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Abstract

We study a heterogeneous multi-server queueing system in which the minimum expected
delay routing policy is used, t.e.. en arriving customer is assigned to the server which has
the minimal expected value of unfinished work. This routing discipline can be viewed as
a generalization of the join-the-shorvtest queve (SQ) discipline for homogeneous servers.
We provide a methodology to compute upper and lower bounds on the mean response time
of the system. This methodology allows one to tradeoff the tightness of the bounds and
computational cost. Framples are presented which show the excellent relative accuracy
achievable with modest computational cost.

Index terms: Load balancing, shortest queue routing, bounds, Markov models.






1 Introduction

Routing policies can have tremendous effect on the performance of a multi-server
system where each server has its own queue. The minimum expected delay routing policy,
although not optimal, can provide excellent performance in these systems. Some major
difficulties in analyzing this kind of a routing policy, even under Markovian assumptions,
are (1) each queue in the system is correlated because the arrival process to each server
depends on the state of the entire system and, (2} since each queue has infinite capacity,
the state space of the system is multi-dimensional in nature and is infinite in each of
the dimensions. In its general form, there is no known closed-form solution, and it
is impossible to exactly solve the problem numerically due to the infinite state space.
One approach to this problem is to construct a modified model which provably bounds
the performance of the original policy and for which the performance measures of the
modified model can be easily computed.

The goal of this paper is to analyze multi-server queueing systems in which the assign-
ment of customers to servers is chosen at arrival instants using the minimum expected
delay routing (MED) policy (a natural generalization of the join-the-shortest-queue (SQ)
policy for homogeneous servers). Let K be the number of servers, where I{ > 2. Each
server has an infinite capacity queue, and service rates are exponentiaily distributed with
rates p;, 1 = 1,2,.... K. Without loss of generality, we assume ptq > g = -+ > uy. The
customer arrival process is a general arrival process with a mean rate of \. We propose a
methodology which provides upper and lower bounds on the mean number of customers
(and thereby the mean response time) in the system and which can be used to trade off
the tightness of the bounds with the computational cost. By virtue of providing bounds,
rather than simply an approximation, our results are distinguished from previous work
on this problem.

We begin with a brief review of the published literature on the join-the-shortest-queue
routing problem. The optimality of the SQ policy for homogeneous multi-server systems
has been established in numerous papers [10, 27, 29] and has been shown to minimize
the queue length vector in the sense of Schur-convex ordering, [27]. This latter fact
carries the implication that the total number of customers in the system is stochastically
minimized by the SQ policy as is the mean stationary response time {when it exists).

Of more interest to us is the literature dealing with the performance evaluation of
the SQ and MED policies. In the case of the SQ policy for two identical servers, numer-
ous authors have provided exact, though not necessarily efficiently computable, solutions
Kingman [14], Flatto and McKean [11], Zhao and Grassmann [31]. and Cohen and Boxma
[6], Adan [1], et al. Several authors have provided similar solutions to the heterogeneous
server problem; e.g., Kness!, et al. [15] and Adan, et al. [2]. The last paper (also [1]) is



interesting because it can generate a sequence of increasingly more accurate approxima-
tions with error bounds that decrease exponentially.

Numerous authors have proposed approximations for the SQ and MED policies. These
include Conolly [5], Rao and Posner [25], and Towsley and Chen [26] in the case of the
SQ policy. The first of these treats both queues as having bounded capacity whereas the
last two treat only one queue as having bounded capacity. The last two papers produce
solutions that can be expressed in a matrix-geometric form [24]. The last paper, [26],
is also noteworthy in that it provides upper and lower bounds on various performance
statistics that are established using less sophisticated sample path techniques than are
used in this paper. Grassmann [13] studied the same problem with ' = 2 and solved for
transient and steady state behavior. Halfin [12] studied the two servers problem and used
a linear programming technique to compute bounds on the mean number of customers in
the system. Blanc [4] studied the SQ routing policy with an arbitrary number of hetero-
geneous servers. e proposed an approximation method which was based on power series
expansions and recursion which required a substantial computational effort. Various ap-
proximations for computing the mean response time of K homogeneous servers have
been proposed by Lin and Raghavendra [19], Nelson and Philips [22, 23], and Wang and
Morris [28]. Zhao and Grassmann [30] studied the shortest queue model with jockeying.
This problem has the matrix-geometric form and an explicit solution can be obtained.
Avritzer [3] studied a dynamic load balancing algorithm which used a threshold policy in
an asymmetric distributed system. The result was only applicable to two distinct types
of servers and a small class of threshold sizes, no formal proof was given on how to obtain
performance bounds. None of the work cited above {reated more than two heterogeneous
servers and simultaneously provided error bounds. Lui and Muntz [20] were the first to
propose a methodology to bound the mean response time of a minimum expected delay
routing system. This paper differs from [20] in several ways. First, we derive improved
bounds for the homogeneous servers case, and secondly, we use sample path analysis to
prove the bounds, which yields more elegant and intuitive proofs.

This work distinguishes itself from previous published results in that it simultaneously
(1) allows more than K > 2 servers, (2) allows heterogeneous servers, (3) includes a
scheduling policy based on queue lengths and service rates (thus, we treat a generalization
of the join-the-shortest queue for homogeneous systems) and (4) provides error bounds
on the mean number of customers (and thereby mean response time) in the system. The
bounding methodology has the desirable property that it allows one to tradeoft accuracy
and computational cost, as will be demonstrated.

The organization of the paper is as follows. In Section 2, we formally define the
queueing model we are analyzing. In Sections 3 and 4, we present the modified models
and prove that these models do provide bounds. In Section 5, we provide a methodology
for obtaining tighter bounds in the special case of homogeneous servers. Section 6 shows



that using lumpability, we can reduce the state space further and thereby obtain better
bounds at the same cost. In Section 7, we present example applications, and conclusions
are given in Section 8.

