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Abstract

Polling systems have long been the subject of study and are of particular interest in the
analysis of high speed communications networks. There are many options for the scheduling
policies that can be used at each polling station (gated, exhaustive, customer limited, etc.).
In addition, one can impose an upper bound on the total service time delivered to customers
at a station per server visit. In the most common case the upper bound is a constant for each
polling station, and the resulting system model is not Markovian even when service times and
interarrival times are exponential. In this paper, a comprehensive solution is developed for
the major scheduling policies with time limits for each polling station. The basic approach is
based on studying the embedded Markov chain defined at the sequence of instants when the
server arrives at each polling station. The computation of transition probabilities requires
transient analysis of the Markov process describing the system evolution between epochs of
the embedded chain. Uniformization methods are used to develop efficient algorithms for
the transition probabilities and for system performance measures. Example problems are
solved using the techniques developed to illustrate the utility of the results.

1The work of E. de Souza e Silva and R. R. Muntz was partially supported by grants from National
Science Foundation CCR-9215064 and from CNPq(Brazil).






1 Introduction

A polling system consists of multiple queues that are visited by a single server in a fixed
order. A variety of multiaccess schemes in computer communications can be modeled using
polling systems, such as token ring and token bus local area networks, and some multiplexing
techniques (e.g. [1, 24]).

There are various service disciplines for polling systems that have been considered in the
literature. Among them, we mention the exhaustive, gated and customer-limited policies.
For the exhaustive discipline, the server serves all customers in the visited queue until it
empties (including arrivals that occur after the server arrives) before moving to another
queue. For the gated discipline, the server takes only those customers that are present
when it arrives at the queue. The arrivals that join the queue during service are not served
until the next server visit. For the customer-limited discipline, a limit is imposed on the
maximum number of customers that can be served during a server visit (both gated and
exhaustive customer-limited disciplines have been studied). There is an extensive body
of literature on the analysis of polling systems. In these analyses, the above disciplines
(and others) have been considered for exponential or general service time distributions and
switchover times (the time that the server takes to move from one queue to another) with
deterministic, exponential or general distributions. Special cases such as single-buffer systems
and symmetric systems (for which all queues have identical characteristics) have also been
studied. In particular, a broad class of such systems was considered in (13]. Important
performnance measures of these systems include joint queue length distributions at server
arrival points and server departure points of a particular queue, and joint queue length
distributions at customer arrival points and customer departure points [11]. Other measures
of interest include throughput, marginal queue length distributions, mean queue lengths,
mean waiting times and mean cycle times [27]. A comprehensive survey of the state of the
art in the analysis of polling systems is presented in [24, 25].

Not all polling disciplines are amenable to an exact analytic solution. For instance, as
pointed out in [14, 25], the customer-limited service disciplines are very difficult to analyze,
and only approximate results are available except for special cases (e.g. [3, 5]). Time-limited
systems are a variation on the customer-limited policies, in which customers are served from
a queue until a limit on the time spent at that queue is exhausted (server timeout). Note
that if service times are constant and server timeouts are fixed multiples of the constant
service time which are independent of cycle times, this discipline reduces to the customer-
limited case. Since the server immediately switches to another queue as soon as the queue
being served becomes empty, bandwidth is dynamically allocated to highly loaded queues if
there are lightly loaded queues in the system. Establishing a server timeout upon each visit
to a queue in the polling cycle is important in order to guarantee a minimum bandwidth to
different types of traffic to the system.



Recently, polling systems with server timeouts (time-limited polling systems) have re-
ceived significant attention from researchers, not only because of intrinsic mathematical
interest, but also because such systems provide a natural model for new network protocols
and multiplexor schemes (timed-token disciplines). For example, in [2] (page 3) it is stated
that “timer-limited policies have received less attention than their practical interest would
justify,” while in [26] (page 205) it is stated that “there are no results available for a polling
model with time-limited service.”

A server timeout scheme, called the (7;-T;) scheme, has been recently proposed in [23]
for allocating bandwidth using multiplexing in wideband packet technology. Voice and data
packets are queued separately, and time-limits T}, 7, are used to guarantee a minimum
bandwidth for voice and data, proportional to 11 /(71 + T2) and T5/(T1 4+ Ty), respectively.
The (T1-T3) scheme will be considered in a later section and used to numerically illustrate
the results of this paper.

Server timeouts are also used in the IEEE 802.4 standard proposed for the token bus
(e.g. see [28]) and the access algorithm for the fiber distributed data interface (FDDI) [22].
Basically, there are two types of stations: high priority stations and ordinary stations. High
priority stations are assigned a fixed time limit called the token holding time, which controls
the maximum amount of time a station can transmit. If this time expires, the token is passed
on to the next station as soon as the transmission of the current packet being sent finishes.
The time allocated to an ordinary station is not fixed and depends on the elapsed time from
the last visit of the server to the current visit, i.e, the last cycle time as seen by the station.
If this cycle time is less than a threshold, called the token target rotation time (TTRT), then
the station can transmit until it empties its buffer or until the cycle time plus the current
transmission time reaches the threshold. Otherwise, it passes the token to the next station
without transmitting any packet. For this last case, any latency is accumulated from cycle
to cycle.

There have been several recent papers that are concerned with the analysis of time-limited
systems. As mentioned above, Sriram [23] proposed the (73-T;) multiplexing scheme and
used simulation to study its performance. Coffman, Fayolle and Mitrani [4] analyzed the
(T1-T2) multiplexing scheme under the assumption that the times Ty, T are exponentially
distributed random variables and there are no switchover times. They show that obtaining
the generating functions for the joint steady state distributions of the number of customers
in each queue can be reduced to solving a boundary value problem, for which a numerical
solution is presented. The papers [20, 21] of Leung and Eisenberg were also motivated by
studying the (71-13) scheme. They analyzed a single M/G/1 queue with server vacations,
where the server limits the amount of time spent serving customers between vacation periods.
In [20] the gated discipline is considered, and it is assumed that the vacation length is a
random variable which is independent of the amount of work in queue when a vacation starts.
A functional equation for the probability density function of the amount of work at polling



instants is derived. The equation is solved by approximating the complementary distribution
function by a weighted sum of Laguerre functions and transforming the functional equation
into a set of linear equations. The average waiting time is obtained from the average amount
of work at polling instants and at times when a vacation starts. Extensions to the nongated
discipline appear in [21]. Note that a more accurate model for the (T1-T,) scheme would be
obtained if vacations were allowed to depend on the work at the queue, since clearly they
are dependent on the time the server spends at each queue in the (T1-T>) scheme.

In this paper we propose a methodology to analyze time-limited systems, which enables
the incorporation of many important modeling details. In our analysis, we consider queues
which can be served up to a fixed amount of time independent of other system parameters,
similar to those of the (T3-T;) scheme or to the high priority stations of the FDDI protocol.
Both preemptive and nonpreemptive timeouts can be taken into account. The exhaustive and
gated disciplines are considered in detail, and we also indicate how additional disciplines can
be studied using the same method. Among the measures obtained we mention joint queue
length distributions at arrival and departure points of the server to a specific queue, joint
queue length distributions at customer arrivals and departures, the lmiting probability for
the length of a particular queue in the system, the mean cycle time, and mean waiting times.

The remainder of the paper is organized as follows. In Section 2 we describe the model
and present necessary background material. Sections 3 and 4 describe the technique used
to determine joint queue length distributions at server arrival points and server departure
points. Section 5 is concerned with the calculation of time average measures. In Section
6 we extend the basic model to analyze other cases. The computational complexity of the
solution method is described in Section 7. In Section 8 we present numerical examples to
illustrate the approach. Section 9 concludes the paper.

2 Model Description and Background Material

A polling system with M queues (stations) is considered. Customers (messages, jobs) arrive
to queue ¢ according to a Poisson process with rate );, and service times of type-¢ customers
are exponentially distributed with mean 1/y;. All arrival and service processes are indepen-
dent. The buffer size at each queue (waiting customers plus the customer in service, if any)
is either unlimited or equal to a finite value B;. The server moves in a cyclic fashion from
queue ¢ to queue ¢ + 1 (mod M), and the time required by the server to switch from queue
¢ to the next queue is assumed to be constant and denoted o;. Extensions which include a
general switching policy (general polling table) are considered later in the paper.

An important feature of the polling systems that are studied in this paper is the existence



of a timer at each queue which limits the amount of service a queue can continuously receive
during any visit of the server. This length of time, called a server timeout, is assumed con-
stant and is denoted by T; for queue :. Note that when T; — oo, we obtain the usual polling
systems considered in previous studies. In the systems considered here, although the server
is limited as to the amount of time it can spend during any one visit to a queue, the server
immediately leaves if that queue becomes empty. This differs from STDM {synchronous time
division multiplexing) type models [26], for which the server is required to stay a fixed time
at each queue whether or not there is work to be done (such an assumption simplifies the
analysis considerably).

The existence of server timeouts raises the issue of how to deal with the customer in
service when the timeout expires. One possibility is to return the customer to the line of
waiting jobs and resume serving it during the next visit of the server. Recall that the service
time distributions for all types of customers are assumed to be exponentially distributed.
Furthermore, we assume that the service time of a preempted customer is resampled, and
so the service requirement of the customer preempted when the server leaves the queue is
statistically identical to that of a customer that has received no service. Another alternative
1s to allow the customer to complete service, i.e. extend the allowed time just enough to
finish the customer (for example, the overruns implemented in FDDI). Both the first case
of preemptive timeouts and the second case of nonpreemptive timeouts are studied in this
paper. We also consider cases for which a new customer is not taken into service if the
timeout 7; has almost expired. That is, a constant w; associated with queue 7 is given such
that if a service completion occurs within w; of the end of the timeout, the server does not
remain at queue i for the full timeout period, but instead immediately leaves queue i, In
this more general situation (w; = 0 reduces to the previous case) the customer in service is
returned to the waiting line when the timeout expires in the preemptive timeout case or is
allowed to finish service in the case of nonpreemptive timeouts. It will be shown that all of
these situations can be handled using the results presented in this paper.

The service discipline may differ from queue to queue. The main disciplines considered
are the exhaustive and gated policies. However, we indicate how other disciplines, such as
exhaustive customer-limited (E-limited) and gated customer-limited (G-limited), may also
be analyzed using the same basic approach. At each queue, customers may be served in any
order as long as the scheduling discipline is independent of job service times.

Our interest is in calculating various steady state performance measures for polling sys-
tems with server timeouts. Important measures are joint queue length distributions at server
arrivals to a particular queue, at server departures from a particular queue, at customer
arrivals, and at customer departures. Other measures include marginal queue length distri-
butions, mean waiting times for customers, and loss probabilities in the finite buffer case.
Before proceeding with the analysis in subsequent sections, the remainder of this section is
devoted to developing the basic notation that is needed and to a brief review of the relevant



background material.

Consider the vector process X = {X(t) : ¢ > 0}, where X(t) = {(z1(t),...,zm(t)) and
z;(t) is the number in system at queue j at time t. The state space of X is the set of
M-tuples of integers S = {(¢1,...,qn) 1 ¢; = 0,..., B;}. Although X(¢) is regenerative with
(for example) regeneration points given by time instants when the server visits a particular
queue, say queue ¢, to find that all M queues are empty, in general X(t) is not a Markov
process for a variety of reasons {e.g. we have constant timeout intervals). However, consider
the successive visits of the server to a particular queue, say queue i, and let ng"), ngi), ... be
the times when the server arrives at this queue. Although these times are not regeneration
points for X, the values of X" at these points yield an embedded discrete time vector Markov
chain Y0 = {Y}cl) tk=1,2,...} given by Ykm = X(n,(:)). Similarly, the points {{1), 1(,’), e
when the server departs from queue ¢, i.e. begins to switch from queue i to queue 1 + 1 (mod
M), yield an embedded Markov chain Z0) = {Z,gi) 1k =1,2,...} given by ZS) = X({,(f)).
We let H() be the transition matrix for the chain V) and G® be the transition matrix for
the chain Z(®). The steady state probability vector ) for () satisfies B() = BOHE), while
the corresponding vector a(? for Z() satisfies ol = oG, We will first find equilibrium
joint queue length distributions 3() (at server arrival points) and of?) (at server departure
points). We then define various reward functions to obtain time average measures of interest
using results from Markov chains with rewards.

