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Abstract

Product-form queuneing network models have been widely used to model systems
with shared resources such as computer systems (both centralized and distributed),
communication networks, and flexible manufacturing systems. Closed multichain
product-form networks are inherently more difficult to analyze than open networks,
due to the effect of normalization. Results in optimization, error bounds, and work-
load characterization for closed networks in the literature are often for networks hav-
ing special structures and only specific performance measures have been considered.

In this article, we present certain properties (insensitivity of conditional state
probability distributions and pseudo-linearity of Markov reward functions) of closed
multichain product-form networks. These properties are derived using the most ba-
sic flow balance conditions of product-form networks. Then we show how these basic
properties can be applied in solving optimal routing problems, obtaining performance
bounds when the model parameters are given with bounded errors, and obtaining
performance bounds when similar customers are clustered together to speed up com-
putation.

Keywords: Queueing network, product-form, closed network, quasi-reversibility,

balance equation, optimization, load balancing, file allocation, error bound, cluster-
ing.

1 Introduction

Queueing network models are composed of networks of queues and customers that visit

the queues. They have been widely used to model systems with shared resources such as
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computer systems (both centralized and distributed), communication networks, and flexible
manufacturing systems. In these applications, the queues represent the system resources,
and the customers represent the users of the system. The solutions of the queueing network
models can give estimates of the performance of the real world system under study. Some
commonly used measures of performance are throughput, response time, server utilization,

etc.

An important class of queneing network models, known as “product-form” or “separable”
queueing networks, enjoys the existence of efficient computational algorithms for determining
performance measures. In addition, product-form networks have been widely and success-
fully applied to model the aforementioned real world systems. Since these models can be
efficiently solved, they are often used in studying design alternatives. Researchers have also
exploited the convexity properties of certain performance measures to obtain an optimal
design even more efficiently. For example, in [FRAT73|, Fratta, Gerla, and Kleinrock show
that. for a multichain open network, throughput is a concave function of flows, and therefore,
by using a down-hill search technique, a globally optimal routing policy can be determined.
In [KOBAS3]. Kobayashi and Gerla show that throughput is a concave function of relative
arrival rates for single chain closed networks; however, for multichain closed networks, it can
be easily shown that throughput is not a concave function of the relative arrival rates. In
[TRIP83], Tripathi and Woodside show that for a multichain closed network where the rout-
ing of every customer can be be controlled independently of the routing of other customers,
optimal throughput can be obtained at the vertex of the solution space, which is a convex

polytope formed by the allowable range of values of the routing probabilities.

All the above results have been developed only for networks having special structures
(such as assuming that the stationary state probability has certain algebraic form or restrict-
ing attention to a subset of BCMP networks [BASK75]), and only for specific performance
measures. In [CHEN91], we extend the results of [TRIP88] and show that an optimal vertex
solution exists for any multichain closed quasi-reversible network [KELL79] where the per-
formance measure of interest can be expressed as a Markov reward function (i.e., a weighted
sum of the state probabilities). The steps we take are basically as follows. First, we partition
the state space of the network according to where a tagged customer is (i.e., which server)

and show that the state probability distribution conditioned on the tagged customer being



at a specific server is independent of the relative arrival rate of the tagged customer at that
server. This result is proven without assuming any specific algebraic form for the steady-
state probability distribution but by using only the most basic property of quasi-reversible
queueing networks, namely, the partial balance condition (KELL79, NELS92] (Muntz calls
it the M = M condition [MUNT72], and Chandy and Martin call it the local balance con-
dition [CHANS3]). Then we use the above result to simplify the expression for the Markov
reward representation of the performance measure of interest. Lastly, we use results from
exact aggregation and Courtois and Semal’s bounding methods [COURS6] to show that an
optimal reward can be obtained at a vertex of the solution space. In [CHEN91], we also
show that the total reward, expressed as a function of the relatjve arrival rates of the tagged
customer, is a fractional linear function (i.e., a ratio of linear functions). A fractional linear
function is pseudo-linear, and when constrained linearly, can be optimized at a vertex of the

solution space defined by the constraints [BAZAT9].

That the state probability distribution, conditioned on the tagged customer being at a
particular server. is independent of the routing of the tagged customer raises the following
question: “For a network of quasi-reversible queues, is the conditional state probability
distribution also independent of the mean service requirerﬁent of the tagged customer at any
server?” For a delay server or a server with the processor sharing service discipline, we can
let the tagged customer self-loop at the server in question and obtain the same distribution
(since the distribution is independent of routing); therefore, the distribution would also be
independent of the service requirement at the server (since the customer never leaves the

server),

Nevertheless, the answer to the above question is negative in general. An intuitive argu-
ment against it is as follows. Consider a server where the customers are served in first-in-first-
out order. The service requirements of the customer are exponentially distributed. In order
for the queue to be quasi-reversible, the mean service requirements of all customer chains at
this server must be identical [BASKT5). For such a queue, the conditional state probability
distribution may not be independent of the mean service requirement of a tagged customer
because changing the mean service requirement of a customer destroys product-form. In
this article, we study conditions under which the conditional state probability distribution

ts independent of the mean service requirement of the tagged customer. A large subset



of quasi-reversible networks, which we call pseudo-reversible networks, satisfies these condi-
tions. (Our results on optimization and error bounds will be shown to apply to product-form

networks containing first-come-first-serve service centers as is discussed in detail in Section
5.2.2)

Knowing that the conditional state probability distribution is independent of relative
arrival rates and service requirements, any measure expressible as a Markov reward function
can be shown to be a fractional linear function of the model parameters (relative arrival
rates, mean service requirements, and relative utilizations) of a customer, and therefore, can
be optimized at a vertex of the solution space for an optimization problem, The fact that
the model parameters are specified as ranges of values can result from design constraints,
such as those in file allocation problems [TRIP88]. It can also come from other sources. For
example, if the model parameters are known to have bounded errors or if we are interested in
studying the sensitivity of a performance measure with respect to certain model parameters,
we can express the parameters as ranges of values. In [GORDS80}, Gordon and Dowdy study
* the impact of parameter estimation errors in closed product-form networks. They observe
that the partial derivative of the throughput of a chain with respect to a relative load for a
particular server is nonpositive for any value of the relative load. If relative loads are known
to have bounded errors, an upper bound on the throughput can be obtained when each
relative utilization is at its smallest value, and similarly, an lower bound on the throughput
can be obtained when each relative utilization is at its largest value. We will show that what
Gordon and Dowdy observed in [GORDS80] is a special case of a Markov reward function

being a fractional linear function of the relative loads.

The fact that the conditional state probability distribution is independent of certain
model parameters and that a Markov reward function can be shown to be fractionally lin-
ear in certain model parameters is not only of theoretical interest, but also has practical
application in optimal routing problems and in obtaining performance bounds. However,
solving large closed models can still be very expensive, and in this paper, we also consider
this problem. For models having groups of customers with similar valued parameters, an
approximation technique of clustering can be used to form clusters and associate one chain
with each cluster. The customers in a chain all have the same parameters which are chosen

to be representative of the cluster. By reducing the number of distinct chains, the space and



time complexity of solving the model is reduced. In the literature, clustering has often been
used to obtain an approximate solution of the model; to the best of our knowledge, error
bounds have not been given. We will show how our basic results can be applied to obtain

error bounds for clustering techniques.

The structure of this article is as follows. Section 2 defines the queueing network model
and the notation used in the remainder of the article. In Section 3, we present the insen-
sitivity results for product-form networks. Section 4 characterizes performance measures as
functions of model parameters. We then apply these basic results in the areas of optimiza-
tion, performance bounds, and clustering bounds in Section 5. Section 6 concludes with a

summary and a discussion.

2 Product-form Queueing Network Model

The queueing network models being considered are closed multichain networks of quasi-
reversible queues [KELL79} with Markovian routing for the customers. Such networks are
known to have product-form steady-state probabilities. Without loss of generality, we will

assume that there is only one customer per chain, unless otherwise stated.

There are K closed routing chains, and within each chain, class changes are allowed;
however, the classes associated with different chains are distinct. For -convenience, we will
assume that a customer never visits two distinct centers in the same class. (This assumption
can always be accommodated simply by renaming the classes.) Therefore, the class of a
customer uniquely identifies which center it is at and which chain it belongs to. We use o(c)
and <{c) to denote the center and the chain, respectively, associated with a customer of class
c. We use the term queue or center to refer to both the waiting room and the server parts

of a service center.

An important property of a quasi-reversible queue is that the partial balance condition
1s satisfied when the queue is isolated from the network and driven by a multiclass Poisson
workload. The partial balance condition is also known as the M = M condition [MUNT72]
or the local balance condition [CHANS3|. Let ¥ and i denote states of a queue, ¢(&, ) denote

the instantaneous state transition rate from 7 to 7, 7(Z) denote the steady-state probability



of state ¥, and A.(n) denote the set of states where there are n class ¢ customers in the
queue. The partial balance condition is satisfied if, for any class ¢ and any state 7 € A.(n),

where n > 0.

&) Y @) = Y w(§) e (1)

TEAL(n+1) FEAAn+1)
The partial balance condition balances the flow out of a state due to the arrivals of a class
of customers with the flow info the same state due to the departure of the same class of

customers.

Another kind of balance, station balance (as defined in [NELS92]), is characterized by

the following equation. For any class ¢ and any state 7 & Ac(n), where n > 1,

m#) Y &P = Y (P edd) (2)

F€Ac(n=1) FEA(n—1)

The station balance condition balances the flow out of a state due to the departure of a
class of customers with the flow info the same state due to the arrival of the same class of

customers.