2 Model

We consider a queueing system, as depicted in Figure 1, with K heterogeneous servers
with associated queues being fed by a general arrival process with mean rate A. The
service times at servers form mutually independent sequences of exponential random
variables with rates gy > po > --- > px. and are independent of arrival times. Let
N;{(t) be the number of customers at server ¢ (on that server or in the server’s queue) at
time ¢. We define u;(#) = (1 + N;(#))/p;, which is the mean unfinished work at the i-th
server if a customer arrives at time ¢ and is assigned to the 2-th server. Let us define
u*{t) = min{u;(t),7 = 1,...,A'}. Upon arrival of a customer at time #, the customer
joins a server j where u;(t) = u*(t). If a tie occurs, the customer chooses the server
with the lowest index. We call this the minimum expected delay routing policy. When
all service rates are equal, this policy reduces to the classic join-the-shortest queue (S¢)
routing algorithm.

A —— scheduler

®0 ®G

Mi>Ha> - > P> B

state s=(N, N, , ---- N,)

b

Figure 1: Minimum Expected Delay Routing Policy Queucing Model

We can construct a Markov model, M, for this queueing system with state space:

(N = (N.Nyy. . Ng)IN; >0, i=1,....K)}



Assume the system is stable; that is A < it g;. The unique steady state probability
vector for this continuous-time Markov model satisfies the following system of linear
equations:

=

G=0 and 7Te=1 (1)

where 7 is the K -dimensional steady state probability vector, e denotes an appropriately
dimensioned column vector of 1's and (' is the transition rate matrix having the following
structure:

(Ny,..., Ny .. . Ng) = (N, N+ 1,...,Ng) 1{¢ = min{k|uy = v*}} A
(J\H,...,Ni,...,j\rh') - (.N},...,Ni—l,...,]\r}\') I{Ni>0},u,-

The above model does not possess a known closed form solution, and it is not pos-
sible to solve the problem numerically due to its infinite state space cardinality. Since
the Markov process lacks the appropriate special structure, techniques such as matrix-
geometric methods do not apply. One natural way to approach this problem is to con-
struct other models that closely bound the performance of the original problem and
which, at the same time, have either known closed form solutions or at least can be
efficiently evaluated by numerical methods.

It is intuitive that the stationary state probabilities for the model M are highly skewed
, in other words, the probability mass of the system is concentrated in some relatively
small subset of the state space rather than distributed nearly uniformly over the entire
state space. For example, consider a system of four homogeneous servers. The purpose
of using the routing policy discussed above is to balance the load of the system as much
as possible; therefore it is reasonable to assume that a highly unbalanced state(e.g.,
(8,4,3,1)) has a much smaller probability mass than a balanced state (e.g., (4,4,4,4)).
This crucial insight provides the rationale for constructing two modified versions of the
original model which can be shown to bound the mean response time of the original
system. In both cases we represent the exact behavior (transition rates) for the most
“popular” states (where most of the probability mass resides). The number of states in
the most popular subset is a function of the accuracy demanded and the computational
cost one is willing to pay. When the system leaves this subset we modify the behavior of
the system in such a way that (a) the modified system has an efficient solution and (b)
the modified model’s behavior can be shown to hound the behavior of the original model
from above or from below. Therefore, one modified model provides an upper bound on
the mean response time while another provides a lower bound on the mean response
time. In the next section, we discuss the upper bound model and then, in the following
section, we cover the lower bound model.

or



3 Upper Bound

In this section, we present a modified model, M*, which provides an upper bound
for the mean response time and the mean number of customers in the system for the
original model, M. The upper bound model has the same system configuration, namely
that the customer arrival process is general with mean rate A and A servers with service
rates i, 1 = 1,2,..., K, where iy > pp > -+ > ug'. The upper bound model M*
has two additional parameters. The first parameter we term the artificial capacity vector
C = (C4,...,Ck). The second parameter is a threshold setting d, which is the maximum
allowable difference between the longest queue and the shortest queue in M*. We first
give the formal definition of these two parameters and, in the following paragraph, we
give the intuitive idea of Lhow these two parameters can be used construct the upper
bound model AM*".

Definition 1 Zet C™ = (CF,....C}) be a vector where CF = £ and €' is chosen to be
the mintmum positive integer such that C7 is a positive integer for v = 1,..., K. Then
the artificial capacity vector C is an integer multiple of C=, i.e, C = jC~ for some j > 1.

For example, if gy = % and po = 1, then (' = 3 and C* = (3.2). So the artificial capacity
vector can be C = yC~ for any 7 > 1.

Definition 2 lLet a state of the model be s = (Ny,...,Ni). Let N7 be the number of
active customers i the i*" server. Define ¢{s) be the degree of imbalance for state s, as:

q(s) = max{N] — N} | where¢,j € {1,...,K}}

Definition 3 Let d be the threshold setting in the modified model. We require that g(s) <
d for each state s in model M™.

We first give an intuitive idea of the construction of model M*. In M", the degree
of imbalance is required to be less than or equal to the parameter d. A customer may
depart from the system only il its departure does not violate the maximum degree of
imbalance permitted. If the customer departure would violate the threshold setting, the
customer restarts its service within the same server. Intuitively, this mechanism forces
a customer to stay in the svstem at least as long as in the original model and thereby

'We require that the service rates be rational numbers such that they can he expressed as integers
after normalization, i.e., the service rates are mutually commensurable.
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increases the number of customers in the system. Note that, due to the routing policy,
an arrival never causes the degree of imbalance to exceed d. The rationale behind the
threshold parameter is to generate a model with a state space which is a subset of the
state space of the original model.

