance hetween sources and critical sinks. Other path-oriented



methodologies include those of Hauge et al. [17] and Teig et al. [34].

If a timing-critical path passes through a given net, the path-oriented approach can provide an explicit
bound on delay at that net’s critical sink. While the net-orviented approach may arguably provide only
implicit routing constraints, it is still easy to identify critical sinks after the timing analysis has been
performed, or a priori by finding paths in the design that contain more module delays. This reveals a
“placement-routing mismatch™: the performance-driven routing constructions reviewed above generally
address net-specific objectives (min cost, min radius, cost-radius tradeoffs, etc.) and do not exploit the
critical-path information that is available during iterative performance-driven layout. As a consequence,
designers cannot realize the full henefit of high-quality timing-driven module placements. With this in
mind, our work develops new high-performance routing tree constructions which directly exploit available

critical-path timing information.

1.2 The Critical-Sink Routing Tree Problem

A signal net N consists of a set of pin locations {ng, nq,....ny} in the Manhattan plane, which are to be
connected by a routing tree T(N). We use ng to denote the source, with the n#; (1 <4 < k) denoting sinks.
The cost of an edge ¢;; in (N}, denoted by di;. is the Manhattan distance between the endpoints n; and
n; of the edge. The cost of the tree T(N} is simply the sum of its edge costs. In a gtven routing tree
T(N), the signal delay between two terminals n; and n; is denoted by #{n;, n;); the shorthand notation
t(n;) indicates the delay from the source to the sink n;. Finally, we allow each n; to have an associated
eriticality, o;, reflecting the timing information obtained during the performance-driven placement phase.

Qur goal is to construct a routing tree T(N) which minimizes the weighted sum of sink delays:

Critical-Sink Routing Tree (CSRT) Problem:  Given a signal net N = {ng,ny, ..., n¢} C R with

source ng and possibly varying sink criticalities a; > 0,7 = 1,..., k, construct a routing tree T(N} such

&
that Z o - t(ny) s minimized.

i=1
This CSRT problem formulation is quite general, and easily captures traditional performance-driven routing
tree objectives: (1) average delay to all sinks is minimized by using all o; = some positive constant, then
taking the L; sum of the weighted delays: and (ii} marrmum delay to any sink is minimized by using all
a; = some positive coustant, then taking the L., sum of the weighted delays. In the discussion below,
we will concentrate on the simple yet realistic case where ezactly one critical sink, denoted by n., has
been identified. In other words, we assume that «, > 0 and that all other o; = 0. Our methods may be

generalized to the case where a small number of critical sinks is specified.

The remaining discussion is organized as follows. Section 2 discusses the appropriate choice of a delay

measure to guide the routing tree design, and derives motivating observations from analysis of the Elmore



approximation for signal delay in distributed RC trees. Section 3 then presents our two main classes
of CSRT algorithms. We first describe the (S-Steiner method, which perturbs an existing Steiner tree
construction to account for the presence of identified critical sinks. We then propose an efficient class of
Elmore routing tree (ERT) constructions which not only vield good CSRT solutions, but are also the first
methods to optimize Elmore delay directly without any of the abstractions implicit in previous routing
objectives. Section 3 also describes the extension of the ERT approach to net-dependent routing objectives.
Experimental results are presented in Section 4, where we compare delays at critical sinks in our heuristic
tree topologies with analogous delays obtained using the best-performing minimum Steiner tree heuristic
[21] and the AHHK routing [1]. Our methods prove extremely effective, obtaining up to an average 69%
reduction in signal delay to identified critical sinks in 8-sink nets. The ERT approach also yields generic
high-performance routing trees when all sinks are equally critical: for 9-pin nets in 1.2u CMOS IC (MCM)
technology, we improve average sink delay by 19% (62%) and maximum delay by 22% (52%) over the
minimum Steiner routing. We thus obtain a significant advance over every existing performance-driven
routing tree construction in the literature, including such recent works as [1] [9] [27]. Our results are
complemented by a detailed analysis of the accuracy and fidelity of the Elmore delay approximation, and
we furthermore provide cract assessments versus oplimal for our heuristic tree constructions. To determine
the latter data, we have developed a new theoretical characterization of Elmore-optimal routing trees, as

well as a decomposition theorem for (Elmore-) optimal Steiner trees, which are of mndependent interest.

2 On Delay Approximations and Tree Design Objectives

For arbitrary signal nets &, the appropriate objective to use in ¢fficiently constructing “high-performance
routing trees” lLias not vet been established. In this section, we fiest consider necessary qualities for a delay
approximation that is to be used in routing tree design. By studying both the relative accuracies and the
relative fidelities of linear, distributed RC, distributed RCL, and SPICE-computed delay approximations,
we demonstrate that Elmore’s distributed RC delay approximation is of surprisingly high fidelity with
respect to SPICE3e2. From Elmore’s simple formula for the first-order moment of the impulse response 1n
a distributed RC tree, we then develop revealing intuitions regarding the “correct™ objective for critical-sink

routing tree design.

2.1 Accuracy and Fidelity of Delay Approximations

Ideally, a routing algorithm will compute and optinize signal delays according to a detailed circuit sim-
ulation, such as that provided by SPICE. Since the computation times required by SPICE are pro-
hibitive for routing tree construction, simpler delay approximations must be used. For example, the
traditional minimum-cost Steiner tree objective. in addition to minimizing wiring area, conforms to a

lumped-capacitance model (i.e., signal delay is proportional to total tree capacitance, which is proportional



to tree cost). In {8 9. 33]. the linear delay approxumation is used; sink delays are thus proportional to

source-sink path lengths, and a minimum-radius criterion is chtained.

Name 1C1 IC2 IC3 MCM
Technology 2.0 pm CMOS | 1.2 pm CMOS | 0.5 pm CMOS MCM
vy 164.0 212.1 9 270.0 © 25.0Q
unit wire resistance 0.033 Q/pm 0.073 Qfpum 0.112 Qfum 0.008 €1/ pim
unit wire capacitance 3.234 fF/um 0.083 fF/um 0.039 fF/pm | 0.06 fF/um
unit wire inductance 1x107° fH/pm | 1x1075fH /pm | 1x1073fH /pm | 380 fH/pm
loading capacitance 5.7 fF T.06 fF 1.0 fF 1000 fF
resistance ratio (x 10°um) 0.0050 0.0029 0.0024 0.0031
chip size 1x1 cm? 1x1 em? 1x1 em? 10x10 em?

Table 1: Technology parameters for three MOSIS CMOS 1C technologies and an MCM technology.
Parasitics and SPICE simulation decks for the IC1 and (2 technologies are provided by MOSIS;
1C3 parasitics are courtesy of MCNC; MCM interconnect parasitics are courtesy of Professor Wayne
W.-M. Dai of UC Santa Cruz. and correspond to data provided by AT&T Microelectronics Division.
The driver resistances (rg) and sink loading capacitances ave derived for minimuin-size transistors.

Such simple delay approximations are known to be inaccurate as technology scales, e.g., smaller wire ge-
ometries imply that resistive effects of the interconnect bhecome more dominant, particularly in relation to
driver on-resistance {see the discussion below of “resistance ratio” effects, and note the four technology
characterizations in Table 1). Furthermore, higher system speeds and packing densities may expose mduc-
tive effects on delay. Given these considerations, distributed RC delay approximations (e.g., that of Elmore
[14]) or distributed RCL delay approximations (e.g.. the “Two-Pole™ simulator of Zhou et al. [37]) are of
interest, since they are more accurate than linear or lumped-capacitance approximations while requiring

less computation time than SPICE.

Elmore delay [14] [31] is defined as follows. Given routing tree 7(N) rooted at ng, let e; denote the edge
from n; to its parent. The resistance and capacitance of edge e; are denoted by r., and ¢, respectively.
Let T denote the subtree of T rooted at n;, and let ¢; denote the sink capacitance of n;. We use C; to
denote the tree capacitance of T;, namely the sum of sink and edge capacitances in T;. Using this notation,
the Elmore delay along edge ¢; is equal to ».,(c., /2 + Ci). Let ry denote the output driver resistance at the
net’s source. The Elmore delay ¢5p(n;) at sink »n; 1s:

tep(n:) =rqCh, + Z re(ce, /2+ Cy) (1)
ejEpathing.ni)

Although Elmore delay has a compact definition and can be quickly computed?, it does not capture all
of the factors that account for delay. For example, the “Two-Pole” distributed RCL simulator [37] considers
inductive effects: according to [4] and [37]. its moment-based methodology is intermediate between SPICE

and Elmore delay in both accuracy and computational efficiency.

1Ehmore delay can be evaluated at al! sinks in O(k) time, as noted by Rubinstein et al. [31]. The calculation uses two
depth-first traversals: (1) to compute the delay along each edge and (2) to sum up the delays along each source-sink path.
This fact is enabling to the efficient ERT methodology that we propose in Section 3.2,



2.1.1 Accuracy

In choosing a delay simulator. one traditionally measures accuracy, which may vary with the circuit tech-
nology and the specifics of a net (for instance, the number of pins it contains, or the size of its bounding
box). Table 2 indicates the accuracy of the linear, Elinore and Two-Pole models for each of the interconnect
technologies described in Table 1. The Table gives the average ratio between SPICE delay and each of the
two estimators?, and also shows the consistency of this ratio in terms of its standard deviation. For each
net size, the results are computed from 100 random neis connected using the minimum cost spanning tree
(MST) construction. We use MSTs rather than random tree topologies so that our comparisons will be for
relatively good (although not necessarily optimal) routing solutions; note that for these test sets, it is not

feasible to determine optimal-delay topologies by exhaustive enumeration using SPICE.

Accuracy of Linear, Elmore and Two-Pole Delay Estimates
N =4 IN| =7
Delay Ratio average std dev | average std dev
IC1 | SPICE/Linear{ 1.0 28.4% 1.0 32.7%
SPICE/Elmore 0.72 13.5% 0.69 15.4%
SPICE/2-Pole 1.27 13.5% 1.23 15.4%
1C2 | SPICE/Linearf 1.0 33.9% 1.0 38.3%
SPICE/Elmore 0.74 16.1% 0.70 17.8%
SPICE/2-Pole 1.30 15.9% 1.23 17.8%
IC3 | SPICE/Lineary 1.0 34.9% 1.0 40.3%
SPICE/Elmore 0.78 16.0% 0.72 17.8%
SPICE/2-Pole 1.30 15.7% 1.27 17.9%
MCM | SPICE/Lineart 1.0 57.1% 1.0 61.6%
SPICE/Elmore 0.69 20.5% 0.65 25.1%
SPICE/2-Pole 1.20 20.8% 1.14 25.2%

Table 2: Accuracy of the Linear, Elmore and Two-Pole estimators. The table gives the average
ratio and standard deviation of the ratios hetween SPICE3e? delay and estimated delay computed
over 100 random nets. All nets are connected using MST constructions. Standard deviations are
reported as a percent of the average ratio. (7) Linear delay is scaled to give an average ratio of 1.00;
hence, only the reported standard deviations are meaningful for linear delay.