The station balance condition defined here is weaker than the one defined in {CHANY7)
where a service center is divided into stations, each of which can be occupied by a customer.
Station balance, as defined in (CHANT7], holds if the flow out of a station due to the departure
of the customer in the station equals the flow into the same station due to the arrival of the
same class of customers. We adopt the definition of station balance of [NELS92] because
it is weaker (and seems to be more natural to us) than [CHANT7). (For a more detailed
discussion, the reader is referred to [CHEN92].) Figure 1 depicts the difference between
partial balance and station balance. The solid lines correspond to arrivals and the dashed
lines correspond to departures of class ¢ customers. In a way, partial balance and station

balance are “mirror images” of each other.

Partial balance is a property of a quasi-reversible queue. Here we define a new term
called pseudo-reversibility. A pseudo-reversible queue is a quasi-reversible queue that also
satisfies the station balance condition described above. Not all quasi-reversible queues are
pseudo-reversible. For example, a quasi-reversible queue that serves customers in the first-

come-first-serve order is not pseudo-reversible.



Ac (n-1)

Figure 1: Partial balance vs. station balance.

For a pseudo-reversible queue, we make the following assumptions concerning the schedul-
ing discipline of the queue and the service time distribution of the customers. (1) We assume
that the service discipline has the immediate service characteristic, meaning that a customer
has a service rate > 0 immediately after its arrival to the queue. This excludes, for example,
any policy that serves the customers in first-in-first-out order. (2) We assume that a service
time distribution has a rational Laplace transform; such a distribution can be represented by
a network of exponential stages [COX55]. Figure 2 shows an example of an m stage Coxian
distribution where the mean service time of stage ¢ is 1/y,, and the probability that the

customer goes on to stage : + 1 when it finishes service at stage ¢ is ov;. Algebraically, all

Figure 2: An m stage Coxian representation of a service time distribution

known quasi-reversible queues satisfying assumptions (1) and (2), which we have examined,

are pseudo-reversible.

With the immediate service assumption, a model containing Coxian service time distribu-
tions can be replaced by an equivalent model with only exponential service time distributions
if class changes are introduced properly. Basically, a customer finishing service at stage i
and going to stage 1 + 1 with probability «; in the original model is replaced by a customer
changing from class 7 to 74+ 1 with probability o; and returning to the same queue; the service

times for classes ¢ and 7 + 1 are exponentially distributed with means 1/g; and 1/p44, re-



spectively. For the rest of the article, when we consider a pseudo-reversible queue satisfying
assumptions (1) and (2), we assume that, without loss of generality, the service times are

exponentially distributed.

For a pseudo-reversible queue, we further assume that the total rate of service for a class
¢ customer at center j = o(c) can only be dependent on the state of center j (we do not
allow the service rate to depend on the state of other centers); it is denoted by p.(z;), where
J = o(c) and £; is the state of queue j. When a class ¢ customer has received the required
amount of service, it changes its class to class d (and moves to center o(d)) with probability
ped. In this article, we will only consider the case where the service rate for a customer can
be decomposed into the following form for a pseudo-reversible queue,
#a(T;) fe(T))

7.

where py(%;) denotes the total service effort supplied by server j when its state is (£;),

/J’c(‘i‘j) = (3)

fo(Z;) denotes the fraction of server j’s capacity given to serve the class ¢ customer when
the state of the server is &;, and T. is the mean service requirement for the class ¢ customer.
(We will use the term “service time” to also refer to the “service requirement” in the rest
of the article.) We assume that po(7;) and f.(%;) are giﬁen as constants (not functions of
the service time of any particular customer). All quasi-reversible queues known to us which
satisfly assumptions (1) and (2) mentioned earlier in this section have service rate equations
of the form of Eq.(3). Therefore, it appears that we do not lose any generality with the

above restriction in service rates.

2.1 Model Parameters

Throughout this article, we assume that certain model parameters can be varied or controlled
within some range. (Applications, e.g., optimization, are described in Section 5). The model
parameters being considered are the visit ratios, mean service times, and relative utilizations.
When visit ratios are considered to be variables, we assume that mean service times for all
chains are held constant. When mean service times are considered to be variables, we assume
that visit ratios for all chains are held constant. As we will see in the following section, there
1s a direct relationship between the types of model parameters which can be varied and the

types of performance measures for which we have effective solutions for the optimization and



error bound problems.

2.2 Performance Measures

The performance measures of interest are those that can be expressed as Markov reward

functions. A Markov reward function, denoted by R, is a weighted sum of state probabilities:

R = ) =(Z)R(Z) (4)
FeS
where I = (F,,...,%;) denotes a state of the network of queues with J being the total number

of queues, S denotes the state space of the network, (%) denotes the steady-state probability
of state &, and R(Z) is the reward rate assigned to state £. Eq.({4) can express many
useful mean performance measures such as server utilization, mean number of customers
in a subsystem, weighted sum of customer throughputs, etc. However, it can not express
measures such as mean residence time. When considering a network of quasi-reversible
queues. we assume that R(Z) is independent of the routing probabilities and the visit ratios
of any customer and that the model parameters that can be varied are the visit ratios of
the customers at various queues. It is unusual to have R(Z) be dependent on visit ratios:
therefore, for all practical purposes, any Markov reward function can be considered for a

network of quasi-reversible queues where visit ratios can be varied.

For the more restricted case of a network of pseudo-reversible queues, the visit ratios of
the customers may be considered fixed and the mean service times of the customers can be
varied. For performance measures such as server utilization, mean number of customers, sum
of state probabilities (such as those used in [DESO89] to measure steady-state availability
of a repairable computer system), etc., R(Z) is easily seen to be constant, relative to the
mean service times. However, if the performance measure of interest is a weighted sum of
customer throughputs, R(Z) would be a function of some mean service time parameters. [n

this case, we restrict R(£) to be in a form described below.

Let vi(Z) denote the class of the chain k customer in state £, and let 1{-) be an indicator
tunction which evaluates to 1 if the expression inside the parenthesis is true and to 0 oth-
erwise. Also, let ™ denote a distinguished class for the chain k customer. Basically, if the

performance measure of interest is a function of the throughput of the chain k customer in



class ¢, then ¢ must be the distinguished class for the chain k& customer. We allow R(Z) to

be of the following form:
. 1(ve(Z) = E*)be(Z

k

A(Z) = a

—_——

where (&) and the b,(Z)’s are independent of the routing probabilities, visit ratios, and
mean service times of any customer. (Please note that, for any chain, only the mean service

time of one of its classes is allowed to appear in the reward rate equation.)

Eq.(5) looks restrictive; nevertheless, it seems that all “interesting” performance mea-
sures which are expressible as Markov reward functions can fit the form of Eq.(5). Some
examples are a weighted sum of customer throughputs, a weighted sum of server utilizations,
a weighted sum of mean queue lengths, and a weighted sum of state probabilities (such as
availability measures for repairable computer systems [DES0O89]). Mean sojourn time is not
included because it is not expressible as a Markov reward function. The performance mea-
sures that Eq. (5) excludes seem to be obscure ones (e.g., R(£) being a polynomial function

of T, or a higher order polynomial function of 1/T,).

2.3 Notation

For convenience, we list below the notation which is used throughout the article. It is
important to recall that there is only one customer per chain in the closed queueing model,

and that a class index fully specifies the location and the chain membership of a customer.

J = number of service centers.

K = total number of closed routing chains (or customers) in the network.

C = total number of classes.

¢, d = class indices.

s(e) = the chain associated with the customer of class c.

a(c) = the service center associated with the customer of class c.

Cy, = the set of classes visited by the chain & customer.

Ped = routing probability (the probability that the customer of chain ¢(c) in class

c changes class to d when it finishes service at service center o{c})).

10



8. = visit ratio of the chain k = ¢(c) customer at center o(c), scaled such that
8.k) = 1, where c(k) is a specified (reference) class of chain ¢(¢). 6. =

Tie Cete 04 pac.

T, = mean service requirement of the chain ¢(¢) customer at center o(c) in class
c.

Pe = 0.T. = relative utilization (or relative load) of class ¢.

Tk = state of the chain % customer with respect to center j. Specifically, z;, = 0

if the chain k customer is not at center j and z;; = cif the chain k customer

1s at center j in class c.

T = (1,2 2,....7;5) = state of center j.

T = (&1,7F,,...,75) = state of the network model.

S state space of the network.

T{Z) = steady-state probability that the network is in state £ € S.

3 Insensitivity of Conditional State Probability Dis-

tribution

In this section, we present the insensitivity results for networks of quasi-reversible and
pseudo-reversible queues. Let A. denote the set of states where the chain ¢(c¢) customer

') denote

15 at center o(c) in class e. For a state £ € A, let 7(Z|A.) = 7(Z)/ Zgea. 7l
the steady-state probability of state Z, conditioned on the chain ¢{¢) customer being in class
c. Below, we show that for a network of quasi-reversible queues, for all ¥ € A, 7(£|A.) is
independent of {or insensitive to) the values of the visit ratios of the customer of chain <{c).
We also show that for a network of pseudo-reversible queues {which are also quasi-reversible
by definition), the conditional state probability distribution is also independent of the service
time of that customer in class ¢. (Stated in equational form, V7 € A., #(Z|A.) is independent
of the 8;'s, Vd € C. for quasi-reversible networks and n(Z|A,) is, in addition, independent

of the Ty’s, Vd € C(,) for pseudo-reversible networks.)

