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Abstract

The key issues in network management are the representation and sharing of management informa-
tion and the automatic management mechanisms based on the underlying information infrastruc-
ture. We propose the methodologies of (i) global view abstraction for the management information
infrastructure and (1i) learning and inference for automatic and adaptive network management.
Views are global management information constructed via logical rules. Management applications
access these views to learn network patterns and reason on the discovered patterns and pre-specified
domain knowledge to predict network status, disgnose problems, and trigger control actions. The
proposed scheme is meant to operate on the OSI standard management architecture where man-
agement information is stored in object-oriented databases. Management knowledge base which
includes network patterns, abstract view definition, and domain knowledge is represented as a set
of logical rules. A network management system, GlobeView, and a case study on ATM network

topology tuning are presented.

1 Introduction

Recent progress in network management is the recognition of the need to use standardized databases
for storing network management information and a standardized protocol to access the stored in-
formation. This solves the interoperability problem [CDFS88,MR90,R0s90,ISO90A,ISO90B]. Def-
inition and implementation of MIB (Management Information Base) and CMIP (Common Man-

agement Information Protocol) are on-going efforts [HBRD93,MBL93]. However, one problem
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remains. Namely, how to abstract the global management information from the distributed man-
agement information infrastructure? The management system needs to provide the users, either
human managers or management applications, the capability to view and control the entire network

via a single query command.

On top this information platform, automatic management applications deal with specific man-
agement tasks. However, management tasks like performance tuning and fault diagnosis require
good understanding of traffic patterns and knowledge of causality which we might not have models
to describe. In general, a pattern can exist in client-server interactions, temporal and geographical
traffic distribution, traffic/performance relationship, performance correlation between network en-
tities, alarms or faults correlations, and some hidden causal relationships. In [LTHG93], we propose
the HAP model for packet arrivals on a short time scale for real-time control. Here we are looking
at a longer time scale and assuming that we do not have a model for the behaviors of traffic sources.

The importance of understanding, and furthermore capturing, patterns stems from several
different reasons. Phenomena can be explained more precisely and problems can be diagnosed.
Knowing the dynamics within the system will enable us to predict the system behavior and perform
adaptive control. In an adjustable system, we can further tune the system according to the pattern
if some status is foreseen to occur. However, to understand the network patterns, we need the
historical information of the network. Three issues arise here. First is the representation issue: in
what format are we going to store the current/historical information and the discovered patterns?
Second is the learning or knowledge acquisition issue: how are we going to discover the patterns
from the stored information trace? Third is the inference or knowledge use issue: based on the
management information and the captured patterns, what kind of automatic control/management
mechanisms can be built?

Given that we want to abstract global management information and construct automatic and
adaptive management applications, we propose a framework for a network management system with
learning and inference abilities, where learning is to capture network patterns and inference is to
reason on the discovered patterns and pre-specified knowledge in order to access virtual global ob-
jects, predict network status, trigger control actions, and diagnose problems. The proposed scheme
is meant to operate on the standard management architecture where management information is
stored in object-oriented databases. Management knowledge base which includes network patterns,
abstract view definition, and domain knowledge is represented as a set of logical rules. These rules
are triggered by the facts in databases and queries from management applications. The goal is

autonomous network management by expert systems with learning capability.

Section 2 highlights the network management issues and their recent progress. The induc-
tion/deduction approach is proposed in section 3. In section 4, network patterns are classified
and the pattern discovery process is described. The backward deduction for diagnosis and ab-



straction, and the forward deduction for prediction and control are illustrated. The architectural
aspects of the proposed scheme and its operation on the standard management model are described
in section 5. The techniques to build management information infrastructure and management
applications are detailed in section 6 and 7. Section 8 present an experiment of pattern discov-
ery in LAN environment. The GlobeView implementation, listed in Appendix, and management

application on topology tuning are detailed in section 9. Parts of the report are published in
[GL91A,GL91B,LG92,LGI3].

2 Problem Domain: Network Management

Unlike real-time control, management is not an essential component to simply make the system
work. That is, a system can continue to function, at least for a period of time, without the
management subsystem. However, what were once highly tuned systems may gradually degenerate
to an inefficient state. Not only a software/hardware failure but also performance degradation
can be a system problem. Thus, the task of the management subsystem is to keep track of the
system status, which includes both configuration and performance, and trigger control actions
when necessary. We can divide the management process into the monitoring process and the
control process. The monitoring process involves collecting information about the system’s short-
term/long-term behavior and low-level/high-level status, filtering out unimportant information to
reduce stored data volume, and interpreting the semantics of the collected information. The control
process affects the state of the system according to the interpreted information to achieve a desired
outcome. In the above processes, we find that there are two major issues in network management:
management information infrastructure and automatic/adaptive management schemes.

A. Management Information Infrastructure

Any network management system must be constructed on top of the underlying management
information model on which the representation schemes and operations are based. Given that
a network is a distributed, and maybe heterogeneous, environment, several issues are confronted
when designing the infrastructure of the network management information:

¢ Management information representation: In what form can the information be stored
in network entities and exchanged between network entities? What kind of management
information needs to be supported? Do the format and the content have to be standardized
for information sharing?

¢ Heterogeneity of protocol stacks: How can machines with different protocols interoperate

to share management information?



¢ Information distribution strategy: What is the mechanism for information sharing be-
tween network entities and the management system? Should the management system keep
a global view of the network at all time or reconstruct it, when needed, from local views of

network entities?

Here we are facing problems similar to information sharing problems in a traditional file system,
with multiple applications, where an application must know the structure of the files it is operating
with. If one particular application needs to modify the structure of a file, all the other applications
using that file have to be changed. The solution to avoid this led to the evolution of database
systems which contain the files, the file structures, and the primitives to access them. The separation
between data and applications provides data independence for applications [UlI88]. By the same
philosophy, data independence for network protocol stacks and management applications can be
supported by the management information databases and their access protocol. The database
primitives and the access protocol form the information access primitives for protocol stacks and
management applications. As information may be shared by distributed heterogenecus network

entities, management databases and access protocol must be standardized.
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Figure 1: OSI Management Model

The open-networking community has settled on a management model that places a MIB on each
network node and manages these MIB’s remotely with application level protocols [ISO90A,ISO90B,CPW89).
The widely accepted OSI management model is illustrated in Figure 1. A MIB, an abstract image
of the local management objects, is supported by each seven-layer OSI node. Objects are manip-
ulated by the application-layer management protocol CMIP, which uses RPC {Remote Procedure
Call) protocol. Changing the attribute values in a MIB will result in changing the status of the
physical network entities. For example, setting the status attribute of link 537 to off can disable
that link.

Because of the hierarchical nature of network entities and their sub-entities, both ISQ and Inter-
net models organize network management information into a hierarchical structure. ISO even en-
capsulates this hierarchical model into object-oriented databases in order to hide the heterogeneity
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of network entities away from the protocol stacks and management applications. In ob ject-oriented
databases, the following concepts are supported: (i} subtype hierarchy (by record formation and set
formation) and method inheritance, (ii) encapsulation, and (iii) object identity [UH88]. An object
class is associated with a set of methods operating on the object instances of this ob ject class. An
object subclass inherits the set of methods from its parent object class. The encapsulation of the
heterogeneity of network entities is achieved by the sets of methods.

The adopted architecture solves the problems of information representation and hetero-
geneity of protocol stacks, but the problem of information distribution strategy remains.
Given the standard platform, we still need a mechanism to construct the global views for the

management applications. This is one of the problems we want to solve,
B. Automatic and Adaptive Management

Although the infrastructure of network management is agreed upon regarding the standard
MIBs and CMIP, little was done to define how to use this platform in specific network management
problems: performance, configuration, fault, accounting, security, etc. Several researchers have
adopted expert systems with domain knowledge represented as a set of logical rules capturing
network management model to cope with fault localization and correction [EEM89,Goy91,Lew93].
In these systems, network messages containing “trouble tickets“ are sent to the expert system. This
expert system then reasons on the trouble tickets and network configuration to find the possible
fault locations and the recovery procedures. The effectiveness of these systems depends heavily on
encoding the problem-solving knowledge in the network domain. The goal of these expert systems

is an automatic fault management system to enhance or even replace human intervention.

Other network management problems also need automation. The maintenance of a large num-
ber of objects in MIBs needs to be done automatically to keep the status information up-to-date.
Configuration management applications can then easily identify and update objects. This in turn
changes the configuration of network entities. Fither remedial or preventive performance man-
agement schemes need to be triggered automatically by performance alarms or traffic forecasting,
which again depends on automatic interpretation of performance and traffic measurements. This
measurement interpretation implies that the system needs to keep track of the network patterns
and perform adaptive control. The ultimate goal for network management should be a self-managed

and self-adjustable network.

3 Proposed Approach

Our approach to solve the above two network management problems: information distribution

strategy and automatic/adaptive management is to incorporate learning and inference abilities
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into network management systems to automate the process of global view construction, measure-
ment interpretation, problem forecasting, problem diagnosis, and decision making. To build the
information infrastructure, a set of global views is constructed. A global view is a virtual object
class defined from all local MIBs via logical rules. These global views serve as windows through
which management applications can access physical network entities. Figure 2 shows a set of global
views constructed from local MIBs. To equip the system with automatic and adaptive abilities, net-
work patterns are learned from a historical database which contains a chronological measurement
trace. These discovered patterns, represented in the form of logical rules, describe the correlation
between network objects. Based on these network patterns and pre-specified domain knowledge,
forward and backward inference can be triggered to access global views, predict network status, fire
control actions, and diagnose reported problems. Figure 3 illustrates the general approach using
learning and inference in network management. Unlike an expert system with only pre-specified
domain knowledge, the proposed management system has, in addition, learning ability to augment
its knowledge regarding the specific managed network.

Figure 4 is an abstract information flow model of our management systems. EDBs (Extensional
Databases) are actually the standard object-oriented MIBs. They represent the basic facts about
configuration, traffic/performance measurements, and events/alarms of local nodes. Each network
node has an associated EDB which is its local view about the network. IDB (Intensional Database),
located at a management site, is defined as the deductive closure of EDBs with logical rules. That
is, IDB contains virtual objects defined on the physical objects in EDBs. Access to IDB will
be transformed into access to EDBs. This is the same concept as in relational databases where
views are virtual relations defined on physical relation tables. EDB and IDB are both deductive
database terminologies [Ull88]. The difference is that now IDB is defined on distributed EDBs.
IDB, including overall configuration and inter-object relationships, embodies the global views of
the network. Extracted from IDB, HDB (Historical Database) is the temporal historical database
which encode time in the network trace. Network patterns are learned from HDB and stored in
PKB (Pattern Knowledge Base). DKB (Domain Knowledge Base) is pre-specified problem solving
and general relationship knowledge. Note that only EDBs are standardized; all the others are
management application dependent.

