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ABSTRACT OF THE THESIS

The KATAMIC Model
of Temporal Sequence Processing:
Analysis and Modifications

by

Jason Benedict Rosenberg
Master of Science in Computer Science
University of California, Los Angeles, 1993
Professor Jacques J. Vidal, Chair

Previous research has shown the KATAMIC neural network model to be quite
suitable for temporal sequence recognition tasks. This thesis explores modifications to the
model, in an attempt to improve its learning behavior. In addition, the original description
of the KATAMIC framework has been simplified and formalized.

Through extensive experiments using the KATAMIC simulation environment
Ksim, the present research demonstrates that learning capacity can be increased by a factor
of six, while computational simplifications offer a speedup of 4 to 1 under simulation. The
amount of storage required to implement the KATAMIC neuron can also be reduced by
33%.

These improvements are achieved by replacing the original dual valued long-term
memory component with a single valued learned trace value (LTV). In addition,
continuous valued dendritic trace components can be updated with a simple linear update



rule, as opposed to the more computationally expensive sigmoidal update function.

Finally, the model has been altered to make it functional in the case of non-sparse input.
This is accomplished by allowing the input to have bit values of -1 and 1, as opposed to the
original 0 and 1.



Chapter One: Introduction

The KATAMIC memory model is a paralle]l neural network which has proven to be
quite suitable for sequential, temporal pattern recognition tasks. Notably, the model has the
ability to learn new pattern sequences quickty without a lengthy, repetitive training period.
Its storage capacity compares favorably with other neural networks proposed to solve
similar memory tasks.

The KATAMIC model was first proposed by Valeriy Nenov in 1990 [8].! In his
Ph.D. dissertation, the model is fully described and employed as part of a larger project
concerned with natural language acquisition [9]. Nenov was able to achieve some exciting
results using KATAMIC memories for learning and storing verbal representations for
visually perceived objects.

However, this first application of the model was part of a larger ambitious research
project whose scope exceeded that of the KATAMIC modet itself. Although Nenov
analyzed some of the basic characteristics of KATAMIC memories, many interesting
questions regarding the mode! were left unexplored. The present research is an attempt to
further the understanding of the KATAMIC framework.

In this thesis, I have removed the KATAMIC model from the domain of its possible
applications. Instead, I have concentrated only on the essential learning behavior of the
model. Throughout, I have attempted chiefly to analyze the most general cases, without
presuming specific structure within the input. By limiting the context in this way, it has
been my aim to formalize the model more rigorously, and to better understand the
conditions for its optimal performance.

I have experimented with several modifications to the model in attempts to simplify

its structure and/or to improve its capacity and efficiency. I have conducted experiments

IThe acronym 'KATAMIC' is derived from the names of Nenov's children, Katarina and Michael.
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with varied parameter settings and network configurations, so as to compile strong
empirical backing for the conclusions of this thesis. My results show that it is possible to
speed up simulation of the model by a factor of four, while storage capacity can be
increased by as much as six times.

I will atso discuss the architectural simplicity of the KATAMIC model. 1 feel it is
an attractive candidate for hardware implementation because it scales well, with non-
exponential interconnection complexity as a function of network size.

The work for this thesis has engendered an integrated KATAMIC simulation
environment called Ksim, which is outlined in section 1.4. All simulation results reported

herein were obtained using Ksim.

1.1 The Task

The fundamental task for which KATAMIC memories are designed is the leamning,
recall and recognition of multiple pattern sequences of varying lengths. In the most studied
case, the KATAMIC network 1is configured in a one-dimensional topology, such that the
patterns comprising input sequences are binary-valued one-dimensional vectors, Two-
dimensional networks have also been simulated, although I will not attempt to analyze that
case at present [5,9]. The KATAMIC model is fulty synchronous; a network receives
input and generates output once during each cycle.