To calculate the o), 8) we will use uniformization to find the transition matrix at
the embedded points. Such an approach was used in [8] to analyze scheduled maintenance
policies of repairable computer systems. As time evolves, the server in the polling system
alternates between switchover intervals and service to queues. Although the process X ()
is not Markovian, if we consider an interval that starts with the arrival of the server to
a queue, say queue j, until the server departs (either due to a timeout or to the queue
becoming empty) the process is Markovian for that interval of time. This is clear, since
the service times are exponential and the arrival processes are Poisson. The non-Markovian
nature of the timeout interval requires us to use transient analysis to determine the state
probabilities at the end of the interval. The technique we use for the transient analysis
is uniformization, which is briefly reviewed below. The details of the calculations will be
described in subsequent sections.

The underlying solution method that is used in the analysis of all the various types of
polling systems with server timeouts is based on uniformization or randomization (10,17, 18].
This technique involves discretizing a continuous-time Markov chain (CTMC) in the following
way. Let U = {U(t) : t > 0} be a CTMC with generator Q and state space S. For s € &, let
rs be the cumulative rate of leaving state s, and assume these rates are uniformly bounded.
That is, assume there is a finite rate A satisfying A > r, for all s (this clearly holds if the
state space is finite, but it also holds for certain chains with countably many states). For
each state s, add a fictitious self-transition back to the state with rate A — r,. This creates



a process equivalent to I/ for which the rates out of the states are identical and equal to A.
We may view U(t) = Vy(y), where V = {V}, : n = 0,1,...} is a discrete-time Markov chain
and N = {N(t) : t > 0} is a Poisson process which is independent of V and is of rate A.
The transition matrix of Vis P = Q/A + L

3 Distributions at Server Arrivals and Departures

As discussed in the previous section, the first step in our analysis involves studying the
behavior of embedded Markov chains defined at times when the server arrives to a particular
queue and those defined at times when the server departs from a particular queue. In this
section we will derive results for the basic polling system with server timeouts, without
including many of the extensions that are possible. Specifically, we will consider a system
where the server cycles from queue to queue, i.e. in theorder | = 2 = +-- = M ~1 =
M = 1. The timeout period for queue i is constant and denoted 7T}, while the switchover
time from queue : to queue i 4+ 1 (mod M) is constant and denoted ¢;. Furthermore, we
assume one of the two basic service disciplines at each queue (exhaustive or gated). We
first assume infinite buffer space at each queue, i.e. B; = oo, and preemptive timeouts (no
overruns), but later in the section we also consider systems with finite buffers and the case
of nonpreemptive timeouts. Systems with additional and/or alternative assumptions (e.g.
general polling tables, other scheduling disciplines) will be discussed in Section 6. In this
section we concentrate on deriving the basic results as clearly as possible without considering
computational efficiency, in order not to complicate the derivations. In Section 4 we examine
how to organize the computations in an efficient manner.

Consider the sequence of time instants 17§i) ,ng), ... when the server arrives at queue 3
(the server begins serving customers at queue i at these time instants) for the basic polling
system with server timeouts. Recall that for any specific value of i, the regenerative process
X(t) = (21(t),...,zpm(t)), for which z;() is the number in system at queue j at time t,
yields an embedded Markov chain J(? when considered at the time instants 1;,(:]. Similarly,
the sequence of time instants ‘fii), g‘l), ... when the server leaves queue i (either the queue
empties or the timeout expires) yields an embedded Markov chain Z¢). Qur first task is
to determine the steady state distributions 8 of Y and o of Z) over the state space
S ={{g1,---,qr) : ¢ = 0,1,...}. These distributions will then be used to find time average
measures of interest later in the paper. To obtain 8{” and agi), s € &, the entries of the
transition matrices H®) of Y} and G®) of Z) are first determined. The matrix H® is found
by examining the behavior of the system over a polling cycle beginning when the server visits
queue 1 and ending when the server returns the next time to queue i. Similarly, the matrix
G0 records the system behavior over a polling cycle defined by successive departures from
queue . The cyclic switching policy guarantees that each queue is visited once per cycle,



with the server alternating between periods of switching and service periods. To determine
H® and G, it is convenient to view a polling cycle as consisting of M “mini-cycles” (during
each of which the server continuously visits a particular queue) and M switchover intervals
(during each of which the server moves from one queue to the next), We refer to a mini-cycle
during which the jth queue is served as a j-mini-cycle and a switchover interval when the
server switches from queue j to queue j + 1 (mod M) as a j-switchover interval.

Let s = (q1,.-.,qm) € 8, where g; represents the number of customers in queue j,
J = 1,...,M, and similarly let s’ = (¢{,...,q};) € S. Define D) to be the transition
matrix for the j-mini-cycle. That is, its (s, s’) element di‘:z, 1s the probability that the queue
lengths are s’ at the end of a j-mini-cycle given that at the start of the j-mini-cycle the
queue lengths were s. Similarly define CU) to be the transition matrix for the vector of
queue lengths for a j-switchover interval. Then it is clear that

HE = DOCO...cpO)... pGE-1)ci-1)
GO = CODEY...cANPO)...ci-Dp6) (1)

Using (1) it is easy to see that the vectors 80) = BWHU and ol = o)GH satisfy the
equations
) = oM)CM)
B = ol-DCt-1) =92 . M (2)
ol = gOPH) i=1,..., M.

Once the matrices DY), C), j = 1,..., M, and one of the B9 or o) have been computed, all
the joint equilibrium probability vectors at server arrival points and server departure points
can be calculated. However, we caution the reader that a direct application of equation
(1) to determine one of the H®) or G and thus one of the B or o is expensive and
not recommended, since it does not take advantage of the special structure possessed by
the matrices D®, Cl), In Section 4 we address the issue of calculating ) and o in an
efficient manner without explicitly computing H®) and G, In the remainder of this section
we concentrate on finding expressions for the entries of D@, C¥) under various scheduling
disciplines and buffer size assumptions.

The transition matrices CY), j = 1,..., M, are simple to compute. The transition
probability cgf'z, from s = {q1,...,qm) to s’ = {¢{,...,q}y) over the j-switchover interval of
constant length o; is

G )0 ifg<gforanyi,i=1,.... M ]
Cosr = T4, e Mo L———-lLA";;'! % otherwise (3)

where k; = ¢! — q..

The major problem is to determine the transition matrices D). Recall that dﬁf ), the

;
2872

(s,s") element of D), is the probability that the queue lengths are s’ = {g,...,q}) at

7



the end of the mini-cycle given that the vector of queue lengths is s = (g1,...,qun) at
the start of the mini-cycle. Although the determination of these trausition probabilities
requires a slightly different procedure for each of the two main types of scheduling disciplines
(exhaustive and gated), the same general approach is followed. In each case the calculation
of the transition probabilities is based on the transient analysis of a Markov chain that
describes the behavior of the jth queue during a J-mini-cycle in which the jth queue is
served. Transient analysis is required, since the j-mini-cycle can end if the jth queue empties
or if the timeout interval is exhausted. We will use the uniformization technique that was
briefly described in the previous section for the transient analysis. We first discuss in detail
the computation of the transition matrix D@ for the case of exhaustive service, and then
we describe the modifications required for the gated discipline. Both the infinite buffer case
and the finite buffer case are considered. We close the section by discussing the additional
steps needed to handle nonpreemptive timeouts.

3.1 Exhaustive Service and Infinite Buffers

Consider a j-mini-cycle that starts with the queue lengths equal to s = {q1,...,qu). The
state of the jth queue at the end of the mini-cycle will either be q; = 0, if the queue empties
prior to the completion of the timeout period, or q; > 0 if the timeout occurs before the
queue empties. Therefore, we have the following mutually exclusive and exhaustive outcomes
for the j-mini-cycle, where 7; is the length of the j-mini-cycle:

(a) g;=0and 0 < 1; < Ty
(b) ¢/ >0and r; = Ty.

Note that the first set of outcomes is a continuum over the range (0, T}) for 7; and that the
second set of outcomes is discrete. We also note that the transition probabilities for the other
queues are determined by the length of the j-mini-cycle, since they are simply incremented
by the number of arrivals during the mini-cycle.

Given that queue j is served under the exhaustive policy, the continuous-time Markov
chain W@ = {WU)(t) : t > 0} that gives the distribution for the number at queue j
during a j-mini-cycle is simply a one-dimensional birth-death process with parameters };
and p;, but for which state 0 is an absorbing state (the server leaves queue 7 if it becomes
empty). The state transition rate diagram for W) is illustrated in Figure 1. The state
probabilities for queue j at the end of the j-mini-cycle can be found by calculating the
transient behavior of the chain W) over the constant interval (0,T;), since no state changes
occur once the chain reaches the absorbing state 0 (the server leaves before the timeout
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Figure 1: Exhaustive service and infinite buffers.

expires). These calculations can be easily done using uniformization. Specifically, given an
initial probability vector v for number in system at queue j at the beginning of the mini-cycle,
the state distribution at the end of the mini-cycle for exhaustive service is

o0 T
pow) = 3 e BB i ), (1
=0 v
where A; = A; + p;, w(0,v) = v, and w(n,v) = w(n — 1,1)WO with W) the transition
matrix of the uniformized chain corresponding to W), Note that pgj )(v), the Oth element of
pYW(v), is the probability that the queue emptied prior to T; and thus that the j-mini-cycle
ended prior to T; (given the initial distribution v). Since 0 is an absorbing state in wa),
this entry includes the probability 1 that the server arrived to an empty queue j. Choosing
the initial probability distribution v = e,;, where e, is the vector with kth entry equal to
1 and all other entries equal to 0, corresponds to assuming that the length of queue Jis g

at the start of the mini-cycle. In this case, we will use the simplified notation, #(n, ¢;), for
convenience.

The distribution for 7;, the length of this j-mini-cycle, given a distribution » for number
initially at queue j can be calculated as follows. Let

Fit,n)¥ Plr; <tfy], 0<t<T,
Equivalently, F'(2,v) is the probability of being in the absorbing state 0 at time ¢. Thus
F(0,v) = P[r; = 0lv] = vo = (0, v)

represents the probability that the server visits an empty queue j, and hence the beginning
and ending state are identical, i.e. s = ¢'. For 0 < t < T}, we have

F(t,v) = i e_AJtho(n, v). (5)

n=0 n:



In this case mo(n,v) is the probability of being in the absorbing state 0 at step n of the
uniformized chain corresponding to WU). The density F'(t, v) for 0 < t < T} is given by

o0 At n~—1 o0 \n
0T TSP M I S PLCEL) W S Sy
n=1 (n - 1)' n=0 n'
or
! = A; (Ajt)n_l
Flit,v) => e Jt(n_f)TA-" {mo(n,v) —m(n —1,0)}. (6)
n=1 - ’
Note that for n > 0 the quantity
do(n, v) & mo(n,v) — mo(n — 1, v) (7)

is the probability of being absorbed (entering state 0) at exactly the nth step of the uni-
formized Markov chain. For 0 < ¢ < 7} it is clear that F'(¢, v) is the density function for the
outcomes (g; = 0,7;) with 0 < 7; < T}. It is also clear that the probability of the outcome
(g5 > 0,Tj;) is equal to the probability that the Markov chain W) is in state q; at time T,

and this probability is pg{)(u), the g’th element of p(j)(,,)_
J

We now calculate the entries of D). Note that (similar to the switchover interval case)
dfjj, = 0 when ¢ < ¢; for some ¢ # j. Otherwise there must be k; = ¢/ —¢; arrivals at queue i
during the j-mini-cycle. First suppose that the j-mini-cycle ends with g; > 0 (and therefore
7; = T;). For queue j the probability that the j-mini-cycle lasts until T; and the final queue
length is ¢! is the probability that the uniformized Markov chain corresponding to WU) is
in state ¢; at time 7; when the initial state is ¢;. Therefore,

() () ) ety NI
d.s,s' = P[W (TJ) =q1ilW (0) qu]He " It
i#i i
; g (T
= P [ AL
oy i
Substituting for pg{}(qj) from equation (4) yields
1
; & (AT oaer (NTy)R
& = {Sem O 09| [ O ®)

where (0, q;) = e,;. Setting v; = Ti; i+ Aj = TM N4 5 and &, = 2 izj ki, this can be

easily rewritten as
o0 n ki n—x,
8 = 5 enGDl (0" ()
#e n==ry n! i-'/-'J 7.1 7.?
n!

T ) gy Tl " ) ©)
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This equation may also be interpreted in the following manner. Consider the superposition
of M Poisson processes of rates A;, i # j, and A; = A; + pj, respectively. For an interval
of length T}, the nth term of the series on the right-hand side of (9) gives the probability
that n events in the composite process occurred, k; transitions of process 2, ¢ # j, occurred
during the interval, and the uniformized Markov chain associated with the Jth process was
in state ¢} after n — &; transitions.