The inaccuracy of the linear approximation is expected. It is also reasonable to expect “poor” accuracy
of the Elmore and Two-Pole approximations with respect to SPICE, in light of the somewhat ill-defined state
of delay modeling and analysis (cf. the many modeling options described m Footnote 2). For instance,
Elmore delay intrinsically corresponds to 50% rise time [14], since it is the first moment of an impulse

response. While we therefore nse delay time = 50% rise time for all simulators, the nature of the Two-Pole

ZAgain, we equate SPTCE3e2 results with “actual delay”. Our range of modeling methodologies has been guite comprehen-
sive, and may Le summarized as follows. SPICE delay modeling uses constant unit resistance and capacitance values which
vary with each interconnect technology. The root of the routing tree is driven by a resistor connected to the source; we thus
remave some driver attributes since we are concentrating on measuring delay within the interconnect. For the Two-FPole and
SPICE simulators, every interconnect segment is broken into uniform segments, each at most 100th the length of the layout
dimension, cannected in series. To model sink loads, we have used both uniformly-sized CMOS inverters and pure capacitive
loads; these are derived using minimum-size transistors. For all simulators. we have used both the 50% and 90% rise time delay
criteria, and we have measured hoth average sink delay and maximum sink delay. The reported data correspond to typical
results (we generally report data for 50% rise tiines and pure capacitive sink loads), with the specific chioices of methodology
described in the accompanving table captions and text.



approximation makes it more suited to a 90% rise time criterion [37]. While SPICE can model active
devices as loads, the T'wo-Pole simulator can only handle “equivalent” sink capacitances; while SPICE and
Two-Pole can model series inductance (for MCM interconnect), Elmore delay is solely a distributed RC
model (and extracted inductance parameters are often not distributed with IC technology files) ~ indeed,
the list of incomparabie variables seems endless. However, despite their seeming accuracy, each choice of
modeling methodology shows that the Elmore and Two-Pole delay estimators are highly consistent, with
typically small standard deviations and 95% confidence intervals. Thus, it is possible that precomputed

“correction factors™ can compensate [or inaccuracy in these estimates.

2.1.2 Fidelity

A key observation is that precise accuracy is nof really required of delay estimates used to construct routing
trees. In practice, we only require that an estimator iave a high degree of fidelity — i.e, an an optimal or
near-optimal solution according to the estimator should also be nearly optimal according to actual delay.
To this end. we have defined a 1measure of fidelity vis-a-vis an exhaustive enumeration of all possible routing
solutions: we first vank all tree topologies® by the given delay model, then rank the topologies again by
SPICE delay, and then find the average difference between the two rankings for each topology. This measure
of fidelity corresponds to a standard rank-ordering technique used in the social sciences [2]. We have run
simulations to estimate this measure of fidelity for nets of size 4 and 5 using the various delay estimators

and each of the four technologies.

Table 3 shows the fidelity ta SPICE of the linear, Elmore, and Two-Pole delay estimators; the delay
criterion is the 50% delay time to a given randomly-chosen critical sink in the net. We report the average
difference in ranking over all topologies; the average rank difference for the topology which has lowest
delay according to the estimator: and the average difference for the five topologies which have lowest delay
according to the estimator. Our results show that Elmore delay has high fidelity, particularly when we
compare the SPICE ranking of the optimal topology for Elmore delay with the optimal topology for linear
delay. For example, with unets of size 5 using technology 1C3, optimal topologies under Elmore delay
averaged only 2.3 rank positions (out of 125) away from optimal according to SPICE. In comparison, the
best topology under linear delay averaged distance 24.7 from its correct SPICE ranking. For 5-pin nets
under the ICT and 1C2 technotogies, the best topology under Flmere delay alsc has a near-optimal SPICE
ranking: on average the distance from its SPICE ranking is 3.5 for IC1 (versus 4.6 under linear delay)
and 1.5 for IC2 (versus 6.3 under linear delay). Table 4 gives similar results when the delay criterion is
the maximum 50% delay time to any sink in the net. (The choice of source location in the experimental
methodology can significantly color the results. To illustrate this phenomenon. we show 1C1 and 1C2 data

for a randomly chosen source location in each instance, while IC3 and TC4 data are for source location fixed

TAn early theorem of Cayley [15] imiplies that there are |D:"||"\"|_2 distinct spanning tree topologies for any given net N.



Lineat Elniore
vs SPICE vs SPICE vs SPICE
Topologies | IN|=4 [N[{=5][N[=4 [N[=5][|N|=4 |[N]=35
1 Best 0.50 106 0.40 0.10 0.32 0.08
5 Best 0.66 2.86 0.72 0.47 0.48 0.38
All 0.94 7.89 0.66 1.42 0.43 1.29
IC2 Best 0.40 2.26 0.18 0,20 0.18 0.12
5 Best 0.68 2.69 0.52 0.53 0.47 0.42
All 0.88 7.7 0.43 1.27 0.39 1.11
i3 Best 3.36 24.2 0.58 4.6 0.43 5.0
5 Best 2.49 2]1.8 0.78 5.2 0.61 4.9
All 2.42 21.5 .69 6.2 0.58 5.9
MCM | Best 4.00 30,0 0.44 4.6 0.36 6.1
5 Best 2.62 24.3 0.57 4.8 0.43 3.4
All 2.63 2.9 0.62 5.9 0.56 5.7

Table 3: Average difference in rankings of topologies, in terms of 50% delay to a given random
critical sink in each net. according to different delay estimates. The sample consists of 50 random
nets of each cardinality. The total number of topologies for each net is 444=2 = 16 for |[N| = 4, and
5(5=2) = 125 for |N| = 5. To show the effect of source location in the experimental design, IC1 and
IC2 runs correspond to random source locations, while the IC2 and MCM runs have the source pin
located always in the lower-left corner of the layout.

Linear Elmore 2-Pole
vs SPICE vs SPICE vs SPICE
Topologies | [N[=4 [N][=5][N{=4 [N[=5]|N|=4 [N|{=5
I[C1 Best. 0.50 2.06 0.40 0.10 0.32 0.08
3 Best 0.67 286 0.72 047 0.47 0.38
All 0.95 7.89 0.65 1.42 0.42 1.29
C2 Best .40 248 0.18 0.28 0.18 0.20
5 Best 0.68 3.00 0.52 0.73 0.47 0.60
All 0.88 T7.19 0.43 1.37 0.39 1.22
1C3 Beat 1.60 9.16 0.20 0.46 0.14 (.26
5 Best 1.21 T.68 0.30 0.77 0.12 0.38
All 1.07 7.90 0.27 1.39 0.14 1.02
MCM | Best 2.72 15.26 0.14 .38 0.02 0.18
5 Best 1.61 10.64 0.11 0.51 0.04 0.20
All 1.31 8,50 0.10 1.00 0.07 0.84

in the lower left corner of the layout, l.e.,

Table 4: Average difference in rankings of topologies in terms of maximum sink delay according
to different delay estimates. The sample consists of 50 random nets of each cardinality. The total
number of topologies for each net is 414=2) = 18 for |N| = 4, and 5'°~% = 125 for |V | = 5. To show
the effect of source location in the experimental design, IC1 and IC2 runs correspend to rendom
source locations, while the IC2 and MCM runs have the source pin located always in the lower-left
coruer of the layont.

for random source Jocations.) Kim. Owens and Irwin [23] have similarly established the fidelity of Elmore
delay for circuit design: they plotted Elmore- versus SPICE-computed delays for a suite of 209 different

place/route solutions of the same ripple-carry adder circuit, and also found a very high correlation between

the two delay measures.

o

at a highly skewed position. Note that all further results are



1C1 1C2 1C3 MCM
1-10 120 21-25 | 1-100  11-20 21-25 | 1-10  11-20  21-25 | 1-10 11-20 21-25
1.000 1.324 1.619 | 1.000 1.361 1.732 | 1.000 1.092 1.3%0 | 1.000 1.044 1.517
1.056 1350 1.645 | 1.051 1.396 1.761 | 1.003 1.135 1.428 | 1.000 1.049 1.549
1.093  1.372 1667 | 1.094 1424 1783 | 1.005 1.140 1.447 | 1.000 1.04% 1.604
1.123  1.403 1.688 | 1.136 1.458 1.808 | 1.006 1.17 1.474 | 1.001 1.053 1.648
1.158  1.434 1.708 | 1.160 1.494 1.841 | 1.006 1.180 1.527 | 1.002 1.055 1.700
1,186  1.453 1.194 1.522 1.006  1.222 1.003 1.08%
1.209  1.514 1226 1.607 1.009  1.259 1.009  1.306
1.237  1.540 1.256  1.638 1.011  1.292 1.012  1.307
1.266 1,377 1.289  1.680 1.018 1.341 1.014 1.348
1.29%  1.597 1.333  1.707 1.083  1.365 1.042  1.307

Table 5: Average SPICE3e2 delay ratios for the hest 25 topologies according to delay at a randomly
chosen eritical sink in each net, for |[N| = 5. Values are normalized to the delay of the best topelogy
and averaged over 20 random nets. For the very worst topology (rank 125). the average ratios are

5.51 (IC1), 6.61 (IC2), 9.51 (IC3), and 20.20(MCM).

1 IC2 IC3 MCM
1-19 11-20  21-25 1-10 11-200 21-25 =10 11-20  21-25 | 1-10 11-20 21-35
1.000  1.324  1.619 | 1.000 1.359 1.747 | 1.000 1.198 1.409 | 1.000 1,288 1.676
1.053 1.350 1.645 | 1.054 1.396 1.773 | 1.023 1.212 1.428 | 1.013 1322 1.707
1.093  1.372  1.667 | 1.093 1.425 1.795 | 1.051 1.230 1.455 | 1.031 1.348 1744
1.123 1,403 1.688 | 1.139 1.456 1.824 | 1.063 1.243 1.481 | 1.061 1.393 1.783
1.158  1.434 1.708% | 1.167  1.493 1.855 | 1.082 1.259 1.504 [ 1.097 1425 1.811
1.186  1.433 1.189  1.523 1.103  1.277 1.128 1.461
1.209  1.514 1.234  1.609 1.133  1.326 1.172  1.528
1.237  1.540 1.261  1.640 1.156  1.347 1.202  1.557
1.266 1577 1.293 1.68% 1.171  1.374 1.235  1.601
1.297 1597 1.332  1.720 1.180  1.393 1.252  1.643

Table 6: Average SPICE3e2 delay ratios for the best 25 topologies according to maximum sink
delay, for |N| = 5. Values are normalized to the delay of the hest topology and averaged over 20
random nets. For the very worst topology (rank 125), the average ratios are 5.51 (IC1), 6.69 (IC2),
5.30 (IC3), and 7.41 (MCM).

For IC1. the average difference of 0.10 positions for 5-pin nets with optimal Elmore delay implies an
approximate average suboptimality of 0.6% in terms of SPICE-computed delay. This can be seen from Table
5, which shows the average increase in SPICE delay from optimal for the 23 top-ranking topologies, i.e., the
25 lowest SPICE delays. (The exact delay criterion is 50% delay time to a randomly chosen critical sink in
each net). For IC2. the average distance of (.20 rank positions implies a difference of approximately 1.0%
in actual SPICE-computed delay: for 1C3 a distance of 4.6 rank positions implies 0.6% delay suboptimality:
and for MCM a difference of 4.6 rank positions implies 0.3% delay suboptimality. Similar data is given in

Table 6 for the maximum sink delay criterion.

From these results, we see that the Two-Pole simulator has somewhat better fidelity to SPICE than
Elmore delay, as would be expected. However, the relatively small improvement in fidelity does not seem to
justify the significantly greater computation required to search over topologies using Two-Pole as opposed

to the linear-time Elmore delay computation.
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2.2 Intuitions from Elmore Delay

Becaunse of its fidelity to SPICE-computed delay, Elmore delay is a good performance objective for con-
structing high-performance routing trees. Moreover, the simplicity of the Elmore delay formula (1) atlows

us to Intuit heuristics which effectively minimize delay.