The second parameter is the artificial capacity, C;, ¢ = 1,2,..., K for each server. In
model M*, there are two classes of customers, active customers and suspended customers.
At any point in time, there are never more than C; active customers in queue 7; all of
the remaining customers are suspended. Whenever a customer arrives to the system and
finds that each server i, 7 = 1,..., K, has eractly an integer multiple of C; customers,
all active customers in the system (except for the arriving customer ) are pui into a
suspended mode and a new “busy cycle” is started. This busy cycle ends when all servers
complete all active customers. C; suspended customers are then released from queue
i = 1,...,K and can be served (i.e., become active again). Note that the definition
here is recursive; during the busy period following suspension of a set of customers, the
capacities C; can again be exceeded, causing another set of customers to be suspended.
When a busy cycle ends, only the set of customers suspended at the initiation of that
busy cycle is released for service. The purpose of the (';, 1 <¢ < K, is to create a matrix
with a repetitive structure; based on that structure, we will be able to derive an efficient
numerical solution algorithm. The computation algorithm is based on partitioning the
state space of M" into UZ,S; - - - where:

So = {(Ni,... . NgJ0< N, < (forj=1,...,K}
S = {(Ni,... Np)iC; <N, < (i+1)Ciforj =1,... K} = {(iCh,....iCx}} i >1

Due to the routing of arrivals and the constraini on departures, we can show that all
transitions from S; to S, are actually from one state in §; and the transitions from S;44
to S; can only go to one state in ;. As will be shown later, this property allows us to
efficiently solve the model via exact decomposition based on the partition {SoUS U --}.
Intuitively, this second modification to the model should also increase the mean number
of customers in the system compared to the original model since additional server idle
time is introduced and service of a suspended customers can only be resumed when all
active customers depart from the system.

As an example, assume that we have a system with four homogeneous servers, and
let C; =10, for ¢ = 1,2,3,4. It is easy to see that Sy consists of all states for which each
gqueue has between 0 and 10 customers; &) consists of all states for which each queue
has 10 suspended customers, and has between 0 to 10 active customers and at least one
queue has an active customer. Observe that the only transition from Sy to & is from state
(10,10,10,10). This is due to the shortest expected delay routing of arrivals. The only
non-zero transitions from S; to 8y are from states (11, 10,10,10), (10,11, 10, 10), (10,10,11, 10)
and {10,10,10.11] to state (10, 10,10, 10).
This is due to the rule introduced in A* to the effect that suspended customers are only



served when the busy period {corresponding to states in Sy) has completed. An impor-
tant point is that the parameters d and C;, for 7 = 1,..., K, can be chosen to control
the extent to which M* behaves like the original model M, i.e., the larger d and the C}’s
are, the larger the portion of the state space that has behavior identical to the original
model.

3.1 Proof of Upper Bound

In this section, we prove that the model M* provides an upper bound on the number
of customers in the system at any point in time. In the case that the model exhibits
stationary behavior, Little's result can be invoked. Since M™ and A have the same mean
arrival rate it follows that if M has a larger mean number in system than M. the mean
response time of MY is an upper bound on the mean response time for M. We therefore
concentrate on the mean number in system in the remainder of this section.

Let p denote a policy that routes an arriving customer to a server on the basis of the
server queue lengths. Let (N} denote the identity of the queue to which the customer
is routed under policy p when the queue length vector is N. When we are interested in
the joint queue length at time ¢ under a specific policy, we will denote it as N?(t). We
assume that p is stationary. We start by defining an auxiliary concept that will be useful
in the proof.

33

Definition 4 A policy p is a proper policy if N < N’ (here * < " is taken to mean

componentwise) implies that N + e,, < N'4 e, g, where e;, is the vector of all 0’s
P (V) =N k

except for a I in position k.

It is easy to see that the minimum expected delay routing policy 1s a proper routing
policy.

In establishing an upper bound, it is useful to look at the time instants when events
suich as arrivals and departures occur. In the latter case, it is useful to think of each server
as continuously serving customers. If the quene is empty, then the server serves a fietitious
customer. Hence scrvice events at server k occur as a Poisson process with parameter
iz (Note that a service event is also a departure event only when there is a customer in
the queue.} Furthermore, if a customer is routed to an empty queue, then it is assigned
the remaining service time of the fictitious customer on the server. The exponential
assumption guarantees that the time to the next service event is an exponential random
variable with the same parameter. It follows that, under this interpretation, the customer
service times are still i.i.d. exponential with the same mean.



Consider the z-th event. Let N; = (N;;,---, N, g) be the joint queue lengths im-
mediately after the ¢-th event. Let Ny denote the initial queue lengths. We have the
following evolution equations. If the (¢ 4 1)-st event corresponds to an arrival,

Nijig = Nep + l{l;(Ni) = k}. 1<k<K (2)

If the (i + 1)-st event corresponds to a service event at server j,

. _ .N,"k., k :/—' 75
j\}z-{—l,k - { (Ni,j _ 1)+, k — ‘] (3)

Now suppose that we have a modified system for which we define a new binary valued
random variable Y; that takes on the value 0 if no customer is allowed to depart and the
value 1 if a customer is allowed to depart at the 2-th event (provided that it is a service
event). In the original model M, the random variable ¥; is always equal to 1. On the
other hand, in the upper bound model M* presented above, Y; can be 0 or 1 depending
on the model state. Let N*(t} be the joint queue lengths for the model M*. We have the
following evolution equations at the time of arrival and service events. If the (¢ + 1)-st
event corresponds to an arrival,

Nio= N+ (N =k},  1<k<K (4)

If the (z + 1)-st event is a service event at server j,

AT { ‘Nz'l,lk’ k 76 .7:’ (5)

AN ,l;‘ = 4 o
A (Arilfj - )'/;+1)+a k=7

Lemma 1 If N(0) <,, N"“(0) and p is a proper routing policy, then

N(t) <., N¥(t), t>0.

Proof. Couple the initial queue lengths so that N(0) < N¥(0). Condition on the initial
queue lengths, arrival times, and service event times. The proof is by induction on the
event times to establish the deterministic relation:

N; <N 120
For z = 0, N(0) < IN*(0).

Assume IN; < N¥ holds for 7 = k. For 7 = k + 1, if the ¢-th event is an arrival event,
then by the definition of a proper policy the relationship holds. If the :-th event is a
service event, then due to Y4, < 1, the relationship holds. Therefore, the upper bound

oo



model M" satisfies the assumptions described above, and we have N(¢) < N*(t). By
removing the conditions on initial queue lengths, arrival times, and service event times,
we have:

N(t) <4 NUt), for t=0

[ |
Let N; = limy_.o, N;(t) when it exists, 1 <7 < K and let N = 37,_;x N;. Based on the
above lemma, we have:

E[N] < E[N..

If R and R, denote the stationary customer response times, when they exist, then by
Little’s Result,

E[R] < E[R.]