A logical rule in IDB/PKB/DKB has the generic form: IF X THEN Y, where X is its body
part and Y is its head part. A body or head part has one or more than one formula which can
represent the status of a network object or an action to update an object’s status. A detailed
definition of logical rules in IDB/PKB/DKB is given in the next section.

Each network pattern, represented as a logical rule in PKB, describes a correlation between the
attributes of network objects. These correlations are extracted from HDB where selected attributes
are logged according to the specific management application. Since this extraction is a statistical

process, a probability is associated with each logical rule to show how strong this pattern is.
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Figure 4: Abstract Model of Information Flow

If the status of network objects satisfies the body part in the rule, the pattern tells us, from
the past experience, it is very likely that the status of the network object also satisfies the head
part with some probability. This logical rule is thus fired as a forward inference. Forward inference
is very suitable for status prediction. If some undesired status of a network object is foreseen to
occur, it can further fire some logical rules in DKB and then trigger preventive control actions.
On the other hand, if a trouble is reported to the management system (eg. blocking probability of
connection 839 is larger than 5%), this object associated with the trouble is matched against the
object in the head of rules. If the head is satisfied, the rule is fired as a backward inference and a
series of inferences on the formulas in the body can carry on. Finally, the set of residual formulas
which can not be further deduced are the possible causes to that trouble. Again, using forward
inference on the logical rules in DKB, the remedial control actions can be triggered.

Why Rule-based Systems for Network Management?

After presenting this methodology, let us examine the reasons to adopt rule-based systems for
autonomous network management. The following characteristics of network management problems

make the rule-based solution desirable:

¢ Evolving problem-solving knowledge and changing network patterns
¢ Complex condition matching

s Solution and pattern naturally expressed in IF-THEN rules

New services or solutions are introduced from time to time, which results in updating problem-
solving knowledge. Moreover, different network patterns exist in different networks and they may
change over time. Since rules are modular pieces of information that are not explicitly directed by



control statements in the program, it is possible to add or remove rules without changing the overall
structure of the program or the control flow. In the procedural systems, on the other hand, these
changes in problem-solving knowledge may result in modification, recompilation, and reinstallation
of the program code. In addition, rule-based systems are powerful in symbolic manipulation by
pattern matching between data and rules. A complex situation encoded by many pieces of data can
be matched with a set of rules which is then fired to trigger control actions. It is also more common
and natural for network domain experts to express their expertise as declarative IF-THEN rules,
rather than as procedural algorithms. Besides, the network patterns which represent cause-effect

correlations are naturally expressed as logical rules.

4 Induction and Deduction in Network Management

4.1 Terminologies for Logical Rules

As mentioned previously, a rule has the generic form: IF X THEN Y. However, the actual formats
and meanings of rules in IDB, PKB, and DKB are different. Here we give the definition of our IDB
rule, PKB rule, and DKB rule.

An IDB rule is written in the form of Horn clauses, which are statements of the form: “if A,
Az, ... ,and A, are true, then B is true.“ Following the Prolog [SS86] syntax, it is written as

B - Al, Ag, Ve An.

where the formulas B and A; are predicates, e.g. p(X1, ..., Xi), with a list of arguments. Predicates
produce true or false as a result; i.e., they are Boolean-valued functions. A predicate can repre-
sent a physical object class stored in EDBs, which is called EDB predicate, or a virtual object
class defined by IDB rules, which is called TDB predicate. 1IDB rules are used in a backward-
chaining fashion to support view abstraction. That is, a query expressed as the predicate B will
be transformed into a set of queries/predicates {A;} according to the above IDB rule.

The format of a PX B rule is in Horn clauses, with certainty factors, like

Confidence Factor = P% B « Ay, A, ... Ay
which reads “if A;, Az, ..., and A, are true, B is concluded to be true with probability P.% A
formula A; or B is a condition that represents the status of a network object (eg., connection
status = “closing®, 40% < link utilization < 60%). PKB rules are triggered in a forward-chaining
fashion for status prediction. A transformation from PKB rules to DKB rules is required when

PKB rules are to be included in the production system for inference.

A DKB rule is actually a production rule. It is written in the OPS5 (Official Production



System, version 5) [CW88] syntax as

(A1 Ay ... A, —> By By ... By)
which reads “if A, A, ..., and A, are true, By, By, ..., and B,, will be executed.* Here 4; is
a condition and B; is an action. DKB rules can be used to invoke control actions by forward
inference. They can also emulate backward inference to diagnose problems [BFKMS85).

4.2 Induction for Pattern Discovery

Learning is a process of knowledge acquisition. Knowledge can be acquired through taking advice,
(i-e., inputing new knowledge directly), problem-solving experience (i.e., remembering the structure
of the problem and the methods used to solve it), learning from examples (constructing concept
definition from examples), etc [RK91]. Network measurements are themselves examples containing
many implicit, network-dependent patterns to be discovered. The inductive learning constructs
decision trees from a large number of examples. Each decision tree represents a concept with the
following definition [Qui86].

Definition: A concept ¢ includes the function f; to be approximated, the set of approximators 4;,
the domain D; (D; C HDB), on which f; and the members of A;; are defined, and the confidence
factors, C'F}, which is the percentage of examples in D; that satisfy the following rule:

fi( D) € [U;,ul;] «— Ay(Dy) € [lij, uiz] for all attribute j,

where i is the concept index and j is the attribute index. a
As there may be many sets of I, v/, I, and u (lower and upper bounds) for a particular set of
examples, a set of such rules can be generated from a concept (decision tree). Computational
complexities for these learning algorithms are usually exponential in the number of attributes.
However, there are steps to reduce complexity by using domain knowledge to restrict the set of
attributes and relational structures considered. As learning algorithms are not the main theme of
this work, readers are referred to the literature [RK91,Qui86,Win75,Qui87,Pag90,SE92].

In our approach, induction is performed on the management application dependent HDB to
generate PKB. The logical rules in PKB model and represent the correlations between attributes
in HDB. [GL91B] reports an experiment on interconnected LANs where traffic patterns are learned
by a machine learning tool from traffic measurements stored in a HDB implemented as a relational
database. The discovered rules can describe traffic patterns in terms of locality, long-term bursti-
ness, correlation, cyclic repetition, and predictability. These patterns can be used for medium-term

and long-term performance management.

In addition to traffic patterns, there are many other interesting network patterns. In general,
patterns describe inter-object and intra-object relationships. Here an object instance is an example.
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We classify the network patterns into the following categories with examples:

o Temporal and geographical traffic distribution

Confidence Factor = 85%
20M < Traffic < 30M
11:30AM < Time < 12:30PM,
Source = “oahu®,

Destination = “maui®;

o Traffic/performance relationships

Confidence Factor = 90%

Delay Violation > 5%

-

CPU Utilization > 60%,

Network Application Weight > 40%;

* Performance correlation between network entities

Confidence Factor = 80%

40% < Node B Utilization < 50%
—

50% < Link 1 Utilization < 60%,
35% < Link 2 Utilization < 50%;

¢ Hidden causal relationships

Confidence Factor = 84%

Node 3 Fails

—

Number of Performance Alarms from Link 1 > 10,
Link 1 Utilization < 20%;

4.3 Deduction for Abstraction, Prediction, Control, and Diagnosis

Both preventive and remedial control actions can be taken by network management applications.
Preventive control is triggered by problem forecasting based on previous patterns, while remedial
control is triggered by network events {performance alarms and device failures). As the manager
receives results of the queries to IDB, it passes the configuration status variables to configuration

submanager, performance status variables to performance submanager, and event variables to fault
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submanager. If any match between the variable values and the body of a rule occurs, the rule is
fired and the head part executed. A rule in IDB/DKB/PKB can be fired for four possible purposes:

¢ Prediction: The forward inference on a PKB rule, given that the rule body is true, forecasts
that the rule head will be true.

¢ Control: The forward inference on a DKB rule triggers the control actions to take when some

network phenomena are detected.

e Diagnosis: The backward inference on a DKB or PKB rule can discover the root causes of

network events, even when these events are not yet detected.

o Abstraction: The backward inference on an IDB rule transforms an IDB query to EDB

query/queries and hence provides view abstraction.

Here are two example inference processes: (i) a process that predicts traffic demands between
node X and Y, forecasts performance alarms for link L, and takes actions to reroute some traffic
from link L, (ii) a process that diagnoses the received performance alarms, concludes that node Z

is malfunctioning, reroutes traffic that passes node Z, and disables node Z.

Backward inference is triggered by events (i.e. only when there are network problems: perfor-
mance alarms and device failures) and queries (from manager to IDB). However, forward inference
is triggered by a set of state variables. The workload on forward inference process can be very high
since each state variable will match against each formula in the rule bodies to see if some rules
can be fired. Thus, keeping the number of state variables for triggering forward inference small is

critical in designing management applications.

5 Distributed Management Architecture

This section and the following two sections describe how the proposed learning and inference
schemes work on the standard OSI management platform, the organization of object classes in
EDB and rule classes in IDB/PKB/DKB, and the rule-based learning expert system.

Figure 5 shows a management system with a manager and several remote agents. An agent
resides on each OSI node and manages its MIB (EDB in our terminology). The manager has
submanagers (configuration, performance, and fault inference modules in this case) for specific
management functions. Periodically, the manager issues query to IDB, in turn forwarded and
translated to EDBs, to get management information and stores it into HDB. The results of query

are also passed to submanagers to trigger the inference process on PKB and DKB, if any match
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Figure 5: Manager, Submanagers, and Agents

occurs. If control actions are to be fired as a result of the inference, the manager updates the
corresponding views in IDB, in turn objects in EDBs, through the sets of methods associated with
the objects. These updates on EDBs then propagate to the network entities as control actions.
Note that a query via CMIP can be a read as collecting management information or a write
(create, delete, modify) as taking control actions.

W=C*N

mlrmll || n*rmhmlml

PKB PKB PKB

Figure 6: Induction and Query Periods

Induction on HDB is carried out also periodically, but much less often, to renew PKB. A sliding
window mechanism is used to maintain the consistency between HDB and PKB. That is, HDB only
contains records in the most recent W (window size) query periods. An induction is triggered if
PKB was generated W query periods ago. Figure 6 illustrates the relationship between induction
period and query period. If C is the number of query periods in a cycle and N is the number of
cycles in the window of HDB, W = C' * N. If there is a temporal repetition in network behavior,
cycles exist as network patterns.