To find dgﬂ. when ¢} = 0, we use the previously derived density F'(t,q;). The idea is to
condition on the length of the j-mini-cycle, 7; = ¢, and proceed as above. We have

. T; R
&= [ e P e gy ar
4]

i kit
Substituting for F'(2,¢;) from (6) and using the definition (7) yields
. T, ‘ )\'t)ki © (A't)n_l
(5) =/’ (A Aty A\ .
ds,s" 0 11;{ € k,' {nz=:1 e’ AJ (n _ 1)1 QSU(T'»,Q'J) dtv

where 7(0,¢;) = e,,. Settingm = n + k; = n + ;4 ki and interchanging the order of
integration and summation, we obtain

&), = i II (i\“") (/\—JM) - (m—1) do(m — &4, q;)

m=r;+1 15 \ 17 Y (m -1~ Kj)! Hi;&j k;!
T ()"
X et gy
]o i€ (m—1)!

)

Recognizing the m-stage Erlangian distribution, we have

&), = i I1 (i\l) ) (m) m—%( (m =) $o(m — K, q;)

m=r;+1 ig; \ VI Vi m—1- ”j)!ne;&j ki!

% i c—*‘fjf[:,‘ (7JTJ)R

|
n=m n

or, upon reversing the order of summation,

b R alL 7 N ki . o\ M=K
dgz, = Z e~ 1T (7.1'1;3) 3 H (ﬁ) ()‘J -"‘.”J)
rR=r;+1 n: m=x;+1 {#£j] Vs s

(m —1)!
=1 = mp) g, T 00~ 00

(10)

The above expression represents the probability that k; arrivals occur at queue i, # 7,
and the server leaves queue j before the timeout T} expires. Similar to the previous case for

11



which 7; = Tj, this result may be interpreted in terms of the superposition of M Poisson
processes representing arrivals to queue i, ¢ # j, and transitions of the uniformized chain
for queue j corresponding to W9, The index n represents the number of transitions of this
aggregate process during an interval of length T, while m represents the transition at which
absorption occurred. For i # 3, k; transitions of type 1 occurred (arrivals to queue 1), m — «;
transitions of type j occurred, and the final transition was of type j and corresponded to
queue j becoming empty. In the event that m < n, additional transitions of the composite
process would occur during an interval T}, but these are simply ignored since the j-mini-cycle
ends if queue j empties.

3.2 Exhaustive Service and Finite Buffers

When the buffer sizes at the M queues are finite, the above arguments must be modified
to find the elements of the transition matrix D). The procedure that was followed in the
infinite buffer case involved first determining the distribution of 7;, the length of a J-mini-

cycle, and then using it to find the entries df;‘}, If queue j has a finite buffer size of B;, the
birth-death chain of Figure 1 must be truncated at state B; as in Figure 2 below. Equations

absorbing Ay A A As
state
TN
Q) e (B
\__
Ky M3 M3 My M

Figure 2: Exhaustive service and finite buffers.

(5) and (6) again give the distribution of 7;, but the vectors m(n) are now obtained from the
transition matrix WU} of the uniformized chain corresponding to the truncated birth-death
process.

Once the distribution of 7; has been determined, it remains to find analogues of equations
(9) and (10) for df,fj,, where 8" = (q7,...,qy) and s = {q1,...,qa). As before, we need only
consider the case ¢! — ¢; > 0, ¢ # j, since otherwise dgj z, = 0. Recall that for infinite buffers
the transition probabilities dg_z, are a function of the length of queue ¢ (i # j) only through
the difference ¢/ — ¢;. However, this is not true in the finite buffer case, since this difference
does not necessarily represent the number of arrivals to queue ¢ during the mini-cycle. For
example, if a transition from s to s’ has its ith entry at the buffer limit, i.e. ¢/ = B;, then

12



this transition represents the infinite set of cases for which there are af least B; — ¢; arrivals
at queue i.

If g; < B; for all 4 # j, then the equations for the infinite buffer case may be used, but if

= B; for some i # j, then we need to sum infinitely many of those equations to account

for all relevant arrival patterns. We will organize the terms of the sum in a way that leads

to a recursion in Section 4 for calculating the entries d; '7 . In particular, for states s and

s', let k7 = ¢/ — ¢; be the difference in the state of queue i al the beginning and the end of

the mini-cycle, and let k7 = .4 kF. Also let k; represent the number of arrivals to queue

i, i # j, and let a = E,-#J k; represent the total number of arrivals to the nonserved queues.
Define the set of vectors

KO (a) = {{kr, o oty b, oo har) : S ki = ay ks = k7 i g < Bi ks > k7 if ¢ = Bi),
£
which corresponds to all possible arrivals that give a state change from s to s'. Let n represent

the number of transitions of the superposition of the uniformized chain for queue j and the
arrival processes to queues i # j. Then from (9), for ¢} > 0 (7; = T}) we have

?3: _ Ze T \Vids) (T, J z Z H( )‘(’\j*‘#i)n-a
Vi

n—n. ' a—n kngJz (a) 1£3 Vi

n!

aCEr A (1)
This equation is obtained by conditioning on the number of events n during an interval of
length T; and grouping the conditional probabilities according to the total number of arrivals
a to the nonserved queues. Similarly, from (10), for ¢} = 0 (7; < T;) we have

. o0 T n n-1 n /\i ki /\ .\ m-a
dff:g, = Z e T (7Jn!;r) Z' z Z H (7_) ( j :#J)
n=r7+1 a=k;} kEK?.Z'(“) m=a+1 i#£j 3 7
m—1)!
(R 1) om—avg). (12)

*m—1—a) Ly, k!

By interchanging the order of summation, we may also write these equations in the form
(for ¢; > 0)

4 f: ie—wj(%Tj)n 5 H(ﬁ)k‘(ﬁj*'uj)n_a
5,8 n! ;

2 n=a " keKD) (o) Vi i

x g (n - a,q,), (13)



and (for ¢} = 0)
oo oo n n ki m—a
@9, = 3 3 e—'y_,Tj(‘ij‘}) Y YOI (ﬁl) (/\j+ﬂj)
' a=n; n=a+1 n: kGKSZ,(G) m=a+1if; Vi ‘YJ
(m —1)!

The recursions developed in Section 4 are based on equations (13) and (14).

X

¢0(m -4, Q.:f)' (14)

3.3 Gated Service and Infinite Buffers

When service at queue j is given in a gated fashion, one must modify the Markov chain
W) that is used in the uniformization procedure to obtain the entries of D). One possible
approach is to consider a pure death process, with parameter #; and with 0 as an absorbing
state, that keeps track of departures from queue j during the j-mini-cycle. Although such a
chain yields the distribution of the mini-cycle length, arrivals must be added to obtain the
D) matrices and thus the queue length distributions 3() and a9, i.e. one must perform
a convolution. Furthermore, using a pure death process is not sufficient to calculate time
average measures, since the length of time in a mini-cycle during which the system contains
a particular number of customers is needed in these calculations. Thus instead, we use a
two-dimensional chain for W) with states of the form (u,v), where 0 < v < u. Here u
represents the actual number of customers in the served queue j, and v is the number of
original customers in that queue which are still in the system. That is, v represents the
number of customers that were present when the server arrived which have not yet departed,
and u is the sum of v and the number of arrivals that have occurred. The state transition rate
diagram is illustrated in Figure 3. States of the form (u,0) are absorbing in W), because
they represent cases when the server leaves queue j before the timeout expires. Since the
number of original customers and the total number of customers in the system are the same
at the beginning of the mini-cycle, an initial state of the chain has the form v = v > 1.

As in the exhaustive service case, we can apply uniformization (with A; = X, + #;) to
construct the corresponding discrete time Markov chain and then use it to find the distribu-
tion of the mini-cycle length 7; and the entries dg’ 3,. Analogues of equations (5) and (6) hold
in the gated case, except that the 7 vectors are obtained from the two-dimensional chain of

Figure 3 and the absorbing state 0 in the exhaustive case is replaced by states of the form
(u,0), u > 0. That is,

(Ajf) i Tu,0) (R ¥), (15)

u=0

F(t,v) = i e~ Mt

n=0

n
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Figure 3: Gated service and infinite buffers.

and

O _a (AT &
F'(t,v) = Zﬁ; e‘A’tL(-T;Jt_)—l)!Aj Z_%Q‘S(u.o)(na v) (16)

where et
¢(u,0)(na V) = W(u,O)(n, V) - 71-(u,O)(n“ - 13 V)'

Also note that a vector p\¥) giving the distribution of states (u, v) at the end of the mini-cycle
in the gated case can be obtained from equation (4), but using the two-dimensional chain of
Figure 3. To obtain the distribution of total number of customers present when the server
leaves, states with the same value of u must be aggregated.

To determine d'%)

5o ©quations (9) and (10) of the exhaustive case can be used with certain
modifications. As noted above, states of the two-dimensional chain W) must be aggregated
to obtain queue length information. Furthermore, there are possible outcomes for the gated
case in addition to those listed for the exhaustive case. For example, there may be customers
present at queue 7 at the end of a j-mini-cycle even when the server leaves before the timeout
period expires, i.e. the case ¢} > 0 and 0 < ; < T} may occur. The equations corresponding

to (9) and (10) are given below for gated service.

For ¢; > 0, both 0 < 7; < T; (the timeout does not expire) and 7; = T; (the timeout

expires) are possible. Let df,{},,,ﬂ and dﬁfj,'l be the transition probabilities corresponding to
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these two cases, respectively. In the first case (0 < 7; < T}) the state of the chain W) at
time Tj is the absorbing state (¢},0), while in the second case (r; = T;) W) at time T; is
in one of the states (¢},v), v > 1. Therefore, we have

oo n n ki m—m;
df,fj,,o = Z e—‘ro,-('TjTj) Z H(_f\_n_) (’\j‘*':“j) ’

n!

n=kKj;-+1 m=w;+1i#;) Vi s
(m —1)!
. (m—1— ;) TLy; k.t"ﬁ(q}"’)(m — &5, (45, 4)) (17)
* 1y M

and

A o0 - T)Tl. A ki )\-}-pl n—nj
dfﬂ} _ e~ Ti (T ( t) ( iTH
2o o= D enml (=) (2

n=K; 1#£5

')
n! %

% ZW(Q},TJ)(” — k5, (45, 45))- (18)

(n— K;)! Hi;‘:j k! v=1

Here v; =M X4 p; and &, = 2 ix;j ki, as in the exhaustive case. Finally, we have

+8

d&fz; = dgj)l’o + dg.z',l' (19)

For ¢; = 0, we must have 0 < 7; < T}, and the state of the chain W@ at T; must be
the absorbing state (0,0), i.e. all original customers were served to completion during the
mini-cycle and no arrivals occurred. Thus

n n ki m-—nsy
@, = 3 enn D) (M) ()"
88" nl! il ) |

n=nj+1 m=r;+1 i#;j Yi v

m — 1)!

X (m _ 1(_ ’ij)!)niqéj k;!¢(o'0)(m — Kj, (qja%'))’ (20)
which js identical to (17) except that the final state of interest is (0,0) instead of (¢7,0)
where ¢} > 0. We emphasize that the transition matrix W) used to calculate ¢ and «
in the above equations differs from that for the corresponding equations in the exhaustive
case. Namely, W) corresponds to the two-dimensional chain of Figure 3 instead of to the
birth-death chain of Figure 1 for the exhaustive case.

3.4 Gated Service and Finite Buffers

The calculations for gated service with finite buffers are similar to those for exhaustive service
in section 3.2. We recall that, when the buffer is infinite, equation (18) for gated service is
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similar to (9) for exhaustive service and equations (17) and (20) are similar to (10). When
the buffer is finite, we obtain equations similar to (11) and (12) using the same arguments,

i.e., we define the same set of vectors K&" 3;(:1) and sum the equations over this set to account
for all the possibilities when the state of any queue i, ¢ # j, at the end of the mini-cycle is
at the buffer size limit.