For a product-form network, a state probability can be expressed as a product of marginal

11



state probabilities as shown below.
1 J
7@ = & IIm(E) (6)
J=1

where G = 3" o5 m(Z') is the normalization constant and ,(Z;) is the steady-state prob-
ability of state &; for center j when it is driven by Poisson arrivals with rates @..’s, where
¢ €{c|l <¢(c) £ K, o(c) =j and 8. > 0}. For a ratio of state probabilities (e.g., as
occurs in expressions for conditional state probabilities), the normalization constants cancel
each other out. In order for us to prove the insensitivity results, we need to examine the

relationship between the marginal state probabilities and the model parameters.

3.1 A Queue in Isolation

Consider an isolated quasi-reversible queue (or a pseudo-reversible quene, where appropriate}
driven by Poisson arrivals with rates A;,..., Ac. No class change is allowed in this model.
Let T; denote a state of the queue. {For convenience in notation, we keep the j subscript
in ;. This isolated queue is considered to be queue number j.) Let the (infinite) state
space of this model be denoted by S, and let A.(n) denote the set of states with n class ¢
customers. Let w(Z;[Ac(n)) = 7(7;)/ Lz e a.(n) 7(Z;) denote the state probability of state
#; conditioned on the state of the model being in some state of A.(n). We have the following

lemma.

Lemma 1l  For a quasi-reversible queue, both 7{Z;]A.(0)) and n(Z;|A.(1)) are independent

of AL,
Proof: See the proofs of Lemmas 1 and 2 in [CHEN91}. 0

Now we turn our attention to the service time parameter. We assume that the service rates

are in the form specified in Eq. (3).

Lemma 2  For a quasi-reversible queue, m(Z;|A.(0)) is independent of T...

'This lemma suggests that a general proof of independence of 7(Z;|4.(n)) is possible by induction. This
is indeed true. However, the lemma is stated only for n = 0 and n = 1 because that is all that is needed

here.

12



Proof:

The proof is very similar to the proof of Lemma 1. In the proof of Lemma 1, we have
shown that m(F;|A.(0)) can be obtained by truncating the state space to A.(0). (In
a recent paper, Nelson calls this the stafe truncation property for queues that satisfy
the partial balance condition [NELS92].) Again, let Q" denote the rate matrix that
corresponds to the truncated model; then we have 7(Z;|A.(0)) @* = 0. This situation is
depicted in Figure 3. Clearly this eliminates the dependency of the transition rates in
Q" on T. because Q* only involves transitions within Ac(0), while only transitions from
states in A.(1) into states in Ac(0) are dependent on 7. Since all transition rates in Q™ are
independent of 7., the components of the solution to 7Q* = @, namely, the 7(7;|A.(0))’s,

are also independent of 7..

internal transitions
are not /
functionsof T, ©

-

Figure 3: Truncation of the state space to A.(0).

Below, we restrict ourselves to pseudo-reversible queues because station balance is needed.

Lemma 3  For a pseudo-reversible queue, m(F;|A.(1)) is independent of T..

Proof:

From global balance, we have, ¥ Z; € A.(1),

P& 3 a@E) 4 m(E) Y dELg) + r(d) > al@nE) =

¥ 'EA(T) FEA(0) 7,EA(2)
Z W(;fj')q(fj’, i"j) + z W(?j)‘l(gj:fj) + Z W(E.?)Q(%aff)
e (1) 7;€A4.(0) $EA4.(2)
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The second and the third terms on each side of the equation cancel out due to station
balance and partial balance, respectively. We then have:

m(#) D q@F) = Y 7@ F) (7)

FleA(1) E;'€AL(1)

Eq. (7) corresponds to the global balance equation if the state space is truncated to A.(1).
Let #*(Z;) denote the solution for the truncated model. Since none of the parameters of

the truncated model are functions of 7., #*(Z;) is independent of T..

Clearly, Gn(#;) is a solution to the truncated model, where G is the normalizing constant,
Le., G =1/3z ea.) 7(Z;"). Therefore, 7*(F;) = Gx(Z;) = 7(Z;]A:(1)), and we have that
m{(&;|Ac(1)) 1s independent of T.. 0O

Since the relative load (p.) is just the product of the visit ratio (8.) and the service time
(7.}, the following is a direct consequence of Lemmas 1, 2, and 3. For a quasi-reversible
queue, 7(L;|A(0)) is independent of p., and for a pseudo-reversible queue, 7(F;{A.(1)) is

independent of p..

Below, we show that =(Z|A.), the conditional state probability in a closed queueing model,
is independent of the visit ratios of the chain ¢(¢) customer for a network of quasi-reversible
queues. We also show that w(|A,) is independent of the service times and the relative loads

of the chain ¢(c} customer for a network of pseudo-reversible queues.

3.2 Closed Queueing Network Model

Lemma 4  For a network of quasi-reversible queues with Markovian routing, m(Z|A.) is

independent of 8, Vd € C(y.

Proof:

See the proof of Lemma 3 in [CHEN91] for the case where d = ¢. For d € C( and d # c,
it is quite straight forward. From the definition of m(Z|A.) and by application of Eq.(6),

we have,

— J T
DR B 1 2.1
m{Z]A.) T#ea T(E) Liea H»"Ll mi(%,")
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Since £ € A, and each chain can only have one customer, when the chain ¢(c) customer is
in class ¢, there can be no customer in class d. Therefore, the expression for any marginal
state probability in Eq. (8) must not contain any 8,;’s. Therefore, (Z|A,) is independent

of 8. O

In general, the unconditioned state probability is a function of 8, and the 8,’s, for d # c.
However, the 8;’s only appear in the normalization constant, and the dependencies cancel
out in the equation for the conditional state probability. In addition to appearing in the
normalization constant, 6, also appears in each 7;(Z;) and 7,(Z,’). Again, the dependencies
cancel out. The next lemma is similar to the above, but it is for networks of pseudo-reversible

queues.

Lemma 5  For a network of pseudo-reversible queues with Markovian routing, w(Z|A.) is
independent of Ty, Vd € Cq().

Proof:

The proof is almost the same as the proof for Lemma 4, except that the visit ratios are
constants here, and Lemmas 2 and 3 are used to show that for any center 7, m;(Z,)/7,(Z;)
is independent of Ty due to the fact that the respective conditional state probabilities are

independent of T;.

3.3 Discussion

It is important to note that, throughout the proofs in this section, we do not assume any
specific algebraic form for the steady-state probability distribution. We use the most basic
property of quasi-reversible and pseudo-reversible queues, namely, the partial balance and the
station balance conditions. With pseudo-reversible queues, the results are restricted to queues
with the immediate service characteristic, customers with service time distributions that have
rational Laplace transforms, and certain form of Markov reward functions. Nevertheless, as

we have discussed in the presentation above, we do not lose generality in practice.

It 1s also important to note that even though any model with multiple customers per

15



chain can be converted to a model with a single customer per chain, we assume that the
visit ratios of a customer are independent of the visit ratios of another customer in Lemma
4 and that the service times of each customer are independent of the service times of other
customers in Lemma 5. Therefore, if one starts with multiple customers per chain, these
results do not apply. However, as we will see in Sections 5.2 and 5.3, such a restriction can

be relaxed for certain applications.

4 Pseudo-linearity of Markov Reward Functions

In this section, we show that, for a network of quasi-reversible queues, the mean time the
chain %k customer spends in any class ¢ € C; (per visit to class ¢) is independent of chain
k customer’s routing parameters (6.'s, V¢’ € Ci). The mean time the chain ¢(¢) customer
spends in class ¢ is referred to as the mean sojourn time or the mean waiting time (including
the customer’s service time) in class ¢, and it is denoted by W, (the notation I is used in
[CHEN91]). We also show that, for a network of pseudo-reversible queues, the mean sojourn

time 1s proportional to T..

Using the above facts. we then show that a Markov reward function is marginally pseudo-
linear in the model parameters of a customer. The adjective “marginally” means that the
mode] parameters of other customers are held constant. The model parameters being con-
sidered are visit ratios for networks of quasi-reversible queues and service times and relative

utilizations for networks of pseudo-reversible queues.

Throughout this section, we will focus on an (arbitrarily chosen) chain k customer. For
ease of exposition, let C, = {1,2,...,(t}. The state space S can be partitioned according
to the class of the chain & customer, and the partition is denoted {4,,As,...,A¢, }. Let
P({A.) = Yzea, 7(&£) denote the steady-state probability that the chain k customer is in
class c. Using the definition of the conditional state probability, 7(Z|A.) = n(Z)/P(A.), the

steady-state reward rate can be rewritten as follows:

Ck Ck
R = Y m(ER(E) = ) Y #(@)RE) = Y |P(A) Y (Z|A)R(T) (9)
fes c=1 F€ A, c=1 feA.

We will first examine the relationship between the mean waiting time and the model param-
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eters,

4.1 Mean Waiting Time Equations

Lemma 6  For a network of quasi-reversible queues, W, is independent of the routing of

the chain k customer.

Proof:

Let A, denote the throughput of the chain k customer in class c. Using Eq.(9), A, can be
expressed as.

Ae = P(A1) X0 #(FANR(E)+...+ P(Ac,) Y. 7(Z]Ac,)R(F)
FEA, I€Ac,

where R'(Z) is the throughput (departure) rate of the chain k& customer in state 7 (and
therefore, independent of the routing of the chain k customer). Clearly, if £ ¢ 4., R'(Z) =
0, and the above equation reduces to,

Ae = P(AJ) Y #(Z]A)RI(E) (10)

£€A.