3.2 Computational Algorithm for Solving the Model M¥

In this section, we provide an algorithm for computing the mean response time of the
upper bound model 2 We partition the state space of M, &* = U2,S; and §;NS; = 0,
Yi # 7, where:

So = {(Mu NS N, < forj=1,..., K}
S = {(N,. .., Ng)iC; < N; S (i+1)C; forj =1,... . K} ={(eCy,..,iCk)}
Qs,,s; = tramsition rate matrix from states in S; to states in S;.

The transition rate matrix Q% has the form depicted in Figure 2 when the states are
ordered in the natural way.

This is a block tridiagonal transition rate matrix and therefore represents a quasi-
birth-death process. By aggregating each partition &;, a birth-death process is formed.
First, we show how to obtain the exact conditional state probability vector, given that
the svstem is in partition S;. Once we have this information, it follows easily that we
can obtain the exact aggregate transition rates. We can then obtain the exact stationary
state probabilities for the aggregate model. The aggregate state probabilities and the
conditional state probabilities together are a complete solution for the stationary state
probabilities for the upper bound model A*.

2Although M* vields an upper bound on the mean response time for arbitrary arrival process, the
computation algerithm described in this section is for Poisson arrival processes only.
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Figure 2: Transition Rate Matrix for the Upper Bound Model.

There are several important features of the upper bound model, M*. First, there is
only a single state in &, that has a non-zero transition rate into any state in S;j;q, ¢ > 0.
Let us call this state s;((y). State s,(Cp) is:

5:(Co) = (N, Ng,...,Ng)e S where Ni=(+1)C; ¥V 5=1,2,...,K

This follows from the rule used to assign an arriving customer to a server. Also, there are
K states from &; that have non-zero transition rates to a state in &;_; where 2 > 1. Each
corresponds to a state in which a particular server is the last to complete its “active”
(non-suspended) customer. Let us call these states s;(I), 1 <{ < K, @ > 1. These states

are:

slly = (N, Nayo o NgYES: I=1,... K
where Ny = 17 +1 and
Ny = 0y for 5#1 and j=1,2,... K

This follows from the restrictions on departures in the upper bound model. The following
are easily seen to be the transition rates between s,(Co) and s;4,(1),1=1,2,... K"

Si(C"Q) — Sz'+1(” 1{3;(31(00))21})\
sivi{l) — 5{(Co) o for 1=1,2,... K

The second important observation is that the submatrices (Js, s, for ¢ > 1, are all
identical. The conditional state probabilities P{s € &;|8;} can now be computed exactly
using the following lemma from [3]:

Lemma 2 Given an irreducible Markov process with state space 5 = AUB and transition

rate matrix.
Qa4 Qas
(ps BB

where §); ; is the transition rate sub-matrix from partition « to partition . If Qg 4 has all
zero entries except for some non-zevo entries in the i-th column, the conditional steady

10



state probability vector, given that the system is in partition A, is the solution lo the
following system of linear equations:

oy

T4 [QA,A +Qap £ Q; =

TAg =

where gf

has the value 1.

is a row vector with a 0 in each component, except for the i-th component which

We are now in a position to compute the conditional state probabilities for each
partition &; of MY exactly. Without loss of generality, let us consider &;, for some 2 > 1.

Theorem 1 Let Qs, s, be the transition rate matriz which is equal to Qs, s, except for

Pl

the following modifications:

Goi(Co)si(Co) = DoilCo)si(Co) + A (6)
Isi()ss(1) = Gsihhe() + e where T SIS K (7)

The solution to the following system of linear equations:

~ —

7ls.s, =0 and we=1

is the conditional steady state probability vector for states in &;, that is:

m(s)

—_ YseS,
ZSES,‘ ﬂ—(s) ’

w(s)

Proof: Let us partition the state space §* = {S/ U S/} where S, = széSj and
S = {8*—&!}. There is only a single return state in S, which is s;(Cy), from the
states in S;. Based on Lemma 2, the modification of Equation (6) provides the condi-
tional steady state probability, given the system is in S:. Now partition the state space
S; = {S! US;} where 8! = U/{S,. Based on Lemma 2 and the definition of the MED
routing policy, using the modification given in Equation (7) we obtain the conditional
state probability vector, given the system is in &;. |

Since we can compute the conditional state probabilities for each partition &; exactly,
we can exactly aggregate each §; into a single state s;,7 > 0. The aggregated process is
depicted in Figure 3 where, A, Ay q and fiq,, are:

11



flagg Hagg Hagg Hagg Hagyg

Figure 3: Aggregate Process for the Upper Bound Model.

)\0 = %(SO(C@)) A
Aagg = T(si(Co)) A
K
Hogg = T(si(1))
I=1
Solving this chain, we have:
\ -1
7 (s0) = l1 + —D] (8)
’ Hagg — Augg
] Gl G)
s} = |1+ 2 for i=1,2,... (9)
(52) tragg — Aagg Hagg Hagg

To obtain the mean number of customers, N, in the the upper bound model, let us
define the following:

K
ris) = YN, for state s € §¥
i=1

K
Co = Y.C
=1

F(s) = r(s)—i(y s E€S;
N(s) = 3 #(s)x(s)
3ES;

where 7(s) is the solution of the following Markov chain:
7:"‘@5;',8, =0 and Fe=1

Then we have: -
N, = N(so)w*(so)—i—z [N(sz-)—i—;ico] 7(8;) (10)
i=1
Since N(s;) = N(sj) for 7 # 7 where 7,7 > 1, we can simplify the expression above for
N, to:
N, = N(so)m(s0) + N(s:)(1 — 7%(50)) + Corg—28 prls) (1)

(:“agg - ’\ugg

12



From Little’s result [18], the upper bound mean system response time R, is:

1] . . .
Re = = |N(si)m™(s0) + N{s)(1 — 7%(s0)) + Colo—rE— —nx7(s0)|  (12)
A (ftagg — Augy)

It is important to note that the upper bound model AM* has a different stability
condition compared to the original model M. The original model s stable if:

A
p= o<l
=1 Hi
but the stability condition of the upper bound model is:
; /\u,
pu — g9 < 1
Hagg

In general, p* < p but as we increase d and C, we have p* — p from below.