3.5 Nonpreemptive Timeouts

For the case of preemptive timeouts considered in Sections 3.1-3.4, recall that the customer
in service at the end of a timeout is returned to the set of waiting customers by assumption.
If the customer is not returned when the timeout expires but instead is allowed to complete
service (thus extending the visit of the server for more than T; time units), then the following
modification is required. Uniformization is used on the chain W for an interval of length
T};. If the queue empties before the server timeout T} expires, then one proceeds as before.
However, if the server timeout does expire, then arrivals to all queues will continue while
the customer in service is permitted to finish, and the number of additional arrivals is
independent of the system state at time Tj. If q; is the state of the served queue j at Tj,
then the state at the end of the j-mini-cycle will be q; if there are ¢ — ¢; + 1 customers that
arrive to the jth queue after T;. Also, for the nonserved queues i # j, if g: is the state of
the queue at T}, the state at the end of the j-mini-cycle is g7 if there are ¢ — ¢/ arrivals to
queue ¢ during the overrun.

Since exponential service time distributions have been assumed, the residual service time
(overrun length) is exponential with mean 1/g;. Furthermore, the random variables Gy
t=1,..., M, which represent the additional arrivals at queue i, are independent given the
length of the overrun. These properties make it easy to calculate the distribution of the
random vector ¢ = ((1,...,(ar). In fact, one immediately sees that

M i
Hi /\,' ('Ul +--- 4 'UM)'
— vy -_— 3
PlGi =un (v =vp] = ( J)tl_.[ (’Tj) vl opg!

where recall that v; = &M A + ;. Let EY) = [eg,)s,,] be the matrix which gives the
transition probabilities from state s’ at time 7 to state s” at the end of the j-mini-cycle.
Then ef;;'_{,,. = 0O unless ¢;' — ¢; > 0 for i # j and ¢} — ¢} + 1 > 0. In this case

eg‘z,)s”=P[C1=qg’_Q;a'°'aCj=Q_;',_Q_;+15'”$CM=Q5{«!_Q;M]'

The transition probabilities for the j-mini-cycle may now be found using the above in-
formation. Let f%, be the transition probabilities from the beginning of the mini-cycle to

3,8
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its end (including overruns). First consider the infinite buffer case, and assume that the
service discipline at queue j is exhaustive. Note that if q; > 0, then the queue could not
have emptied during the mini-cycle, and so also g; > 0. Thus

f.sfs)” = Z d‘(,flfeg,)sn,
s':0<g)<qlfl+1
where the entries dg, are given by equation (9). However, when ¢ = 0, then either the
queue emptied before T; or the previous case occurred with ¢; = 1 and no arrivals to queue
Jj during the overrun. In this case

fs(:js)" = dg{zu + Z d.(;f.z’eg,)a”’

8':q;=1

In the infinite buffer case, when service at queue j is given in a gated fashion with
nonpreemptive timeouts, a similar procedure is used to calculate the transition probabilities
for the j-mini-cycle. However, unlike the exhaustive discipline, the timeout may not expire
(0 < 7; < Tj) but ¢} > 0, and in this case Y = ¢;. If ¢/ > 0 and the timeout did expire,

then there must have been ¢ — q; + 1 arrivals during the overrun. Thus when q; >0

(5) _ 403 () )
f.e,.s” - ds,s",[) + Z ds,s',les',s"a
s‘:O(q}Sq;—'+1

where df,{},,,o and d¥, . are calculated using the gated preemptive equations (17) and (18).

8,81
A similar argument applies when ¢; = 0, and we have

£ = dBt T A9,
s":q.;-=1

&)

s,8"

where d,,, is given by equation (20).

4 Evaluation of DU), g0 o)

In this section we show how to evaluate the matrices DY) and the joint probability vectors
B and o) in an efficient and numerically stable manner. We will examine in detail a system
with M queues served in a cyclic fashion with exhaustive service at each queue, preemptive
timeouts, and infinite buffer sizes. We will then relax this latter assumption and study the
finite buffer case. Recursions for the gated discipline are similar to those for the exhaustive
discipline, and they are not given here.
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4.1 DU for Exhaustive Service and Infinite Buffers

We first consider the evaluation of the transition probability matrix DU for a mini- cycle
when queue j is being served. The entries dsjz, of this matrix are given by equations (9)
and (10) for the basic system with exhaustive service at the jth queue. The infinite series
in these equations have terms involving both the Poisson distribution and the multinomial
distribution. Given a specified error tolerance ¢, the terms of the infinite series are bounded
by the corresponding terms of the Poisson distribution, and thus an upper limit N = N (€)
can be determined in advance to ensure that the calculated value will be within ¢ of the
actual value [16]. For example, truncating the infinite series in these equations at the integer
N introduces an error

fore) n
g (3T
e(N) S n—%;l ‘ ’YJT’( JTL!J) S © (21)

by choice of N. Note that only entries in equations (9) and (10) with x; < N will be
calculated.

For notational convenience assume that j = 1. Qur interest is in calculating the finite
sum Y{ky, ..., kar; N, qu, ¢}] corresponding to equation (9), where (for r > x; = Mk

Tlko, ... karsryqu, g3 = Z P1(n)Qke, ... kv n]my(n — k1, q1). (22)

n=g1

Here ¥;(n) = e™nT1(4,T})" /n! is the nth Poisson term. Also in the infinite buffer case

A\ A\ M M+mT ™ n
Q[k'Za"'skMan]— (“) : (? - kz"'kM ) (23)

ki
where the multinomial coefficient is given by (for n > «;)

n _ n!
kng _kzl"'kM!(n—Kl)!.

Recall that Q[ks, ..., kar;n] is the probability of k; events of type ¢, i = 2,..., M, given n
total events. Then (for n > &)

M .
Qfka, ..., kayn] = Z(ﬁ) Qlkg, ... ki—1,... kayn — 1T(k; > 1)

=2 71

+()\1+F‘1) Qlkz,....kasn — 1)I(n — 1 > &), (24)
!

where Z(E) is the indicator function

(E) :{ 1 if E holds

0 otherwise.
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Finally we have (for r > «;)

Ylka, ..o karsry i, gt = Ylhy, ... kasyr — L, q)T(r—1 > k)
1 (r)Qks, . . ., kag; rlmg (r — k1, q1). (25)

The functions, ¢, (r) and Tq (T — K1,q1) are obtained recursively from their corresponding
expressions for 7 — 1. We mention that care must be taken when computing Pi(r). A
numerically stable recursion for its calculation is presented in [9].

Note that the main computational step in this procedure is the evaluation of the prob-
ability g (r — 1,q1). But Ty can be obtained from a vector matrix multiplication, where
the matrix represents the uniformized chain corresponding to W(1). This chain is small, and
it is either one-dimensional or two-dimensional for the cases that we consider in this paper.
Note also that these recursions are numerically stable, since the calculations involve only
adding and multiplying probabilities.

The calculation of quantities obtained by truncating equation (10) is similar. We wish
to calculate the finite sum O[k,, ..., kam; N, q1], where (for r > &, + 1)

Oflke, ..., kasry ] = Z 1(n)llke, ..., karym, @) (26)
n=xj3+1

For the infinite buffer case, we have (for n >k + 1)

Clka, ... kayn,qi] =

n Ay k2 (/\M)k.u(/\l_{_‘ul)m—ml( m— 1 )
n)\m - kLq). (27
m=§1:+1 (71) T " T ¢0(m K1 (Il) ( )

Recall that T'lky, ..., ku;n, q] is the probability of k; events of type 7,1 = 2,..., M, and
absorption occurred (queue 1 emptied) at the mth event given there were n total events.
Then (n > &1 + 1)

Llkz,....kasn, o] = Tlko,... kasn—Lg)Z(n—12> & + 1)

+ (M) ks, karin — Udo(n — k). (28)

8!

Finally we have (r > k, + 1)
Olke, ... kar; 1] = Olka, .. ks =1, @a)Z(r—1 2> k1 + 1)+ (P ks, - . ., kg rq). (29)
The quantity ¢o(n — #1,¢1) = mo(n — k1, q1) — mo(n — 1 — k1,¢;) can be easily obtained

recursively in a numerically stable manner without subtractions as follows. Instead of cal-
culating m(n, q1) directly using the transition matrix W) of the uniformized discrete time
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Markov chain, we partition these quantities with respect to the absorbing state 0 as

s 1 o
W(’)‘—“{u Uu)}’

and w(n—1,¢;) = {(mo(n— 1,q1),8(n — 1, ¢:)). Then we calculate 0(n,q1) = 0(n—1,q,)U,
¢’0(n}q1) = 9(” - 17 ql)ua and Wﬂ(na ql) = 7‘-0(” - 17 ql) + ﬁf’D(n? QI)'
The transition probabilities d_g, can be easily obtained from the quantities T and ©
in the following manner. For s' = (¢},...,¢4), s = (qu,...,qn), define k; = g —q >0,
t = 2,...,M. Then, choosing N = N(e) as in (21), we have within a prescribed error
tolerance e,
d(l)'= { T[kz,.-.,kM;N,QHQ’i] lfq;. >0 (30)
et Ofky, ..., kary N, qi] if g =0.

Of course, df,'lz, =0if ¢l < ¢; for somei=2,... M.

4.2 DU for Exhaustive Service and Finite Buffers

There are additional complications when a finite limit is imposed on one or more of the
queue buffers. Unlike the infinite buffer case, arrivals to queue i, # J, are either accepted
or rejected depending on whether or not the corresponding buffer is full. In this case there
are no simple expressions corresponding to those of (23) and (27). However, recursions
similar to those of (24) and (28) are presented which enable the relevant probabilities to be
calculated in an efficient manner. The total number of arrivals to all of the queues i #7is
explicitly represented in the recursions for calculating DU). As before, assume that J=1to
simplify the notation.

We assume that there is a limit B; on the size of the buffer at queue i, i = 2,..., M.
This places a limit on the number of arrivals that can be accepted at queue ¢ during the
mini-cycle, and that limit depends on the initial state of the queue. That is, if there are g
at queue i at the beginning of the mini-cycle, only the first B; — g¢; arrivals will be accepted.
However, any arrivals after the first B; will clearly not change the number in queue i, since
they will certainly be rejected regardless of the initial queue length. For example, all vectors
(kz2,...,kn) representing the number of arrivals at the nonserved queues that satisfy k; > B;
yield the same vector (B, ..., By) for number in queue, independent of the starting state.
It is convenient to aggregate states together based on this observation. We now develop
direct recursions based on (13) and (14) which exploit such an aggregation of states. We
remark that similar recursions can be given based on (11) and (12), but they are slightly
more complicated to implement than the ones we present.
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Let 1 = (l5,...,Ix) be a vector such that I; < B; for all ¢, where the integers /; represent
the minimum of the buffer limit and the number of arrivals at queue i, and let §, = ML
Let a > 6, represent the total number of arrivals to the nonserved queues. Define the set of

vectors

M
K(l,a): {(kg,...,kM) .‘Zk,‘ =a,k,-=l,- ifl,'( B,‘,k,’ = l.,' ifl,'ZB,'},

=2

which corresponds to all patterns of arrivals that yield the vector 1.

We consider the case when the server timeout expires (absorption does not occur), and
develop recursions similar to those of (24) and (25). Let (for n > a > 6,)

kg 13 n—a
8lly...,byain] = 3 (ﬁ) (A_ﬂ:{) (M) (k nk )
keK(l,q) N "N N 2 KM

Then ®[ly,..., I, a;n] gives the probability of having a total arrivals at queues 2,..., M,
with /; arrivals at queue 7 if I; < B; and at least /; arrivals at queue ¢ if [; = B;, given n
total events (arrivals at the nonserved queues and transitions of the uniformized chain for
the served queue). Also let (for r > a > §,)

‘11[125 .- .,IM,(I;T', qlv‘]i] = z ¢1(n)¢’[lza . .,IM,CE; n]ﬂ-q;(n - a:ql)‘

Then U[ly,..., Iz, a;7, ¢1,q}] gives the probability of having at most r events in an interval
of length T} of which a are arrivals at the nonserved gueues with exactly [; arrivals if [; < B;
and at least I; arrivals if I; = B; at queue ¢, and the state at the served queue is ¢y given
that the initial state was q;.