Since there is only a single customer per chain, P(A.) is just the mean queue length of
the class ¢ customer at queue o(c). From Little’s result, A, W, = P(A.), and we have,
-1

W, = LZ T(Z]A.) R (%) (11)

FEAe

Since 7 (Z|A.) and R'(Z) are independent of the routing of chain % (confer Lemma 4), W,

15 independent of the routing of chain £. 0O

Lemma 6 is consistent with the Arrival Theorem [LAVES0], which is used in the celebrated
Mean Value Analysis (MVA) algorithm [REIS80]. The Arrival Theorem basically states
that, in a product-form network, a customer arriving to a queue sees the network {with itself
removed) in equilibrium. This would also imply that the mean waiting time at the queue is

mdependent of the routing of the customer.

Lemma 7  For a network of pseudo-reversible queues, W, is proportional to 7.
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Proof:

In Eq. (11}, R'(£) measures the throughput rate of the class ¢ customer when the state
1s Z. In other words, R'(Z) is the service rate of the class ¢ customer in state ¥, which

we have assumed can be written as R"(Z)/T., where R"(Z) is independent of T. (confer

Eq.{3)). Then we have,
T:

- deAc W(ElAC)R”(-CE)
The denominator of Eq.(12) is independent of T, (confer Lemma 5); therefore, W, is

W, (12)

proportionalto T,. O

Many familiar waiting time equations for product-form queues are in the form indicated by

Lemma 7. For example, for a delay server, W, = T,. For a fixed-rate server,
W(N) = T [1 4 Lo (N — &)
where ¥ denotes the network population vector, and L; is the mean queue length at queue
7 [REIS80]. For a load-dependent server,
N

W, =T ) ———
mzzllua(c)(m)

m =3 -
P[,(C)(m — HN — eq(c))

where V is the total number of customers in the network, p;(m) is the service rate of queue
J when it has m customers, and Pj(m[[\?) is the stationary probability that queue j has m

customers when the network population vector is N [REIS81],

Now we show that the Markov reward functions we are considering (see Section 2.2) are

marginally pseudo-linear in the model parameters of a customer.

4.2 Reward Functions

For a network of quasi-reversible queues, R(Z) is assumed to be independent of the routing
of the chain k customer. Lemma 4 shows that m(Z|A.) is also independent of the routing of
the chain & customer. Therefore, the sum, 3z 4. #(Z|A;) R(Z) is independent of the routing

of the chain & customer. We use R. to denote the above sum. R, is referred to as the
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conditional reward rate of the chain k customer in class e, Eq.(9) can then be rewritten as,

Ch
R =} P(A)R. (13)

We have the following lemma.

Lemma 8  For a network of quasi-reversible queues, a Markov reward function R is a
fractional linear function of the visit ratios of the chain k customer, if the visit ratios of all

other chains are held constant.

Proof:

Using Little’s result, we have that P(A.) = A.W.. However, Zg‘;l AaeWo =1, and

therefore,

AW,
T AW

Since A./A» = 8./0., the above equation becomes,

P(AC) =

0.W,

PlA) = o7 (14)
2521 O W
and therefore, o
2 0.W.R, -
R = ;5:—_—— (15)
2om 0 We

From Lemma 6, W, and the W..’s for ¢’ € C; are all independent of the routing of the
chain & customer. Therefore, R in the above equation is a fractional linear function of

the visit ratios of the chain k customer. 0

For a network of pseudo-reversible queues, Eq. (14) is still valid. Substituting Eq. (12) into
' Eq.(14) and denoting the denominator of Eq. (12) by 1/a., we have,

1.6 ..
P(Ac) = Cr -
ooy Toboay

where . is independent of T, as shown in Lemma 7. The total reward can be written as,

(16)

C
zc,—f]. Tcgcac RC
zgk:l Tcwgcw et

R = ZP(AC)RC = (17)
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If R(Z) is independent of the T.’s, the R.'s will also be independent of the 7.’s, and R
can easily be seen to be a fractional linear function of the mean service times of the chain
k customer. However, this excludes interesting performance measures such as a weighted
sum of customer throughputs. Therefore, we allow R(Z) to take the the following form (as

mentioned in Section 2.2):
(18)

where a(Z) and the b;(Z)’s are constants. Furthermore, since we are focusing on the chain
k customer, the mean service times of other chains are considered constant. We have the

following lemma.

Lemma 9  For a network of pseudo-reversible queues, if the reward rate for a state can be
written as shown in Eq. (18), then R is a fractional linear function of the mean service times

of the chain k customer, if the mean service times of all other chains are held constant.

Proof:

Eq. (18) can be rewritten as,

bi(Z)
T

be(Z)

. (19)

X
R(E) = a(d) + ) |Lw@)=10)

{=1,i#k

L(ve(Z) = £7)

Since there is only one distinguished class per chain, the second term on the right hand
side of Eq.(19) is constant with respect to Tis. Combining the first two terms on the

right hand side of Eq. (19) and calling the combined term a;(Z), we have,

RE) = a(@ + 1@ = k)

where a,(Z) is a constant with respect to the mean service times of the chain & customer.

Notice that if £ € A, then v(Z) = ¢; combining this with the definition of R., we have,

R. = 3} n(Z|A)R()

LEA,
1 - -
= X n(@Adan(@ + e = k) 3 (@ A)b(D)
ZEA, k* zea.
— + 1( —_ kt) bc
= a. c= Tk*
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where a, and b, are independent of T%.. Since k™ is just one of the classes of chain &

(1 < k" < Cy), we can substitute the above equation for R, into Eq.(17) and get,

O e br + Tk (Tu6. 0 + Boah.) (20)
Soty Tuboa

Clearly, R is a fractional linear function of the mean service times of the chain & customer.

R =

a

If we are interested in R as a function of the relative utilizations, we have the following

lemma.

Lemma 10  For a network of pseudo-reversible queues, if the reward rate for a state is
constant with respect to both the visit ratios and the mean service times, then R is a fractional
linear function of the relative utilizations of the chain k customer, if the relative utilizations

of all other chains are held constant.
Proot:

This is easily seen to be true from Eq.(17). ©

5 Applications of the Basic Results

In the previous section, we have shown that a Markov reward function is marginally pseudo-
linear in the model parameters for a product-form queueing network. A pseudo-linear func-
tion is both pseudo-concave and pseudo-convex. Such a function of one variable is illustrated
in Figure 4. (Tor a detailed characterization of pseudo-linear functions. the reader is referred
to [BAZA79].) One important characteristic of a pseudo-linear function is that if f(z) is
pseudo-linear in the interval [zq,z;], the minimal (or maximal) value of f in that interval
must occur at an extreme point, namely, either #; or z,. In higher dimensions, the scalar x
is replaced by a vector &, the interval is replaced by a convex polytope F, and if ¥ can be
varied within the convex polytope, then f can be minimized (or maximized) at a vertex of
the convex polytope. In the sections below, we discuss various ways in which the restriction
of parameters to a convex polytope can arise and how the basic results (the insensitivity re-

sults of Section 3 and the pseudo-linearity results of Section 4) can apply. In Section 5.1, we
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Figure 4: Non-pseudo-linear and Pseudo-linear Functions.

look at optimization problems where a set of design constraints determines the shape of the
convex polytope. In Section 5.2, we look at the problem of obtaining performance bounds
when the model parameters have bounded errors. In this case, the errors in the model pa-
rameters define the convex polytope. In Section 5.3, we look at the problem of obtaining
performance bounds for models with a large number of similarly behaving customer chains.
‘In this case, we artificially create the convex polytope so that the performance bounds can

be obtained relatively inexpensively. A numerical example is given at the end of Section 5.3.

5.1 Optimization Problems

In [CHENO1], we investigate the problem of optimally routing customers in closed quasi-

reversible networks. The results of [CHEN91] are briefly reviewed in Section 5.1.1 below.
5.1.1 Review of Previous Results

In {CHEN91], the queueing network models studied are closed multichain networks of quasi-
reversible queues with Markovian routing for the customers. Only one customer is allowed
in each chain (therefore, the words customer and chain are used interchangeably unless
otherwise stated). The transition behavior of a chain k customer is described by a stochastic
routing matrix Py, = [pk]. (Solving 6;Px = 6 gives chain k’s visit ratios (j‘k) Since
we are interested in optimal routing problems, not all the elements in Py are fixed; we
allow p¥, = a¥; + v%, (but subject to the constraints that 5, p*; = 1, V¢) where a*, is a

nonnegative constant and v¥, is a nonnegative variable. The problem of optimal routing is to

22



find an assignment for all the v%,’s for all chains such that a given Markov reward function
is optimized. In this case, each v*, is a decision variable in the optimal routing problem. To

simplify the discussion, we assume that all the a*,’s are zero. (Our results easily generalize to

the case where af; can be nonzero.) The decision variables are all distinct and independent
except that they are constrained to keep Py stochastic. Let B = 7 B be the vector notation
for Eq. (4), and let Q denote the state transition rate matrix. The optimization problem can
be specified (without loss of generality, assuming that we are minimizing the given reward
function) as,

min: T-R ) (21)

st 7 Q =0
Clearly, Eq.(21) has a nonlinear objective function and linear constraints in the decision
vartables. It is not clear that Eq. (21) has an optimal vertex solution; however, in [CHENG91],

we show hat it does have an optimal vertex solution in the following fashion.

Let the routing variables be fixed for all chains except for a tagged chain, say, chain
k. The rate matrix Q can be partitioned into C} parts according the class of the chain &
customer. If we apply exact aggregation [COURS6] to the partitioned Q and obtain Q"49,
solving 10 Q49 = 0 gives the steady-state probability distribution of the chain & customer in

all its classes.