4 Lower Bound

In this section we present a model M, which provides a lower bound on the mean
response time of the original model. As before, we assume that the arrival process is
general with rate A and that there are I servers with service rates u;,2 = 1,2,..., K,
where y; > go > -+ 2 ug. For the lower bound model, in addition to the two parameters
introduced for the upper bound model M*, we define C'y = -8 C..

We first give an intuitive idea of the construction of the lower bound model M'. The
modified system alternates between two phases. The normal service phase begins when
the system is empty and coutinues until either the maximum degree of imbalance d is
exceeded or until the total number of customers exceeds ('y. Once either event occurs,
the system enters a full scrvice phase where it behaves as a heterogeneous M/M/K system
in which, if there are j customers, where j < K, these j customers are executed on the
j fastest servers (i.e., customers are moved to the faster servers instantaneously). The
system operates in this mode until the system becomes idle. Once the system empties, it
returns to the normal service mode. Intuitively, these modifications yield a lower bound
on the mean response time since the modifications are an idealization in which either the
model behaves exactly as the original model or the best possible service rate is delivered.
While the resuit is intuitive, we will also formally prove that the modified model M’
yvields a lower bound on the mean response time. Of course, it is intended that d and
Ci i =1.2,.... I, be chosen large enough so that most of the time M* behaves like the
original model. On the other hand, to be able to solve the model efficiently, we would
like to keep these parameters small. Numerical examples are given later to illustrate the
tradeoffs between the size of a model solved and the spread in the bounds obtained.

13



4.1 Proof that ' Provides a Lower Bound for M

The proof that M provides a lower bound on the mean response time of the system
for all proper routing policies p is based on the following two lemmas. The first is
straightforward and requires little explanation. It will be used to establish the bound
during the normal service phase.

Lemma 3 If N(0) <,, N'(0) and p is a proper routing policy, then

N(t) <4 N'(t), 0<+t.

Proof. Without loss of generality, we can couple the systems, so that N(0} < N'(0).
Now condition on the arrival times and on the service event times at the different servers
during the time interval [0,¢]. A simple induction argument using the fact that p is a
proper policy suffices to establish that N(¢) < N'(t). Removal of the conditioning yields
the desired result. n

Consider the system operating solely in the full service mode of operation and let
N7(t) denote the total number of customers in the system. Let N?(t) = Y NP denote
the total number of customers in the original system under policy p (henceforth referred
to as the normal service system).

Lemma 4 If NY(0) <., N*(0) and p is proper vouting policy, then

NT(t) <4 NP(t), 0<t.

Proof. As before, we couple the initial queue lengths so that N/(0) < NP(0) and
condition on the arrival and departure times. Let {¢,} be a sequence of times where
each t; corresponds to an arrival or service event. Let A7(t,) denote the number of busy
servers at time ¢, in the system under policy p. Define 42 : T — I to be a mapping such
that 47(k) is the index of the &-th fastest busy server in the system, provided k < M?(t,,).
In the case that K > k > MP(#,), v(k) is the index of the (A — M?(f,))-th fastest idle
server. (Actually, the idle servers can be mapped in an arbitrary manner.) We introduce
the following sequences of random variable’s,

e {A4,} is a sequence of random variable such that A, = 1 if the n-th event is an
arrival and 0 it it is a service event.
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o {/,} is an independent and identically distributed sequence of random variable
taking values from {1,..., K} such that Pr[{, = k| =1/K, k=1,2,..., K, and {
otherwise.

o {B,} is an i.i.d. sequence of uniformly distributed random variable in the interval

0, 1.

The evolution of the two systems is described as follows. Let IN? denote the joint
queue lengths under p immediately after the n-th event and let N/ denote the total
number of customers in the full service system immediately after the n-th event. Let
Ny . be the k-th component of N7, We have:

Ni:’k = (N'f:—l,k - 1{(An =0Al, = l)/\(‘Yi-l(f) = ]”)A(Bn < Juk/ﬂ)})++
AME(NT_) = k) (13)
N = (N (A, =00 A (L= DA (By < /)T + A, (14)

It remains to establish that N/ is less than N? (the total number of customers under
policy p) immediately after the n-th event for n = 1,2,.... This is easily done by
induction.

Basis step. Yor 1y = 0, the result follows from the coupling of the initial queue lengths.

Induction step. Assume that the hypothesis holds for the first n — 1 events. We must
distinguish between arrivals and service events. If an arrival occurs at time ¢, (A, = 1),
then the result follows immediately from the above evolution equations. In the case of a
service event, we distinguish between four cases depending on whether I, corresponds to
a busy or idle server in each system.

Case (1): In hoth systems the server in the chosen position is idle. Then there is no
departure from either system and the full service system model continues to have a lower
total number of customers, i.e., NJ = NI, < N? | = N7,

Case (2): In the normal service system, the chosen position corresponds to a busy
server, but in the full service model it corresponds to an idle server. In the normal service
system there can be customers waiting in queues while some servers are idle. This does
not occur with the full service system. Therefore if the k-th fastest server is idle in the
full service model then there are less than k& customers in the full service model. On
the other hand, if the k-th fastest server is busy in the normal service model there must
be at least k& customers in this model. It follows that the total number of customers in
the full service system is strictly less than the total number of customers in the normal
service model in the Interval ¢,_; < t < t,, i.e., N,{_l < NP_,. Hence, NT{ < NP since
the normal service system only “catches up” by 1.

15



Case (3): The server is busy in the full service systems. but it is not busy in the
normal service system. Clearly NJ < NI < NP_ = NP,

Case (4): The servers are busy in both systems. In this case let j be the label of the
server in the full service systemn and let & be the index of the server in the normal service
system. Since, in the full service system, the fastest servers are always being utilized it
follows that 7 < k. i.e.. the cliosen server in the full service system is at least as fast as
the chosen server in the normal mode system. Therefore, if B, < pp/u, then B, < p;/fp.
Hence it follows from the evolution equations, that if there is a departure from the normal
service system, then there is also a departure from the full service system. So we conclude
that NJ < NP

This completes the inductive step. Removal of the conditioning on the initial queue
lengths, the arrival times, and the service events completes the proof. [ |

Lastly, let N'(¢) denote the total number of customers in the lower bound system at
time . We have the following result.