Conceptually, management information and knowledge are spread in the layer structure and
contained in various databases and knowledge bases:
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Layer Contained in

Control Strategy DKB
Management Knowledge DKB and PKB
Object and View Manipulation Rules IDB
Network Objects EDB

This is similar to the hierarchical blackboard architecture used in signal-processing expert systems
[Hay85). The control strategy, which is implemented as the manager, decides when to execute
the rule sets, which are implemented as the submanagers, in configuration, performance, and fault
domains. Usually, this is triggered by either status variables or queries. An inference process on
DKB and PKB then accesses the objects of a view in IDB, which in turn accesses the remote objects
in EDBs over the network. The hierarchy is organized as Figure 7. The following two subsections
describe how to build the views, namely the construction of IDB {rom the underlying EDBs, and

the rule-based management applications based on this infrastructure,

Figure 7: The Blackboard Architecture

6 Management Information Infrastructure

6.1 Object Hierarchy in MIB

Modeling network management information is to map network configuration, performance, and
events to objects in EDBs. The inheritance hierarchy in Figure 8 represents a simple clas-
sification of network object classes where elements class has three subclasses: configurations,

per formances, and events. Physical entities class has two subclasses: nodes and links, etc.

A node’s EDB contains only its local management information. Figure 9 shows an EDB orga-
nized in a containment hierarchy and its type declaration. An EDB is an object instance of nodes.

In addition to its own variable attributes, this nodes instance contains a set of links instances (for

14



Figure 8: Inheritance Hierarchy

links that are connected to this node), a set of connections instances (for connections that pass
this node), and a set of events instances (for events in which this node is involved). Again, a links

instance also contains a set of connections instances (for connections that pass this link).

6.2 View Abstraction via Logic Programming

At the management site, what the management applications see is a set of views, i.e., a set of
IDB predicates. Different sets of views can be defined for different management applications. Each
IDB predicate is defined on EDB predicates. The schema at the management site for IDB /EDB
predicates and the Prolog implementation to define these IDB predicates are given in Figure 10.
Prolog Logic Programming techniques used here can be found in [SS86). Prolog’s recursive pro-
gramming style, which is not supported in relational query languages, provides us a powerful query
interface to unify distributed network management information. Prolog emerges as an attractive
query language for relational databases [Uli88]. However, with simple extensions, Prolog can also
interface with object-oriented databases {Zan86).

To see how an IDB predicate can be constructed by combining EDB predicates, let us take

predicate connections as an example:

connections(Connid, Type, Capacity, Perfid, Status, Clientid, Serverid,
Nodes, Links)

:— L_connections{Clientid, Connid, Type, Capacity, Perfid, Status,
Clientid, Serverid, _, _},

path(Connid, Clientid, Serverid, Nodes, Links).

path(Connid, End, End, [End], []) - %
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NodeType = RECORDOF(id: int, capacity:int, performance: PerfType,
stams: int, links: SETOF(Link Type}, connections:SETOR(ConnectionType),
events: SETOF(EventType));

Link Type = RECORDOF(id: int, protocol:Protocol Type, capacity: int,
perfonmance: PerfType, status: int, passby: SETOF(Connection Type));

ConnectionType = RECORDOF(id: int, type: int, capacity: int,
performance: PerfType, status: int, client: NodeType, server: NodeType,
next: NodeType, link: LinkType);

EventType = RECORDOF(id: int, type: int, ime: int, action: ActType,
involved: SETOF(LinkType));

PerfType = RECORDOF(id: int, traffic: int, delay: int, loss: int, interval:int);

Figure 9: EDB: A Local MIB

path(Connid, Start, End, [Start | Noderest], [Linkid | Linkrest])
:— L_connections(Start, Connid, -, _, , -, -, -, Nextid, Linkid),
path(Connid, Nextid, End, Noderest, Linkrest).

For every “Nodeid“, predicate !_connections{Nodeid, Connid, Type, Capacity, Perfid, Status, Cli-
entid, Serverid, Nextid, Linkid) contains all connections that pass node “Nodeid“. (I stands for
local.) For every such connection, I_connections contains “Nextid“ and “Linkid“ for its next hop
(node and link), but doesn’t know the whole path. connections, constructed from [_connections,
contains the link lists “Nodes“ (all nodes on this connection) and “Links“ (all links on this connec-
tion). “Nodes“ and “Links“ are constructed by predicate path which takes “Nextid“ and “Linkid“,
starting from the node “Clientid“, and inserts them into the link lists “Nodes® and “Links“. Note
that, in the rule for connections, “Nodeid“ in l_connections is an existential quantifier, which
means all nodes can be queried to match with the attributes of connections. Similar view con-
struction techniques are used in predicates links and events. Instead of using recursive predicate
path, “set_of" constructs are used to construct the link list whose elements satisfy the specified con-
dition. links contains “Nodes“ (for all nodes connected to this link) and “Events® (for all events
involving this link), while event contains “Nodes“ (for all nodes involved in this event) and “Links®

(for all links involved in this event).
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Manager's Schema for EDBs:

L_nodes(Nodeid, Capacity, Perfid, Status, Links, Conns, Events)

I_links(Nodeid, Linkid, Protocol, Capacity, Perfid, Status,Conns)

1_connections(Nodeid, Connid, Type, Capacity, Perfid, Status, Clientid,
Serverid, Nextid, Linkid)

1_events(Nodeid, Eventid, Type, Time, Action, Links)

1_performance(Nodeid, Perfid, Traffic, Delay, Loss, Interval)

Views in IDB:

nodes(Nodeid, Capacity, Perfid, Status, Links, Conns, Events)

links(Linkid, Protocol, Capacity, Perfid, Status, Nodes, Conns, Events)

connections(Connid, Type, Capacity, Perfid, Status, Clientid, Serverid,
Nodes, Links)

events(Eventid, Type, Time, Action, Nodes, Links)

performances(Perfid, Traffic, Delay, Loss, Interval)

View Definitions:

nodes(Nodeid, Capacity, Perfid, Status, Links, Conns, Events) :-
1_nodes{Nodeid, Capacity, Perfid, Status, Links, Conns, Evenis).

links(Linkid, Protocol, Capacity, Perfid, Status, Nodes, Conns, Events) :-
1_links(Nodeid, Linkid, Protocol, Capacity, Perfid, Status, Conns),

set_of(N, (member(Linkid, N_links), _nodes(N, _, _, _, N_links, _, _)), Nodes),
set_of(E, (member(Linkid, E_links), 1_events(_, E, _, _, _, E_links)), Events).
connections(Connid, Type, Capacity, Perfid, Status, Clientid, Serverid, Nodes, Links) :-
1_connections(Clientid, Connid, Type, Capacity, Perfid, Status, Clientid, Serverid, _, ),
path{Connid, Clientid, Serverid, Nodes, Links).

path(Connid, End, End, [End}, []) :-!.

path(Connid, Start, End, [StartiNoderest], [LinkidfLinkrest]) :-
1_connections(Start, Connid, _, _, _, _, _, _, Nextid, Linkid),
path(Connid, Nextid, End, Noderest, Linkrest).

events(Eventid, Type, Time, Action, Nodes, Links) :-

set_of(Nodeid, 1_event{Nodeid, Eventid, Type, Time, Action, _), Nodes),

set_of(Linkid, (member(Linkid, E_links}, 1_events(Nodeid, Eventid, Type, Time, Action,
E_links)), Links),

performances(Perfid, Traffic, Delay, Loss, Interval) :-

1_performances(Nodeid, Perfid, Traffic, Delay, Loss, Interval).

Figure 10: Views in IDB
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All the predicates mentioned here are the schema definitions at the management site. An access
to a predicate of IDB will be converied, by backward chaining, to access to predicate(s) of the
manager’s EDBs, and then transferred, by CMIP queries, to the physical EDBs on network nodes.
Thus, a mapping between access to predicates of the manager’s EDBs and CMIP queries to physical
EDBs must be done at the management site. The attribute “Nodeid“ in each EDB predicate is

used to identify the network node that contains the object instances.

7 Building Management Applications

Rule Interpreter
Rule Base Working
Memory
l External Routines

Figure 11: The Rule-based Production System

Based on the constructed IDB, management applications can perform inference on IDB using their
knowledge base in DKB and PKB. Data in IDB is matched with the rules in DKB and PXB.
Rules can be applied in either direction: forward and backward. The direction corresponds to
the type of reasoning and problem-solving strategy. Forward inference is data-driven and bottom-
up processing, while backward inference is goal-driven and top-down processing. Prediction and
control operations are data-driven, hence forward reasoning. Diagnosis problems are goal-driven,
hence backward reasoning,.

As shown in Figure 11, there are four components in the rule-based system: working memory,
rule base, rule interpreter, and external routines. The rule-based programming language OPS5 is
used to describe how to build the management applications. Although OPS5’s inference engine is
inherently forward, backward inference can be emulated by treating goals as data and using three
sets of rules: a set to split goals into subgoals, a set to recognize and solve achievable subgoals, and
a set to fuse the results of subgoals. All these rule-based programming techniques can be found in
[CW88,BFKM85]. The following paragraphs describe the functionalities and operations of these

components in our framework:
A. Working Memory

Periodically, a set of rules is triggered to retrieve data from IDB into working memory. A
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working memory element (WME) is a view in IDB. Event WMEs are treated as goals to trigger

diagnosis process, while non-event WMEs are data to trigger prediction and control process.
B. Rule Base

In Figure 7, we have three management applications: configuration, performance, and fault.
Each management application is associated with a rule cluster. Rules in a cluster is in either DKB
or PKB. A rule cluster is conceptually equivalent to a procedure. These rule clusters are scheduled

by the control rules, which are at the top level of blackboard architecture.

Rule clusters and control rules together perform the periodical management tasks. A period,
a management cycle, starts with retrieving data from IDB into working memory and ends when
no more data can trigger the rules. In addition to this synchrorous management cycle, there are a
set of demon rules to perform asynchronous management. Demon rules are not scheduled by the
control rules. They can fire any time when an event WME is detected in working memory. An

urgent event like device failure or performance alarm can be handled immediately by demon rules.
C. Rule Interpreter

Basically, the rule interpreter performs a match-select-act cycle to process WMEs. It first
matches all WMEs with condition elements in all rules, selects one rule with matching WMEs, and
performs actions on the right-hand-side of the chosen rule, and then repeats the cycle.