We now show that these quantities can be calculated recursively without generating the
complete set of states of the infinite buffer case and aggregating them. For example, the
equation corresponding to (24) for ® is simply

M ,
®[ly,..., I, a;5n] = Z(%i) fly,...,.L—-1,...,mya—L;in—1JT(0< [; — 1 < By)
1

=2

M .
+> (ﬁ) Dy, .. yliy.ylyya— Lin — 1)I(l; = B)
- ’Y}

+ (’\‘—"”fl) Os,..., i a;n — 1JT(n ~ 1> a). (31)
T

The first sum represents the case of an arrival at queue 7 that possibly may be accepted
depending on the initial state, while the second sum represents an arrival that will surely be
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rejected since at least B; arrivals occurred previously. The third case represents a transition
of the uniformized chain for queue 1. Also, the equation corresponding to (25) for ¥ is

‘I}[IZ:' . '1lM3a;T7qlaqg] = lp[l%' : .,IM,G.;’P - 17q13qi]1—(r -12 a)
+ih(r)®[la,. .., lar, a; rlmg(r — a, qu). (32)

Finally

Ul,..., ;N g1, ¢)] = Z\Il[lg,...,lM,a;N,ql,q{} (33)

a=8§

= Wh,...,Im,a—L; N, q1, ¢} + ¥[ls, .. Sl as N g, ¢)] (34)

represents the probability of having at most r events during T; with [; arrivals if I; < B; and
at least I; arrivals if [; = B, for the nonserved queues, and the state at the served queue at
the end of the mini-cycle is ¢ given the state at the beginning of the mini-cycle was ¢;.

The recursions for the case when absorption occurs (the timeout does not expire) are
similar, The quantities corresponding to ' and © are (forn—12>a>é)

AU?)H':IM,a;nDQI] =

n Ao ky (AM)kM(A1+#1)m—a( m—1 )
" R 8 r 35
kEKZ(I,a) mgﬂ--l-l (71) T T1 k2 N kM ¢(m a ql) ( )

and (forr —1>a > &)

Elly .. lmyar,qy) = E vi(n)Ally, ..., a5, q4). (36)

n=a+1

The recursion for A is
All,....lmsan,q] = All,...,bpyain =1 qlI(n—1>a+ 1)

s ()““‘1) Olar. . apysn— Ub(n—ayq),  (37)

T

while that for = is

Ellyy.. . lyasr,d) = Ell,. . lar — LglI(r—1>a+ 1)
+i(r)Ally, ..., Ing, a5 7, ¢a). (38)
Finally let
r—1
E*[lz,...,JM;N,qll = Z E[lg,...,lM,a;N,ql] (39)
a=8

= E*[127-.-31M1a—1;N:q1]+E[121"'$1M’a;N’q1]. (40)
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We now use these quantities to develop a recursion to calculate the entrles of DM in the
finite buffer case. Consider a pair of states s, s’, and the calculation of ds s+ First note that
if, for all i = 2,..., M, either ¢; = 0 or ¢/ < B‘, then the above recursions calculate this
entry. In this case, using equation (33) to within e:

{ ‘I’*[IQ,---,JM§NJQ'1,(1;] q; >0

d(ll i
..l Ny g = 0.

5,8 T (41)
Thus we need only determine how to calculate dgg, when ¢; > 0 and ¢/ = B, for at least
one nonserved queue. In this case, several terms calculated from the above recursions must
be added to obtain the correct value. For example, if ¢/ = B;, then there are at least
li = B; — ¢; arrivals to queue ¢ during the mini-cycle. Therefore, in order to obtain the
transition probability d_g 3,, one must consider all cases which represent at least I; arrivals.
Recall that the vectors lIf*, E* with ¢th entry B; include all situations with at least B; arrivals.
Therefore, we need only add up the cases for which there are I,,[; + 1,..., B; arrivals.

We now consider the case when there is a nonserved queue with ¢; > 0 and ¢/ = B;. We
claim that these entries are given by the recursion

d(l) = d.(s‘l)e ,5! + dglh)e;,s f—g? (42)

where we use the notation s —e; = {g1,...,q: — 1,...,gar). To see this, note that only the
state of queue ¢ changes in the equation. The first term of the right-hand sum represents
the case of at least I; + 1 arrivals to queue 7, while the second term represents the case of
exactly ; arrivals to this queue. Since the left-hand term represents the case of at least I;
arrivals to queue z, we see that (42) holds. The initial conditions are given by equation (41).

4.3 DU for Gated Service

For the infinite case with exhaustive service we obtained equations (9) and (10) and found
recursions to calculate the values of dﬁ{.{, In the finite buffer case equations (11) and (12)

are used instead and the recursions are similar, though slightly more complex.

The entries dff 3; for gated service can be calculated in the same way as for the exhaustive

system. First in the infinite buffer case, equations (17), (18) and (20) were obtained. We
note that equation (18) is identical to (9) except that =, ¢ in (9) is replaced by -, (gl 1D

(18). As a consequence, we can use a recursion which is identical to that for T in equation
(25) to calculate a new quantity T if we replace =, ¢ by ¥, T(giw) in (22). Note that the
definition of {2 remains the same.

Next we find recursions for equations (17) and (20). Comparing those with equation
(10), we see that they are identical except that ¢o( ) in (10) is replaced by $,0)( ) in (17)
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and $(0)( ) in (20). As a consequence, we can define T'9* and ['®* analogous to T in (27).
Similarly, we define ©%2 and ©%* analogous to O in (29). Finally, within a prespecified e:

(43)

d(l) — TG[k%"wkM;Naqnq”+9G’a[k21"'skM;N7QI] if qi >0
2,5 @G,b[k% ey kM, N, ql] if q.i = 1.

4.4 Calculation of the Joint Probability Vectors

Once the entries of DU, j = 1,..., M, have been evaluated, the steady state vectors 80,
oW i =1,..., M, can be calculated simultaneously in an iterative fashion as follows. Let
B9(n) and a(n) be the values calculated at iteration 7, and without loss of generality we
start the iteration with the initial value 81)(0). Then recalling equation (2), we iterate from
mini-cycle to mini-cycle using the recursion

o (n) = 8O(n)DO i=1,....M
Bn) = V(n)CE-1)  j=2,. .. M
5(1)(n) = a(M)(n - 1)c(M)

The matrices DY) and C have special structure which can be exploited in the iterations.
Note that we have (see equation (1))

B(n) =0 - 1HO i=1,... .M
a(i)(n) = a(i)(n - 1)G(i) t=1,..., M.

The matrices H?, G®), which do not have such special structure, are not calculated explic-
itly. We are essentially employing the power method, so that the iteration converges to 30,
al), respectively.

5 Time Average Measures

In the previous two sections, we studied the embedded Markov chains Y@ and 2 defined
at time points when the server visits queue ¢ and when the server leaves queue i, respectively.
The steady state vectors 8() of Y and o) of Z() were obtained using numerically stable
recursions. We now show how B and ol can be used to calculate various time average
measures using results from Markov chains with rewards. We also retain assumptions from
the previous sections, namely, infinite buffers, cyclic switching policy, preemptive timeouts,
constant switchover times and either exhaustive or gated service at each queue. In the finite
buffer case, the procedure is virtually identical to that for infinite buffers, and we omit the
details.
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Let Pr be the limiting probability as ¢ — oo that the process X(f) is in a particular
subset R C & of states, i.e. Pr = limy_o P[X(t) € R]. For example, R may be the set
of states for which the lengths of the M queues have certain values, if joint queue length
distributions are desired. To obtain the marginal queue length distribution of queue 7, we
choose R to be the set of states for which the length of that queue has a particular value,
Such limiting marginal distributions can also be used to obtain other measures, such as
expected queue lengths over all time. The average waiting times for each queue can then
be calculated using Little’s result. Note that the PASTA property and the fact that the
process X(t) changes in unit steps imply that distributions at customer arrival points and
customer departure points are given by time averages. In the case of finite buffers, blocking
probabilities can be easily evaluated by exploiting the Poisson arrival assumption.

We assume that the regenerative process X(t) is stable in the sense that the limiting
probabilities exist. Recently, Georgiadis and Szpankowski [15] have shown that the stability
condition for the time-limited polling system with preemptive timeouts and exponential
service times is p < 1 and

o
pi— <T;
1—p
for all queues 3, where p; = A\;/pi, p= M, p; and 0 = M, 0; is the total mean switchover
time in a polling cycle. For nonpreemptive timeouts, the condition is simply p < 1 and
o 1
pi— <Ti+ —
1-p Hi

for all queues i (see also the work of Fricker and Jaibi [12]).

Define the random variable R(t) to be the amount of time X (¢) spends in R during (0,1).
Then from the ergodic theorem for regenerative processes (see [19]), the limiting probability
for set R satisfies Rit

Pr "2 i 20,

fim — (44)
It is well known that Pg is the ratio of the expected time spent in the set R during a
regeneration cycle to the expected length of such a cycle. However, this probability can
also be expressed in terms of expectations over a polling cycle (i.e. the time between two

consecutive server arrivals or two consecutive server departures at the same queue).

To see this, we use results about Markov chains with rewards. For notational convenience
consider a polling cycle defined by times when the server arrives to queue 1. We will see that
concentrating on other types of polling cycles yields the same equation for Pr. Let R, be
a reward equal to the cumulative time that the process X(¢) spends in the set of states R
during a polling cycle, given that the cycle started in state s. When R is the set of all states
&, the cumulative time is simply the length of a polling cycle, and we designate the random
variable in this special case as I,. Recall that the kth polling cycle is given by the interval
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(Mk—1,7%), where we have dropped the superscript (1) for convenience. Next let R (k) be
the total reward (total time in R) during (0, n¢) given that ¥; = s’. From Theorem 7.14 of
[19], we have for all s' € S

R":,c(k) "£! S™ E[R,)6., (45)

€S

lim

k—oo

where [, is the sth element of the probability vector satisfying 8 = AH (ie. B = BUHO),

Let M(t) be the number of transitions of the embedded Markov chain by time t, ie.
M(t) = max{k : g <1}. We clearly have

R(’?M(t)) < R(t) < R(’?M(t)ﬂ)
t - ¢t = ¢ '

(46)

The lefthand side of equation (46) can be written as

R(nm) _ M) M(t) . R(’IM(t))-
¢ t o M M(t)

It is easy to see that limy_. nare)/t YR Further, using equation (45) with R we have
(independent of the initial state s')

] R(WM(t)) w.p.1
lim — =2~ "= E(R,|8,,
t—oo  M(t) E [&:]

while using that equation with & gives

. TM(t) wp.l
lim ——= "= E[L,)8,.

Recall that R, is the amount of time spent in the set of states R during a polling cycle
given the initial state s, and L, is the length of such a polling cycle. Similar results hold
for the right-hand side of (46). Therefore, using equation (44) we may express the limiting
probability in terms of quantities involving a polling cycle and the embedded Markov chain

as
P‘R — ESES E[R-’]BS
Eses E[LS]ﬂs

This is the key equation we use to obtain limiting probabilities for the process X(t). Similar

equations may be derived for the other types of polling cycles (i.e. server arrivals to queue
¢ # 1 or server departures from a queue).

(47)

Equation (47) above requires the calculation of the expected value of the time that the
process is in R during a polling cycle that starts when the server visits queue 1 (given the
initial state), and also the expected length of such a cycle. However, as indicated in Section
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3, it is easier to compute quantities over mini-cycles and switchover intervals and then sum
the resulting expectations. To this end, we define U} to be the time spent in R during a
J-mini-cycle given that s was the state at the start of the mini-cycle, and V) to be the time
spent in R during a j-switchover interval given the state at the start of the interval was s.

By a simple conditioning argument, we may express E[R,] in terms of the above quantities
2 M S M N
B[R] =33 EWDp + 3 3 BV 1l
i=1s'c8 i=14s'€S
The matrices PU), with (s, s') element pﬂ,, give transition probabilities from the start of the
polling cycle to the start of the j-mini-cycle. Similarly, the matrices O, with (s,8") element

OS 3;, represent transitions from the start of the polling cycle to the start of the j-switchover
interval. They satisfy
P =1
o) = pODL) j=1,....M (48)
PW = QU-UCU-D s =9 M,

where I is the identity matrix. The numerator of (47) can therefore be written as
M . _ M . .
> B[RS =3 EUPY 88 + 5 3 BV S Buol).
€S i=1s'€S $ES 7=14'€8 3ES
Now from (2) and (48), the following equalities are easily seen to hold, namely,

(1) (J) — (J) ) — R M
ﬁ P B J 1, ’
5(1)0(-7') = alf J=1,..., M.

Using these results, the numerator of (47) is

2 E[R)8, = % 3 EU9BY + f 3" E[V@)ald),

€8 i=1se8 i=1se8

In a similar manner, the denominator of (47} is given by

M M
2 E[L)B: =33 E[BYBD + 35 E[AD])ald),
S j=1s3e8 i=13€8

where BY) is the length of a j-mini-cycle given that it starts in state s and A is the length
of a j-switchover interval given that the initial state is s. Thus (47) may be expressed in
terms of quantities involving mini-cycles and switchover intervals as

_ T Tees EUDIBY) + Y Tes BVl
S Toes BIBYBY + 74 5, s B[AD]0Y)

The same equation results from considering arrival polling cycles or departure polling cycles
for any queue 1.