The basic KATAMIC task is analogous to that of the simple recurrent net (SRN)
model [1,3]. Several comparative experiments were conducted which show the
KATAMIC model to significantly out-perform the SRN model in terms of speed of
convergence and in simplicity of computation per input pattern {9]. These tests showed
that while SRN models indeed may be theoretically more equipped to perform any
functional classification, the KATAMIC model offers quicker convergence on a wide range

of useful input spaces. Where SRN may require hundreds of presentations of an input
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Figure 1.1 A simple KATAMIC network with three neural processing units.

corpus, the KATAMIC model will characteristically converge after fewer than 10

presentations.

1.2 The KATAMIC Model

In a KATAMIC network, the neural processing elements are relatively complex,
when compared against many of the more mainstream neural network models popular
among connectionists during the last decade (1, 2, 3, 4, 10]. Perhaps the most
distinguishing feature of the KATAMIC neural network is its addition of processing
structure within the input tree (dendrites) of each neuron. Although this substantially
increases the computational cost of implementing or simulating each node, typical
KATAMIC networks require far fewer neurons (and fewer repetition cycles) than do other

models in performing comparable tasks.



Figure 1.1 shows a small KATAMIC memory. The KATAMIC network is
composed of processing units which are viewed as simplified neurons. Each neuron has a
series of dendritic compartments, which are linked in a chain. Each compartment maintains
two basic types of data: an inpur trace value (ITV), and a learned trace value (LTV).2
Temporal encoding is facilitated by shifting the ITV of each compartment one position after
each input cycle (and allowing the value to decay).

Each bit of an input pattern gives rise to a parallel fiber which connects to one
compartment of each neuron in the network. Since the KATAMIC neuron usually has
more compartments than there are parallel fibers, only a subset of the dendritic
compartments are connected to input. Those compartments which receive parallel fibers
update their ITV during each cycle according to the input line to which they are connected.
Compartments which do not receive direct input are hidden compartments.

The LTV is generally an adjustable weight which is updated by the value of its
companion ITV during learning. The neuron's activation is typically determined by a
comparison between its set of ITVs and LTVs throughout its dendritic tree. The binary
output of the neuron is then a threshold function of its activation.

Once an output has been generated, it is compared against a teaching value (which
can be simply the next value in the input corpus, or a supervised training set). Learning
occurs only in those neurons which do not correctly match the expected output. The
structure of the ITVs and LTV:s is related to the choice of a learning update rule and the
activation comparison function. These parameters concerned with learning comprise the
learning module.

Nenov also employed additional processing units in his original description of the

model that were concemned with recognition of the output and routing of the input (see

2My use of ITV and LTV is a change from Nenov's original short-term memory (STM) and long-term
memory {(LTM). There are several changes in terminology within my description of the model, which are
summarized in Appendix A.
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Figure 1.2 An altemate view of the bipolar KATAMIC neuron (courtesy of Michael McNally).

Appendix A). I have chosen not to incorporate these aspects of the model here, since the
learning phenomena of interest occurs entirely in the dendritic trees of each neuron. The
present research is aimed at studying this essential core of the model. However, my

findings should be readily applicable to the original KATAMIC system.

1.3 Understanding KATAMIC Learning

It has been suggested that each KATAMIC neuron can be thought of as a simple
perceptron node, with continuously valued connection weights (the LTV components) and
inputs (the ITV components) {5]. This observation has gone a long way towards
improving the understanding of the KATAMIC paradigm. Figure 1.2 shows a KATAMIC
neuron viewed this way.

The ITV shifting mechanism serves to orthogonalize the set of input trace values

over time, and thus the ITV becomes nicely compartmentalized into relatively dissimilar



vectors. This is the phenomenon thought to facilitate rapid learning in the model, since the
spreading of the input serves to "jump-start” the job of distinguishing the different input
states.

Overall storage capacity is aided by the addition of hidden compartments, which
increases the size of the state space within which learning occurs. An input vector to the
KATAMIC neuron is mapped over time to vector spaces of greater dimension, In Figure

1.2, this increase in vector length is a factor of two.