Let’s further assume that all the routing variables for chain k are fixed except for those
that are associated with the routing probabilities when the chain & customer finishes service
in a particular class, say, class c. All these routing variables are on the row of Q4¢ which
corresponds to class c. The problem of finding an assignment for the v*,’s that minimizes

(or maximizes) the total reward can be formulated as the optimization problem below.

min: R
st Tgvk =1 (22)
v8, >0 VYd

Let Q#9(d) denote the matrix obtained from Q4 by setting v¥, to 1 and setting v*, to 0
for all d’ # d, let 6(d) denote the solution to w(d) Q49(d) = 0, and let its corresponding
reward be denoted by R(d). Using a lemma from [COURS6], it is shown in [CHEN91] that
w is in the convex hull of {w{d).d € C; and d # ¢}, or equivalently, @6 = T, B4w(d) where
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24 P¢ = 1. Combining this fact and Eq. (13), we obtain that,
min {R(d)} < R < max{R(d)} (23)

Eq.(23) states that the optimal total reward can be obtained at a vertex of the solution

space which is defined by the constraints in Eq. (22).

In [CHEN91], we show that the above result can easily be extended to the case where all
the routing variables are allowed to vary for all chains. This is called the Generalized Vertez
Allocation Theorem. Knowing that an optimal solution exists at a vertex of the solution
space reduces the search space from a continuum to a finite number of points; however,
solving the optimization problem can still be computationally prohibitive. In [CHEN91j,
we further study a special case where the total reward is a fractional linear function of the

control variable and a gradient based algorithm can be used to obtain the optimal solution.

5.1.2 Discussion of the Previous Results

Optimal routing problems for closed queueing networks are closely related to stochastic
optimization problems. If we allow state-dependent routing, where the routing decision of
a customer can depend on the state of other queués (still having only one customer per
chain), the optimal routing problem can easily be transformed into a stochastic optimization
problem with infinite horizon and no discounting, and such a problem is known to have
an optimal vertex solution [BERT87]. However, this type of routing is considered to be
dynamic routing in the queueing literature. In [CHEN91], the routing of the customers is
static, meaning that the routing decision must be independent of the state of other queues,
A corresponding problem in stochastic optimization will constrain a set of states to have the
same branching probabilities, and for such a type of problem we can not find any general
results in the stochastic optimization literature stating that such a problem would have an
optimal vertex solution. We have in fact observed experimentally that a small deviation from
the quasi-reversible models we consider always leads to optimal solutions not obtainable at

a vertex of the solution space.

24



5.1.3 Other Optimization Applications

In [CHEN91], the control variables for the optimization problem are the routing probabilities
of the customer chains. If the control variables are instead the visit ratios of the customers,

which are constrained linearly, then such an optimization problem would be formulated as,

min: R
s.t.: Vk,  Axfe > b, and (24)
0

{

v

k

where Ay is a matrix of arbitrary constants and Ek 1s a vector of arbitrary constants with
respect to the visit ratios of the chain & customer. From Lemma 8, R is a fractional linear
function of the visit ratios of any chain k customer for a quasi-reversible network, and
therefore, Eq. (24) is a fractional linear program (characterized by the fact that the objective
function is fractional linear and the constraints are linear), which is known to have an
optimal vertex solution [BAZA79]. The maximizing version of the fractional linear program
of Eq.(24) also has an optimal vertex solution. Using an argument similar to the one used
to prove the Generalized Vertex Allocation Theorem, when the visit ratios of all chains are

considered, an optimal reward can be obtained at a vertex of the search space.

In an optimal routing problem for a closed queueing model, the control variables are often
the routing probabilities, which indirectly determine the visit ratios. (For open models, the
control variables are often the routing probabilities or the visit ratios.) Even though it might
be unnatural to be able to control the visit ratios directly in a closed model, as we will see in
the section below, for certain applications, being able to solve such an optimization problem

is useful for to obtaining bounds.

If the control variables are the mean service times (or relative utilizations) of the cus-
tomers, which are constrained linearly, a similar optimization problem can be formulated
as,

min: R
s.t.: Yk, ifk > b', and (25)
Te >0

where elements of matrix A} and vector EL are arbitrary constants with respect to the mean
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service times (or relative utilizations) of the chain % customer. From Lemma 9. R is a
fractional linear function of the mean service times (or relative utilizations) of any chain &
customer for a pseudo-reversible network. Consequently, the optimal reward can be obtained
at a vertex of the search space when the mean service times (or relative utilizations) of all

chains are considered.

In certain optimization problems for closed queueing models, the mean service times of
the customers are controlled indirectly through the speeds of the servers. Qur results are
not applicable in these cases since we require that the service times of different chains are
independent of each other. Even though it might be unnatural to be able to control the
service times directly, as we will see in the sections below, for certain applications, being

able to solve such an optimization problem is useful for to obtaining bounds.

5.2 Error Bounds in the Presence of Parameter Uncertainties

Studies of the impact of parameter estimation errors in queueing network models are often
done in the context of either sensitivity analysis or workload characterization. In sensitivity
analysis, the sensitivity of a performance measure with respect to a certain parameter is
defined in terms of the partial derivative of the measure with respect to that parameter
[DESO88, MCKES84]. For example, the partial derivative of the throughput of, say, chain ¢
customers at center j with respect to the visit ratios of chain ¢ at center j can be expressed in
terms of the throughput, the visit ratio, the mean queue length, and the mean queue length
seen by an arriving customer of chain ¢ at center j. In [GORDS80], such an expression is
used to bound the elasticity of throughputs with respect to visit ratios for multichain closed
networks. Elasticity is defined as the ratio of the percent change in throughputs for a given
percent change in visit ratios. In [DESOS88] and [STRES6], it is shown that some partial
derivatives can be easily obtained using recursive expressions similar to those used in the
MVA algorithm [REIS80]. However, partial derivatives only give the rate of change of the
performance measures for infinitesimal changes in the parameter values. If a performance
measure possesses the convexity property, error bounds on the performance measures can
be computed from partial derivatives. Figure 5(a) depicts the situation where the convexity
of the performance measure f and the partial derivative can be used to obtain bounds.

The straight line which is tangent to f in Figure 5{a) represents the partial derivative of
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Figure 5: Relationship between partial derivative, convexity, and bounds.

f evaluated at point z, and it is denoted by Vf(z). Since f is convex, for any point y,
we have that f(y)> f(z) + Vf(z)(y — z); therefore, f(z) + Vf(z)(y — z) is a lower bound
of f at point y. Similarly, when f is concave, the partial derivative can be used to obtain
an upper bound. Figure 5(b) depicts the situation where f does not have the convexity
property. In this example, f is convex around point z. However, for different values of y
along the line Vf(z), f(z) + Vf(z)(y — =) can be either smaller than f(y) or larger than
fly). Therefore, the partial derivative can not be used to obtain bounds. The convexity
property usually exists only in open networks [FRATT73, DESO84] or single chain closed
networks [KOBAS3, SURI83, SURI85, TAY85]. For multichain closed networks, examples
can be easily constructed to show that most performance measures do not enjoy the convexity

property. In general, it is very difficult to obtain error bounds for multichain closed networks.

In the area of workload characterization, the parameters of a queueing network model are
often obtained through measurements, and measured data inherently introduces errors. The
uncertainties in model output can be categorized as modeling errors or parameter estimation
errors. Modeling errors arise when a queueing network model is not a good representation
of the system it is trying to model. For example, suppose we know that a particular server
in the system serves the arriving jobs in first-in-first-out order, and we know that the service
times for the jobs are exponentially distributed, but each job class has a different mean. In
this case, a modeling error is introduced if we model the server by a product-form fixed rate
server with a certain mean service time for all the customers. In contrast, if all jobs have the
same mean service requiremnent at the server in the above example, but we do not know the
exact value of the mean service requirement, a parameter estimation error is introduced if

the value for the mean service requirement we assign is in error. Most work in this area tries
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to answer the question of how to minimize modeling errors [FERR83, SERAS5}, i.e., how
to choose a “good” model structure. Some work in characterizing the parameter estimation
errors is done in the context of sensitivity analysis, e.g., {GORDS80] and [TAY85]. We assume
that the underlying workload can be accurately modeled by a closed multichain product-
form network and concentrate on the case where the parameters have estimation errors that
can arise due to measurement errors or due to to the fact that the workload of the system is
not constant with respect to time. In these cases, one would like to know the impact of the

errors on the accuracy of the solution of the queueing network model.

5.2.1 Optimization vs. Error Bounds

In Section 5.1, we considered the optimization problem where the ranges of values for the
routing probabilities of closed queueing networks are given as constraints which define the
search space. Solving the optimization problem gives the set of values for the routing proba-
bilities that optimize the objective function. Suppose that the values for the routing proba-
bilities are not given exactly but are known to have errors; we can view this as if the routing
probabilities are given in terms of a range of values that each can assume. In this case,
if we formulate two optimization problems (one maximizing and one minimizing the same
objective function) and let the ranges of values for the routing probabilities define the search
space, solving the optimization problems would give error bounds on the performance mea-
sure of interest. From this point of view, there is not much difference between solving an
optimization problem and computing error bounds. This idea can be easily extended to the
case where the values of the visit ratios (or the mean service times or relative utilizations)

are known within certain bounds for closed quasi-reversible (or pseudo-reversible) networks.