Theorem 2 If NY(0) <, NP(0), then
Nty S0 NP(E), 120,

for any proper routing policy p.

Proof. This follows directly from the above two lemmas by noting that M’ goes through
alternating intervals in which it operates in normal mode and full service mode. When
the transition is made from the full service phase to the normal phase, N'(¢}) = 0 which
implies that IN/(#) < IN?(t) and so the first lemma can be applied during each normal
service mode interval. Similatly, when there is a transition from the normal service phase
to the full service phase, N'(¢) < NP(t) which implies that N/{f) < NP(¢) and so the
second lemma is applicable during every full service mode interval. |

Tt is important to note that the stability conditions for the lower bound model M*
and the original model M are the same.

4.2 Computational Algorithm for Solving the Model M’

In this section, we describe an algorithm for computing the mean response time of
the lower bound model M'. Let us define the following notation:
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So = set of states with 0 < N, < ¢;,7 = 1,2,...,K. and such that the
threshold d is respected

G1 = {8 — (0,0,...,0)}.

a; = astate, in the complement of Sy, in which the system contains ¢ customers.
Q¢, ... = transition rate matrix between G, and state a;.

Gaiw, = transition rate from state ¢; to state a;.

The transition rate matrix of the model M' is depicted in Figure 4. (Note that some
of the Qg, ., = 0 but this will not effect the development that follows.)

-ansﬂ-o an,gl 0 0 0 0 Ce
leaaﬂ Q.Gl'gl Qg],al le,a2 Qg]’aa le’a‘i LA

gzl,ao 0 g;Lﬁ] A 0 0
0 0 ng.al gzz.ﬁ? A U
0 0 | 0 gha 95e A

Figure 4: Transition rate matrix for lower bound model.

Since &p represents all possible states during the normal mode and states ¢;,: >
1, represent all possible states during the full service mode, it is easy to see that the
transition rate g; . 1s:

i _ [ Tiam 15iSK
gal‘.ai_l - { Zf\:l P"j Z'>I{ (15)

Observe that if we know the conditional state probabilities for the states in Sy (where
So = {apUG1}), then we can aggregate Sy as a single state, so, and we will have a simple
aggregated process from which the mean number of customers in the system can be easily
derived. Note that there is only a single entry to Sp from all states outside Sy because
the system must be idle to switch from full service mode to tlhe normal mode. Based on
Lemma 2, the state probabilities conditioned on the system being in Sy can be obtained
by solving the following system of linear equations:

Ci+1

T(S0) | Qsos0 + Y. Qs e =0
i=1

HSo)e = 1

where #(Sg) is the steady state probability vector, given that the system is in Sp. We
can now apply exact aggregation; the aggregated process is depicted in Figure 5.
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Figure 5: Aggregate Process for the Lower Bound Model.

The transition rates for the aggregated chain are:

g:U:ﬂe = f_::(SO)Q«So,a, 3: 11*Cf+]-

g:r:a'e+1 = A 2 2 1
g:hso = ﬂl

g = z}:l J[LJ 5223375‘[{
@071 @ otherwise

where = = 3% p,.

Solving the chain, we have:

Cf+1 i (/f+l
7"*(80) - 1+ Zl Z:I ’\l T Z gsU a; Hgak»ﬂk 1
=1 3
\ c‘,+1 Cy+t cf+1 —1
I.l';*_\ Z ACJ{+1 J Z gsg,aJ H gak,ak I 1] (16)
A D
Cf+1
ﬂ-*(ai) = Z /\1 j Z gSU @ j Hgak,ak 1 Z: 1"" ) 7Cf+1 (17)
/\ ¢ 1Cf+1 ot Cf-l—l Cf-}'l .
" (a;) = m(s¢) :l_ ) S DA Rl Z Trg s, ) WIT e )
j=1 k=;

iZCf-I-'Z,... (18)

To obtain the mean number of customers in the system, N, and the mean response

time, Ry, let

N(So) = > r(s)#(s)

s€&

where r(s) = 3 V;, then we have:

Ng:NSg Zﬂra-{—Zm ;)

1= Cf+l
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| L\t
_ ;\'(So)w*(30]+z?:7r*(“i)+ Z z'.;r*(acf-ﬂ)(#_,,)

=1 i=Cf+l

After simplifying, the mean number of customers N 1s:

Ny = N{(So)r"(s0) + g:?'rr*(a') + Cy m™lac,n)p” 7 (ac+)p” (19)
S~ S ) (= = A)?
From Little’s result [18], the lower bound mean response time is:
[
1% Ny Cy m(ac 41 )p” | 7 lag41)p"
= |V (s iy ! ! 2
Ro= Mo Bt S Teasgl ) o

5 Homogeneous Servers

In this section we consider a system with K homogeneous servers having exponential
service times with rate p. In this case, we can improve on the lower bound for the
heterogeneous system as well as on the upper bound at high utilization. Here, the
minimum expected delay policy becomes the classical join the shortest gueue (SQ)) policy.

We first describe the new upper bound model under very high system utilization.
For the upper bound model A% in the Section 3, we do not have a very tight upper
bound under very high system utilization, since we put a constraint on the departure
events based on the state of the system. Due to this constraint, the upper bound model
saturates at a lower traffic intensity; if we can find an upper bound model that saturates
at the same point as the original model, we can use the minimum of this model and AM*
model as an upper hound. One simple upper hound for the homogeneous case which
has the same saturation point as the original model is formed by assigning customers
to servers in a cyclic fashion, [10]. In this case, each server in the system behaves as
an £y /M/1, and the mean response time of this system is well known [17]. Taking the
minimum response time of this model and M* provides a good upper bound over the
entire range of traffic intensity®.