Since ., and ¢,, are usually proportional to the length of edge €., we see that tgp(n;) has a quadratic
relationship to the length of the np-n; path, suggesting a min-radius criterion. However, the C; term
implies that Elmore delay is also linear in the total edge length of the tree which lies outside the np-n; path,
suggesting a min-cost criterion. The relative size of the driver resistance rq heavily influences the optimal
routing topology: if vy is large, the optimal routing tree (ORT) is a minimum cost tree; as 74 decreases,
the ORT tends to a “star” topology. The size of r4 relative to unit wire resistance is a “resistance ratio”
[4] that captures the technology vis-a-vis routing tree design. Relative values of the resistance ratio are
larger for current-generation C'MOS, but tend to decrease in MCM substrate and some submicron CMOS

IC interconnects (Table 1).

In Figure 1, we show a signal net N with identified critical sink n.. along with three routing trees: (a)
the 1-Steiner tree, (h) a minimumni-cost SPT., and (c¢) the optimal CSRT with respect to critical sink n..
Based on this example, the example of Figure 1(d), and Equaticn (1), we make the following ohservations.

¢ The minimum cost solution (a) has large delay to the critical sink »n, due to the long source-sink path.

o However, requiring a monotone path to every sink, as in the SPT (b) or a Steiner arborescence {10, 29],

can result in large tree capacitance which again leads to large delay at n..

o The optimal CSRT construction (¢) shows the dependence of routing topology on the cheice of critical

sink, and reflects both the minimum-cost and the SPT solutions.

e Finally. Equation (1) implies that the number of Steiner points in the ng-n, path should be minimized,
and the Steiner points “shifted” toward ng (i.e., branches off of the ng-n, path should occur as close to
the source as possible). Figure 1(d) shows two trees which are both shortest-path trees and minimum

Steiner trees, vet the rightmost tree has less signal delay at n,.

3 Two Classes of CSRT Heuristics
3.1 The CS-Steiner Approach

Giiven the ohservations above, we may characterize the optimal CSRT solution in Figure 1(c) as one which

minimizes total tree cost, subject 1o the path from ng to n, being menotone. This simultaneous consideration
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Figure 1: Parts (a)-(c): optimal Steiner tree (cost 2.0 cm, £(n.} = 3.34 ns); minimum cost shortest-
paths tree (cost 2.3 em, #(n.) = 2.26 ns); and optimal-delay tree (cost 2.2 em, t(n.) = 1.67 ns) for
the same sink set. Coordinates shown are in mm, and the 1.2p IC2 technelogy (Table 1) were used
with the Two-Pole simulator with a 90% delay time criterion. Part (d): two distinct minimum-cost
SPT solutions for a set of three sinks.

of radius and cost parameters recalls the motivations in [1] [8] [9], but here the tradeoff is formulated with

respect to the critical sink n,. We thus obtain our CS-Steiner heuristic for the CSRT problem (Figure 2).

CS-Steiner Algorithm
Input: signal net N; source ng € N identified critical smk n. € N
Output: heuristic CSRT solution T
1. Construct heuristic minimum-cost tree Ty over N — n,.
2. TForm T by adding a divect connection from n, to Ty,
i.e., such that the ng-n. path in T is monotone.

Figure 2: The CS-Stetner heuristic.

The idea behind CS-Steiner is simple: construct a minimum-cost Steiner routing tree as usual, then
“fix” the tree to reflect an identified critical sink. Since the algorithm template is quite general, we have
examined a number of (!S-Steiner variants. All of our variants use the 1-Steiner heuristic of Kahng and
Robins [21] to construct the initial tree Ty in Line 1. Section 4 reports results for the following three

variants:?
HO: The direct connection in Line 2 consists of a single wire from n, to ng.

H1: The direct connection in Line 2 consists of the shortest possible wire that can join n, to Ta, subject

to the monotone path constraint.

HBest: Accomplish Line 2 by trying all shortest connections from n, to edges in Tp, as well as from n, to

ny; perform timing analysis on each of these routing trees, and return the tree with lowest delay at n..

4We alse studied two additional variants. Variant H2 modifies Line 1 of CS8-Steiner so that the initial heuristic tree Tp is
constructed over the entive net N, H2 then deletes the edge which lies directly above n. when we root Ty at no, and rejoins
{the component containing) n. to (tle component containing) ng using a shortest possible wire from 7, as in variant HI.
Variant H3 performs Lines 1 and 2 simultaneously by executing the I-Steiner algorithim subject to a “maintaining monotone
feasibility” constraint. In other words, we iteratively choose a Steiner point which minimizes the sum of the tree cost and
the cost of any needed direct commection from ne to ng. The direct connection from ne requires that there exist a monotone
path through the “bounding boxes” of the edges in the path to ng. Intuitively, this favors initial choice of Steiner nodes along
some monotone path from ng and 7., since such nodes will most rapidly reduce the marginal cost of adding the direct ne-ng
connection. The H2 and H3 variants were inferior to HO, H1 and HBest.
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The complexity of these variants is dominated by the construction of Ty in Line 1 (or possibly by the

simulator calls in HBest).

We enhance the CS-Steiner construction via an efficient Global Slack Remeval (GSR) postprocessing
algorithm. GSR [5] is similar to the method developed independently by Chen and Sarrafzadeh in [7],
which also removes “U’s” from interconnections, However, the objective of GSR is not to reduce tree cost
(which is already effectively minimized by the 1-Steiner atgorithm) but rather to maximize the monotonicity
of all source-sink paths and reduce Elmore delay to all sinks. GSR accomplishes this without increasing
overall tree cost. For expository reasons. we defer formal description of GSR. along with its proofs of

correctness, to Appendix A.

3.2 Elmore Routing Trees

From the discussion of Section 2.2, we see that current routing objectives such as minimum tree cost,
bounded tree radius, or prescribed cost-radius balance have often been motivated by the Elmore model.
However, such objectives are abstractions: they do not actually optimize Elmore delay. Thus, the effective-
ness of a given ohjective often depends on the prevailing technology, on the particular distribution of sink
locations for a given signal net, and on the user’s ability to find the parameter value (e.g., ¢ in the BRBC

algorithm [9], or ¢ in the AHHK algorithm [i]) which will yield a good solution for the particular input.

In this subsection, we depart from the abstraction inherent in “minimum cost” or “bounded radius”
objectives, and propose a new class of greedy Elimore routing tree (ERT) algorithms which optimize Elmore
delay directly as the routing tree is constructed. The ERT approach is efficient, since Elmore delay at all
nodes of a routing tree can be evaluated in linear time (see Footnote 1 above). Based on the performance
results in Section 4 for both critical-sink and "generic” performance-driven routing formulations, we believe
that the ERT approach, along with its SERT and SERT-C extensions, offers a basic new tool for VLSI

routing.

The Elmore routing tree (ERT) algorithim (Figure 3) is analogous to Prim’s minimum spanning tree
construction [28]: starting with a trivial tree containing only the source, we iteratively find a pin n; in the
tree and a sink n; outside the tree so that adding edge ¢;; yields a tree with minimum Elmore delay. The
construction terminates when the entire net is spanned by the growing tree.> The ERT algorithm can be

generalized to any delay model by using the appropriate estimator in Line 3.

50ur approach should be distinguished from the method of Prasitjutrakul and Kubitz [27] cited above, wherein A* heuristic
search and the actual Elmore delay formula are used in a performance-driven routing tree construction. Like our method, [27]
grows a routing tree over a net NV starting from the source ng: they perform A™ search of a routing graph {e.g., in building-block
design) to find the Elmore delay-optimal Steiner connection from the existing tree to a new sink. However, the choice of this
new sink is foreed: the algorithm always adds the sink that is closest (by Manhattan distance) to the existing tree, and thus
falls into the standard pitfall of jgnoring the underlying delay criterion. The effect of this difference is apparent in the ERT
ordering of added nodes in Figure 4 of Section 4 below. Indecd, the method of [27] can yield Elmore delays substantially larger
than those of ERT: given a very tall, “hairpin”-like version of Figure 1a with many sinks very closely spaced along the entire
hairpin patl, [27]} forces the sinks to be added into the tree according to the path order {starting from the source ng at the
lower left), yielding an chviously poor sclution.
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ERT Algorithm
Input: signal net N with source ng € N

Qutput: routing tree T over N

L T=(V.E)=({ne},0)

2. While |V| < |N| do

3. Find u € V and ¢ € V" which minimize the maximum Elmore delay
from ng to any sink in the tree {V U {v}, EU {{u,v)})

V=vu{v}

5. E=FEU{(uv)}

§.  Qutput resulting spanning tree T = (V| E)

-

Figure 3: The ERT Algorithm: direct incorporation of the Elmore delay formula
into a beuristic routing tree construetion.

The ERT algorithm is generalized to Steiner routing by allowing the new pin to connect to an edge of

the existing tree, inducing a Steiner nede at the point in the edge closest to the new pin.

o For generic performance-driven routing, our Steiner Elmore routing {ree (SERT) algorithm iteratively
finds v € V. {v.v') € £. and a new point w on edge (v,v') to minimize the maximum source-sink
Elmore delay in the tree (V U {w, w}, (E— {(v, v YDV {(v, w), (w,v'), (v, w)}). We then add u and w
to V, and replace E by (E — {{v, ")} U {(v.20), (w.v), (u, w)}.

e To address critical-sink routing, our Steiner Elmore routing tree with identified critical sink (SERT-C)
algorithm begins with a tree containing the single edge (ng,n,) in Line T of Figure 3, then continues
as in the SERT algorithm. except that we minimize tgp(n.) rather than the maximum delay to all

sinks.

While CS-Steiner began with a minimum-cost Steiner tree and heuristically perturbed it to improve
t(n.), SERT-C uses the opposite approach of starting with the required ng-n, connection and growing the
routing tree while keeping #gp(n.) as small as possible. Again, we note that SERT-C offers a consistent,
direct incorporation of Elmore delay within its construction, in contrast to heuristics whose objectives or
strategies are only motivated by Elmore delay and whose solution quality may therefore be more sensitive

to the input instance and choice of parameters.
The time complexities for our ERT variants are analyzed as follows.
Observation 1:  The SERT-C algorithm can be implemented in O(k? logk) time.

Proof: The effect on delay tgp(n.) of inserting a new edge (v, w) into T arises only in the C; terms
in Equation (1), and is an additive constant no matter when (u, w) is added into the tree. Initially, we
compute the best connection from each non-critical sink to the tree containing only edge (ng, n,). For each
new sink added, at most three new edges will be inserted into the tree. Tn constant time, we can calculate

the effects of connections from a given sink outside T to these three new edges (all previously computed
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effects remain unchanged and need not be recomputed). We can insert the new delay effects into a priority
quene for each u ¢ V in O(logk) time and also retrieve the current minimum-cost connection for v in
O(log k) time. Thus, each pass through the while loop of Figure 3 can be accomplished in O(k log k) time,

giving an overall time complexity of O(k*logk). 0

Observation 2:  The ERT spanning tree algorithm can be implemented in O(k®) time, assuming constant

unit wire resistance, unit wire capacitance, and sink capacitances.