(49)
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5.1 Pr for Exhaustive Service and Infinite Buffers

The quantities in the denominator of equation (49) are easiest to obtain {and are also inde-
pendent of R), and we will begin with their calculation. First note that since the switchover
intervals are constant, we have for j = 1,..., M that E{A{)] = o, independent of 5. Thus
the second term in the denominator of equation (49) is simply

M M
> E[AV]ed) = 3o, (50)

=1 s€S8

the expected total switchover time in a polling cycle. Clearly this result is independent of
the scheduling disciplines and buffer sizes at the various queues.

We next wish to determine E[B{]. Recall that the length of a j-mini-cycle depends on
the number present at queue ; when the server arrives, but not on the number at queue
i, ¢ # j. Therefore, we have E[BV)] = E[Bgf)] when ¢; = ¢}, where s = (gi,...,qu)
and s' = (qf,...,q}). Let the vector b¥) be obtained from 80} by aggregating states
together with the same jth element. That is, for ¢ = 0,1,..., define the set of states
ng) = {{g1,...,qm) € S: g; = q}, and let

bgj)= E ﬂﬁj’.

sES,(,j )

The first denominator term of equation (49) can be written as

M . . M oo ]

>3 EBPISY =303 Elr; | gIbY,

j=13€8 j=1g9=0
where recall that 7; is the length of a j-mini-cycle. Given that there are ¢ at queue 7
at the start of a j-mini-cycle, the distribution F(t,q) of the length 7; of the mini-cycle
was calculated in equation (5). The conditional expected length can be obtained using the
formula E[r;| ¢} = fgj[l — F(t,q)]dt and this equation. Proceeding in a manner similar to
the derivation of equation (10), we find that

oo (AT n ’
Blrlg =T~ T, 3 e i) {Em—;’:‘_’(lm Q)}. (51)

n=0
Here w(m,q) = mw(m — 1,¢)WU) where W) is the transition matrix of the uniformized
chain corresponding to W@, and w(0, q) = e,. This equation may also be derived directly
by noting that E[7;|¢] is the expected time during the mini-cycle when the system is not in
the absorbing state 0, which is 7; minus the expected time when the system is in state 0.
Arguments similar to those used in obtaining equation (55) below yield the result.
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Note that a direct application of equation (51) in calculating the first denominator term
of (49) would involve computing the conditional expected j-mini-cycle length for each queue
size q. However, this is not necessary, since it is easy to show that computations need only
be carried out using the uniformized chain with an initial distribution b"¥). To see this, we
observe that

i b (m, q) = f’: b x(0, ¢) (W)™ = i bie, (W)™ = b (W™,
g=0 g=0 g=0
and hence

Y bW w(m,q) = =(0, b(j))(W(j))m = w(m, b)),

g=0

It is then apparent from the form of equation (51) that

o ‘ o (AT [T wo(m, b)
> 8l |l = 7, — 1,3 v () [ BB D)

!
=0 e n! n+1

where 7(m, b)) = w(m — 1, bW))W) | but the initial distribution is #x(0,b) = bV, Thus
using this uniformization procedure, we obtain the expected length of a polling cycle {the
first denominator term) as

SO E{B)EY = f:Tj Sy TS e ALY {mﬂ mo(m, bm)} S (52)

i=1s€8 =1 =a=0 ntl

Here Ejnil T; is the sum of all M server timeouts, the maximum amount of time in a polling
cycle during which the server can be busy when there are no overruns.

The bracketed term in the above expression (52) may be easily calculated in a recursive
manner as follows [9]. Setting

Lm=o To(m, b))

fln) = Em= IO
we have the recursion
_n+1 mo(n + 1, b))
fln+1)= n+2f(n) t—

Note that f(n) <1 for all n.

We now consider the calculation of the numerator terms of equation (49). Expressions
for these terms will depend upon the set R of interest. For simplicity, we will assume that
R is the subset of states for which a certain queue, say queue i, has h; customers, which will
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enable us to obtain marginal queue distributions over all time. However, from the derivations
it will be clear how to handle other sets (e.g. to obtain joint queue length distributions).

We first consider the numerator term corresponding to the switchover intervals, specif-
ically the j-switchover interval. Since the length of such an interval is a constant oj, de-
termining the time spent with k; at queue ¢ during the switchover period only depends on
the size of queue ¢ at its start and the number of arrivals which occur (at rate A;) to that
particular queue. Let ¢; be the number in queue 7 at the start of the j-switchover interval.
Clearly if g; > hj, then there cannot be h; at queue 7 at any time during the switchover
period, since no departures from any queue can occur. Thus we need only concentrate on
the case when ¢; < h;. In this case, there must be at least kh; — g; arrivals to queue ¢ during
the switchover interval for there to be &; at queue ¢ at some time. If there are n such Poisson
arrivals, then the switchover interval is split into n 41 subintervals. It is well known that the
random variables representing the lengths of these subintervals are exchangeable [6, 7], and
thus the expected length of any subinterval is simply o;/(n+1). It is also clear that if there
are n > h; — ¢; arrivals, then the amount of time during the switchover period when there
are h; at queue 7 is given by the length of a single subinterval, since there are no departures
from the queue. Using these observations, we may write

hy oo e AT ] o
ZE[V,,U)]GE) = Z E e~ MY (/\;0'_7) ( d; )ag:._v), (53)

|
SES =0 n=hi—q; n:

where similar to the definition of b"), the vector al"9) is obtained from o) by aggregating
states together with the same ith entry. That is, for ¢ = 0,1,.. .,

alid = T .
sGS‘(,i)

Thus the second numerator term becomes

M N M 1 A .
DY EVI =3 = 5" By (0)alid), (54)
=1 s€8 i=1 Ai 3i=0

where Eg(t) = 1— 5 e=M(At)"/n! is the (k + 1)-stage Erlangian distribution. Note that
each of the M terms of the right-hand expression in equation (54) is bounded above by 1/X;,
the expected length of time between two arrivals at queue i. As was the case for E[A{)], the
result for E{V9] is also independent of the scheduling disciplines at the various queues, since
it only involves the switchover periods. We also mention that the Erlangian distribution is
easy to calculate in a stable recursive manner (see [16]).

Our final task is to obtain an expression for the first term in the numerator of equation
(49), which corresponds to the expected time during a j-mini-cycle when there are h; at
queue . We split our discussion according to whether j = ¢ or j # ¢, and consider the case
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when j = i first. In this case we wish to find the expected time during an 7-mini-cycle when
queue 7 (which is being served) has h; customers. We can assume that b; > 0, since the server
immediately switches when queue ¢ becomes empty, and so A; = 0 does not occur during an
i-mini-cycle. Using the uniformized chain corresponding to W) (with absorbing state 0),
the expected time can be found by transient analysis over an interval of length 7;. Given
n transitions of the uniformized Markov chain, note that there may be several subintervals
during which there are k; customers, and each subinterval contributes an amount of time
T:/(n+1) to the expectation. Thus, given ¢; at the start of the mini-cycle, it is easy to show
that (see also [9])

; —~ _az AT [T o 7n(m, q;)

E (') il = _AITI( L m=0 ] b 0 ,

(U] 4] Tg e = .

where w(m, ;) = m(m — 1,¢:)W® and 7(0,¢:) = e,. Therefore, using the vector b¥ for
the initial distribution of the uniformized chain as was done in equation (52), we obtain

S B0 = 7, 37 oA AT {z::;=o Tai(m, b"”>} | (55)

o=y = n! n+1

where 7(m, b)) = x(m — 1,bOYW) and #x(0,b®) = b, Note that equation (51) is
essentially the special case h; = 0 of this equation.

The case when j # i is similar to the derivation of equation (54), since it also involves
arrivals to queue ¢ during a particular interval of time. The amount of time during the
j-mini-cycle when there are h; at queue i depends, of course, on the number g; at that queune
at the start of the mini-cycle. However, it also depends on g;, the initial number at queue
J, since this controls the length of the mini-cycle. To determine E[U() | i, q;], as before
the only possibility to consider is when k; > ¢;, the number at queue ¢ at the start of the
J-mini-cycle. Given that the mini-cycle length is ¢, the expected time when there are h; at
queue ¢ has been determined previously in the derivation of equation (53). Thus further
conditioning on the length of the j-mini-cycle, we have

. T; e Y )\.‘f n 2
EU9Ngng) = [0 5 B (L) P ga
n=hi—g; ’
= _A,-T(/\iTj)n( Tj ) _ g
+n=§_qie ’ ! n+1 [1 F(TJ’QJ)]'

Substituting the expressions from equations (5) and (6), we follow the steps used to derive
equation {10) and obtain

: 1 & 2 ovaang [ + AT
E[U(J)qu,q‘i] = T Z {E e (A.+A,)T,[( i)7T3]

|
P n=hi—gi+1 | k=n+1 k!
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k A,’ n AJ m—n 1
Xm=2n+1(/\i+Aj) (A;+AJ) ( n )éo(m_naqj)

oo k
—iranT; (A + AT
+ ,E ¢ T

y (/\,- :\:Aj)n()u f;\j)k—n (:) [1 — mo(k — n,qj)]}

where w(m, ¢;) = w(m — 1,¢;)W and =(0,¢;) = e,

We now uncondition on g;, ¢; and use the same procedure as before to ensure that
calculations with the uniformized chain are not required for each of these possible pairs.
Specifically, let the vector b(%)(¢’) be obtained from V) by aggregating states with the
same jth element and with ith element equal to ¢’. That is, for ¢ = 0,1, ..., define the set
of states S (q") = {{q1,...,qm) €S : ¢; = ¢,¢; = ¢'}, and let

B = T A
ses§"(g)

Then we may write

S EUPEY = 130§ {f: v (i £ AT

€8 At ¢i=0n=h;—g;+1 | k=n+1 k'
Ag’ " AJ men m—1 (.d)
xm§+1 (/\f+AJ~) (A,- +A,-) ( n )%(m n, b7 (q:))

00 k
—arapT, [ + AT
+ ,; e x

() (525) ()b mteensowi} o

where 7t (m, b¢9)(g;)) = w(m — 1, b6 (¢;) )W and x(0, bl (g,)) = b{i7). Recall that ¢,
may be calculated in a numerically stable manner as illustrated at the end of Section 4.1,
while we recommend calculating 1 — 7 as 2 g=17¢ to avoid subtractions. Equations (55) and
(56) give the first numerator term of (49). It is easy to obtain a recursion for (56) following
the same steps as those for d, ., but which is much simpler.

9.2 Pr for Gated Service and Infinite Buffers

In order to calculate Pr for the case of gated service, we need to determine the various
expectations in equation (49). As noted above, the calculation of quantities corresponding to
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the switchover intervals is the same as before. Namely, equation (50) for E[A{ )] and equation
(54) for E[V)] remain valid, independent of the service disciplines at the queues. The
quantities E[U] and E[BY)] associated with the mini-cycles do depend on the discipline,
since the mini-cycle length differs according to the type of service at the queue. However,
the formula for E[BU)] is essentially the same as equation (52), except that the uniformized
Markov chain used to determine r is obtained from the two-dimensional chain of Figure 3,
instead of the birth-death chain of Figure 1. The final quantity to calculate for gated service
is E[UY)]. When j # 1, i.e. the queue length of interest does not correspond to the queue
being served in the j-mini-cycle, equation (56) is used as before, except that r is obtained as
described above from the two-dimensional chain. Thus it only remains to determine E [T
for j = 1. In order to calculate this expectation, it is necessary to determine the proportion
of time during a mini-cycle when a particular queue length of the served queue occurred,

To find the expected amount of time that the served queue contains k; > 0 customers
during the mini-cycle given an initial state (g;, q;), all states of the form (hi,v), where v =
1,...,min(h;, g;), must be included. The absorbing states (u,0) represent the only cases for
which the mini-cycle length 7; < T:, and they do not contribute to this expectation. Thus,
as was the case for the one-dimensional chains considered in Sections 5.1-5.2, uniformization
for a length T; can be used to obtain the result of interest. Specifically, proceeding as in the
derivation of equation (55), we first have for the initial state (qi59:)

n! n+1

) oo Aq-; n CF': n,_ m_in(h.“q:‘) . g, 4
B9 (g q)] = 3 e+ AT { EmsoZovet  Tih) (1 (9090) |

n=0
where m(m, (¢, ¢:)) = w(m — 1,(g;,¢:)) W and x(0, (¢;,¢:)) = €(qiqi)- Starting the uni-
formization with the equilibrium queue length distribution b, where the gth entry corre-
sponds to the probability that the initial state is (g, q), yields

5 B0 = 1,5 st AT Fon Bl T () b

o=y = n! n+1

where w(m, b)) = w(m — 1, bYW and F(a,9)(0, b)) = bg") (so that m(y.)(0,b®) = 0 for
u # v).