We now define the new lower bound model under the identical servers assumption.
Let N(t) = (Ny(t), Na(f)..... Ng(t)) denote the joint queue lengths at time ¢ > 0 under
SQ. and let N(#) = S8 Ni(t). Let J\A"'k(t) denote the k-th largest queue length, & =
1,2,..., K at time ¢ > 0. The new lower bound system operates as follows:

3Note that this approach cannot be applied to the heterogeneous case since a cyclic assignment policy
may not provide an upper bound response time.
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o Whenever N(t) < Uy = Z{‘;l s, Nl — NK = d, and a departure would normally
occur from the smallest queue, then it is forced to occur instead from the next
largest queue (i.e., if a departure would cause the system to exceed the maximum
degree of imbalance d, then the departure is made to occur from the second shortest
queue, which is a form of jockeying).

o Whenever N(t) > (; and a departure occurs, it is taken from the largest queue.

Here C' and d are parameters that can be tuned to provide a tight bound.

In order to describe in what sense this system is a lower bound, we introduce the
concept of majorization [21]. Let X, Y € IN®.

Definition 5 Y is said to majorize X (written X <Y ) iff

~

Vi, kR=1,..., K -1,

]
T
WE

<
!

;= .. (21)
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where X; (Y;) is the [—largest component of X (Y). If we replace the equality in (21)
by

N K R
Z ‘X',f g Z 151
=1 =1

we obtain a weaker ordering. In this case we say that Y weakly majorizes X (written

X =<,Y).

The following lemma states some properties regarding operations that can be per-
formed on X and Y such that weak majorization is preserved.

Lemma 5 Let XY € INN such that X <, Y, then

~ “ ~

LXK N LX) < (Y Y L Y YR,
forl<k<I<K
Q- (Jflﬂ"'a(‘i—k_1)+~“-=-Xt-la"'adivf\') '<w(n/rlu--'1 A/kv"-v(i;;_1)+1"'7i/1{))

for1<k<I<K



Proof. The proof follows in a straightforward manner from the definition of “~<,”. The
reader is referred to [21] for a detailed proof. |

Before we define a stochastic comparison based on majorization, we introduce the
notion of a Schur-conver function.
Definition 6 A function ¢ : IN — IR is said to be Schur-conver iff

#(X) < oY), VX,Y ¢ INF such that X < Y.

Definition 7 If X.Y € IN® are random variables, then we say X is smaller than Y
in the sense of Schur-conver order (written X <, Y ) ff

?(X) <o o(Y), YV Schur-convez ¢.
If the class of functions is restricted to be increasing Schur-conver, then we say that X

is smaller than Y in the sense of increasing Schur-conver order (X <jee Y ).

One property of these orderings that will be of use to us is expressed in the following
Lemma:

Lemma 6 Let X, Y € IN® be random variable’s such that:
X <V (X e )
There exist two random variable’s X and ¥ such that:
)?zstX, ?:st Y and X <Y (:f —<w?)

almost surely.

Let N'(¢) denote the joint queue length vector for the new lower bound system. We
have the following result.

Theorem 3 If N'(0) <iper N(0), then N'(t) <isew N (1) VE > 0.

Proof. Couple the initial quene lengths so that N'(0) < N(0). Condition on the arrival
times of the two systems. For the k-th largest queue, we have an associated service
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event process which is a Poisson process with parameter . Whenever a service event
occurs associated with the k-th largest queue, a departure occurs if there is one or more
customer in the queue at the time of the event. Observe that the coupling of the service
event times at the different servers is only possible if the service times at the servers are
all mutually independent sequences of i.i.d exponential random variables with the same
parameter.

Let {t;}°2, be the sequence of times at which arrivals or service events occur (to = 0).
We will establish the relation N'(t) <, IN{(t) by induction on the event times. Clearly,
if N'(t;) < N(t:) then N'(#) < N(t), t; <t < tip, i =0,1,...

Basis step. This follows from the coupling of the initial queue lengths.

Inductive step. Assume that N'(t) <, N(t) for ¢ < t;. We will establish it now for
t = t;. There are two cases depending on whether the event is an arrival or a service
event,

Arrival. Nt(tz-) <., IN(#;) follows because arrivals are always to the smallest queue,
so property 1 of Lemma 5 can be applied.

Service event. There are two cases depending on whether N'(#7) < Cy. In either
case, the result follows from an application of property 2 of Lemma .

This completes the inductive step and thus we have Nit) =, N(#),t > 0. By
the definition of weak majorization (=<, ), this implies that f(N'(t)) < f(N(t)) for any
increasing Shur-convex function f(¢). Removing the conditioning on the arrival times

and service times, we have:

NUE) <joee N(B)VE>0

Corollary 1 If NY0) <o IN(0), then N(t) <q N(1), fort > 0.

Proof. This follows from the preceding theorem and the fact that ¢(X) = Zf:l Xy 18
an increasing Schur-convex function. 1

For the purpose of computing performance measures, let us define the following:

So = set of states with 0 < N, < C and |N; — N;| <d, Vi, 5

S
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5,(C5) — this is the only state in Sy that has a positive transition rate into it from

states outside Sy.
#(s,(Cp)) = conditional probability of state s,(Co), given that the system is in 8.

So = aggregate state which represents all states of So.

8; — state which represents the system having 'y + ¢ customers, where ¢ =
1,2,....

7(si) = steady state probability of state s;.

N(8o) = mean number of customers given that the system is in So.

The mean number of customers and mean response time for this lower bound are:

Ny = N(SOJW*(SO)‘|‘§:[cf+i]7r*(5:')

i=1

- K
— N(So)m (50) + (1 — 7%(50)) + Ao (s0) and  (22)
(K — A)?
1 T P 7 * K b
R[ = X {1\-’(5‘0)?’? (SU) + C,f(} - (S{])) + /\O(I(,u, _‘ul\)z'ﬁ' (80) (23)
where:
Ao = (sa(Co))A (24)
o 17
“(sg) = |1t 9
™ {s0) lJrK,u—,\] (23)
Yoo 17 ) AN
ls) = |14 —2 = or i=1,2, ...
m{si) [ + Ky — ,\} (I\';t) (K;L) for v=1 (26)

6 State Space Reduction by Lumpability

In the previous section. we discussed a methodology for constructing an upper bound
model M* and a lower bound model M'. The computational costs in solving the models
can be broken down into:

obtaining the conditional state probabilities in Sy and &,

obtaining the steady state probabilities of the aggregated process and,
obtaining the performance measure, e.g., expected response time or ex-
pected number of customers.