Proofi  The result follows from a simple observation: if a new tree edge incident to sink v € V (Line
3 of Figure 3) minimizes the maximum Elmore delay maz;tgp(n;). it must connect u to the sink v gV
that is closest to ., Thus, at each pass through the while loop, we simply compute the shortest “outside
connection” for each node in ¥, Le.. every possible u, in O(k?) time. We then add each of the O(k) shortest
outside connections to 7" in turn. Evaluating the Elmore delays at all sinks in each of the resulting trees
requires O(k) time per free. Hence, each pass through the while loop requires O(4*) time, and this yields

the O(k3} complexity result.® 0

In practice, the complexity of the ERT algorithm will be transparent to the user, since & is typically small
(e.g.. our runtimes for the problem sizes discussed here are O(1077) seconds on Sun SPARCI hardware).
We know of no implementation of the SERT algorithm that is faster than O(k*). Intuitively, the difficulty
secrns to he that (i) in Line 3 we must always consider ©(k?) Steiner connections, and (it) the connection
which minimizes mazitpp(n:) in Line 3 may not he the best one from the “perspective” of any individual
sink in N or edge in T. Thus. we currently have a rather interesting situation where the CSRT problem
formulation leads 1o an algorithm (SERT-C) that enjoys nearly quadratic speedup over the generic Steiner

computation {(SERT).

4 Experimental Results

4.1 CS8-Steiner Trees

We implemented each of the CS-Steiner variants HO, H1 and HBest, along with the 1-Steiner algorithm
[21], using C in the UNIX Sun environment, and ran these algorithms on random 4- and 8-sink ihputs.” We
also applied our (SR post-processing algorithm (denoted as +GSR) to 1-Steiner and each of the CS-Steiner

variants. Our inputs correspond to the four distinet technologies described in Table 1.

Table 7 gives delay and tree cost {WL) results and comparisons. The delays at all sink nodes correspond

to 50% rise times estimated using the Two-Pole simulator [36] [37]. Each entry in Table 7 represents an

& Again, we note the fundamental difference hetween the ERT approach and the method of [27]: while [27] must add the
single sink that is closest t the existing tree, the ERT algorithun identifies both a new sink and its connection such that
Elmore delay is minimized,

TResults for 16-sink inputs have Leen reported in preliminary foru, ¢.g., [5]. While such large inputs magnify the effect of
our new methods, most signal nets in practice are within the size range that we now discuss.
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IC1 IC2

INi=5 | IN[=9 | IN|=5 | [N[=9Y

Critical 1Stein 0,549 ns | 0.848 ns | 0,331 ns | 0.520 ns
Sink 15tein-+GSR 978 964 970 954
Delay HO4+GSR 980G 824 .B76 100
H1+GSR L960 BR3 934 827
HBest+GSR 929 81T 867 721

1Stein 148 cm | 2.18cm | 1.48 cm | 2.18 cm
Ave WL HO+GSR 1.29 1.22 1.29 1.22
H1+GSR 1.04 1.06 1.04 1.06
HBest+GSR 1.07 1.11 1.10 1.12

1C3 MCM

Nl=5 l IN|=9 | |N]=5] |N=9

Critical 1Stein 0.218 ns | 0.342 ns | 231 ns 4.09 ns
Sink 15tein+GSR 968 950 852 927
Delay HO4-GSR 849 664 .550 333
{ns) H14+GSR 402 810 85T 665
HBest+GSR 844 693 593 340

18tein 148 cm | 218 ¢cm | 148 cm | 21.8 cm
Ave WL H04+GSR 1.29 1.22 1.29 1.22
{em) H14+GSR 1.04 1.06 1.04 1.06
HBest+GSR 1.11 1.12 1.22 1.21

Table T: Two-Pole simulation results comparing CS-Steiner trees with the 1-Steiner heuristic. Each entry
corresponds to an average over delay compntations for random critical sinks in each of 100 different random
signal nets. 1-Steiner results are reported in the physical units (nanoseconds or centimeters) while other
results are reported as ratios to the corresponding 1-Steiner results. Note that 1-Steiner and 1-Steiner plus

GSR always produced nearly identical average costs.

average taken over every sink node in 30 random point sets. We emphasize that the 1-Steiner algorithm
(or the BRBC., AHHK, etc. methods). being net-oriented, will return the same tree for a given sink set no
matter which sink happens to be critical; the delays at the sinks n; are 11 some sense “generic”. In contrast,
each of the three {S-Steiner variants can return a different tree for each choice of critical sink in the same
net. Thus, for each variant we report the delay at n; in the specific tree corresponding to identification of
n; as the eritical sink.

Variants HO and HBest. significantly reduce delay to the critical sink, particularly in larger nets and for
MCM interconnect technology wheve output driver and wire resistances are low. In other words, the simple
strategy of connecting the critical node via a path with low branching factor is very successful for these

cases. Of course, this strategy will produce larger net cost.®

4.2 FElmore Routing Trees

We constructed Elmore routing trees for the same sets of random inputs used in the CS-Steiner experi-

ments. Delay simutation results, again obtained using the Two-Pole simulator. are presented in the upper

EHighly “star-like” topologies can possibly introduce other difficulties such as crossing wires, nodes with degree > 4, and
capacilive coupling effects; these are not modeled by either SPICE ar the Two-Pole simulator,



Ic1 IC2
IN|=5 | |N=9 | |[¥|=5 | [Nl =9
MST 0.645 ns | 0.984 ns | 0.395 ns | 0.609 ns
Crit. AHHK 904 837 863 770
Sink ERT 879 837 804 .741
Delay 18tein 0.549 ns | 0.848 ns | 0.331 ns | 0.520 ns
SERT 967 854 021 806
SERT-C 947 847 B70 735
MST 0.758 ns | 1.213 ns | 0.485 ns | 0.792 ns
Max AHHK 876 803 835 74T
Delay ERT &85 ,790 LT8G 699
15tein 0.627ns | 1.028 ns | 0.393 ns | 0.664 ns
SERT 935 853 919 TR0
SERT-C 970 914 962 892
MST 164cm | 243 cm | 1.64 cn | 2,43 cm
AHHKX 1.16 1.09 1.16 1.09
Ave WL ERT 1.10 1.15 1.18 1.25
15tein 148 cm | 218 cm | 148 cm | 2.18 cmn
SERT 1.06 1.09 1.11 1.18
SERT-C 1.06 1.06 1.15 1.11
IC3 MCM
IN|=5 | INf=9 | |[N|=5] N =9
MST 3.262 ns | 0403 ns | 2.82 n= 4.80 ns
Crit. AHHK RRH 749 7T Rtk
Sink ERT T82 702 472 329
Delay 15tein 0218 ns | 0.342ns | 231 ns | 4.09 ns
SERT 008 V781 524 384
SERT-C 839 693 567 340
MST 0.326 ns | 0.533 ns | 3.86 ns 7.05 ns
Max AHHIX B2 T30 754 632
Delay ERT 764 G668 544 399
15tein 0.262 ns | 0.444 ns | 3.06 ns 5,92 ns
SERT 908 759 699 481
SERT-C .954 892 &59 846
MST 1.64 cin 243 cm | 164 cm | 24.3 cm
AHEK 1.16 1.09 1.04 1.07
Ave WL ERT 1.19 1.27 1.61 215
1Stein 148 cm | 218 cm | 148 cm | 21.8 cm
SERT 1.13 1.22 1.66 227
SERT-C 1.16 1.14 1.28 1.2

Table & Two-Pole simulation results for Elmore routing tree variants. Spanning ERT constructions are
compared with MST and AHHIK; Steiner SERT and SERT-C constructions are compared with 1-Steiner. All
choices of critical sink are random, and all results are averaged over 100 random nets. MST and 1-Steiner
results are reported in the physical units {nanascconds or centimeters) while other results are reported as
ratios to the corresponding MST or 1-Steiner resnlts,

parts of Table 8. For comparison, the table includes data for the minimum spanning tree and AHHK tree

[1] constructions.

Our results show that even as generic net-dependent routers, the ERT methods we propose are highly

effective, beyond their relative efficiency and case of hmplementation. For nets with 9 sinks, the spanning
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tree ERT construction reduces critical sink delay versus the MST construction by 16%, 26%, and 30%
in the respective I technologies and by 67% in the MCM technology. ERT also improves upon AHHK
for most of the technologies, with reductions of 0% (IC1), 4% (1C2), 6% (IC3). and 46% (MCM}. These
results are particularly impressive because our AHHK data follows the experimental methodology in (1],
which generates output trees for 21 different values of the ¢ parameter and then chooses the best tree found
for each signal net instance. (Moreover, according to [1], AHHK already achieves strong improvements
over such other recent methods as shallow-light routing [9] or Steiner arborescences [10] when measured by
the same T'wo-Pole simulation methodalogy.) Iowever, it must he noted that delay reductions in practice
will prohably not attain exactly these magnitudes (cf. the footnote above, in the discussion of CS-Steiner
results}, since our modeling methodology cannot capture all of the effects related to the geometric embedding

of our topologies.

The Steiner ERT variant also performs well as a generic high-performance router. For 9-pin nets, SERT
improves critical sink delay versus the 1-Steiner routing by 19% and 62% for the IC2 and MCM technologies,
respectively. The percentage reductions in maximum delay are somewhat greater for the IC technologies,
but somewhat smaller for MCM interconnects. 1t should he noted that for the MCM technology, the
ERT and SERT constructions tend to be star-like, producing tree costs significantly higher than those of
the 1-Steiner construction. In practice, when delay is not an overriding concern. the user may recapture

wirelength by simulating a larger output driver resistance.

Finally, even more significant reductions in delay can be achieved when a critical sink has been identified
per the original CSRT formulation. The SERT-C algorithm improves over the SERT results by an edditional
reduction in delay at the critical sink of 5%. 7% and 6% for the three IC technologies, and 8% for MCM.
Identification of a critical sink las clear advantages in terms of tree cost. particularly for MCM routing:
the SERT-C trees have much less cost than the SERT outputs. while still improving the delay to the
critical sink. Since maximum sink delays still decrease. it is likely that overall skew in the routing tree
will be reduced even when we treat the critical-sink formulation. Finally, we note that the SERT-C router
produces very similar delays and costs compared to the HBest and HO variants of CS-Steiner discussed 1n
the previous subsection. However, SERT-C is more practical than HBest or I10 since it runs in O(k?log k)
time (versus the Q(k%) complexity of the best practical implementation of the 1-Steiner heuris.tic that is

called by HBest and H0), and it does not require any simulator calls as does HBest.