An event WME is taken as a goal to trigger backward rules to diagnose the root causes of this
event. An event WME can be further split into several event WMEs until those event WMEs are
root causes. All other WMEs may trigger forward reasoning if a set of WMEs matches the body

of a rule.
D. Ezternal Routines

The rule-based management applications need to communicate with other management subsys-
tems to access management information and invoke algorithmic routines. To retrieve management
information or issue control actions on network entities, queries will be issued to IDB. This is
done via external calls to a Prolog program that supports the virtual IDB. Many of the numerical
algorithms like bandwidth allocation and path routing are not suitable to be implemented in the
rule-based language. They are also implemented as external routines.

8 An Experiment on LAN Environment

The goals of the experiment are to understand the traffic distribution in the environment of inter-

connected LANs, to test the ability of a learning tool in discovering usual and unexpected traffic
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patterns, and to observe the stability of traffic patterns and explore its applicability in performance

management.

The stored database will be examined by a machine learning tool called IXL (Induction on
eXtremely Large database) [IW88]. IXL is a software tool developed by IntelligenceWare Inc. and
made available to us under a joint research project. It combines machine learning and statistics
to distill knowledge from large databases. Basically, it constructs topological neighborhoods for
database records and then performs generalizations on these neighborhoods to discover rules which

show the correlations between attributes in a relation/view [Par89).

Discovered rules which represent traffic patterns, network malfunction, system status will be
stored in a knowledge base. A traffic controller The basic approach in this experiment is to monitor
the system at the host and network levels. For each fixed period, we summarize the statistics and
insert them into a database. After the whole experiment is completed, we apply IXL to the database
to generate a set of rules. These rules will reflect the traffic patterns, and more specifically will

give us a cause/effect knowledge about such patterns.

The database discovery technique can be applied to a variety of different traffic and network
environments. The most obvious situation is that of a real network on which real traffic mea-
surements are collected. In some cases, however, it may be of interest to inject artificial traffic in
the network, to simulate one or more applications and to evaluate the traffic patterns resulting by
the interaction of such applications. In other cases, the experiment may even be carried out on a
computer simulated network environment, with the purpose of studying the effect of events which
are difficult to control in a real network environment (e.g. link/node failures, packet loss, overloads,

dynamic network reconfiguration, etc).

We describe an experiment on a real, interconnected LAN environment with real traffic. The
schema of a set of relations was defined to organize and store the management information. A

program was written to process collected measurements and perform data analysis.

8.1 Environment

The experiment is based on the interconnected LAN environment at UCLA Computer Science
Department. There are eight Ethernets and one Appletalk interconnected by routers and more than
300 hosts (including mini computers, multi-user or single-user workstations, etc.), many terminal
servers, file servers, news servers, and printers (see Figure 12). Most hosts run under UNIX.
The transport layer protocol is TCP suite. Different networks are interconnected via IP routers.
Because of the structure of the TCP/IP address [Pos81], we can tell which LAN a station belongs
to by examining its address. This will help in analyzing the traffic flows between LANs. We
monitored the traffic on the backbone Ethernet (i.e. 131.179.128 on Figure 12) which is connected
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to the off-department network and to Los Nettos. The monitoring program runs on a SUN-4/280
minicomputer which is attached to the backbone Ethernet.
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Figure 12: LANs at Computer Science Dept.

The transparent NFS is supported in a way that users can access their own file systems on
any host without specifying where they are. This feature accounts for a significant portion of the
traffic because of the large amount of file transfers between users’ original hosts (or file servers)
and current sites. E-mail delivery, remote procedure calls, news reading, file printing, tape backup,
human-initiated terminal emulation sessions, and human-initiated file transfers also account for the
accumulated traffic amount, in addition to the machine-initiated file transfers mentioned above.
It is observed that NFS and window protocol (e.g. X window, SunView) traffic dominates traffic
generated by the other protocals like "rlogin”, "telnet”, and "ftp”. With the increasing number of
diskless workstations and window users, the profile will become clearer.

8.2 The Traffic Pattern Observer

Figure 13 is the overview of the Traffic Pattern Observer which is composed of several tools in-
tegrated by user interface. The major components of the system are Monitors, IXL, and a set of
utilities. Monitors will activate a set of tools to monitor traffic and, at the same time, a set of
handlers to handle the traffic data generated by those tools. The utilities will provide an inter-
face to the database query language and also contain tools for defining and setting up database.
The Database Interface is the one providing transparency of the DBMS (Data Base Management
System) used so that we can switch to another DBMS without affecting other components of the

system.
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Figure 13: The Traffic Pattern Observer

Before the experiment can be conducted, the database schema must be defined in the DBMS.
For each tool, there should be a base table in the database and a handler associated with it so that
all of the tool handlers can work concurrently. Also, the structures of the tool handlers depend on
the schema specified in the DBMS.

At the conceptual level of the database, the base table schema is fixed; however, the user may
have the freedom to supply the view definition which depends on the expected knowledge to be
discovered. If the user supplies his/her own view definition, there may be some meaningless results
generated by IXL if the view definition has some defects like join of two base tables with no common
column. To guarantee a reasonable result, the system will provide a set of view definition for users

to choose from.

During the monitoring process, there are a set of processes working concurrently. Some are
listening to the Ethernet and pumping the information they have captured, some are processing
the pumped data and maintaining the data structures to keep track of the summarized statistics,
some are busy with the database interface to insert records into the base tables. The data structures
maintained in the handlers are inserted into base tables and purged every period of time, Although
there are a lot of process working on this job, which can be considered as a considerable overhead to
the system, only processes which fetch the host information by some remote execution mechanism
will transmit packets on the Ethernets. The influence on the results concerning network traffic can
be small. However, the performance of the local host may be affected. If the experiment program
is run on a dedicated workstation, there will be no influence to other hosts. Furthermore, the
communication overhead can be minimized if we run IXL at the same site where the database is

located.
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It is expected that we may have new tools for monitoring some other activities. Tf a new tool

needs to be included, the system maintainer needs to do the following:

L. Supply a handler associated with the new tool and insert a new entry in the tool table of

Monitors subsystem which may invoke the new tool during monitoring process.

2. Insert new base table definitions into the original schema and those new base tables will
contain the information available via the tool.

3. Create new view definition associated with the new base tables and those new view definitions

will be new alternatives for users to choose from before IXL is invoked.

'To monitor an Ethernet, we use a UNIX network maintenance tool, etherfind. Etherfind detects
all the packets transmitted on the Ethernet. It dumps the IP headers and puts a timestamp on
them. In the IP header, the following fields are particularly interesting to this experiment: source
address, destination address, number of bytes, protocol type, and fragmentation flag. We wrote a
program to handle the headers dumped by etherfind and couple them together by a pipeline.

Several buffer arrays are used to monitor the current active communication entities. When the
etherfind handler receives a packet header, it checks the buffer arrays to see if the entity exists,
If a match is found, the corresponding entry is updated. Otherwise, a new entry is created. This
buffer is swept periodically, for each time slot T, and each entry is either promoted to file entry
or flushed. In order to reduce the storage requirements while capturing the most significant traffic
components, we promote only those entries which percentagewise contribute most to the traffic in
that time slot. The entry with largest contribution will be promoted first and then the second one,
etc. When the promoted entries capture P% of total traffic, the promotion process stops and the
buffers are flushed. A new time slot then begins. This promotion process for data reduction is
shown in Figure 14. A typical experiment lasts one to several days. In our experiment, the capture
ratio was set to P = 80.

The structure of the buffer space is identical to the schema for storing promoted entries in a
relational database. Four tables are defined for this experiment. "Summary” just summarizes the
total traflic and connections. Traffic is also classified into local (within the local Ethernet}, incom-
ing (coming from remote LANs), outgoing (going to remote LANs), and transit (both source and
destination are not on this LAN). (see Figure 15) ”Connections” keeps track of the current active
communicating node pairs. The traffic amount and type for each pair are recorded. "BLANs” is
similar to ”Connections” except it is between source LAN and destination LAN, instead of between
nodes. ”Sources” traces the source nodes which contribute to the traffic on the monitored Ethernet.

Here are the definitions of these tables: (note: the fields with underline are keys.)
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24



SUMMARY :

Slot : start time of this time slot

Bytes : # of Kbytes successfully transmitted

TCP : % of tcp traffic transmitted

UDP : % of udp traffic transmitted

Connections : number of node connections

Promoted : %connections being promoted

Captured : %traffic contributed by promoted connections
LocalTraffic : %traffic with source and dest on this LAN
IncomingTraffic : %traffic with only dest on this LAN
OutgoingTraffic : %traffic with only source on this LAN
TransitTraffic : %traffic with source and dest not on this LAN

SOURCES :

Slot : start time of this time slot

Source : source station address

Bytes : #Kbytes transmitted from this station
Percentage : %traffic from this station
Nodetype : local or remote node

CONNECTIONS :

Slot : start time of this time slot

Source : source station address

Dest : destination station address

Bytes : #Kbytes transmitted between this pair
Percentage : %traffic between this pair

Type : (local, incoming, outgoing, transit)

BLANS :

Slot : start time of this time slot

SourceL AN : source LAN address

DestLAN : destination LAN address

Bytes : #Kbytes transmitted between this LAN pair
Percentage : %traffic between this LAN pair

Type : (local, incoming, outgoing, transit)
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The traffic measurements are transferred from SUN-4/280 to PC DOS disks via IBM RT after
the monitoring process is completed. IXL then runs on those relational tables in an IBM PC JAT.
Each IXL run takes from several minutes to several hours, depending on the size of relational tables
and various discovery parameters set in IXL. Also, the number of generated rules depends heavily
on the settings of discovery parameters. By properly setting these parameters, we can direct IXL
to find the traffic distribution and patterns we need. In this experiment, we monitored for 5 days.
The sizes of generated tables are from 300 to 5000 tuples. The running times of IXL on these
tables are between 10 minutes to 5 hours. The numbers of discovered rules are between 10 to 100.
Typically, several rounds of experiments are required in order to adjust table size, IXL running

time, and focus of discovery.

IXL also supports the definition of "concepts”, which are virtual fields derived from other
existing fields. These "concepts” can reduce the running time of IXL and help focusing the discovery
process. In our experiment, we define the concept "Traffic” to classify the levels of traffic volume.