[ N

The larger the state space cardinality of S;, the more accurate are the results obtained.
In this section, we discuss how we can reduce the state space of S; by lumping similar
states.
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Kemeny and Snell [16] studied the conditions under which an aggregated process is
still Markovian. The condition for a Markov process to be lumpable with respect to a
partition {Po U Py U---}, where P, N P; = 0, for i # j, is that for every pair of sets P
and P;, i p, has the same value for every state k € P; where

TeP; = Z Qhe,! for k€ P; (27)

leP;

We can apply this notion to our minimum expected delay routing problem.

Let J be the number of distinct tvpes of servers in the model where two servers are
of the same Lype if and only if they have the same service rate. For any state s define
the following mapping:

frs — {Lli=12,...,J} (28)
where
I; = aset of tuples (ay;, 5;)
a;; = a queue length for a server of type ¢ that appears in state s
Bi; = the number of servers of type : that have queue length ay; 1n state s

We define a partition of the state space &, (&) by specifying that s;,82 € S.( &) are
in the same partition if and only if f(s1) = f(s2).

For example, assume that we have a four server system with gy = ps =4, pa = 3 and
(ty = 2. There are three distinct types of servers, so J = 3. We can group states such
as s1 = (3,4,2,1) and s, = {4,3,2.1) into the same partition since the [;,2 = 1.2,3, for
both states are:

h={41),8.1hkL={21}k={(1L1)}

Tt is not difficult to see that the condition for lumpability is satisfied and we can often
significantly reduce the state space of the model.

7 Numerical Examples

In this section, we present two examples in order to illustrate the bounding algorithm.

The system we consider in our first example consists of eight homogeneous servers.
To vary the system utilization p from 0.1 to 0.9, we fix the input arrival rate at 8.0 and
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vary the service rates for all servers. For p = 0.1 to 0.5, we set d = 4, ;=28 for p =06
to 0.7, we set d = 4,C; = 10, and for p = 0.8 to 0.9, we set d = 5,C; = 12. Table 1
illustrates the upper and lower bound on mean response time as a function of system
utilization. Percentage error? is defined to be %ﬁ x 100%. Note that the bounds are
very tight.

The second system we consider has eight heterogeneous servers with py = pg = pz =
ps = 3,5 = pe = 2, and pr = pz = 1. To vary the system utilization from 0.1 to 0.9,
we fix the service rates for all servers and vary the input arrival rate. For p = 0.1 to
p = 0.5, weset d = 1,C = (6,6,6,6,4,4,2,2), for p = 0.6 to p= 0.8, weset d =5,C =
(9,9,9,9,6,6,3,3), and for p = 0.8 to p = 0.9, we set d = 6,@ ={12,12,12,12,8,8,4,4).
Table 2 illustrates the upper and lower bound on the mean response time and the tightness
of the bounds.

To illustrate the tradeoff between computational cost and accuracy of the bounds
consider the homogeneous queueing system in the first example. By fixing the system
utilization at 0.9 and increasing the number of states generated, we see the improvement
of the bounds on the mean response time. The results are illustrated in Table 3.

System | Response Time | Response Time | Spread of | Percentage
Utilization | Lower Bound | Upper Bound Bounds Error

0.1 0.1000252 (.1000252
0.2 (0.2000863 (.2000863
0.3 0.3008306 0.3008306
0.4 0.4052623 0.4052623
0.5 0.5208155 0.5208162 0.0000007 | 6.272107° %
0.6 0.66106700 0.6610820 0.0000120 | 9.072107* %
0.7 0.8521012 0.8522784 0.0001772 | 0.0103 %
0.8 1.1640736 1.1652135 0.0011349 0.0487 %
0.9 1.9107856 1.9273843 0.0165987 0.4324 %

Table 1: Homogeneous Servers System.

*If the spread in the bounds is less than < 1079, we leave the entries for the spread of the bounds
and the percentage error blank.
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System | Response Time | Response Time | Spread of | Percentage
Utilization | Lower Bound Upper Bound Bounds Error
0.1 0.3337116 0.3337280 0.0000164 | 0.00247 %
0.2 0.3380923 0.3381092 0.0000169 | 0.00250 %
0.3 0.3486201 0.3486987 0.0000786 | 0.01127 %
0.4 0.3672009 0.3672981 0.0000972 | 0.01320 %
0.5 0.3975023 0.3979084 0.0001061 | 0.01333 %
0.6 0.4471098 0.4472873 0.0001775 | 0.01985 %
0.7 0.5239872 0.5249875 0.0010003 | 0.09536 %
0.8 0.6506371 0.6609821 0.0103450 | 0.78872 %
0.9 0.9733093 1.0237158 0.0449065 | 2.242494%
Table 2: Heterogeneous Servers System.
d | C States Response Time | Response Time | Spread of | Percentage
Generated | Upper Bound Lower Bound Bounds Errors
41 8 1815 1.8521673 2.1078925 0.2557247 | 6.4576 %
4110 2475 1.8973256 2.0013574 0.1040318 | 2.6684 %
5112 6831 1.9107856 1.9273843 0.0165987 | 0.4324 %
6|13 15015 19123752 1.9261783 0.0133001 | 0.3591 %

Table 3: Computational Cost vs. Accuracy.




8 Conclusion

The minimum expected delay routing policy is appealing to study not only due to it’s
simplicity in implementation, but also due to the fact that it is theoretically difficult to
analyze because the routing of arrivals is state dependent and no closed form solutions
exist in general. Also, due to the fact that each server has an infinite capacity queue, the
state space cardinality of the Markov model is infinite, and it becomes impossible to gen-
erate the entire state space to solve the Markov model numerically. We have presented
an approach to bound the mean response time and the mean number of customers in the
minimum expected delay routing policy, which is a generalization of the join the shortest
queue routing policy. The algorithmic approach provides the flexibility to tradeoff com-
putational resources and tighter bounds. There is ongoing work on the subject to a priori
determine d and C; in order to obtain specified error bounds. We are also investigating
the possibility of bounding the mean response time under more relaxed conditions, e.g.,
by allowing general service distributions.
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