[t is important to note that, the above procedure is valid, as long as the model parameters
that contain errors are only associated with pseudo-reversible queues, the model can contain
other quasi-reversible queues which are not pseudo-reversible (such as a first-come-first-server

queue).
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5.2.2 First-come-first-serve Queues

Although queues that serve customers in the first-come-first-serve (FCFS) order are quasi-
reversible but not pseudo-reversible, the approach described in this section for obtaining
error bounds is still applicable with small modifications? if the service time® or the relative

utilization of a FCFS queue is known to have bounded error.

If a quasi-reversible FCFS queue is replaced with a fixed-rate pseudo-reversible queue,
such as a processor-sharing (PS) queue, the most common performance measures of the
modified model (throughputs, mean queue length, server utilization, etc.) are identical to
those of the original model [BASK75]. Therefore, if the service time (or relative utilization)
of a quasi-reversible FCFS queue has bounded errofs, say, ijin <T; < ijax, we can
substitute a PS queue, and for every chain k that visits the FCFS queue in the original
model, add the constraint that ijin < T < ijax. Solving the optimization problems
as described previously for this modified model gives error bounds for the original model
- for the following two reasons. Firstly, the constraint region in the modified model contains
the constraint region in the original model. Secondly, for the most common performance
measures mentioned above, for every possible solution lin the original model, there is a

feasible solution in the modified problem that has identical performance measures.

5.2.3 Multiple Customers per Chain

So far we have assumed that every chain has only one customer. In general, a model with
multiple customers per chain can be represented by an equivalent model with only a single
customer per chain. By equivalence, we mean that all the performance characteristics are
identical. We also have assumed that the model parameters of a customer are independent
of those of other customers. Allowing multiple customers per chain means that model pa-
rameters of customers in the same chain must be identical. This destroys the independence.

For an optimal routing problem, if we assume that all the customers are independent when

*The modifications work in this case because we know the algebraic form of the marginal state probability

for FCFS queues. It does not work in general for non-pseudo-reversible queues.
3The service times of all customers on a quasi-reversible FCFS queue must be identical. Therefore, one

can express errors {or sensitivity) in the speed of the server as errors in the service time.
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in fact they are dependent, we will get erroneous results. However, for error bounds compu-
tation, if we assume that all the customers are independent, the bounds obtained are still

valid. Since we have loosened the constraints, the bounds will be looser.

If there exist dependencies among model parameters of different customers other than
the equality type as in the case of multiple customers per chain, the above argument is still
valid. We can still assume that the model parameters among customers are independent,

and use the optimization method to obtain bounds.

In the next section, we further exploit the idea that computing bounds and solving

optimization problems are just different ways of viewing the same problem.

5.3 DBounds on the Error Introduced by Clustering of Chains

There are a variety of techniques for solving closed product-form queueing network mod-
els approximately. Many of them are based on the MVA equations [BARD79, CHANS2,
HSIE8Y. SCHWT9, ZAHO88] or the decomposition methods [COURT7, DESO84a]. (Tus-
tering 1s a statistical method for grouping together objects that are “similar” in their be-
havior [MACQ67, SEBE84]. Clustering can be applied to queueing networks to group jobs
that have similar resource usage patterns and replace them with a set of identical jobs
[ART185, DOWD92, TRIP85, ZAHO80]. Since no error bounds can be computed from
approximate solution methods, considerable effort needs to be spent 6n validating an ap-
proximation method {against a simulation or, when feasible, an exact solution) in order to
gain confidence. Nevertheless, there would be no guarantee that the method would work
well when a new model is solved. Therefore, performance bounds are often more desirable
than approximation methods. In this section, we concentrate on obtaining bounds for closed

product-form networks with a large number of chains.

Knowing that the cost of solving a closed network is an exponential function of the
number of chains, reducing the number of chains can drastically reduce the cost of solving
the model. This makes the technique of clustering very attractive, since it can potentially
reduce the number of chains by replacing a number of different jobs by a set of identical jobs.

We illustrate the potential benefit of clustering by the following example. Figure 6(a) shows
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a central-server model of a computer system. There are 48 users in the system. All the

Terminals . Porsk
48 users O CPU Disk .
{ : 'AHI}—ﬂ
O " Pepy
(a) ()

Figure 6: Central server model example.

users are observed to have identical mean think time at the terminals; however, their relative
loads are different at the CPU and the disk. Figure 6(b) plots the relative loads at the CPU
and the disk for each user. The loading suggests that the original model should have 48
chains with one customer per chain. In this case, (N+1)* (the main factor in the space and
time complexities for solving a K-chain closed queueing network model with N customers
each) evaluates to 0.28 x 10'® {with N =1 here). Therefore, solving the model exactly is
infeasible. Figure 6(b) emphasizes that the loading of the customers forms two clusters. The
clusters are depicted in Figure 7(a). In Figure 7(b), 30 of the users are clustered together to

form one chain and the other 18 users are clustered together to form another chain. Let’s

3 new
30 jobs . customers
Posk 18 jobs pDISK chain 1 chain 2 Poisk /
Clustermg / *
. ]
. )
CPU Pepy Pepy R
(a) (b) )

Figure 7: Clustering of 48 jobs into 2 chains.

further assume that the modeler is interested in obtaining the actual CPU utilization when
three identical customers are added to the network, as shown in Figure 7(c). The three chain
model of Figure 7(c) will hopefully be a good approximation of the actual model (which has
49 chains). The factor mentioned above evaluates to a manageable 31 x 19 x4 = 2356 for
Figure 7(c).

The main problem with clustering is that, like any approximation method, it is difficult
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to determine how good the approximation is. It is therefore desirable to be able to obtain

error bounds when clustering is applied.

In this section, we show how error bounds can be obtained when clustering is applied.
The key is to apply the basic results in a novel way. First, we define the model and the
notation used in the remainder of the section. Then we present how our basic results can be

used to obtain bounds when clustering is applied.
5.3.1 Closed Queueing Network Model

The queueing network models considered here are multichain networks of quasi-reversible or
pseudo-reversible queues (depending on the parameters being considered) with Markovian
routing for the customers. We are interested in obtaining bounds on performance measures
which can be expressed as Markov reward functions. The procedure described in this section

is valid for any performance measure expressible as a Markov reward function.

Let N; denote the number of customers in chain &, and let 7, denote the resource vector
for chain k. {In general, a resource vector is an n-tuple characterizing a workload element
[ARTI85].) We only consider homogeneous resource vectors in which all components of a
resource vector refer to the same type of model parameter. For a network of quasi-reversible
queues. 3 denotes a vector of visit ratios for a set of centers. For a network of pseudo-
reversible queues, 7, denotes either a vector of service requirements or relative utilizations
at a set of centers. For ease of exposition, we assume that, 1) customers do not change class
and 2) Y&, |l4x]| = J (the number of elements in 7 is J). Both of these conditions can he
relaxed; however, the notation will get unnecessarily complex. Given these assumptions, i
can be written as (Yik. Y2k, - .-, yJk). Let Y ={§} = {#1,92,...,¥x} denote the set of all
resource vectors or the workload of the system, and let R(Y) denote the total reward for

workload V. We also refer to R(Y') as the ezact solution of the model.

The K customer chains are partitioned into M clusters, denoted by By,B,,... ,By. We
will use the notation £(k) to denote the cluster to which the chain k& customer belongs.
Usually, the partition is formed by heuristically grouping chains with “similar” resource

vectors. There exist many statistical techniques for partitioning objects according to the
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numerical values of their resource vectors [SEBE84]. Different partitionings of the chains
into clusters may drastically affect the spread of the performance bounds. However, we
are not as concerned with the way the partitions are obtained as we are with determining
the error bounds for a given partitioning. We assume that the partitions are given as
part of the problem specification. Let Y, denote the set of resource vectors of cluster
m, ot Yo, = {yi |k € B,}. Since the B,’s are mutually exclusive, we can also denote Y by
Vi Ya . Ya).

In order to take advantage of the fact that the computational complexity of the exact
solution procedure decreases combinatorially as the number of chains is reduced, customers in
the same cluster are “aggregated” into a single chain. The resource vector of the aggregated
chain for cluster m is denoted by 7(m). In general, #(m) need not have any relationship to
the resource vectors of the chains in cluster m. Nevertheless, a reasonable §(m) would be a
conver combination of the resource vectors of the chains in cluster m. Or,

gim) = Y rNedi
k€Bm
where 1y > 0 is a constant weighting factor for chain k, 3 ycp, 7Nk = 1. For example, if
y(m) corresponds to the centroid of cluster m, then ri =1/ cp Nw. When all clusters

are replaced by their respective aggregates, the resource vector is denoted by Y,

Vo= {gim) o= g, 50), §2), 0 5(2), s JM). (M) ) (26)

-

(1811l HBz|| B el

We will call Y the aggregated workload of the system and call R(f”) a clustering approximation
of the model for a given aggregated workload Y.

We assume, as before and without loss of generality, that each of the original chains
has only one customer (or Ny =1, Vk), and use “chain” and “customer” interchangeably,

unless otherwise stated, to simply our notation. With this assumption, for any cluster m,

(m)=3rep,, "l and Y iep, Te=1.

In the following section, we describe an algorithm for computing bounds for R(Y) for a
class of clustering schemes in which the resource vector of an aggregated chain is constrained
to be a convex combination of the resource vectors of the original chains within the same

cluster.
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5.3.2  Application of the Basic Results

In this section, we describe how error bounds can be obtained when clustering of customers
is applied in the manner described in Section 5.3.1. To be space efficient, we only describe
the main ideas. For a comptrehensive treatment of the approach, the reader is referred to
[CHEN92]. The approach presented in this section does not produce bounds for a specific
clustering method, e.g., the centroid method, but rather it produces bounds for all possible
clustering methods where the resource vector of the aggregated chain for a cluster is a convex
combination of resource vectors of the original chains within the same cluster. This approach

s easily extended to obtaining bounds for any specific clustering method in Section 5.3.4.