6 Extensions to the Basic Model

In this section we show how different extensions to the basic model considered above can
be easily handled using our method, such as general polling tables and additional service
disciplines. Another interesting model that can be solved is where a customer is not allowed
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to start service if the timeout interval is about to expire, since it is very likely that such a
customer will be unable to finish service.

For example, a system with a general polling table can be handled as in [11] by relabeling
the queues in the order given by the switching policy and proceeding as for the cyclic case.
Time average measures for queues that are visited more than once during the polling cycle
(i.e. that appear several times in the polling table) can be easily obtained, since these quan-
tities are calculated using expectations of random variables over mini-cycles and switchover
intervals.

Additional service disciplines can also be handled using the method developed in this
paper. Specifically, we briefly describe the changes necessary to analyze the E-limited and
G-limited cases [14]. The chain for the E-limited case (with a limit K; served during a
j-mini-cycle) is more complicated to obtain than simply by truncating the exhaustive chain.
The state for W%} in this case must count the number in the system and the number of
departures, since either quantity may cause the mini-cycle to end before the timeout expires.
Thus W) is a two-dimensional Markov chain with states (n,m), where n is the number in
system for queue 7, and m is the number of departures from queue j since the start of the
J-mini-cycle. The state transition rate diagram with K; = 3 is given in Figure 4.

States of the form (0,!) correspond to queue j being empty and are absorbing states.
However, since the number of departures from queue j is limited to at most K ;, states of the
form (I, K;) are also absorbing states, i.e. the server leaves when such a state is encountered.
As before, uniformization for a length 7 can be used to find the distribution of the J-mini-
cycle length and, in the case when the timeout expires first, the probability distribution
for the number in queue j at time 7;. The uniformization rate is Aj = Aj + p; as in the
exhaustive case.

There is an additional complication that occurs in this case, because the J-mini-cycle
can end prior to the timeout without queue j going empty This happens in the E-limited
case when the limit K; on the number of customers served is reached. To account for this
possibility, we divide the cases for computing transition probabilities differently than before.
We distinguish the following cases, which are disjoint and mutually exclusive.

(a) The timeout expires and causes the mini-cycle to end.
(b) Queue j becomes empty and causes the mini-cycle to end.

(c) The number of departures from queue j reaches K ; and causes the mini-cycle to end.

In case (a) we can use equation (9) with the appropriate uniformized Markov chain and
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Figure 4: E-limited service.

with 7wy (n — iy; ki) replaced by Zﬁ’b T {(n — Lig; ki). Here the notation g1 refers to the
state (¢},1) in the two-dimensional Markov chain.

For case (b) we can use equation (10) with go(m — 3,4, ki) replaced by the finite sum
E{i’b To(m — 3;; ki), since there are multiple absorbing states with q; = 0.

In case (c), K; customers were served in the j-mini-cycle. For the transition to occur,
¢; > (¢; — K;)* and the Markov chain describing the J-mini-cycle must reach the absorbing
state (¢j, K;). To compute the transition probability in this case we use equation (10) with
the Markov chain associated with E-limited service and with the reference to the absorbing
state 0 taken to refer to state (¢, Kj;).

This completes the development of the basic equations necessary to compute the transi-
tion matrix DY) for the E-limited scheduling discipline. As before, the equilibrium vectors
B9 and o) at server arrivals to queue ¢ and server departures from queue i can now be
found similar to the procedure developed for the exhaustive and gated disciplines.
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The chain W) for the G-limited case (with a limit of K j customers served within a
single j-mini-cycle) is identical to the two-dimensional chain for the gated case, except that
1t 15 truncated at states for which the original customers in the queue satisfy (g; — K;)* =
max{g; — K;,0}. These states are made absorbing states.

6.1 Reducing the Timeout Interval

If a departure occurs from the served queue j when the timeout interval has almost expired,
then the next customer (if any) will probably not complete service before T;. That is,
this next customer probably either will be returned to the waiting line of customers in
the preemptive case or will create an overrun in the nonpreemptive case. Thus it may
be advantageous for the server to immediately begin switching to the next queue near the
end of the timeout period instead of accepting an additional customer into service. These
considerations give rise to the following extension of the basic time-limited polling system.
We assume that there is a constant w; for queue j, 7 = 1,..., M, such that if the timeout
interval has exceeded T; —w; but has not yet expired by reaching T;, then no new customer
will be allowed to enter service. Thus, if any customer finishes in the interval (T} — w;, T}),
the server leaves queue j and begins to switch to the next queue. Note that setting the
parameter w; = 0 reduces to the usual time-limited system studied in previous sections. We
now show that this model can be easily analyzed using the techniques developed above.

We first claim that this extension provides no additional generality in the nonpreemptive
timeout case. To see this, consider a j-mini-cycle and note that any customer in service at
time 7 — w; will be served to completion in this new system. Furthermore, no additional
customers will be accepted into service. That is, if the system is not empty at T; — wj, the
customer being served at that time either will remain in service at T; creating an overrun,
or will leave in the interval (T; — w;,T;). We may thus consider the remaining service time
of this customer after T — w; simply as an “overrun,” during which arrivals to all queues
continue to occur. Thus the behavior of the new system is seen to be equivalent to one with
nonpreemptive timeouts and with a timeout period of length Tj — w;.

We next consider the preemptive timeout case, and indeed obtain a more general system
than those studied above. As before, suppose there is a customer in service at time T;—w;in
the served queue j. Then either the customer departs before time T; and the server begins
switching to the next queue, or the customer does not finish service before the timeout
expires and is preempted back to the waiting line at time T;. Of course, arrivals to all of
the queues continue during the service time of this customer. Thus the system is similar to
one with nonpreemptive timeouts and an “overrun,” the length of which is independent of
the state at T; — w; and is given by an exponential random variable of mean #; truncated
at w;. That is, given that the served queue j is not empty at T; — w; during a j-mini-cycle,
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the “overrun” length x; has distribution

1—et t<w;

Plo<d={ |

However, this system differs from the nonpreemptive timeout case, since the customer in
service at T; — w; only leaves the system if y; < w; and is returned to the waiting line if
X = wj-

To determine the transition probabilities for this new model, we first use uniformization
on the chain W) for an interval of length T; —w;. If the served queue J empties before time
T; — wj, then we proceed as before to obtain the transition probabilities. Now suppose that
queue j is not empty at time 7; —w;, and let g; > 0 denote the corresponding state. Arrivals
to all M queues during the “overrun” must be added as in the nonpreemptive timeout case.
However, the final state of the served queue j depends on whether or not the “overrun” was
of length w; (i.e. whether or not the timeout T; expired). Let ¢! be the state of queue i at the
end of the j-mini-cycle,i =1,..., M. For the nonserved queues i # J, there must be ¢/ — g7
arrivals after T; — w;. For the served queue, if x; < w;, then q; — ¢ + 1 arrivals must occur
after T; — w;, while if x; = w;, then g; — q; customers must arrive during the “overrun.”

Define [; = ¢/—q* fori =1,..., M. Let ei’;)'.,,'o and ef,{')'a,,l be the probability of a transition
from state s* at time T — w; to state s’ at the end of the j-mini-cycle when X; < w; and
X; = w;, respectively. Then we have

+1 i
(7) _ ,uj) ()\j)’ ()\,) (l+1)! E .
est 3, -_ e — y J w ,
0 (‘Yj Vi ,1;{ v/ (G + ) iy 1! b1y (5)

where v; = M A+ p5, 1= XM, 1, and Ej;(t) is the (I 4+ 1)-stage Erlangian distribution.
We also have

-
7,

. M Aitws i
e(J)s‘,l — e—'ijJ' H ( t;";.?)
i=1

We now continue similar to the nonpreemptive timeout case. Consider a system with
exhaustive service and infinite buffers. If g; > 0, then the queue could not have emptied

before time T; —w;, i.e. ¢f > 0. Therefore, the transition probability fa('?,
of the j-mini-cycle to its end is for q; >0

= 3 died,

s‘:q;>0

from the beginning

where dgfs). 1s given by equation (9) with Tj replaced by T; — w; and eg),,. = eg‘i),s,,o + e

F1e
s%,8'1

When ¢} = 0, then either queue j became empty before T; — wj or gf =1 and the customer
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in service at T; — w; finished before T; with no arrivals during the “overrun.” Thus for ¢, = 0
J g i g q;
we have _ . o
f.g;?s)' = d.(s‘j.z' + : : d-g::‘ﬂ)' e.E{),s',O‘

s“:q;=1

Similar arguments apply to the gated discipline and to the finite buffer case.

7 Computational Requirements

In this section we discuss the major computational costs involved in calculating the expres-
sions for the various measures of interest developed in previous sections. We first consider in
detail the calculation of the transition probability matrices D) and the equilibrium proba-
bility vectors 8¢) and o for a system with M queunes served in cyclic order with exhaustive
service at each individual queue, preemptive timeouts and infinite buffer size. We then con-
sider the similar case with finite buffers. Finally we comment on the cost of calculating the
time average probabilities.

Recall that the entries df;’ 2, of DU are determined in equations (9) and (10). Given ¢ > 0,
the infinite series in the equations can be truncated at N = N(e) to obtain results that are
within that given tolerance. The value of N is proportional to 4,T;. Since the service rates
and arrival rates are of the same order of magnitude, the problem is not “stiff.” Therefore, N
is proportional to the number of messages that arrive and are served in a mini-cycle, which
is in general not large.

The recursions to calculate the entries of D) are given in equations (24), (25), (28),
and (29) (for 7 = 1). The recursion for Qk,, ..., ka;n] is illustrated in Figure 5. In that
figure each cell consists of a vector of values Q[k,, ..., kar;n] such that M, k; = «;. The
arrows indicate the previous values needed in the recursion. For example, each cell in column

k1 = I contains {"*M~2) elements. Note, however, that only a row (or column) of elements
M-2

needs to be stored to calculate the values needed for dgs),. Further, there are a total of

N (';ﬁ;g) ~ (N +1)M-! elements in the Nth row (the largest row). In order to calculate

Tlks,..., ka7, q1,47], the values of 4, (r) and Tq (r — k1, q1) are required. The cost of the
recursion for ¢, (r) is negligible compared to the recursion to calculate Qk,, ..., kar; n]. The
cost to calculate 7y (r — k1, q1) is also negligible, since it only involves the multiplication
of a vector of dimension N by W), the uniformized transition rate matrix corresponding
to a one-dimensional birth-death chain in the exhaustive case. The recursion to calculate
Tlky, ..., kar; 7, g1, 1] is simple and should be done in parallel with the recursion to calculate
2. In more detail, as each value of 2 in a cell is obtained, a value of Y for that cell can
be calculated. Note that an element in a cell of values of T needs only the corresponding
T value in the same column and previous row. These comments also apply to the recursion
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used to obtain I and ©. In summary, the total storage necessary to implement the recursions
needed to obtain all entries of the matrix D) is O((IV +1)M+1), and therefore a total storage
of O(M(N + 1)M+1} is required for all the M matrices D), assuming that the values of
N(e) for each mini-cycle are approximately equal.

The number of operations (floating point multiplications and divisions) needed to carry
out the recursions to obtain the entries in the matrix D) is seen to be O(M(N + 1)M+1),
The calculation of the stationary probability vectors % and o is done iteratively. Each
iteration requires a vector matrix multiplication for each mini-cycle, where the vector has
dimension (N + 1) Even in the infinite buffer case the state space, and thus the length of
B9 and | is truncated for a given error tolerance.

For queues with limited buffer space, the recursions given by equations (31), (32), (37)
and (38) are used. These recursions are similar to those for the infinite buffer case, and
Figure 5 may also be used to illustrate the recursion for ®, where &, is replaced by a. When
all buffer sizes are finite and equal to B, a cell in column a has at most (B + HM-1_ pM-1
elements for a > B(M — 1), or (“L”i;z) for small values of a (a < B). Similar to the infinite
buffer case, only one column (or row) of elements needs to be stored. (Note that only a cell of
T values needs to be stored if recursion by column is used.) A total storage of O((B+ 1)M+1)
is necessary to obtain D™, while O(M(B + 1)M+1) is needed for all the M matrices D).