For example:

Traffic = very high if Bytes > 10 Mbytes;

Traffic = high if 10 Mbytes > Bytes > 5 Mbytes;
Traffic = medium if 5 Mbytes > Bytes > 1 Mbytes;
Traffic = low if 1 Mbytes > Bytes;

IXL has a set of parameters which tailor its performance to the user’s need [IW88]. Major
discovery parameters include the following: maximum number of clauses in rules (an upper limit
for the length of a rule), minimum number of records (a lower limit for the number of records
involved in forming a rule), minimum confidence in rules (a lower limit for the confidence in a rule),
maximum margin of error (an upper limit for the error involved in estimating the confidence in a
rule), minimum percentage of database (a lower limit for the fraction of the database involved in
forming a rule), minimum significance (a measurement of the quality of a range in terms of how the
distribution of values in that range varies from the rest of the database where 0 means that almost all
ranges are considered and 100 means that only highly significant ranges are considered), minimum
generality (a upper boundary for the range sizes determined by IXL), maximum generality (a lower
boundary for the range sizes), generality increments (an indicator of the number of ranges between
the maximum and minimum generality parameters where 0 means only two ranges, maximum and
minimum generality, are considered and 100 means up to 20 ranges are considered), and interest
level (user’s interest in the effect that a field has on the goal).

26



8.3 Experimental Results

The experiment includes two sample runs on the tables "summary” (288 tuples) and "BLANs”
(2151 tuples) where numbers of rules found are 43 and 53, respectively. The IXL running time is
13 minutes for "summary” and 1 hour 50 minutes for "BLANs”. In these sample runs, we focus on
the discovery of relationship between traffic volume and other fields. Thus, we make the defined
concept "Traffic” as our goal attribute in the rules to be discovered. Of those discovered rules,
some are patrticularly interesting to us:

CF=85
"traffic” = ”very high”
IF
70:55" < "timeslot” < ”1:35”
AND

”91%” _<, ”outgoing” S ”94%” ;

CF=95
"traffic” = "high”
IF
712:28" < "timeslot” < "13:53”
AND
?sourceLAN" = ”131.179.64"
AND
?destLAN” == *131.179.192” ;

CF (confidence ratio) in the rule means the percentage of records satisfying the goal among the
records satisfying the conditions of the rule. The first rule is discovered for "summary” where ”very
high” means volume is larger than 10 Mbytes in a 5-minute slot. This rule indicates that from
0:35AM to 1:40AM, outgoing traffic accounts for around 90larger than 10 Mbytes/slot. Actually,
this happens when the system is backing up its file system to tapes every morning around 1:00AM
to 2:00AM. That most traffic is outgoing implies that the backup tape is not on the backbone
Ethernet. Indeed, the backup machine is "131.179.32.11", a SUN-4/280 on another LAN. We
believe a peer rule will be discovered if we run the same experiment also on the LAN where the
backup machine resides, except that "outgoing” becomes "incoming”. Since the traffic volume
caused by tape backup varies each day, there is a high degree of fluctuation in the periods of tape
backup as shown in Figure 16. However, we can still find the correlation and the cycle.

The second rule above is discovered for "BLANs” where "high” means volume is larger than
500 Kbytes/slot but smaller than 1 Mbytes/slot between source and destination LANs. This rule
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Figure 16: Traffic Cycles

means that the traffic volume from LAN 7131.179.64” to LAN "131.179.192” between 12:28PM
and 13:38PM is between 500 Kbytes/slot and 1 Mbytes/slot. This type of rule can be very useful
in understanding the traffic distribution with respect to topology and time. It captures the traffic
distribution in a three-dimensional traffic matrix.

More than 80% of the traffic is contributed by less than 10% of communicating pairs, ie. traffic
is not uniformly distributed. It is essential to capture this distribution in order to optimize the
network configuration. A temporal cycle exists in the traffic distribution. Being able to keep
track of the distribution cycle will enable the dynamic configuration management which tunes the
network dynamically. If we consider the burstiness in terms of different time scale, the inter-slot
burstiness (long-term) is reflected by the cycle, while the intra-slot burstiness (short-term) can be
approximated by a Batch Poisson or Markov-Modulated Poisson process. This is due to the fact
that we summarize the measurements for each slot, thus some details within the slot are lost and

can only be approximated by a stochastic process.

For the discovery process, tuning the learning parameters to fit the need of the application is
not a trivial task. In order to have a reasonable set of discovered rules, IXL parameters must be
carefully set. For example, too few rules will be generated if the minimum confidence is too high.
The sizes of the ranges for ”timeslot” in the rules will be too small if the generality increments are
set to zero (default). One of the limitation of IXL is that it is not suitable to learn the correlation
within the numerical values. It must rely on the proper classification of the numerical domain to
reduce the number of unique values to be handled.

9 GlobeView/LEN: a Management Framework and a Case Study

In this section, we present the implementation of GlobeView which realizes the proposed global
view concept. A case study on applying a learning expert, LEN (Learning Expert for Networks),
to ATM network topology tuning is also reported.
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GlobeView is implemented in Prolog. It is aimed to serve as an interface through which queries
can be issued to the distributed network entities from the network management applications. It
abstracts the distributed management information and provides an integrated view for the manage-
ment applications. Basically, there are four types of queries: create, delete, retrieve, and update.
In the mean time, a query can be a local query which only accesses an individual node or a global
query which accesses a set of correlated nodes. A design of management information base, which is
EDB using our terminologies, is described. This EDB includes predicates for nodes, links, events,
and VPs (Virtual Paths) in ATM networks. Based on this EDB, a set of global views in IDB are
implemented as virtual predicates by backward chaining rules. We also implement global queries
to create/delete physical EDB entities and retrieve/update the attributes of IDB predicates. Many
sophisticated management operations can be implemented as global queries. Examples on sizing

the capacities of VPs are given.

As an automatic and adaptive management system, LEN issues queries as management oper-
ations to GlobeView to create or delete network entities, retrieve management information, and
update attributes of network entities. In our case study, we focus on evaluating the performance
gain by learning traffic locality patterns to tune the network topology dynamically. Traffic locality
data is generated from a simulator and learned by a machine learning tool to produce the PKB
that contains logical rules of traffic locality. These rules drive the tuning process on a timeslot-
by-timeslot basis. In each timeslot, the topology is optimized to reduce call blocking probability
according to the learned locality patterns. The simulated traffic matrix is then applied to the tuned
topology to evaluate call blocking probability. The result is compared with the non-tuned one.

9.1 GlobeView

We first describe our EDB design and then the construction of IDB predicates. The technique
to build global queries as management operations is illustrated by several examples. The detailed

implementation is listed in Appendix.

9.1.1 EDB and IDB

Our schema of EDB predicates basically follow the ones described in section 6. We rename the
predicate [_connection to I_V P to represent a VP in ATM networks. We add an attribute, Residual,
in predicates {_nodes and [ links to represent how much capacity is left for further allocation. Thus,
we have the following five EDB predicates:

l.nodes(nodeid, capacity, perfid, status, links, vps, events, residual).
Llinks(nodeid, linkid, protocol, capacity, perfid, status, vps, residual).
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Lvps(nodeid, vpid, type, capacity, perfid, status, clientid, serverid, nextid,
linkid).

1 events(nodeid, eventid, type, time, action, links).
l_performances(nodeid, perfid, traffic, delay, loss, interval).

Corresponding to the EDB predicates, we have five basic IDB predicates. These IDB predicates
are the basic global views. All other global information can be derived from them. They also
facilitate the construction of other sophisticated global queries. Defining predicates nodes and

per formance is straightforward as:

nodes(Nodeid, Capacity, Perfid, Status, Links, VPs, Events, Residual)
- I.nodes(Nodeid, Capacity, Perfid, Status, Links, VPs, Events, Residual).

performance(Perfid, Traffic, Delay, Loss, Interval)
i- Lperformances(_,Perfid, Traffic, Delay, Loss, Interval).

Predicate links requires the built-in predicate set_of to construct a set of elements that satisfy
another user-specified predicate. The list elements in attributes Nodes, V Ps, and Fvents are

constructed in this way. A complete implementation is as follows:

links(Linkid, Protocol, Capacity, Perfid, Status, Nodes, VPs, Events,
Residual)
- Llinks(_, Linkid, Protocol, Capacity, Perfid, Status, -, Residual),
nodes_on_ link(Linkid,Nodes),
vps_onlink(Linkid,VPs),
events.on link(Linkid,Events).

nodes_on_link(Linkid,Nodes)
:- setof(Nodeid, fird_nodes(Nodeid,Linkid), Nodes).

find_nodes(Nodeid,Linkid)
:- 1.nodes(Nodeid,-,-,-, N links,.,_, ),
member(Linkid,N_links).

vps_on_link(Linkid,VPs)
- setof(VPid, find_vps(VPid,Linkid), VPs).

find_vps(VPid,Linkid}
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- L.vps(, VPid,,,,-,,-,-,Linkid).

events_on link(Linkid,Events)
:- setof(E, find_events( E , Linkid), Events).

find_events( E, Linkid )
:- Levents(_,E,,,., E_links),
member(Linkid, E_links).

find_events( [],-).
Using the same approach, we can build predicate events as follows:

events(Eventid, Type, Time, Action, Nodes, Links)
:- levents(_,Eventid, Type, Time, Action,.),
setof( Nodeid, detect_nodes(Nodeid,Eventid), Nodes),
setof(Linkid, detect_links(Linkid,Eventid), Links).

detect_nodes(Nodeid,Eventid)
:- l.events(Nodeid, Eventid,_,_,_,.).

detect links(Linkid,Eventid)
:- Levents(_, Eventid,.,_,-, E_finks),
member(Linkid, E_links).

Predicate V Ps, on the other hand, requires a recursive predicate, which is implemented as path,
to construct the path of this VP. The path starts from the client node, through intermediate links

and nodes, to the server node. A complete implementation is as follows:

vps(VPid, Type, Capacity, Perfid, Status, Clientid, Serverid, Nodes, Links)
:- Lvps(Clientid, VPid, Type, Capacity, Perfid, Status, Clientid, Serverid,

—a—)v
path(VPid, Clientid, Serverid, Nodes, Links).

path(VPid, Start, End, [Start | Noderest], {Linkid | Linkrest])

:- LLvps(Start, VPid,_,_,_,,_,_,Nextid, Linkid),
path(VPid, Nextid, End, Noderest, Linkrest).
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path(_, X.X, [X],[]) - 1

Next, we show how to write management operations as global queries which are built from the
basic IDB predicates presented here.

9.1.2 Global Queries as Management Operations

We now give examples on the global queries for retrieval and update. For management information
retrieval, it is sufficient to access the basic five IDB predicates and five EDB predicates. However,
writing a long predicate to access a piece of information is inefficient. Besides, we may want to make
only a subset of information accessible to a specific manager or management application. Thus,
we can write a set of predicates for frequently accessed information. For example, we may want to
know the set of nodes that are attached to a specified link, which is a point-to-point or broadcast
media, the set of nodes on the path of a specified VP, the set of links on the path of a specified VP,
or the capacity of a specified VP. These can be easily provided by writing the following predicates:

nodes_of link(Linkid,Nodes)
:- links(Linkid,-,,-,-,Nodes,_,.,.).

nodes.on_vp(VPid,Nodes)
- vps(VPid,_,.,,,-,-,Nodes,.).

links_on_vp(VPid,Links)
:- vps(VPid,_,_,,,.,.,-,Links).

capacity _of_vp(VPid,Capacity)
:- vps{VPid,_,Capacity,_,_,_,_,_,-).