Figures 4 and 5 illustrate the SERT and SERT-C algorithms for a 9-pin signal net using the 1C2
technology parameters. Figure 4 shows the progressive growth of the SERT construction. Figure 5 contains
the trees produced by SERT-C for the various choices of critical node. The tree constructed when n. is
node 3 or node 7 is also the 1-Steiner tree, and the tree constructed when n. is node 8 is the same as the

generic SERT result.
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Figure 4: Example of the progressive SERT Steiner tree construction for a 9-terminal net using
IC2 parameters. The source pin is labeled 1, and sinks are numnbered in order of distance from the
sSource,

4.3 Elmore-Optimality of Spanning Tree Constructions

We have seen that the ERT constructions yield greatly improved signal delay when compared to previous
methods. An obvious question is whether we still need to seek methods that better minmmize Elmore
delay. Thus, we have implemented a branch-and-bound algorithm which finds eptimal generic routing trees
according to Elmore delay. Starting with a trivial tree containing only the source pin, we incrementally
add one edge at a time to the growing tree and evaluate the maximum sink delay. If this value exceeds
the maximum sink delay in any complete candidate tree seen so far, we prune the search and backtrack to
select a different edge at the previous step. A recursive implementation of this Branch-and-Bound Optimal

Routing Tree (BBORT) search is shown in Figure 6. BBORT attempts to add sinks in all possible orders,
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Figure 5: SERT-C tree constructions for a single 9-pin net, showing variation of solution with choice
of n..

but avoids testing any topology more than once by requiring that sinks be added in the order of a breadth-
first traversal of the tree (if two sinks are connected to the same parent nede, then the sink with smaller
index must be added to the tree first). It i1s easy to verify that according to this convention, any tree

topology will imply a unique ordering of the sinks,

To track all of the above simulation results, we have run BBORT tnals on random sets of 200 nets
for each of several net sizes. Qur inputs ave evaluated using the same four sets of technology parameters
discussed previously. Table 9 compares Elmore delays of the BBORT and ERT constructions, as well as

of the minimum spanning tree (MST) and shortest path tree (SPT) constructions, for each of the four
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BBORT Algorithm
Input: sighal net N with source ng € N
Output: optimal-delay tree T, over N
L. T:(Vs E) :({nﬂ}’m)
2. tpin =0
3. Call Add_Edges(T")
4. CQutput Ty
Procedure Add_Edges{Tree: T = (V, £))
5. While there exist # € V" and u ¢ V' such that
T = (VU{u}, EU{(u,v)}) is a new tree topology Do

G Compute tree delay ¢{T")

7. If ¢(T") < tmin Then

8. If |7 = |N| Then Topr = T tmin = HT")
9 Else Call Add_Edges(T")

Figure 6: Branch-and-Bound Optimal Routing Tree (BBORT) algorithm (recursive implementa-
tion).

technologies.” Delay for each tree is normalized to the ORT delay of the same net. Tree costs are similarly

normalized to the MST cost of each net.

1 1C2
| ¥ =5 |Nl=7 [N=3s IN[=7
delay cost. delay cost delay cost delay cost.
ORT 1.0 1.103 1.0 1.133 1.0 1.140 1.0 1.175
ERT 1.007 1.104 1.017 1.142 1.010 1.159 1.022 1.215
(Std Err) | {.0015) (.0021) (.6017) (.0022)
SPT §.085 1.290 1.130 1.395 1.058 1.280 1.096 1.395
MST 1.16% 1.0 1.282 1.0 1.272 1.0 1.451 1.0
[C3 MCM
N|I=5 N[ =7 [Nl =5 [N =7
delay cost delay cost delay cost delay cost
ORT 1.0 1.146 i.0 1.190 1.0 1.432 1.0 1.547
ERT 1.011 1172 1.027 1.252 ¢ 1.009  1.585 1.024 1.892
(Std Err) | (.0018) {.0025) (.001}) {(.0008)
SPT 1.054 1.250 1.091 1.395 1.08%  1.290 1.161 1.395
MST 1.311 1.0 1.499 1.0 1.894 1.0 2.457 1.0

Table 9 Elmore delays and wirelengths of various constructions using IC1, IC2, IC3 and MCM
parameters. Simnulations were run on 200 random nets for each net size. Tree cost is normalized to
MST cost and delays are normalized to ORT delay. Standard errors for ERT delay are shown in

parentheses,

In the table. we see that ERTs over seven pins in the ICI technology have an average maximum Elmore
delay only 1.7% greater than optimal. while MSTs have average Elmore delay 28.2% greater than optimal.
For smaller nets, ERTs are even better: for nets with five pins. ERT delays are only 0.7% above optimal on

average, while MSTs are 16.9% above optimal. Our confidence in the average difference computed between

9The SPT construction is the tree which minimizes cost subject to each source/sink path having minimum length, i.e.. it
is a Steiner arborescence, or A-tree [10, 29].
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ERTs and ORTs is very high: for instance, the 1.7% difference obtained for 7 pins has a standard error'®
of 0.21%, indicating a 95% confidence tnterval hetween 1.3% and 2.1% (i.e., an interval of within two times

the standard error of the average).

Technology IC3 gives our worst results in terms of the optimality of ERTs. For the IC3 parameters and
7-pin nets, ERT gives an average value within 2.7% of ORT with a 95% confidence interval of hetween 2.2%
and 3.2%. For MCM parameters, the Elmore-based ERT constructions are also very close to optimal: on
average, they are within 2.4% of ORT delay for 7-pin nets. Qur tables also compare the delays of the SPT

algorithm with ERT and MST; SPT outperforms MST but not ERT in terms of Elmore delay.

4.4 Elmore-Optimality of Steiner Tree Constructions

We have shown that our spanning tree constructions are nearly optimal when we optimize Elmore delay
to a critical sink and when we optimize the maximum Elmore delay over all sinks in the net. Because
Steiner constructions give lower delay values than spanning trees in general, we close this section with a
similar comparison for our SERT-C and SERT Steiner constructions. At first, this comparison appears
very complicated because there are infinitely many possible locations for Steiner nodes. Indeed, while it is
well-known that the result of Hanan [16] restricts the choice of Steiner nodes to at most & - (k£ + 1) points,
no such characterization has been established for a Steiner tree with optimal Elnore delay. In Appendix
B, we present new theoretical results which restrict the choice of Steiner nodes in Elmore-optimal trees to
exactly the same finite “Hanan grid” that contains the Steiner nodes of minimum-cost trees. This allows
a finite algorithm which determines optimal trees with respect to any given linear combination of Elmore
delays to critical sinks. We also present an entirely new “peeling decomposition” of any optimal Elmore
delay Steiner tree into a sequence of subtrees, each of which adds a sink by a “closest connection” to some

edge in the previous tree.

When the driver resistance ry is very large, the optimal Elmore delay tree is a minimum-cost Steiner tree
(recall Equation (1); also see [4]). As a consequence, our results extend very naturally to the well-studied
probiem of minimum-cost Steiner tree construction, and the restriction of Elmore-optimal Steiner nodes to
the Hanan grid both generalizes and extends Hanan’s original results. (As Hanan did for minimuni-cost
Steiner trees. we prove that every Steiner node in an Elmore-optimal tree 1s connected to one sink by a
horizontal segment of edges, and to another sink by a vertical segment of edges. However, our techniques
(Lemmas B1 - B4 in Appendix B) are much more powerful in order to address optimality of the Steiner
tree with respect to Elmore delay.) We also note that our peeling decomposition, and its extension to

minimum-cost Steiner trees, is of independent interest since it provides both a new characterization of, and

10 4 ¢ nised here, the term standard error is defined as follows. For a random variable X, let X = z:il X be an estimator

for the expected value of X. The standard error of X is an estimate of its standard deviation over multiple sample sets, and
is equal to the standard deviation of X divided by /n. Because delays are recorded as ratios to the ORT delay, the standard
error of the average difference between ERT and ORT delays is equivalent to the standard error of average ERT delay.
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a new means of generating, such trees.

Based on the results of Appendix B, we achieve a simple modification to our BBORT method which
finds an optimal Steiner routing tree for any linear combination of Elmore delays to critical sinks. Rather
than considering connections from cach sink nj outside the current tree to each sink »; inside the tree as in
BBORT, the Branch-and-Bound method for Steiner Optimal Routing Trees with Critical Sinks (BB-SORT-
C) considers connections from n; to each edge created when n; was added to the tree. In other words, each
node n; already contained in 7" is replaced as a possible connection point by each of the edges created when
n; was added to the tree earlier, Again we use hranch-and-bound pruning to reduce the complexity of the

search.'!

Table 10 compares Elmore delay for trees constructed by the SERT-C algorithm with optimal Elmore
delay trees found by BB-SORT-C for cach of our four technologies. The size of nets used in the comparison
is limited o nets with six sinks (i.e.. seven pins) because of the exponential time complexity of BB-SORT-C.
For nets with seven ping, our results show that SERT-C achieves Elmore delay that is on average within
11.1% of optimal for the IC1 technology. The results for TC2, IC3, and MCM are quite similar. The
table also gives average trec costs for our constructions and the standard ervor of our estimate for the
ratio hetween SERT-C and SORT-C delays. Our SERT-C algorithm does not perform as well as the ERT
algorithm in terms of its nearness to optimality for the types of delay functions we have considered. Thus,
future work may improve the near-optimality of critical sink constructions - however, Table 10 shows that
any future Elmore delay improvement witt be limited to between 8% and 12% for nets with up to seven

pins.

1C1 1cz
[N| =5 N =7 [N|=5 [¥| =7
delay cost delay cost delay cost delay cost
SORT-C 1.0 1.111 1.0 1.112 1.0 1.161 1.0 1.158
SERT-C 1.042 1.046 | 1.083 1.047 | 1.049 i.120 1.114 1.106
(Std Evr) | {.004) (.006) (.006) (.000)
1-Steiner | 1.117 1.0 1.200 1.0 1.228 1.0 1.362 1.0
1C3 MCM
NEE [N =7 [N =5 [N =7
delay cost | delay cost | delay cost delay cost
SORT-C 1.0 1.175 1.0 1.165 1.0 1.296 1.0 1.262
SERT-C | 1.046  1.140 | 1.112 1.112 | l.006  1.296 | 1.001 1.256
(Std Err) | (.006) (.010) (.000) (.0001)
1-Steiner 1.273 1.0 1.429 1.0 1.455 1.0 1.634 1.0

Table 10: Comparison of Elmore delays and wirelengths of various Steiner tree construetions using
IC1, 1C2, IC3 and MCM parameters. Simulations were run on 200 random nets for each net size.
Delay is normalized to BB-SORT-C' delay and tree cost is normalized to 1-Steiner cost. Standard
errors for average SERT-C delays are shown in parentlieses.

11 Because we consider connections to up to three edges for each sink in the growing tree, our BB-SORT-C will introduce
some redundancies in the tree topologies; we check for pessible redundancies and prune the search at each redundant tree that
we find.
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5 Conclusions

We have addressed a erificad-sink routing tree (CSRT) formulation which arises when critical-path informa-
tion becomes available during the timing-driven layout process. Two new classes of CSRT constructions are
proposed: (1) the CS-Steiner method, which perturbs a minimum Steiner tree to accommodate an identified
critical sink, and (it) the SERT-C inethod, which begins with a connection from the source to the critical sink
and then grows a tree so as to minimize the increase in Elmore delay to the critical sink. Each of these algo-
rithms is efficient. and offers very significant performance improvements over existing performance-driven
routing tree constructions. We note that the greedy “Elmore routing tree” {(ERT) approach underlying
the SERT-C algorithm seems quite powerful. In particufar, ERT generalizes to a “generic” SERT Steiner
router whiclh outperforms all previous performance-driven routing algorithms in the literature. The ERT
approach 1s also the first to consisiently, and divectly. optimize the Elmore delay formula itself, rather than
an objective which heuristically abstracts Elmore delay. Since Elmore routing trees are efliclently computed,
our approaches may lead to basic new utilities that can be integrated within existing performance-driven
global routing codes. Assessments of the near-optimality of our Steiner constructions have led to a new
characterization of Elmore-optimal Steiner trees, and to a new decomposition theorem for minimum-cost

and minimum-Eimore delay Steiner trees; both of these results are of independent interest.