1.4 The Ksim Simulation Environment

Ksim is a full-purpose simulator for KATAMIC learning. It is the product of many
months of development, refinement and experimentation. Written in C+ +, it has been
designed in a modular way so as to allow for ease of implementing variations to the
model [11]. Using the object-oriented features of C++, 1 have written five different
KATAMIC learning modules, each of which interfaces identically to the Ksim simulation
engine. Thus, it is convenient to experiment with different learning mechanisms given a
fixed set of input conditions.

Ksim is built around a simple command interpreter. The user has the ability to
configure the dimensions of the network to any arbitrary size, and has great flexibility in
scheduling input and training vectors. Virtually any permutation of the model and
simulation condition described herein can be accommodated using Ksim. Ksim also allows
for inspecting the contents of relevant vectors and matrices at virtually any point during a
cycle. It is also possible within Ksim to execute a series of commands using a batch file, in
order to schedule a set of experiments, in a repetitive way. The state of the system can be
saved to a file at any time, making it possible to repeat any test situation.

After running a prescribed number of cycles, Ksim always reports the percentage of
correct outputs generated by the net over the current input corpus. It records the total time

consumed and the time consumed per cycle, in both actual and CPU seconds. The CPU



time reported allows for the comparison of different variations of the model, according to
computational efficiency (and implementation efficiency).

Appendix B contains a full accounting of Ksim's command set. Ksim runs under
the UNIX operating system and is implemented sequentially. Unlike Nenov's simulations
which were run on the parallel connection machine, Ksim is intended to allow for the
focused study of varied parameters and conditions, which are more easily manipulated and
maintained within the confines of a full purpose operating system such as UNIX. Ksim's
execution speed is quite acceptable over a useful range of network parameters.

Empirical results reported in this thesis were achieved running Ksim on a Sun

Microsystems 4/380 mini-computer, running SunOs 4.1.



Chapter Two: The KATAMIC Network Template

In this thesis, several versions of KATAMIC networks will be discussed, analyzed
and simulated. As a starting point, it has been useful to define a base version of the model
around which subsequent modifications can be described. It includes those features which
are common to each KATAMIC variant.

This approach is of value since one of the goals of this thesis is to find simplified
versions of the KATAMIC model which yield near optimal performance. The original
description by Nenov is one of the more complex renditions of the model that wil! be
explored herein. In presenting the basic network structure, I have attempted to retain only
those features of Nenov's approach which are essential to the unique function and
definition of KATAMIC memories.

In order to be general, this base version is delineated in terms allowing it to serve as
a template for describing each variation to the model. This means that the descriptions for
some of the network components are left under specified, although they are named and
related to the overall structure. The set of features not fully characterized will be
summarized. The description of each fully simulatable version of the model will
compietely specify each of these generalized features.

2.1 Network Structure

In referring to structural components and data objects throughout this thesis, I have
used the convention that singular values are italicized, while matrices, sets and structured
data are shown in bold italic symbols. Thus, the number of neurons in a network will be
represented by N,, while the representation for the x-th neuron and its set of component
structures is referred to as n,.

Since this study is limited to one-dimensional network configurations, each neuron

has two neighbors, except for those on either edge of the network which have just one
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neighbor. It may be helpful to refer to the spatial representation shown in Figure 1.1 while

reading what follows.

2.2 Neurons and Dendritic Compartments

As mentioned previously, each KATAMIC neuron is comprised by a set of
dendritic compartments which participate in the calculation of an activation function; and
each dendritic compartment has two types of data storage: information which reflects the
input activity (ITV), and memory which is adjusted during learning (LTV). The neuron
output is determined by an activation function A, which generally performs a comparison of
ITV and LTV values over the neuron's set of compartments.

The number of compartments per neuron N, is generally uniform throughout a
network; it is an adjustable parameter whose value can directly affect the network's storage
capacity. The set of dendritic compartments ¢, of a given neuron »n, is considered to be
ordered, so that ¢.={c,,C,,,....C.x. Likewise the sets of input trace and learned trace
values for the neuron n, are given by ITV.={ITV_ ITV,,,.. ITV, .} and
LTV ={LTV, ,LTV,,,....LTV, ,.}.