Updating management information through global queries is not as simple as global information
retrieval. It is different from updating the attributes of an EDB predicate in a single network node,
which can be done by accessing that EDB predicate alone. We need to issue a single global update
query which changes the attributes of many correlated EDBs. For example, we may want to disable,
by a single query, all nodes and links that are currently involved in a serious congestion event. We
may need to allocate more bandwidth to a VP which is suffering higher delay or loss rate. We now
take the second example to illustrate how to implement a global update query for this.

Suppose that the query update_capacity V P(V Pid, Capacity) is used to update the capacity
of a VP to Capacity. If the new capacity is smaller than the current capacity, we can go ahead to
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retrieve the nodes and links on this VP, add the released capacity to each of these nodes and links,
and update the capacity of this VP. If the new capacity is larger than the current one, we need to
first retrieve the nodes and links on this VP and check if each of these nodes and links has enough
residual capacity to allocate more capacity to this VP. If the answer is yes for all nodes and links,
their capacities are subtract by the amount of the extra allocation and the capacity of this VP is
updated. If not, the query does nothing and returns a message. The first case, shrinking a VP, is
handled by the rule:

update_capacity_vp(VP,Capacity)
:- capacity_of_vp(VP,Capacityl),
Capacityl > Capacity,
Residual is Capacity - Capacityl,
nodes_on_vp(VP,Nodes),
links_on_vp(VP,Links),
change_nodes(Nodes,Residual),
change links(Links,Residual),
change_vp(VP,Capacity).

The second case, augmenting a VP, is handled by the rule:

update_capacity_vp(VP,Capacity)
:- capacity_of_vp(VP,Capacityl),
Residual is Capacity - Capacityl,
nodes_on_vp(VP,Nodes),
links_on_vp(VP,Links),
]

check_nodes(Nodes,Residual),

!

check links(Links,Residual),
change nodes(Nodes,Residual),
change_ links(Links,Residual),

change_vp(VP,Capacity).

The referred predicates in the above two rules are further implemented as follows. For checking if

there is enough residual capacity, we have

check_nodes([Node | Left],Residual)
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ey

check_node(Node,Residual),
check_nodes(Left,Residual).

check_nodes(({],-).

check_node(Node,Residual)

i- residual_of_node(Node,Available),
!

*

Available > Residual.

check Jinks([Link | Left],Residual)

|
L)

check link(Link,Residual),
check links(Left,Residual).

check links([],-).

check tink(Link,Residual)

:- residual_of link(Link,Available),

!
'3

Available > Residual.

For changing capacities of nodes and links, we have

change nodes([Node | Left],Residual)
:- change node(Node,Residual),
change_nodes(Left,Residual).

change_nodes([],-).

change node(Node,Residual)
- .nodes(Node,A1,A2,A3,A4,A5,AG6,01d),
retract(l.nodes(Node,_,_,,-,,, )},
New is Old - Residual ,
assertz(l nodes(Node,A1,A2,A3,A4,A5,A6,New)).

change links([Link | Left],Residual)
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:- change link(Link,Residual),
change_links(Left,Residual).

change links([],.).

change_link(Link,Residual)
:- Llinks(A1,Link,A2,A3,A4,A5,A6,01d),
retract(llinks(A1,Link,A2,A3,A4,A5,A6,01d)),
New is Old - Residual ,
assertz(l links(A1,Link,A2,A3,A4,A5,A6,New)),
fail.

change link(_,.).
To change capacity of the VP, we simply use retract and assertz as follows.

change vp(VP,New)
:- Lvps(Nodeid, VP, Type,Capacity,Perfid,Status,
Client,Server,Nextid,Linkid),
retract(l_connections(Nodeid, VP, Type,Capacity,Perfid,
Status,Client,Server,Nextid,Linkid)),
assertz(l_vps(Nodeid, VP, Type,New,Perfid,
Status,Client,Server,Nextid,Linkid)),
fail.

change_vp(_,-).

With this powerful predicate update_capacity.V P, operations for bandwidth allocation can be
carried out by issuing a single query. This query is then automatically transformed into many local
queries to retrieve and update many pieces of information. And all these are done transparently
to the management application which is in charge of the bandwidth allocation task. The imple-
mentation described in this section has been tested and fully working. Further extensions to other

management tasks can be done in a similar way.

9.2 LEN: Learning Experts for Networks

Most of the congestion and flow control procedures for conventional networks can not be applied
to ATM networks where nodes tend to become the bottlenecks and propagation delay dominates
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other delays. Congestion (eg. call blocking, cell loss) is inevitable if there is a mismatch between
offered traffic pattern and network topology. This problem can be alleviated by dynamically tuning
the topology to traffic pattern. With the technology of digital cross-connect systems (DCS), a
broadband packet-switched ATM network can be dynamically reconfigured. The embedded logical
topology can be derived from the original physical topology by establishing express pipes between
distant nodes. Express pipes, circuit-switched pipes for packet-switched traffic, reduce store and
forward delay and nodal processing overhead, which in turn reduces blocking and loss probabilities.
Given the traffic demand matrix, the routing of express pipes and the allocation of bandwidth to
such pipes, ie. embedded topology, can be determined to optimize the GOS (Grade of Service)
[GMP89].

analysis
module
f

simplified ATM | LEN
network simulator| (Learning Expert for Networks)
4

Traffic and event
generator

Figure 17: Case Study on ATM Networks

In this case study, we will demonstrate how to learn traffic patterns and tune the topology to
the discovered patterns, and the performance improvement with this scheme. Figure 17 illustrates
the case study. Traffic is generated according to our model which incorporates the parameters
for adjusting locality, burstiness, correlation, cyclic repetition, and predictability. The simulated
traffic is fed into a simplified ATM network simulator and the performance results are evaluated
by an analysis module. The management system LEN (Learning Expert for Networks) performs
the management tasks by monitoring the network simulator, learning traffic patterns, and trigger
actions to tune the topology. A comparison is made between the performance results for systems
with and without LEN. As LEN is still under development, the inference process on the rule base

is now done manually.

9.2.1 ATM Network Model: Configuration, Traffic, and Operation

A. Configuration

Each node v; has a switching capacity K; bps. Each link /;; between two nodes v; and v; has

capacity C;; bps. Similarly, each express pipe pi; between nodes v; and v; has capacity B;; bps.
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Nodes, links, and express pipes have other attributes. Their schemata are the same as those in
Figure 10. Express pipes are represented as the view vps in that schema. In LEN, three types of
configuration WMESs are created: node, link, and pipe. Their attributes are again the same as the
ones in Figure 10.

B. Traffic

To generate a relational traffic table HDB, a base matrix describing bandwidth requirement is
generated first, and then N eycles of traffic matrix are generated. A filtering process is imposed on
the traffic table to capture only significant traffic components and reduce the stored information

volume. (i) and (ii) are the specifications for traffic generation and filtering:

(i) Base matrix generation:

Input; Percentages of heavy, medium, light traffic pairs H%, M%, L%

Output: Mean level matrix of bandwidth requirement M EAN(3, §),
variance level matrix of bandwidth requirement VAR(i, j)

(ii) Traffic database generation:

Input: MEAN(¢,7), VAR(i, ), discrete usage habit curve U(t),
maximum promotion ratio p%, maximum capture ratio ¢%,
number of cycles generated N

Output: Relational Traffic Table HDB(hour, source, dest, bandwidth)

HDB will be the input to our machine learning tool IXL {Induction on eXtremely Large databases)
[IW88]. The learning result is a set of PKB rules.

The defined traffic model reflects the following characteristics: locality, correlation, burstiness,
predictability. Conceptually, MEAN(:,7), VAR(i, 7), and U(t) are used to randomly generate a
3-D bandwidth requirement matrix Fij(t), where i is source, j is destination, and ¢ is time slot. In
the mean time, p% and ¢% (p% of communicating pairs contributing ¢% of total traflic) are used
as criteria for the promotion process to capture significant part of collected traffic measurements
[GL91B]. N cycles of traffic measurements, HDB, will serve as a base for predicting the traffic

distribution of next cycle.

(iii) Induction for Traffic Patterns:
The inducted PKB rule

Confidence Factor = P%
LF < bandwidth < UF

—

37



START < slot < END,
sourcenode = SRC,
destnode = DST;

means the bandwidth requirement of a particular node pair during several continuous slots is
between two values with probability P%. The function of IXL is to find out when and how much
traffic is flowing from Src to Dest, both in terms of ranges. The establishment, at Start, and

release, at End, of pipes are discrete events.

PKB is an abstract of HDB. It represents the patterns in the past N cycles. According to these
inducted patterns, the topology of ATM network will be tuned with some express pipes established.
Each such inducted rule will be automatically transformed into the following two rules and then
included into OPS5 rule base:

(p performancel!predict-and-create-traffic WME

(subtask “name performance)

(time “slot START)

(node “name SRC)

(node “name DST)

—

(make traffic *predicted-rate (compute-rate P LF UF)
*Mrom START “until END
Asource SRC “dest DST))

(p performance!delete-trafficc WME
(subtask “name performance)
(time "slot END)
{ <demand>
(traffic ~until END)}

—

{remove <demand>))

C. Operation

LEN is responsible for tuning the topology according to PKB. A management cycle in LEN

includes the following steps:

¢ Retrieve data into WM: call external Prolog program to issue queries to IDB

¢ Predict traffic demand: create traffic WMEs
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o Handle traffic WMEs: create pipe WMEs

¢ Reconfigure topology: call external Prolog program to write pipe views to IDB

At the beginning of a time slot, LEN checks if the current slot matches any "START” or "END”
entry in PKB. If any match occurs, four possible actions can be taken: establish new pipes, augment
existing pipes, shrink existing pipes, and release existing pipes. In the above four cases, LEN can
create new traffic WMEs, modify or delete existing traffic WMEs. These traffic WMEs will match
with a set of rules to create, modify, or delete pipe WMEs. Another set of rules then match these
pipe WMEs to call external routines to physically access the express pipes. The algorithm for pipe
bandwidth allocation and pipe routing is described in [GMP89]. The following is an example rule
to create a pipe WME from a new traffic WME:

(p performance!create-pipe-WME-from-traffic- WME
(subtask “name performance)
{ <demand>
(traffic *processed? nil
Apredicted-rate <flow> “source <sre>
"dest <dst> "delay-requirement <delay>)}
(status "congestion-level <system-load>>)
—
(modify <demand> “*processed? YES)
(make pipe "bandwidth
(compute-bandwidth <flow> <delay> <system-load>)
Asource <sre> “dest <dst>))

9.2.2 Performance Gain by Learning Traffic Patterns

While tuning the ATM network in each time slot according to PKB of the previous N cycles, the
traffic for the next cycle is generated and applied to the tuned network to compute the connection
blocking probability. In the mean time, this probability for the non-tuned network is also computed

for comparison.