Current work addresses extensions of the critical path-dependent routing tree design to the general case
of multiple critical sinks with varying criticalities. If a subset of the sinks are designated as critical, the
SERT-C algorithm can he extended by first routing the critical sinks under the min-max delay objective
of SERT, then counecting non-critical sinks as in SERT-C' to minimize the weighted sun of the delays
at the critical sinks. There are also interesting extensions of the CS-Steiner and ERT algorithms which
involve wiresizing, which treat general-cell layout with arbitrary routing region costs, and which exploit
the inherent parallelizability of our approaches. Finally, we leave as an open problem the reduction in time

complexity of the ERT constructions.
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Appendix A: Global Slack Removal

Recall from Section 3.1 that Glebal Slack Removal (GSR) 1s a linear-time postprocessing enhancement to
the US-Steiner approach. GSR shifts edges in the 1-Steiner output to maximize the monotonicity of all
gource-sink paths without any increase in total tree cost or Elmore delay to any sink. In what follows, we

use the term I-Steiner tree to refer to any tree that can be output by the 1-Steiner algorithm.

Definition: A V is a subpath of three consecutive nodes on a root-leaf path in a routing tree such that the
combined edge cost along the subpath is greater than the distance between its two end points (e.g., path

vy-vg In Figure 7(a}).

Definition: A 7 is a subpath of four consecutive nodes on a root-leaf path with edge cost greater than

the distance between its end points (e.g., path »i-vq In Figure 8(a)).

v
o 1 V3 o 1. "M 1"s
oo—oon—l ; Oo—llt l
-
Ve V2

(@) (b)

Figure 7: Removiug a single ¥ in the GSR Algorithm.

V4 Va v, oW, Ya
noo—... ; no (¢ BT ) - I 1W2
V2 V3 Y2

Va

(a) (b)

Figure & Removing a single “I77 1 the GSR Algorithm.

Note that the nodes in a V' or a I/ can be cither Steiner nodes or pins. A ¥ can be removed from a
routing tree by introducing a Steiner node which eliminates the overlap between the two adjacent edges,
as in Figure 7(b). It is easy to see that, if a {/ (say vyvovzve) does not contain any Vs, then its middle
edge (s, v3) must be either completely horizonutal or vertical. Clonsequently, a I/ containing no V’s can be

removed by moving the middle edge and adding up to two new Steiner nodes as in Figure 8(b).

Figure 9 describes the GSR algorithm for removing Vs and [7’s from any Steiner tree. We define a {/
g g g

(or V') to be located at node v if v 1s the node in I7 (or V) furthest topologically from the source.

Three clarifying points should be noted.
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GSR Algorithim
Input: Steiner tree T with source ng
Output: Steiner tree T with all I’s removed

1. Remove all Steiner nodes of degree < 2 from T
2. Q) — {ng};

3. While @ # 0

4 v Degueue(Q);

3. For each node v € children{v) do

6. Q) — Engueue(v');

7. If there is a V' located at o'

8. Remove V(')

9. If there is a {7 located at v/

10. Remove _U(v")

11, Clean_Up(v")

12 remove all Steiner nodes of degree < 2 from T

Subroutine Clean_Up(node: @')

C1. If there is a V7 located at parent(v’)

2, Call Remove V(parent(v'))

C3. If there is a 7 located at ¢’

C4. Call Remove_U(v")

5. Call Clean_Up(v')

6. Else

7. If there is a I7 Jocaated at parent(v’)
CH. Clall Remove Ulparent(v’))

9. Call Clean.Up(parent(v'))

Figure 9: Pseudo-code for the Global Slack Removal {GSR) algorithm. Local variables include a
queue @ and nodes v and v'. We use children(v) to denote the set nodes with children of v when
the tree is rooted at mp; parent{v} denotes the parent of v in the rooted tree. The subroutine
Remove_V(v) removes a V located at v as in Figure 7 and Remove U(v) removes a 7 located at v

as in Figure §.
1. GSR utilizes a queue @ whichh can be implemented arbitrarily as long as each node i the tree is
processed before its children. In practice, a simple depth-first ordering suffices.

2. The procedure Remove U is invoked only for 17's that do not contain any Vs, Thus, it is executed

as in Figure 8.

3. All low-degree Steiner nodes of degree < 2 are clearly superftuous and are removed since more {’s can
he found if these low-degree Steiner nodes are removed at the outset. Because each removal of a U/ can

introduce additional low-degree Steiner nodes, they are removed again at the end of the algorithm.

We now show that the tree returned by GSR dominates the input tree in terms of total tree cost, path
length from the source to each sink. and Elmeore delay at each sink. Let cost(T') denote the cost of routing

tree T

Theorem Al: Given any tree T as input, GSIL will return a tree T7 such that (1) cost(I”) < cost(T); (ii)
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for each ¢ > 0, the ng-n; path length in 77 is less than or equal to the ng-n; path length in 7' and (iii) the

Elmore delay tgp(n;) at each n; in T” 1s less than or equal to the Elmore delay tpp(n) in T

Proof: (i} Removing a V' reduces cost in the routing tree; removing a U as in Figure 3 leaves tree cost
unchanged; and by the triangle inequality the removal of a low-degree Steiner point will either reduce cost

or leave 1t unchanged. These are the only operations in GSR that change the structure of the tree.

(i1) Removing a V" does not affect source-sink path lengths; removing a U reduces the source-sink path length
to the fourth node in the I7 (v4 in Figure 8) and all of its descendants, and leaves all other source-sink path

lengths unchanged: removing low-degree Steiner nodes does not affect source-sink path lengths.

(ili) Assuming constant technology parameters!”, removing a I/ or a V' can affect Elmore delay along a
source-sink patl in only three ways: a) changing the length of the path; by changing tree capacitances along
the path (i.e.. increasing the wirelength of branches off from the path); and c) shifting tree capacitances
along the path (changing where branches conunect to the path). Removing a V¥ will reduce some path
lengths, reduce tree capacitances, and shift tree capacitances closer to the source, thereby reducing Elmore
delay to all pins in the iree. Removing a [7 reduces path length to node #4 in Figure 8 and shifts tree
capacitance closer to the source for nodes vs, vg, and vy. (For vs, the capacitance that met the ng-vs path
at vz now meets the path at w; and w-.) Removing 1-degree Steiner nodes reduces total wirelength, and
thus reduces Elmore delay, while removal of 2-degree Steiner nodes leaves Elmore delay unchanged. Thus,

GSR will not increase Elmore delay to any sink in the net. 0

4 —) 4 _)

o o

Figure 10: An example for which processing {7's it a bottom-up order {b) returns a tree with one
remaining {7. Processing [/'s in a top-down order (a) is guaranteed to remove all [7's.

We note that the order in which &’s are removed from the tree is important. If the {7’s are processed in
a bottom-up order instead of a top-down, then new {7's can be introduced and the resulting tree may not
have all of its {/’s removed, as can be seen in the example in Figure 10. Furthermore, two different top-down
orderings can produce different output trees (although both will have no remaining {7’s). An example 1s

shown in Figure 11.

We now prove that GSR will remove all Vs and all [7’s from any input tree, and that its worst-case
time complexity is quadratic. Note that we have constructed a class of nets for which the 1-Steiner heuristic

will create an input tree that forces Q(k*) runtime [3] for GSR. Tlowever, GSR in practice seems to exhibit

127 e, including unit wire resistance, unit wire capacitance, driver resistance. and sink loading capacitances.
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[ — o | T
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Figure 11: The GSR algorithm with input (a) can produce either tree (b) or tree (c), depending on
the order in which the [7's are processed.

close to linear-time complexity, since muitiple calls to procedure Clean_Up occur for very few nodes.

Theorem A2: For any input tree. (1) GSR returns a tree containing no ¥'s and no {7's, and (i1) GSR runs

in O(n?) time in the worst case.

Proof: (i) Since GSR. checks for V’s and I/’s at each node in the tree, the output tree will contain a V
or I7 only if GSR creates one at a node that has already heen traversed. A new V or U can be produced
at a node v only if the ng — v path length is increased {which is impossible by Theorem 1) or if nodes are

removed from the ng — v path.

Removing a V' at Line & wil! not introduce a new V or I7 at v {in Figure 7), because the ny — vs path
length is unchanged and a new Steiner point u is added to this path. Removing a I will not introduce a
V at vy either, because vqwqvs is not a V. A I/ may remain at vy after removing the V. but this will be

detected later at Line 9.

Removing a I7 at vy in Figure 8 can only introduce a new V or {7 at wo, vy, or one of their descendants,
hecause all other nodes have unchanged source-sink path lengths and no fewer Steiner nodes on their
source-sink paths. The subroutine Clean Up checks for ¥'s and {7's at ws and vy, and recursive calls to
Clean_Up will eventually terminate because a new V or I7 can be introduced only by reducing the number

of nodes on the ny—vy path.

Figure 12 shows how Clean_Up can require several recursive calls hefore terminating. However, for
any node v/, a call to Remove U(v’) will introduce a new 1V or {7 at v' or parent(v”) only if it reduces
the number of nodes on the ng—t’ path. Because any Steiner tree connecting & + 1 points can contain at
most 2k nodes in total, there are O(k) nodes on the nyg—v' path. Tlence, at most O(k) calls can be made to
Clean_Up for each node ' added to the quene in Line 6 of the template. and the total number of calls to

Clean_Up is O(k7). r
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Fiemwe_U(n5 ) Remove_U(nS)
Wy
2 " -
Remove_V(w2 ) Remove_U({ Ng }

Figure 12: Example in which removing a I/ at ns requires two subsequent U-removals and a V-
removal to complete the Clean_Up procedure.

Appendix B: Optimal Steiner ERTs

For minimum-cost Steiner trees, the classic result of IManan {16] restricts the choice of Steiner nodes to
at most & - (& + 1) points (the “Hanan grid”) and enables finite branch-and-bound methods to determine
optimal solutions. Ilere, we prove an analogous result for trees which optimize any linear combination of
sink Elmore delays, Like Hanan, we show that any tree containing a Steiner node which is not a vertex
in the Hanan grid can have its edges and Steiner nodes shifted to lie on the Hanan grid. However, we do
not shift edges in the same way as Hanan (the edge shifts he uses can be suboptimal in terms of Elmore
delay). Indeed. the result of, e.g., Lemma B1 below is obvious when minimizing tree cost, but requires a
faitly involved proof when minimizing Elmore delay. Our development of the Hanan grid result becomes
complete with the proof of Lemma B4 below. In Lemma B5, we extend our result to show that the

branch-and-hound SORT-C method described in Section 4.4 returns the optimal delay Stemer tree,

B.1. Definitions

We assume that all delays are defined in terms of Elmore delay. We seek to characterize the opfimal Steiner

k .
tree over N. denoted by T~, which minimizes the linear combination of sink delays f = E a; - t(ng), with
i=1
each ; > 0. (The case of some a; = 0 is effectively handled by setting these a; to a small positive value.)

We assume that 7* contains no Steiner uodes with degree < 3. For convenlence, we normalize time and
distance so that unit wire resistance and unit wire capacitance are hoth equal to one. We also consider a
tree to be defined as a set of nodes and edges. so that the notations v € T for node v and ¢ € T' for edge e
are well defined. An edge that is completely vertical or horizontal is called a straight edge; any other edge

is called an L-shaped edge.