Figure 3 illustrates the relationship between the exact solution, a clustering approxima-
tion, and two different bounds for a simple example where there is a single cluster with 6
resource vectors of cardinality 2 (represented as points in the two dimensional space) within

the cluster. The total reward evaluated at various workloads and the workload ranges are

pDISK pDISI\'. A pDISK pDISK
.Y Y oY) or’)
Dl .
* Py R " Poy ‘ Pepy Pepy
(a) (b) (c) (d)
An Exact A Clustering All Possible Convex Valid
Solution Approximation Clustering Solutions Bounds
R((Y))
f A 1
| Ry O R |, R
| @ @ ® |
L Y J
R(%Y’))

Figure 8: Relationship between exact solution, clustering approximation, and bounds.

illustrated in the lower half of Figure 8. Part (a) of Figure 8 shows the original 6 resource
vectors and their corresponding total reward R(Y). In part (b), the 6 resource vectors are
aggregated into one with the aggregated workload denoted by Y. In part (c), all possible

convex combinations of the original resource vectors are shown as the shaded area; the con-
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ver hull of Y is denoted by ¢(Y'). The set of values of R for all possible ¥ € ¢(Y) is denoted
by R(#(Y)) and is shown to include both R(Y) of part (a) and R(Y) of part (b). The reason

why this is true is described below.

Part (c) of Figure 8 represents the following two optimization (one minimizing and one
maximizing) problems. Consider adding the six customers (chains) one at a time, each one
is constrained to having its resource vector lie within ¢(Y). The objective functions are the
same as the original reward function. Clearly, both ¥ and Y are in the search space of both

optimization problems. Therefore,

R(Y), R(Y) < max R(Z) (27)

Zep(Y) Zesd(Y)

=
=
=
N
A

For a detailed proof, the reader is referred to [CHEN92].

In part (d) of Figure 8, the convex hull of Y is relaxed to have a triangular shape which
includes the convex hull of Figure 8(c), and it is denoted by ¢(Y '), where Y’ is the set of
vertices of the triangular area, and ¢(Y) C ¢(Y''). Using the same argument as described
above, we can easily see that R(#(Y)) C R(¢(Y'’)). In other words, if we can compute the
upper and lower bounds of R(¢(Y '}), then we would obtain bounds for the total reward for
any convex clustering of the original resource vectors. Bounds obtained from part (d) are
looser than the ones from part (c); however, in many cases, the bounds for part (d} can be
obtained at a relatively low cost. This is the topic of the following section. For a discussion
on how to obtain the convex hull of Figure 8(c), the reader is referred to the references
in [AURE91]. For a discussion on how to obtain the regions of Figure 8(d), the reader is
referred to [CHEN92].

5.3.3 Low Cost Clustering Bounds

In Section 4, we showed that the reward function R is marginally fractional linear in the
resource vectors. If the resource vectors of all but one chain are fixed, then we can use
efficient greedy decent algorithms to compute the bounds. In obtaining clustering bounds,
the resource vectors of all chains are not fixed; in this case, R is marginally fractional linear,
but not fractional linear. In general, all vertex solutions must be examined in order to find

the bounds. Consider the following model with only one cluster having 48 customers and the
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resource vectors having only two components. If the convex hull has V vertices, then there
is a total of V4 possible vertex solutions. Even for V' =3 (the best case in two dimensions),
there are almost 0.8 x 10** vertex solutions. However, if we examine carefully what these

vertex solutions correspond to, the number of vertex solutions can be drastically reduced.

Continuing with the above example with K =48, J=2, M =1, and V =3, Figure 9 shows
a triangular area that contains the convex hull of the resource vectors of the 48 customers.
Solving the optimization problems by constraining the resource vector of each customer to

be inside the triangular area, we get the bounds described in Eq.(27). Furthermore, in

CPU

Figure 9: Moving a customer to a vertex.

an optimal vertex solution, the resource vector of any customer is replaced by a resource
vector that corresponds to one of the vertices of the triangular area. This is illustrated in
Figure 9 where a customer’s resource vector is “moved” to one of the vertices. Instead of
thinking about which of the 3 vertices each customer “moves” to in order to obtain the
optimal solution, we can think of deciding, “How many customers should be at vertices 1, 2,
and 37" The number of possible solutions to this question is (¥ 1) =1225. Furthermore,
in order to solve each combination of the customer populations, a three-chain closed network
needs to be analyzed. In this case, it becomes feasible to find the optimal solutions, and
therefore, obtain the clustering bounds. This method easily extends to models with multiple

clusters (but at higher costs).

5.3.4 Bounds for Specific Clustering Methods

The method described above produces bounds for all possible clustering methods where the
resource vector of the aggregated chain for a cluster is a convex combination of resource
vectors of the original customers within the same cluster. If a specific clustering method,

e.g., the centroid method, is specified, then we can obtain tighter bounds, at an additional
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computational expense. The additional cost comes from needing to solve queueing models

with one additional chain. The idea is illustrated in Figure 10 below. Parts (a} and (b) of

Poisk Poisx N Poisx
; 2 Y 4 2 YY)
SERE . e 4
H s'. *. 576
* Popy pcpuL * Pepy
(@) L) (c)
An Exact A Clustering Valid
Solution Approximation Bounds

Figure 10: Specific Clustering Method Applied

Figure 10 are identical to parts (a) and (b) of Figure 8. In Figure 10(c), the triangle of Figure
8(d} 1s further divided into three sections by the point that represents the specific clustering
method. In Section 5.3.2, we mentioned that the optimization procedure for obtaining the
bounds which corresponds to Figure 8(d) can be thought of as adding customers one at a
time and deciding which one of the vertices of the triangle the customer would end up. In this
case, when we add the customer, we need to consider which point the customer corresponds
to. For example, if we are adding the customer which corresponds to point 1 (or point 2) in
Figure 10, it can choose among the three vertices of the top region in Figure 10(c). If we are
adding the customer which corresponds to point 3, it can choose among the three vertices
of the right region, and so on. It is clear that the bounds are still valid because the exact
solution and the clustering approximation are still in the search space of the optimization
problems. Also, it is clear that the bounds are tighter since the new constraints are tighter
than the previous ones. However, a four chain queueing model needs to be solved in this
case to obtain a vertex solution. The number of vertex solutions that need to be computed

depends on how the resource vectors are distributed.

5.3.5 A Numerical Example

In this section, we use a numerical example to illustrate our approach. The model considered
is a closed network of 12 fixed rate servers. There are 48 customers. Their relative loads are
identical on 10 of the servers (numbered from 3 to 12), and their values are show in Table

1. The two servers where the relative loads for the customers are different are referred as
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Server 3 4 5 6 7 8 9 10 11 12
ik 0.2251 0.7750 | 0.2875 0.4472 1 0.6258 | 0.9276 | 0.1762 | 0.2465 | 0.7261 0.3625

Table 1: Relative loads for all customers; 3 < j < 12.

servers 1 and 2. The relative loads for the customers on servers 1 and 2 are shown in Table

2 (assuming that the reference server is server 1). We are interested in obtaining bounds

0.2171, 0.6750

0.2096, 0.6870

0.2577, 0.6786

0.2692, 0.6369

0.2874, 0.6745

0.2446, 0.6354

0.2733, 0.6260

0.2394, 0.6777

0.2845, 0.6576

0.2716, 0.6083

0.2456, 0.6110

0.2545, 0.6391

0.2569, 0.6959

0.2868, 0.6163

0.2276, 0.6260

0,2924, 0.6436

0.2789, 0.6128

0.2082, 0.6941

0.2026, 0.6154

0.2382, 0.6155

0.2529, 0.6877

0.2431, 0.6264

0.2314, 0.6770

0.2107, 0.6771

0.2705, 0.6219

0.2762, 0.6412

0.2649, 0.6930

0.2502, 0.6687

0.2436, 0.6608

0.2577, 0.6633

0.2463, 0.6632

0.2138, 0.6961

0.2144, 0.6447

0.2325, 0.6953

0.2358, 0.6398

0.2101, 0.6955

0.2985, 0.6576

0.2866, 0.6150

0.2509, 0.6651

0.2064, 0.6955

0.2966, 0.6786

0.2805, 0.6571

0.2283, 0.6963

0.2579, 0.6437

0.2375, 0.6923

0.2029, 0.6769

0.2723, 0.6591

0.2426, 0.6642

Table 2: Relative loads (p1, p2) for 48 customers.

on the total throughput of the customers at server 1. The customers are modeled as closed
chains with 1 customer in each chain. The workload of the model (resource vectors of the

customers) is plotted in Figure 11(a). By clustering all the customers into one chain and

10k -1 1.0 . -
P, P,
0.8 — 08 -
(0.2500, 0.6579)
[ ]
0.6 — 06 =
Centroid
04 i 04 {48 customers) i
02k -4 o0z -
original workload p clustered workload p
00, 1 i ) I 27 00, ] 1 ] ] 2)
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
(a) (b)

Figure 11: Relative loads for 48 chains at servers 1 and 2.

using the centroid of the original model as the load vector for the clustered model, we get
a single chain model with its load vector having a value of (p1, p2) = (0.2500, 0.6579). The
total workload for the clustered model is illustrated in Figure 11(b). (p;, for 3 < 3 < 12
remains the same as in Table 1.) Using the MVA algorithm to solve the clustered model

(12 servers, 1 chain with 48 customers) gives a throughput of 1.07743. On a SPARCIO,
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running SunQOS 4.1.3, solving the above model takes 0.1 second {including the time to load
the program from the UNTX shell).