In our simulation run, the ATM network contains 8 nodes and 15 links. The simulated traffic
has a base traffic matrix M EAN(4, j) of Table 1.(a). The traffic locality is about 9/80 (9% commu-
nicating pairs contributing 80% of total traffic) as shown in Table 1.(b). One day is a cycle which is
divided into 48 time slots. During the period of five cycles, a total of 675 traffic pairs are promoted
(with capture ratio set to 80%) and logged into HDB. The induction process takes 2 hours and 49
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minutes and generates a PKB containing 74 rules. In the ATM network simulation, we manually
change the topology for each time slot according to PKB and then apply another cycle of traffic.
As we complete LEN implementation, this will be done automatically.

Capture(%) Promotion(%)

Al B|] C| D E F| G| H
A{0]| 4 1 2 1 4 0 2 26 3.5
B| 4| 0| 48| 36| 18 0 0| 24 50 7
C| 1]48 0 1 1373 353 0 73 11
D| 236 1 0 4 0 2| 398 88 14
Ej{1]18 1 4 0 3| 225 4 91 18
F| 4} 0]373 0 3 0] 23 2 93 22
G| 0| 0353 2]225) 23 0 2 95 25
H| 2|24 0] 398 4 2 2 0

(a) Traffic Matrix (b) Traffic Locality

Table 1. Traffic for an 8-Node Network

A Cycle: 48 Time Slots
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Figure 18: Connection Blocking Probability: Non-Tuned and Tuned

The resulting connection blocking probabilities for non-tuned and tuned networks are compared
in Figure 18. The averaged connection blocking probabilities {weighted by traffic volume) under
the given load are 6.54% and 1.71% for the ATM network without and with tuning, respectively.
The improvement is significant, especially when the network is heavily loaded.
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9.3 Discussions

Inference, as a thinking process on given facts by logical rules, is to find the facts that are not
explicitly stated in the knowledge base. That is, the deductive closure, K+, can be derived from
the fixed knowledge base, &', but no more than that. Learning, on the other hand, can expand K+
by adding facts or rules to K. In our proposed framework, knowledge related to the underlying
network is learned to capture network patterns and refine the pre-specified domain knowledge. The
learning systems have more advanced abilities than non-learning systems in performance and fault
management which require understanding of traffic patterns and knowledge of causality.

The proposed scheme is aimed to operate on the standard platform of MIBs and CMIP. Two
main contributions are the global view abstraction and the integration of learning and inference for
autonomous management applications. The case study on ATM logical topology tuning shows sig-
nificant improvement when dynamic traffic patterns are captured to drive the tuning process. The
implementation of the LEN (Learning Expert for Networks) is now in progress. Other performance
and fault management applications will be built in LEN.

10 Conclusions and Future Work

Network management controls resource allocation and maintains quality services which require
sophisticated systems in the increasingly complicate networks. Qur contributions are reviewed in

the following sections.

10.1 View Abstraction via Logic Programming

The information distribution strategy remains an unsolved problem after the open-networking
community settled on the standard MIB and CMIP. What management applications need is a
set of global information to trigger the overall network resource allocation. We proposed to use
the backward chaining logic programming practice to construct virtual global information from
physical local information scattered around the distributed network. Indeed, there are many ways
to construct global information. Logic programming approach turns out to be a systematic and

elegant solution.

A global view is defined as a piece of information that is not available on any individual MIB
but can be constructed from a set of MIBs. A global view can be, for example, the set of nodes that
are connected to a broadcast link, the set of nodes and links that are on the path of a particular
VP in ATM networks, the set of nodes and links that are involved in a congestion event, the set of

VPs that have performance alarms, etc. All these views can be abstracted from MIBs by backward
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chaining rules. These views serve as the windows through which the management information
infrastructure can be accessed. Different management applications access different views for their

management tasks.

10.2 Learning Experts for Autonomous Networks

Since we do not have models for all activities in the network, we proposed to use heuristic methods to
discover patterns related to the managed network. Management applications take these discovered

patterns to adjust their solutions for resource allocation and problem diagnosis.

Many expert systems have been built to diagnose network faults. Domain knowledge regarding
how to solve network problems is encoded into these systems. In addition to the domain knowledge,
our approach reasons on pattern knowledge to solve network prediction, control, planning, and
diagnosis problems. Qur experiment on learning traffic patterns shows that this approach is feasible.
As machine learning becomes more powerful, we can foresee that the learning experts will be more

appealing in autonomous network management.

10.3 GlobeView/LEN Implementation

Finally, we report the implementation of GlobeView/LEN. GlobeView is implemented in Prolog.
An EDB schema and an IDB schema are defined. View abstraction for IDB is done by the recursive
and set_of constructs in Prolog. GlobeView is implemented as a database query system which
supports queries to create, delete, retrieve, and update our IDB. We demonstrated the results of

these queries on a manually constructed network configuration database.

As we do not have a network where a MIB is supported by each node, GlobeView is implemented
solely as a query system working on a single database instead of a set of distributed MIBs. However,
GlobeView can be modified to invoke the CMIP protocol to access remote MIBs,

In LEN implementation, we applied the learning expert approach to ATM network logical topol-
ogy tuning. Dynamic traffic locality is learned into logical rules which drive the tuning algorithm.
When a new locality pattern rule is fired, LEN tries to tune the topology to fit this new request, by
establishing a new pipe and adjusting the capacities of the old pipes, without changing the routing
the old pipes. If such an attempt fails due to the significant change in pipe capacities, a reconfigu-
ration is enforced. The inference part of LEN, in OP835, is not finished. Thus, the inference is now
done manually in our case study. In this study, we observe significant improvement in call blocking
probability, especially when the blocking is serious in the non-tuned network.
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10.4 Future Work

As MIB and CMIP are soon to be available, we would expand our GlobeView to operate on the
real, distributed environment. GlobeView can be used as a stand-alone query system for network
managers and also as an interface to the underlying information infrastructure for the management

applications.

Issues need to be addressed include how to transport the EDB predicates to the remote MIBs
by the CMIP protocol, how to extend the IDB program to operate on the object-oriented EDBs
in an efficient way, the delay constraints in constructing the global views for various management
tasks, the architecture to allow managers or management systems on multiple nodes, etc. Indeed,

building a workable GlobeView on the real environment is not a trivial task.

LEN implementation shall proceed. Once it is done, LEN should interact with GlobeView as
a management application with a speciality in topology tuning and reconfiguration, if GlobeView
operates on an ATM network. In the mean time, other management applications can be developed
for configuration management, performance management, fault management, etc. However, all

these require a significant amount of implementation efforts.

Several issues need to be answered before developing a new management application as a learning
expert. What kinds of problem does this management application solve? What kinds of patterns
need to be learned? Is the current machine learning systems capable of capturing these patterns?
How well will the network perform with this learning expert compared to the one without this

mechanism?

Appendix: GlobeView Implementation

% Manager’s Schema, for EDBs:

I_.nodes(nodeid, capacity, perfid, status, links, conns, events,
risidual_capacity).

Llinks(nodeid, linkid, protocol, capacity, perfid, status, conns,
risidual_capacity).

l_connections(nodeid, connid, type, capacity, perfid, status, clientid,
serverid, nextid, linkid).

l_events(nodeid, eventid, type, time, action, links).
Lperformances(nodeid, perfid, traffic, delay, loss, interval).
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% Definition of Views in IDB:
% Views for nodes:

nodes(Nodeid, Capacity, Perfid, Status, Links, Conns, Events, Residual) :-
Lnodes(Nodeid, Capacity, Perfid, Status, Links, Conns, Events, Residual).

active_nodes(Nodeid, Capacity, Perfid, Status, Links, Conns,
Events, Residual) :-
nodes(Nodeid, Capacity, Perfid, Status, Links, Conns, Events,
Residual),

Status is on.

% Views for links:

links(Linkid, Protocol, Capacity, Perfid, Status, Nodes, Conns,
Events, Residual) :-
Ilinks(-, Linkid, Protocol, Capacity, Perfid, Status, _, Residual),
nodes_on link(Linkid,Nodes),
conns_on link(Linkid,Conns),
events_on_link(Linkid,Events).

nodes_on link(Linkid,Nodes) :-
setof( Nodeid, find_nodes(Nodeid,Linkid), Nodes).

find_nodes(Nodeid,Linkid) :-
1.nodes(Nodeid,-,-,-, N links,_,_,.),
member(Linkid,N_links).

conns_on_ link(Linkid,Conns) :-
setof(Connid, find_connections(Connid,Linkid), Conns).

find_connections(Connid,Linkid) :-

l_connections(-,Connid,_,_,,,,,.,Linkid).

events_on_link(Linkid,Events) :-
setof(E, find_events( E , Linkid), Events).
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find_events( E, Linkid ) :-
levents(_,E,_,_,_, E links),
member(Linkid, Elinks).

find_events( [],-).

active_links(Linkid, Protocol, Capacity, Perfid, Status, Nodes, Conns,
Events, Residual) :-
links(Linkid, Protocol, Capacity, Perfid, Status, Nodes, Conns,
Events, Residual).

% Views for connections:

connections(Connid, Type, Capacity, Perfid, Status, Clientid, Serverid,
Nodes, Links) :-
l_connections(Clientid, Connid, Type, Capacity, Perfid, Status, Clientid,
Serverid,-,-),
path(Connid, Clientid, Serverid, Nodes, Links).

% path predicate constructs the whole path from Client to Server:

path(Connid, Start, End, [Start|Noderest], [Linkid|Linkrest]) :-
lconnections(Start, Connid,,-,,,-,-, Nextid, Linkid),
path(Connid, Nextid, End, Noderest, Linkrest).

path(_, X:X b [X], []) =L

active_connections(Connid, Type, Capacity, Perfid, Status, Clientid, Serverid,
Nodes, Links) :-
connections(Connid, Type, Capacity, Perfid, Status, Clientid, Serverid,
Nodes, Links),

Status is on.
% Views for events:
events(Eventid, Type, Time, Action, Nodes, Links) :-

l_events(_,Eventid, Type, Time, Action, _),
setof(Nodeid, detect_nodes(Nodeid,Eventid), Nodes),
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setof(Linkid, detect_links(Linkid,Eventid), Links).

detect_nodes(Nodeid,Eventid) :-
l_events(Nodeid, Eventid,-,.,,.).

detect_tinks(Linkid,Eventid) :-
l_events(., Eventid,.,.,., E.links),
member(Linkid, E links).