It is important to stress that the storage necessary to carry out the recursions needed for

all the entries in the matrices D) is significantly less than the total number (B+1)2M /2 of
nonzero entries in DY), since many of these entries are identical. Furthermore, the procedure
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used to calculate 8) and o) is to iterate from mini-cycle to mini-cycle until convergence
is achieved. Note that such an iteration scheme takes advantage of the structure of the
matrices DY), CU) in terms of storage. If 3) = FOVHO) or o) = oG is solved directly
instead, the total storage needed would be (B +1)*™, since H®) and G® do not necessarily
have special structure. Note also that all recursions have a probabilistic interpretation and
involve only additions and multiplications, and so they are numerically stable.

Once the vectors 8{) and o) have been obtained, the additional computational re-
quirements to calculate the time average probabilities Pg are minor. For simplicity, again
consider the case of infinite buffers, preemptive timeouts, and exhaustive service discipline.
From equation (52) (and related equations) observe that the expectations needed to com-
pute Pr depend mainly on the vectors w(n), and these have already been calculated in the
recursions for DU) described above. Once the w(n) are available, it is easy to see that the
computational requirements needed to calculate Pg are O(MN?).

8 Examples

In this section we present simple examples to illustrate the applicability of the method we
developed in previous sections. The first example is the model of the so called (T}-73) scheme
for multiplexing voice and data [23]. In this scheme, voice packets are served until their queue
is exhausted or until a maximum service timeout of 7} time units is reached. Data packets
are served in a similar manner, with a timeout of 75 units. Note that the capacity C' of
the channel is allocated dynamically between the two sources of traffic, but a minimum of
{Ti/(T1 + T)]C is guaranteed for voice and data (i = 1,2), respectively. In this example the
capacity of the channel is assumed to be 1.5 Mbps, the voice load is assumed to be 60% of
the capacity and the data load is allowed to vary. Voice and data packets have an average
size of 600 bits and 400 bits, respectively, In Figure 6 we plot the average delay of data
and voice packets when the average data load varies from 10% to 60% of the total channel
capacity for three different buffer sizes: 10, 20 and 30 packets. The maximum amount of
time allocated for voice and data packets is 8 msec and 2 msec, respectively, and we assume
that the switchover times are equal to 0.1 msec. Therefore, voice packets are guaranteed
80% of the bandwidth, while data packets can obtain at most 20% of the channel capacity.
As is evident from Figure 6, the increase in data traffic has little effect on the expected delay
of voice packets (represented by the three curves on the bottom of the figure), even when
the total offered load is above the maximum channel capacity.

Figure 7 is similar to Figure 6, but in this case the maximum amount of time allocated

for data packets is increased to 4 msec, and so voice packets have 66% of the capacity while
data packets have 33%. In this case, the increase in data load has a bigger effect on the delay
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Figure 6: Effect of data load increase: T',;.0 = 8, Tqata = 2-

of voice packets, because they are allowed to use a higher percentage of the bandwidth. In
Figure 8 we plot the average delay for voice and data packets packets both for (71-T3) equal
to (8-2) and (8-4), to highlight the effect of bandwidth allocation. The buffer size is assumed
to be 30 packets.

Finally, in Figure 9, we plot the blocking probabilities for voice packets versus the load
of data packets for buffer sizes of 10, 20, 30 and (T3-T5) equal to (8-2) and (8-4) (the average
voice load remains at 60% of the capacity). The effect of buffer size increase on the probability
of blocking voice packets can be observed in the figure, as well as the effect of increasing
the timeout limit for data packets. For instance, when the average data load is at 20% of
the channel capacity (the total load is then 80% of the capacity), the blocking probability
increases four times (approximately from 4.0810~° to 16.510~°) when the timeout value for
data packets increases from 2 to 4. Clearly, as the data load decreases, the timeout value
for data packets has a smaller effect on the blocking probability for voice packets, and this
effect is nearly negligible when the data load is 10.

The timeout parameter for each queue sets a limit on the maximum bandwidth that can
be allocated to a traffic source. Queues with larger values for this parameter may obtain a
higher percentage of the channel capacity when needed and so have higher “priority,” while
“lower priority” traffic is still guaranteed a minimum bandwidth. It is clear that varying the
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timeout values has the effect of varying the relative priorities assigned to each traffic source,
and so there is a wide variety of choices for the parameters. In the second example we show
the effect of varying the timeout parameters in a system with three queues when the capacity
of the channel is 2 Mbps. The three sources are identical, i.e. the average packet lengths
are equal to 1000 bits and the load is the same. In Figure 10 we plot the average waiting
time for packets of each of the three sources when the combined load of all sources vary from
30% to 90% of the total channel capacity for three sets of timeout parameters: 6-3-2, 7-2-2
and 4-4-3. The buffer size is assumed to be 10, and the switchover times are equal to 0.01.
Comparing the first and third sets of curves, we see that the the expected delays of the third
set are less spread than those of the first one. The second queue is practically not affected
when we change the “priority” from 4-4-3 to 6-3-2, while the first queue is given a higher
fraction of the bandwidth at the expense of the third queue.

Finally, an interesting question to ask is what effect the values for the timeout parameters
have on performance measures when the percentage of the channel capacity allocated to each
source is maintained constant. Figures 11.a, 11.b and 11.c show this effect. The parameters
for this system are the same as for the first example (with buffer size equal to 20), but the
timeout values vary according to 4¢-2¢ for t = 1,...,4. We first note that in Figure 11.a
(for which the data load is 30% of the capacity), increasing the timeout values favors the
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voice packets more than the data packets. This is somehow expected, since the voice load
is 60% of the chanmnel capacity. What it is not clear is whether the delay of data packets
may improve as well. It is interesting to note that the delay of data packets has a minimum
around timeout values of 8-4.

As the load of data packets increases, the proportional increase in the timeout values
begins to favor the data packets more than the voice packets. This is shown in Figure 11.h.
Finally, in Figure 11.c, we see that the load of data packets is sufficiently high so that an
increase in the timeout values has a negative effect on the voice packets, even if the maximum
fraction of capacity allocated to the sources remains constant. Note that the voice packet
delay curve of Figure 11.c has a minimum.

Two observations should be made to help in understanding Figures 11.a through 1l.c,

First, note that the influence of the switchover time increases as the timeout values decrease.
Second, as t — oo the system tends to an exhaustive service discipline.
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9 Conclusions

Time-limited polling systems have become increasingly important, especially in the area of
high speed networking. We have presented a solution procedure for obtaining queue length
distributions and related performance measures for a general class of time-limited polling
systems. When the time limit is not exponential, the state evolution is non-Markovian, and
these models have resisted a closed form solution. In this paper we have developed efficient
numerical algorithms for solving these models based on the method of embedded Markov
chains.

The uniformization technique is used to perform transient analysis of the evolution of the
system between consecutive epochs of the embedded chain. Uniformization is used in this
manner to calculate transition probabilities, from which the stationary state probabilities
for the embedded Markov chain are obtained. Computational procedures are also developed
to calculate the time in a set of states between epochs, conditioned on the starting state.
Combined with the stationary state probabilities of the embedded Markov chain, overall
performance measures can be computed. In the case of the polling models treated in this
paper, it is also shown that additional computational savings can be obtained by taking
advantage of the special structure of the model. Examples are given which illustrate the
application of these methods to high speed communication switches and bandwidth allocation
strategies.

The results here can also be viewed as illustrating a general technique for computing
performance measures for models that can be solved via the embedded Markov chain method,

but for which the transition probabilities and performance measures between embedded
points are difficult to obtain in closed form.

Acknowledgments

We wish to thank O.J. Boxma, K. C. Chang, S. W. Fuhrmann and L. Georgiadis for useful
discussions. We also thank Paulo Alcantara Saraiva Ledo for his comments and for imple-
menting the algorithm.

References

[1] D. Bertsekas and R. Gallager. Data Networks. Prentice Hall, New Jersey, 2nd edition,
1992.

47



[2) O.J. Boxma. Analysis and optimization of polling systems. Technical report, CWI,
report BS-R9102, 1991.

[3] O.J. Boxma and W.P. Groenendijk. Two queues with alternating service and switching
times. In Queueing Theory and its Applications - Liber Amicorum for J. W. Cohen,
pages 261-282. North-Holland, 1988.

[4] E.G. Coffman, Jr., G. Fayolle, and 1. Mitrani. Two queues with alternating service
periods. In Proc. Performance '87, pages 227-239, 1987.

[6} J.W. Cohen and O.J. Boxma. The M/G/1 queue with alternating service formulated
as a Riemann-Hilbert problem. In Proc. Performance '81, pages 181-199, 1981.

[6] H.A. David. Order Statistics, 2nd Ed. John Wiley & Sons, 1981.

[7] E. de Souza e Silva and H.R. Gail. Calculating availability and performability measures
of repairable computer systems using randomization. Journal of the ACM, 36(1):171-
193, 1989.

8] E. de Souza e Silva and H.R. Gail. Analyzing scheduled maintenance policies for re-
g
pairable computer systems. IEEFE Trans. on Communications, 39(11):1309-1324, 1990.

[9] E. de Souza e Silva and H.R. Gail. Performability analysis of computer systems: from
model specification to solution. Performance Evaluation, 14:157-196, 1992,

[10] E. de Souza e Silva and H.R. Gail. The uniformization method in performability analysis.
In Proceedings of the 2nd International Workshop on Performability Analysis, 1993.

[11] M. Eisenberg. Queues with periodic service and changeover time. Operations Research,
20(2):440-451, 1972.

[12] C. Fricker and M.R. Jaibi. Monotonicity and stability of periodic polling models. Tech-
nical report, Tilburg University, report FEW 559, 1992.

[13] S.W. Fuhrmann. Performance analysis of a class of cyclic schedules. Technical report,
Bell Laboratories, report TM 81-59531-1, 1981.

[14] S.W. Fuhrmann and Y.T. Wang. Analysis of cyclic service systems with limited service:
Bounds and approximations. Performance Fvaluation, 9(1):35-54, 1988.

[15] L. Georgiadis and W. Szpankowski. Stability criteria for yet another multidimensional
distributed system. Technical report, Purdue University, report CSD-TR-91-071, 1991.

[16] W.K. Grassmann. Means and variances of time averages in Markovian environments.
European Journal of Operational Research, 31:132-139, 1987.

48



[17] W.K. Grassmann. Finding transient solutions in Markovian event systems through

18]
[19]
20]
[21]
2]
23]
[24]
[25)
[26]
[27]

[28]

randomization. In Numerical Solution of Markov Chains, pages 357-371. Marcel Dekker,
Inc., 1991.

D. Gross and D.R. Miller. The randomization technique as a modeling tool and solution
procedure for transient Markov processes. Operations Research, 32(2):343-361, 1984.

D.P. Heyman and M.J. Sobel. Stochastic Models in Operations Research, Volume L
McGraw-Hall, 1982.

K.K. Leung and M. Eisenberg. A single-server queue with vacations and gated time-
limited service. IEEE Trans. on Communications, 38(9):1454-1462, 1990.

K.K. Leung and M. Eisenberg. A single-server queue with vacations and non-gated
time-limited service. Performance Evaluation, 12(2):115-125, 1991.

F.E. Ross. FDDI - a tutorial. JEEE Communications Magazine, 24(5):10-17, 1986.

K. Sriram. Dynamic bandwidth allocation and congestion control schemes for voice and

data multiplexing in wideband and packet technology. In IC'C-90, pages 10031009,
1990.

H. Takagi. Analysis of Polling Systems. MIT Press, 1986.

H. Takagi. Queueing analysis of polling models: an update. In Stochastic Analysis of
Computer and Communication Systems, pages 267-318. North-Holland, 1990.

H. Takagi. Application of polling models to computer networks. Computer Networks
and ISDN Systems, pages 193-211, 1991.

K.S. Watson. Performance evaluation of cyclic service strategies - a survey. In Proe.
Performance ‘84 and 1984 ACM SIGMETRICS Conf., pages 521-533, 1984.

(0.-C. Yue and C.A. Brooks. Performance of the timed token scheme in MAP. JEEE
Trans. on Communications, 38(7):1006-1012, 1990.

49