Assumie that a Steiner tree T over N is rooted at ng. We define T\ v to be the tree induced by removing
node v and all of its descendants from T, and then remnoving all degree-2 Steiner nodes from the resulting
tree. The elosest connection between three nodes is the location of the single Steiner node in a minimum-
cost Steiner tree over the three nodes. This location is unique and has coordinates given by the medians
of the z- and the y- coordinates of the three nodes {if the minimum-cost Steiner tree is a chain, then the
closest connection is the middle node). The closest connection hetween a node v and edge e is the closest
connection hetween v and the two endpoints of e. We say that node v € T'is incident 10 an edge ¢ € T\v
if its parent node in 7' is located on edge ¢. I parent(v) is located at the closest connection between v and
an edge ¢ € T\v incident to v, then v is said to make a closest connection to e in T Lemma B1 will show

that the each node « in the optimal delay tree 7" malkes a closest connection to any incident edge in 7" \a.

B.2. Proof of Closest Connections in 7™

Lemma B1: Let @ be the parent of node @ € T, a # ng. Then either = ng. or else & is located at the

closest connection between a and each edge in T"\a that is incident to a in T™.

Proof: Consider a sink n; € T*\a such that » is located on the ng—n; path in 7. Assume that each
L-shaped edge is oriented so that its interior points are as close to a as possible. We partition the set of
points along the ng—n; path into three sets, 7, I and {no}. If starting from a point p and moving along
the ng—n; path toward the source by a very small amount increases (decreases) the distance to a, then
pel(pe D). If x e D. then moving x closer to the source by a small amount along the ng—n; path will
reduce both the ovevall tree cost and the path lengths to all sinks in Ty, 1.e., all sink Elmore delays will

improve. Since T* is optimal, we must have x ¢ .

Suppose then that # € I. Let p and ¢ be the endpoints of the maximal contiguous subset of I which
contains x, with p topologically closer than ¢ to ng (see Figure 13: note that p @ I, but that there are points
in I arbitrarily close to p). We will show that z must be located at ¢. We assume that there is exactly one
node 4 between p and ¢ in T™\«, and that ¢ has degree 3 as shown in Figure 13. Our argument is easily
extended when more nodes are present hetween p and ¢, and so we restrict our attention to the case shown

m Figure 13.

We will show that the delay function f 1s concave in terms of x for 0 < » < ¢. For convenience, we
overload 2. @, b, ¢, and ¢ to also represent the respective path lengths from p to these nades or locations.
Even though ¢ is not necessarily a node in 7™, we will use T, to represent the subtree of T™ below location
e. Finally, recall that 7, (%, and (. represent the tree capacitance insubtrees T, 7y, and T, respectively.
We will show that the delay function f is concave in terms of v for 0 < & < ¢. Qur proof will invake four
facts recalled from elementary real analysis: (1) any concave function defined over an interval on the real
line will be minimized at one of the boundary points of the interval; (2) multiplying any concave function

by a positive constant produces another concave function: (3} the sum of any concave functions is also
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.
&N,
Figure 13: Proof of Lemma B1: we show that if x. the parent of « in 7™, is located on the maximal

contiguous subset of I between locations p and ¢, then x must be located at c.

concave; and (4) any quadratic function of & having a negative coefficient for £° is concave in terms of z.

Consider the contribution made by the edge (&, a) to Elmore delay at various sinks n;. First, consider
the case of n; € T,. Delay t(ny) is the sum of four functions: fi = delay from ng to p; fo = delay from p
to x due to capacitance in T*\b: fz = delay from p to @ due to capacitance in edge (b,¢) and Ty; and fu =

delay from x to n;. Simple application of the Elmore formula for these four functions gives

fi = Ko+ Ki(a—z) (2)
f2 = a?*(%+fr—x+Cﬂ+c—w+Cc) (3)
fs = wx(b—q+Cy) ifx<yg (4)
foo = qxlb—qg+C) >y (5)

i —

2

fi = la—x)*( a +Ca) + Ky (6)

where Kg, K1, and [; are constants. To be precise, A is the sum of resistance/capacitance products along
the ng—p path; A7y is the sum of resistances from ng to p; and Ky is the delay from a to n;. We see that
function f; is linear in x. while f» and fi are quadratic in z with negative coefficients for z°. Function fa
is continuous, increasing for » < ¢ and remaining constant for x > ¢. Consequently, fi. f2, f3, and f4 are
all concave in @; this implies that {(n;) is concave in 2.

cC—Z

2

If n; € T, then fi, fo, and f3 are identical to the case of n; € 7,. Function f3 equals (e—xz)*( +),

which is concave in z, and so t(n;) is again concave in x.

If n; € Ty or n; = ¢. then we can express Elmore delay to n; in terms of three functions fi, f» and
3. The definitions of f; and fo are the same as for n; € Ty, and fs gives the delay from p to n; due to
. , , j a & 3 r 5

capacitance in T*\¢. The equation for f is identical to that for n; € T, while f3 is a constant in terms of
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r. Hence, fi and fs are concave. For fo, we have

f2 = zx(a—2+0Cad) Hz<yg (7)

= g*(la—2v+Cy) x>y (8)

We recall that any continuous, piece-wise differential function of a real variable is concave as long as its first
derivative is monotone decreasing. It is clear that this property holds for f», except possibly at z = q. Let
f4 be the derivative of fo. Then for 2 < ¢, fi{x) = a— 2r + Cy, and for # > ¢, fi(2) = —g¢. Substituting
g for z in these equations, we see that f} is indeed decreasing at z = ¢. Consequently, fy and t(n;) are

concave 111 &,

Delay to any other sink in T~ is linear (and thus also concave) in 2. Because f is a non-negative linear
combination of concave functions, it is also concave. Therefore, over the interval 0 < z < ¢ we know that
f can only be minimized when 2 = c. It is easy to see that if « is incident to edge e € T"\a on the ng—n;

path, then a’s parent @ must be located at the closest connection between a and e. 0

Straightforward corollaries of Lemma B1 include: (1} that any non-source node in the optimal delay tree
T~ must have degree < 4, and (ii) thal the possible configurations of edges incident to a Steiner node g € T*
are restricted to the five configurations shown in Figure 21. Note that Lemma B1 by itself is not sufficient
to prove that BB-SORT-C will return the optimal delay tree. For example. if 7 connects a four-pin net
inte an “H” with two degree-3 Steiner nodes g and g» (see Figure 14). then the parent of each non-source
node v is connected by a closest connection 1o T"\v. However, 1™ cannot be constructed by BB-SORT-C
since the “TI7 cannot be formed by adding the three sinks sequentially by closest connections to tl.le growing

tree.

9o

no n
94

Figure 14: Example of a routing tree T which cannot be constructed by algorithm BB-SORT-C, but
which satisfies the condition that each non-source node © € 1" makes a closest connection to each
incident edge in 1\v.

3
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B.3. Hanan Grid Proof for Steiner Nodes in T*

We define a segment to be a contiguous set of straight edges in T which are either all horizontal or all
vertical; a mazrimal segment (MS) is a segment which is not properly contained in any other segment. The
node on an MS which is topologically closest to ny is called its entry peini. A segment which contains all
of an MS to one side of a node v on the MS is a helf segment with respect to v, and a half seginent with
respect to the entry point of an MS is called a branch. A branch b is called a branch off of MS M if M
contains b’s entry point and & is perpendicular to A. Note that a given MS, Af. will divide the plane into
two half-planes. Suppose M does not contain ng: then the half-plane containing the edge between M’s
entry point and its parent is called the near side of M (because it is “nearer” to the source), and the other
half-plane is called the far side of M. Branches off of Af that are located on its near (resp. far) side are
called near (resp. far) branches In addition, a sink located on A is defined to be a far branch off of M if
none of its children are located on the far side of M (i.e., it is not the entry point to a larger far branch),
For any segment A, we use Near(A) (resp. Far(M)) to denote the set of near (resp. far) branches off of
M. Figure 15 gives an example of an MS Af with endpoints p; and ps, entry point pg, and four branches,

including near branch 6,, far branch bs. and a far branch consisting only of sink nj.

Near side of M

Far side of M

Figure 15: Example of a maximal segment A/ with entry point py, one near branch &,, and four far
branches, including bs. Note that by definition. ng forms a far branch with no edges. Also, edge
(po,ns) does not form a far branch off of A/ because py is not an entry poimnt to the MS containing

{(po.ns).

In the next two lemmas, we establish some properties that must hold for any maximal segment in 7.
Lemma B4 then uses these properties to show that each maximal segment in 7™ will have a sink located
on it. We thus generalize the classic result of Hanan {16] to trees that are optimal with respect to objective

functions of form f (i.e., non-negative linear combinations of Elmore delays at sinks).

Lemma B2: In the optimal tree 7", let. gy be the entry point to maximal segient M, and let § be any
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segment contained in M and having go as an endpoint. Then |Far{S)| > |[Near{S)}.

Proof: By contradiction. Let S be the smallest segment in M with go as an endpoint so that Near(S) >
Far(S). Then a portion of T~ between ng and ¢’ looks like Figure 16(a). Label the branches by,...,b;
in order from entry point go. Figure 16(b) shows how we can shift segment S topologically toward the
source; this effectively shifts wire from each near branch to a far branch with is topologically cleser to the
source (i.e., with a smaller label). Shifting S does not affect tree costl® and source-sink path lengths will
be unchanged to all sinks except those connected to the tree through branches in Near(S), which will have

reduced source-sink path lengths. Consequently, the shift will decrease delay to all sinks in subtree T;U and

leave delay to all other sinks unchanged, contradicting the optimality of T™. 0
S s
p3 ——p4d 3 p3 !_1 q 3
|D2 D —— | P, o—e
o p1 . p1
v v
no (ol LR ] & no [0 L B ] & ! L
p g P 4y 9o

(a) (0)

Figure 16: Example (a) with |Near(S)| > |Far($)| for a segment S between ¢o and q3; (b) shows
how S can be shifted to S’ to reduce delay to all sinks in T and leave delay unchanged at all other
sinks.

Lemma B3: In the optimal tree 7, let 3 be an MS not containing no. Then |Far(M)| > [Near(M)].

Proof: By Lemuma B2, |Far(M)| >

Near{M)]. Suppose that the exact equality [Far{M )| = |[Near(M )|
holds. Lemmia B2 then implies that each endpoint of A7 has a near branch incident to it as in Figure 17(a).
In Figure 17(b) we show how M can be shifted toward the source to reduce delay to all sinks helow gy in

T* and leave delay to all other sinks unchanged, thereby contradicting the optimality of T™. 0
Lemma B4: In the optimal tree 7%, any maximal segment must contain etther the source or a sink.