% Views for performance:

performance(Perfid, Traffic, Delay, Loss, Interval) :-
Lperformances(_,Perfid, Traffic, Delay, Loss, Interval).

% Basic predicates used in these Views:
member(X , [X]|]):- L

member(X , [_|Rest]) :-
member(X , Rest).

length({(],0).

length([-| Xs],s(N)) :-
length(Xs,N).

% This query program has two major parts: retrieve and update.

% (1) retrieve commands
% To construct and retrieve local or global informatiion of the network.

% (2) update commands
% To update local or global information due to some network situation.
% (1) The retrieve commands:

% configuration:

% query on nodes:

residual_of_.node(Nodeid,Residual) :-
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l_nodes(Nodeid,,.,,-,-,.,Residual).

capacity_of_node(Nodeid,Capacity) :-
I_nodes{Nodeid,Capacity,-,-,-,-,,_).

status_of node(Nodeid,Status) :-
l_.nodes(Nodeid,_,_,Status,,,, ).

links_to_node(Nodeid,Links) :-
l.nodes(Nodeid,_,_,_,Links,_,,_}.

num links_to_node(Nodeid,Number) :-
links_to_node{Nodeid,Links),
length(Links,Number).

connection_on_node(Nodeid,Conns) :-
| nodes(Nodeid,-,-,-,-,Conns,_,_).

num_connection_on_node(Nodeid,Number) :-
connection_on_node(Nodeid,Conns),

length(Conns,Number).

event.on_node(Nodeid,Events) :-
l.nodes(Nodeid,.,.,-,-,-,Events,_).

performance_of node(Nodeid,Traffic,Delay,Loss,Interval) :-
l_nodes(Nodeid,_,Perfid,,.,-,-,-),
performance(Perfid, Traffic,Delay,Loss,Interval).

% query on links:

residual_of link(Linkid,Residual) :-
links(Linkid,-,-,-,.,-,-,-,Residual).

protocol_of link(Linkid,Protocol) :-
links(Linkid,Protocol,-,—,-,—,—y—,-).

capacity_of link(Linkid,Capacity) :-
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links(Linkid,_ ,Capacity,-,—,—,—,-,-).

status_of link(Linkid,Status) :-
links(Linkid,,_,-,Status,.,,_, ).

performance_of link(Linkid,Traffic,Delay,Loss,Interval) :-
links(_,Linkid,-,-,Perfid,_,_,_),
performance(Perfid, Traffic,Delay,Loss,Interval).

nodes_of Jink(Linkid,Nodes) :-
links(Linkid,-,,-, ,Nodes,_,.,.).

num_nodes_of link(Linkid,Number) :-
nodes_of link(Linkid,Nodes),
length(Nodes,Number).

connection_of link{Linkid,Conns) :-
links(Linkid,.,.,.,_,.,Conns,_,_).

num_connection_of link(Linkid,Number) :-
connection_of link(Linkid,Conns),

length(Conns,Number).

event_of link(Linkid,Events) :-
links(Linkid,.,-,,-,-,,Events, ).

% query on connections:

type_of_connection(Connid, Type) :-

connections(Connid, Type,_,_,_,_,_,_,).

capacity_of_connection(Connid,Capacity) :-

connections(Connid,-,Capacity,-,-y——y-s-).
performance_of_connection(Connid,Traffic,Delay,Loss,Interval) :-

connections( Connid,-,-,Perfid,,_,_,_,-} ,
performance(Perfid, Traffic,Delay,Loss,Interval).
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client_of_connection(Connid,Client) :-
connections(Connid,_,_,_,_,Client,_,,_).

server_of_connection(Connid,Server) :-

connections(Connid,_,,_,_,_,Server,_,_).

nodes_on_connection{Connid,Nodes) :-

connections(Connid,_,_, ,_,_, ,Nodes, ).

num_nodes_on_connection(Connid,Number) :-
nodes_on_connection{Connid,Nodes),

length(Nodes,Number).

links_on_connection{Connid,Links) :-
connections(Connid,-,,_,-,_,_,-,Links).

num links_on_connection(Connid,Number) :-
links_on_connection{Connid,Links),
length(Links,Number).

% query on events:

type_of_event(Eventid,Type) :-
events(Eventid, Type,-,-,-,-).

time_of_event(Eventid, Time) :-

events(FEventid,-,Time,.,.,-).

action_on_event(Eventid,Action) :-

events(Eventid,_,_,Action,_,).

nodes_in_event(Eventid,Nodes) :-

events(Eventid,.,.,-,Nodes,.).

links_in_event(Eventid,Links) :-

events(Eventid,., ,_,_,Links).

% The update commands:
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% The first part is used for updating the local data.

u-capacity.of_node(Nodeid,New_capacity) :-
I_nodes(Nodeid,Old_capacity, Al, A2, A3, A4, A5, A6),
retract(l.nodes(Nodeid,Old.capacity,-y—ymymymy-} ),
assertz(l nodes(Nodeid,New_capacity, A1, A2, A3, A4, A5, A6)).

set_.on_node(Nodeid) :-
l_rodes(Nodeid,-,_,on,,-,.,.),

write(’it is on’).

set_on_node(Nodeid) :-
l.nodes(Nodeid,A1,A2,0ff,A3,A4,A5,A6),
retract(l_nodes(Nodeid,-,-,,-,y-,-)),
assertz(l-nodes(Nodeid,A1,A2,0n,A3,A4,A5,A6)).

set_off_ node(Nodeid) :-
I_nodes(Nodeid,.,.,off,.,.,,-),
write('it is off’).

set_off_node(Nodeid) :-
L.nodes(Nodeid,A1,A2,0n,A3,A4,A5,A6),
retract(l-nodes(Nodeid,—,-y—yeyy-y-) ),
assertz(l_nodes(Nodeid,A1,A2,0ff,A3,A4,A5,A6)).

u_performance_of_node(Nodeid,Traffic,Delay,Loss,Interval) :-
performance_of node(Nodeid,Traffic,Delay,Loss,Interval),
write("the same performacnce’).

u_performance_of_node(Nodeid,Traffic,Delay,Loss,Interval) :-
l_nodes(Nodeid,-Perfid,,,,-,-),
retract(performance(Perfid,,-,-,-)),
assertz(performance(Perfid, Traffic,Delay,Loss,Interval)).

% The second part is the global update.

% To update connection capacity.
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% If we want to decrease the capacity,
% Retrive the nodes and links on the path, add the released capacity to
%each of these nodes and links, and update capacity of this connection.

u-capacity.of_connection(Connect,Capacity) :-
capacity_of_connection({Connect,Capacityl),
Capacityl > Capacity,
Residual is Capacity - Capacityl,
nodes_on_connection(Connect,Nodes),
links_on_connection{Connect,Links},
change nodes(Nodes,Residual),
change links(Links,Residual),
change_connection(Connect,Capacity).

% If we want to increase the capacity, first retrieve the nodes and links on this

% connection. Check whether available capacity exits on these nodes and links.

% If yes, for all nodes and links, substrct by the amount of extra allocation and

% update the capacity of this connection.

u_capacity_of_connection(Connect,Capacity) :-
capacity_of_connection{ Connect,Capacity1),
Residual is Capacity - Capacityl,
nodes_on_connection{Connect,Nodes),

links_on_connection(Connect,Links),
!

-

check_nodes(Nodes,Residual),
1

*

check links{Links,Residual),
change_nodes(Nodes,Residual),
change links({Links,Residual),

change_connection{Connect,Capacity).

% To increase the capacity of a connection to its maximum,
subject to the limit along the path.

max.of_connection{ Connect,Capacity) :-

capacity_of_connection(Connect,0l1d),
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nodes_on.connection(Connect,Nodes),

links_on_connection(Connect,Links),

!

full_.node(Nodes,Residuall),

full link(Links,Residual2),
choose(Residuall,Residual2,Residual),
Capacity is Residual + Old,
change_nodes(Nodes,Residual),
change links(Links,Residual),

change_connection( Connect,Capacity).

full_node([Node|Left],Residual) :-
!

residual_of node(Node,R1),
full node(Left,R2),

choose(R1,R2,Residual).
full_node([],10000000).

full link([Link|Left],Residual) :-
'
residual_of link({Link,R1),
full link(Left,R2),

choose(R1,R2,Residual).
full dink({[],1000000).

choose(R1,R2,Residual) :-
R1 > R2,
Residual is R2.

choose(R1,_,R1).

check nodes([Node|Left],Residual) :-
1

check_node(Node,Residual),
check_nodes(Left,Residual).



check nodes(][],-).

check_node(Node,Residual) :-

residual_of node(Node,Available),
'

b

Available > Residual.

check links([Link|Left],Residual) :-
|

b

check link(Link,Residual},
check links(Left,Residual).

check dinks([],-).

check link(Link,Residual) :-

residual_of link(Link,Available),

1
&

Available > Residual.
% The following codes are used for updating local data.

change_nodes([Node|Left],Residual) :-
change_node(Node,Residual),
change_nodes(Left,Residual).

change_nodes((}],.).

change node(Node,Residual) :-
1.nodes(Node,A1,A2,A3,A4,A5,A6,01d),
retract(l-nodes(Node,,_,,,_,, ),
New is Old - Residual,
assertz{l_nodes(Node,A1,A2,A3,A4,A5,A6,New)).

change links([Link|Left],Residual) :-
change link(Link,Residual),
change links(Left,Residual).

change links([},.).
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change link(Link,Residual) :-
Llinks(A1,Link,A2,A3,A4,A5,A6,01d),
retract(llinks(A1,Link,A2,A3,A4,A5,A6,01d)),
New is Old - Residual,
assertz(llinks(A1,Link,A2,A3,A4,A5 A6,New)),
fail.

change link(_,.).

change_connection{Connect,New) :-
1_connections(Nodeid,Connect,Type,Capacity,Perfid,Status,
Client,Server,Nextid,Linkid),
retract(l-connections(Nodeid,Connect, Type,Capacity,Perfid,
Status,Client,Server,Nextid,Linkid})},
assertz(l.connections(Nodeid,Connect,Type,New,Perfid,
Status,Client,Server,Nextid,Linkid)),
fail.

change_connection(..,.).
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