In order to use our approach to obtain the clustering bounds, we need to construct
a three-vertex region containing the resource vectors of the 48 customers. Using a sim-
ple algorithm described in Appendix A, we obtained three vertices having relative loads

(0.3669. 0.6083), (0.2026, 0.7726), and (0.2026, 0.6083) (these points are labeled as vertices
1, 2, and 3, respectively, in Figure 12(a)). Using the approach illustrated in Figure 10(c).

Lol T T T T ] Lo T T T T ]

P, P

Vertex 2 region 1
0.8~ n 08 (15 customers) N
0.6 v LEZ’L Vertex 1 - 0.6 ~
erex region 3
(16 customers)  region 2
0.4 1 % (17 customers) T
02~ - 02 =
triangular region that includes
all original resource vectors customer partitions

0o, i ! i L P2, - 6o ] L ] 1 P2,

0.0 0.2 04 0.6 0.8 10 0.0 0.2 04 06 0.8 1.0

(&) ()

Figure 12: Clustering bounds example.

these three vertices and the centroid form three regions. There are 15, 17, and 16 customers
fall into regions 1, 2, and 3 respectively, as shown in Figure 12(b). There are 18360 ways of
distributing the 48 customers among the 4 vertices (while keeping the number of customers
inside each region the same as specified above). For every way of distributing the customers,
we need to solve a model with 12 servers and 4 chains (the total number of customers is 48).
If we use the approach of Section 5.3.3, we need to solve 1225 3-chain models. We decide to
solve the smaller models first. If the bounds are too loose, we would then attempt to solve

the larger models.

After solving all 1225 models, we find that a minimum throughput of 1.07650 is achieved
when all customers have their resource vectors located at Vertex 2. A maximum throughput
of 1.07753 is achieved when all customers have their resource vectors located at Vertex 3.

Since we do not know the exact solution for the original model, we define the percent error
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for a reward function R as,

Err(R) = Zmax — Amin » 100

Rmax + Ryin

Using the above formula, an error of 0.05% is achieved using our approach. With such a
tight bound, it is unnecessary to solve the larger models. It took almost two days to solve all
1225 3-chain models on the SUN4 mentioned above. The numerical results are summarized

in Table 3.

[T\‘Iethod " K l ModelsJ ] Ny I Nvya I Nvya l Neentroid Ay | Error I Time l
centroid 1 1 - - - 48 1.07743 unknown | 0.1 second
i 1] 48 0 — 1.07650
general-bound 3 1225 mn 0.05% 1.9 days
max 0 [t} 48 —— 1.07753
. 7 9 9 ? 9
centroid-bound || 4 | 18360 | 0 ' ' ' ' < 0.05% ?
max ? ? 1 ? ? -

Table 3: Summary of the numerical results.

The number of models need to be solved grows exponentially as the number of chains
increases; in addition, the cost for solving each model increases. Therefore, one should first
compute the the less expensive bounds. If the bounds are too loose, one can then compute

the bounds for a specific clustering method.

5.3.6 Discussion

Many bounding methods in the queueing literature are based on the MVA equations, and
therefore. they can only obtain bounds for a few (although important) mean performance
measures. They also have the restriction that they are only valid for restricted types of
product-form networks. The approach developed in this section has wide applicability to
arbitrary closed product-form queueing networks and to a wide variety of performance mea-

sures.

It should also be noted that the procedure developed in this section drastically cuts
down on the number of closed chains, so it becomes feasible to compute the error bounds.
Even though there may be many models (each with a small number of chains) to solve,
with the exponential speed increase in the microcomputer technology and the ease of solving

independent models in parallel, our approach can become more attractive.
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6 Conclusion

In this article, we show that for a closed multichain quasi-reversible network with a single
customer per chain, the state probability distribution, conditioned on a customer being at
any server in any class, is independent of the routing behavior of that customer. Such a
result is obtained from the most basic property of quasi-reversible queues, namely, partial
balance. We also define a class of restricted quasi-reversible queues, which we call pseudo-
reversible queues; a pseudo-reversible queue satisfies the station balance condition. From the
station balance condition, we derive the result that for a closed multichain pseudo-reversible
network with a single customer per chain, the state probability distribution, conditioned on
a customer being at any server in any class, is independent of the mean service requirements

of that customer.

From the insensitivity results, we then show that for a quasi-reversible network, the mean
waiting time of a customer at a server is independent of the routing of that customer. We also
show that for a pseudo-reversible network, the mean waiting time of a customer at a server is
proportional to the mean service time of that customer at the same server. Furthermore, we
show that for a quasi-reversible network, a Markov reward function on the network states is
a marginally pseudo-linear function of the visit ratios of a customer. Similarly, for a pseudo-
reversible network, a (more restrictive) Markov reward function on the network states is a

marginally pseudo-linear function of the mean service times of a customer.

We then show that these basic results can be applied to several important applications.
We show that for optimization problems, the search space can be restricted to a finite number
of points which correspond to the vertices of the solution space of the original problem. For
models where the parameters are known to have bounded errors, the basic results can be
applied to obtain upper and lower bounds on performance measures. The key 1s to exploit
the relationship between solving optimization problems and obtaining error bounds. We
also apply the basic results in a novel way to obtain bounds when clustering techniques are
applied. In this case, the key idea is to create a search space for an optimization problem
from the original model. If this search space is created properly, bounds can be obtained in
a relatively inexpensive way. Finally, we show that certain sensitivity analysis results in the

literature can be generalized using these basic results.
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Appendix A

An Algorithm for Obtaining Vertices for A Cluster

In this appendix, we describe a simple algorithm for obtaining L + 1 vertices for a cluster of
customers having resource vectors with cardinalities of L. This algorithm is used to obtain

3 vertices for the example described in Section 5.3.5.

Let i = (y1k, Y2k, - - - » Y& ) be the resource vector of customer k, where K is the number
of customers being considered for clustering. We first look at a constrained problem of ob-
taining L vectors in an L dimensional space where the convex hull of the solution contains
all the resource vectors, subject to the constraint that 3-;y;x = 1, Vk. Then we show
that any unconstrained problem in an L dimensional space can be transformed into a con-
strained problem in an L + 1 dimensional space. Then we can use the method for solving
the constrained problem to obtain L 4 | vectors whose convex hull contains the transformed
resource vectors. Then we can apply a reverse transformation to obtain the solution to the

unconstrained problem.

Let u; = m}\in yix for 1 < j < L be the minimum of the j'" component of the resource

vectors of all the customers. Clearly, Efﬂ u; < 1. Let @ = (ug,uz,....ur), and let u* =
1 — S5 u; be the “deficiency” of vector @. Let’s further define &; to be the vector @ with

all the “deficiency” added to component j; or equivalently,

F, o= 4+ ué (28)
where &, is the unit vector with the j*® component equal to 1 and zeroes everywhere else.

Let X = {&,...,&r}, and as before, Y = {#1,...,7x}. We have the following lemma.

Lemma 11  If the components of X are obtained using Eq. (28), then &(Y) C ¢(X).

Proof:

Showing that ¢(Y) C ¢(X) is equivalent to showing that g € #(X), Vk. This is also

equivalent to showing that every i can be expressed as a convex combination of the T;'s.
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Since u; = mkin Yjk, we have that y;z > u;. Therefore, we can write,
Yig = uj +O!J'U,' (29)

where «; > 0. Summing over all 7, we have

oy = D (u; + agu’)

2

Simplifying the above equation, we get,
1 = (1-uw)4u ) aj
J
Therefore, 3, ; = 1. Eq.(29) in vector form becomes,
Jo = @+ (ayu’;)
3
- et X ()
J J
= Y o;T;
7

where Eq. (28) is used in the last step. We have just shown that, for any k, 7, can be

expressed as a convex combination of the Z;’s. D

The next step is to show how to transform an unconstrained problem in an L dimen-
sional space to a constrained problem in an L + | dimensional space. We still use 3 =
(Y1ks Y2k - - - YLk ) to denote the resource vector of customer k. Summing the components of
the resource vector for each chain and let y* = max 2; ¥;x be the maximum of the sums.

Every resource vector g can be augmented with vi = y* — 3 . yjx. Let

5 = (ylj,...,yi",v—’:) (30)
y vy

The cardinality of 2y is L+1, and the components of 7\ are all nonnegative and sum to 1. Let
Z = {%,...,7x}. Given a set of resource vectors Y. Z is uniquely determined. Furthermore,
there is a one-to-one mapping between a point in the ¥ space and a point in the Z space. To
transform a point in the ¥ space to a point in the Z space, the same procedure for obtaining
%, can be followed. To transform a point in the Z space to a point in the Y space, just

truncate the last component and multiply each of the remaining component by y*.
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Let’s summarize how a convex hull having L 4 1 vertices can be obtained for a given set

of K resource vectors, each with cardinality L.

Step 1:  Compute y* and the v;'s. Transform each resource vector yi to Z using Eq. (30).
Step 2:  Compute ™ and the u;’s. Obtain L + 1 points in the Z space using Eq. (28).
Step 3:  Use the reverse transform (truncation) to transform each Z; back into the Y
space to obtain the L + 1 points whose convex hull contains the resource vectors
of all the chains.
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