Proof: (See Figure 18.) Let Af be a lowest maximal segment in 7 which does not contain either the
source or a sink, i.e., every MS that is topologically below Af contains a sink. Let go be the entry point
to M and let py be the parent node of ¢4 in 7™. Consider the possibility of shifting A{ either toward the
source or away from the source withoul passing over any node in 77 which is not in M. Without loss
of generality, assume that A{ is a vertical segment with z-coordinate ry, with the near side of M having
r < xg. Let 1 < g be the be the closest value to xy on the near side of Af such that shifting M to 2 = 24

would cause M to intersect a node that is in 77 but not in Af. Similarly, let x+ > 2 be the closest value

13 Unless gg is an endpoint for the MS containing edge (. gg), in which case tree cost will decrease.
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Figure 17: (a) Example where |Near(A)} = |Far(M)| for maximal segment Af. M can be shifted

to M'. as shown in (h), to reduce delay at all sinks in the subtree rooted at qg.
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Figure 18: Proof of Lemma B4: because the objective function f is concave in » over the interval
0 < r < &g — xy, [ will be minimized when the maximal segment M passes through either the
gridline at w1 or the gridline at x5,

to zg on the far side of M such that shifting A7 to r = 23 would cause Af to intersect some node that is in
T,, but not in M. Let the variable #, 0 € » < &y — x1, denote the position of M between the r-coordinates

21 and 2q. We will show that minimizing the delay function f implies that either r = 0 or r = #2 — 2y,

Let d = Far{M) — Near(M). Consider the delay to some sink »; located along a near branch b; off
of M which has entry point ;. (In general, we let ¢; denote the entry point to branch b;.) Delay #(n;) is
quadratic in r only along the edge (po,go) and along the edge (¢;,pi), where p; is the child of ¢; on ;. To

be precise, the delay due to (po. go) is equal to r#(r/2—d+r+ N). where i is some constant; the delay due
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to (gi, pi) is equal to »* (r/2+ K') + K", where ' and K" are again constants. Therefore, the equation
for £(n;) is

Hn)=(1=-d)«#> + Ky *r 4+ K (9)
where K, and K are constants. From Lemma B3, we know that d > 1, implying that {(n;) is a concave

function of ». Similarly, delay to a sink n; along a far branch b; off of Af will be equal to
—d*r? 4+ Kir+ K}, (10)

where again K and K are again constants; this too is a concave function of r. Finally, delay to any sink
whose source-sink path does not contain an edge in A will be linear in r, and thus also a concave function.
Since any linear combination of functions that are each concave on a given interval will also be concave on

that interval, f is concave in » and is minimized at one of its extreme values, i.e.,at r =0 or r = 22 — 21.

Thus, M may he moved so that it contains a new node, say p;. If p; is a sink, the lemma is proved. If
p; is a Steiner node, then because it has degree > 2, there must be a vertical MS incident to p;, and this
vertical MS must contain a sink since M is the lowest maximal segment not containing a sink. Hence, if p;

is a Steiner node, the shifted Af will also contain a sink. 0

A direct corollary of Lemma B4 is that all Steiner nodes in the Elmote-optimal Steiner tree are contained

in the Hanan grid:

Covollary: Let X be the set of u-coordinates for all pins in N, and let ¥ be the set of y-coordinates in V.

Then if (2, y) is the location of a Steiner node m I~ 2 € X and y € Y. O

Thus, only a finite number of possible Steiner point locations need to be considered. Hanan’s original

theorem may be viewed as a special case of this Corollary with the driver on-resistance ry — oc.

B.4. Decomposition Theorem for 7

To prove that BB-SORT-C' will return the optimal-delay tree 7™, we show that 7 can be constructed by
starting with a tree Ty containing only ng, then successively adding a sequence of sinks n;, 1 <¢ < k, each
of which yields a tree 7; by making a closest connection to some edge in the current tree T;_;. We show
that such a sequence of trees exists by starting with 7* = 1} and 7 = k. then “peeling off” an n; at each

iteration such that n; was joined by a closest connection in 7} to some edge in T, = Ti\n;.

At each step, we find an interior node ¢ € 7; whose children are all leaves. Each of these leaves must be
a sink, hecause ail low-cegree Steiner nodes (i.e.. with degree < 3} are removed from Tiy1\n;41. We choose
one of ¢’s leaves to be the n; that is peeled off, and set 73— = T;\n;. The choice of which leaf should be
peeled is guided by the function Pin(g). which specifies one of ¢’s children that should not be peeled off
from ¢. Thus. when g is removed as a low-degree Steiner node, the edge between ¢ and its parent is replace

with an edge between Pin(g) and q’s parent. More formally, Pin(v) is defined for each node v € T* as



follows: (i) if v is a sink, then Pin(v) = v; and (ii) if v is a Steiner node, then Pin(v) is chosen according

to the template given in Figure 19.

Pin(q) Assignment Procedure
Input: Optimal delay tree 7™
Steiner node ¢ € T* such that Pin(w) has been assigned
for each w € T), w # ¢
Output: Pin(y)
1. p=parentig)in T*
2. TIfedge (p.q) is L-shaped
3. Set @ arbitrarily to he one of ¢'s two children
/* (v has exactly two children, by Lemma B1) */

4.  Else /* (p,q) is a straight edge */
5. Let A be the MS containing (p, q)
6. If T, contains a sink on Af
T Set @ to be the child of ¢ on M
8. Else if p is the entry point to M
9. Set. B to be the far branch of A at g

/* {such a B exists by Lemma B2) */
1. Set a to be the child of g on B
1. Else if there is a near branch of Af at p
12. If there is a far branch B of Af at ¢
13 Set « to be the child of gy on B
14. Else Set a to be the child of 4 on Af
15. else /* there is a far branch of A at p */
17. If there is a near branch B of A at ¢
18. Set a to be the child of g on B
19. Else Set ¢ to be the child of g on A
20.  Pin(q) = Pin(a)

Figure 19: Criteria used to associate a sink Pin{q) with each Steiner node ¢ in the
optimal-delay tree 7", The assignment is used when determining the order in which
sinks are “peeled off” from 7.

Given the determination of Pin{v), we now use the rules described in Figure 20 to peel off sinks, thus
determining the correct sequence in which sinks should be added to construct 7™. Note that node ¢ in
Line 3 of Figure 20 must exist since T} is finite and has no cycles. We now show that the procedure of
Figure 20 gives a sequential decomposition of the optimal-delay tree T, such that each T} is constructed

by connecting sink #; to tree Ti_; by a closest connection to some edge in Ti_q.

Lemma B5: There exists a sequence of subtreces Ty = {ng},71. T, ..., Tk = T™ such that for each i,
1 < i<k, (i) there is a sink »; € 7; such that 1;_; = Ti\n;. and (ii) either n, 1s cotinected to ng, oF 0

makes a closest connection in 7; to some edge i T;_ 1.

Proof: Part (i) of the Lemma is true since the construction of Figure 20 removes exactly one sink during

each pass through Lines 3 to 9.

To show (ii), let p be the parent of the node ¢ at Line 3 in Figure 20, The first case is when ¢ is a sink
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T* Decomposition Procedure
Input: Optimal delay tree T™
Output: Sequence of sinks n;,...ny used to construct T~
using only closest connections of each ny to T
1. i=k
7. Repeat until i == 0
3. Find a node ¢ € 7; whose children are all leaves
4. If g has degree 4
5. Set ¢ be the child of ¢ in 7™ such that
edges (q,c) and (parent(q), q) are colinear
6. Else Set ¢ to be a child of ¢ such that Pin(c) # Pin(g)
7. n; = Pin(c)
8. Tiy=Thm
9. t—=1—1
Figure 20: Procedure to determine a sequence of sinks ny, ..., ny which can be used

to construet 7™ by a sequence of closest connections from n; to tree T; .
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Figure 21: Five possible topologies at any Steiner node q in T*. Each diagram shows two sinks n;
and nsy below node 4 in the tree, such that ¢ is the closest connection between ny, ny and ¢’s parent

P

or a degree-4 Steiner node in 7} (as in Figure 2t(e)). In this case, edge {p,¢) will remain in tree Tj_y. If
(p. q) is L-shaped, we must have a connection as in Figure 21(a}, where the two children of ¢ are eventually
replaced by sinks on the maximal segments with entry point ¢ (i.e., n1 and ny in the Figure). Both of these
sinks have closesi connections to {p.q) at ¢. If (p.q) is a straight edge, let A7 be the MS containing (p, ¢,

and let a be a child of ¢ in 7*. The sink Pin(a) is assigned in the Figure 19 templake such that the ¢y—Pin{a)
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path in 7 will contain only edges in M, edges in branches off of M, or edges in a sequence of far branches
off of branches of M. (For example, consider the paths from g to sinks n; and ne in Figure 21{c)-(e).)
Thus, Pin(e) and p cannot be on the same side of a line that passes through ¢ and is perpendicular to M.

Consequently, g will be the closest connection between edge (p, ¢) and Pin(a).

The second casge is when q is a degree-3 Steiner node in 7;. Let a and b be the children of ¢ in T such
that Pin{a) and Pin{b) are ¢’s children in T;. Without loss of generality, we assume that Pin(q) = Pin(a)
and n; = Pin(b). We must show that ¢ is located at the closest connection betieen nades p, Pin{a), and

Pin(b). There are four possible configurations for connections at g, as shown in parts (a)-(d) of Figure 21.

o In Figure 21(a), edge (p.q) is L-shaped and both Pin(a) and Pin(b) (denoted by ny and na in the
figure) must be on maximal segments with entry point q; it is easy to see that ¢ ts the closest connection

between p, Pin(a), and Pin(b).

In Figure 21(b)-(d}, edge (p, q) is a a straight edge. Let Af be the MS containing (p. ¢). and let M’ be the

MS perpendicular to A with entry point 4.

o In Figure 21(b), edge (¢, a) is L-shaped and edge (g,b) is on the MS Af'. By Lemma B4, " must
contain a sink, which will be contained in subtree Ty. Thus, Pin(h) (ns in the Figure) is located on
M'. Node a is the entry point for two branches perpendicular branches containing sinks (by Lemma
B4); Pin(a) is chosen arbitrarily from one of these branches (Line 3 in Figure 19). In Figure 21, either
Pin(a) = ny ot Pin{a) = n{: thus, it can be seen from the Figure that ¢ is the closest connection

between p, Pin{a), and Pin(b).

e In Figure 21(¢), A’ is the union of two branches. One of these branches contains a sink (by Lemma
B4); without loss of generality, let ihis be the branch containing edge (g, @}, with Pin(a) = ny in M’
Let B be the branch containing edge (¢.b). If Pin(b) is on B, then ¢ will be the closest connection
between p, Pin(e) and Pin(b). Otherwise, according to Lemma B2 we must have that b is the entry
point to a far hranch off of A7’ Hence, if Pin(b) is not on B. the b—Pin(h) path in T" contains only
edges on far branches (by the criteria in Lines 8-10 in Figure 19; see na = Pin(b) in Figure 21{c)).
Thus, Pin(b) is contained in the upper-right guadrant relative to ¢ in the Figure, and ¢ is the closest

connection between p, Pin(e). and Pin(b).

e Finally, consider the configuration in Figure 21(d). Here, MS Af’ is a branch of M containing node @
and sink Pin(a). Suppose that A’ is a far branch: if Pin(}) is not on MS M, then there must be a
near branch off of A/ somewlere below ¢ in 7* (otherwise, we could reduce all delays by shifting the
entire half segment of M below ¢ toward a). Let B; be the near branch below ¢ closest to ¢. Either
sink Pin(b) is on Bj, or the q;=Pin(b) path in T™ consists ouly of edges in B; or far branches. In

either case, Pin(b) (= ny in the Figure) is contained in the lowerright quadrant relative to ¢. If M’
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is a near branch, an analogous argument again shows that Pin(b) is ¢'s lower-right quadrant. Thus,

i 1 the closest connection between p, Pin(a) and Pin{b). 0

Except for redundancies and pruning of sub-optimal trees. BB-SORT-C searches over all possible ways

to construct a Steiner tree sequentially, such that each sink is added by a closest connection to some edge

in the current tree. Thus, we have:

}'.
Theorem B1: For any positive linear combination of sink delays, f = Z a; - t(n;), a; > 0 ¥7, algorithm
i=1

BB-SORT-C returns a Steiner tree 7™ which minimizes f. - O
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