Within a network, a subset of the N, dendritic levels have communicating parallel
fibers. Each parallel fiber connects to every compartment within its level. The number of
parallel fibers is given by N,, where N,<N,. The ratio between N, and N, is the dendritic
density D,=N,/N..

The subset of levels which contain parallel fibers can be characterized by the
ordered distribution k={k,,k;,....ky,}, where each k; is unique and 7<k<N,. The
distribution of parallel fiber levels can be determined by a mapping function such that
k=K(N,N._).

Each node n, can have one or more seed dendritic compartments; there is one seed
per parallel fiber. At the seed, the transmission strength of a parallel fiber is at its
maximum, The strength of a transmitted value then decreases as it spreads along the



parallel fiber in each direction, according to a decay function d,(a,,), where A, , is the
distance between a distal node n, and the seed node n,. It is important to note that although
the signal drops off over distance, there are no temporal propagation delays along a
parallel fiber; the entire network sees the value transmitted by a parallel fiber
instantaneously.

Typically, fixed weights within dendritic compartments are used to implement the
signal decay along a parallel fiber. In this case, the parallel fiber transmits at full strength
throughout its extent, and each compartment ¢, along a parallel fiber has its own input
weight whose value is precisely d,(a,,).

In order to relate each paraliel fiber to its seed neuron, it is useful to define the
ordered set s={5,,5,,...,5y,}, Wwhere I<s<N, for each 5. Thus, if the parallel fiber at level
k, has the neuron n, as its seed, then s,=y. The distribution of seed neurons can be given
in general by the mapping function S, where s=S(N,,N,). It is worth noting at this point
that one of the conclusions of this thesis will be to call into question the need for seed
compartments and the spatial decay along the paraliel fibers (see Section 3.1.3).

2.3 Cycles, Learning, and the Flow of Information

The KATAMIC model is a fully synchronous neural network. Thus, the network's
temporal behavior can be broken down into a series of time cycles, where each cycle
represents a repeated operational sequence within the network. The system expects input
and produces output once during each cycle. Following is a list of the essential operations
for each cycle.

Input — During each cycle ¢, an external synchronized input source generates the bit
vector i(z). In the simplest arrangement, each bit i, of / connects directly to a unique
parallel fiber at level k.. Once the input has stabilized, each dendritic compartment ¢, 4,
which receives a parallel fiber input modifies its ITV value according to an update function
Unrrv, such that ITV 4 (t)=Um(ITV, 4. (t-1), i.(t)ds(A, 5.)).

10



Output -- In this base version of the KATAMIC model, each bit o, of the output
vector o is taken directly from the output of each neuron n,, so that
0.(t)=ALITV (), LTV (t)).

Learn -- The output vector o(t) is compared against a training vector £(2); in the
default case, the network is trained to predict the next input, so that #(z)=i(r+1). Learning
occurs in each neuron n, for which o,(1)#1.(t). During learning, each dendritic compartment
of n, updates its LTV component: LTV, (t+1)=Un(LTV,(t), ITV, (1), 0.(t)-1.{t)}. Note
that U,z should be constrained to produce no change in LTV if the third argument is O (Le.
0.(t)=t.{t)), since this not a learning condition).

Normalize -- After being updated, the set of LTV values for each neuron
undergoing learning is normalized, such that the total activity within each dendritic tree
remains constant or within prescribed bounds. We can represent this process formally with
a function N(LTV,). Normalizing is intended to assure that memory resources are
adequately distributed and that the number of LTV values which are at a maximal value is
limited within each neuron.

Shift -- Once during each cycle, the set of input trace values ITV, within each
neuron 7, is shifted one compartment in a uniform direction. So
ITV, (t+1)=d(ITV,,.,(t)), where d_ is a decay function which reduces each shifted ITV
component. During shifting, the values may or may not wrap around from one end of the
set of dendritic compartments to the other, such that ITV, y.(t+1)=d.(ITV,,(t)). Shifting is
the mechanism which allows each neuron to learn a temporal context for a given input
pattern.

The ordering of the operational steps within a cycle can be considered variable.
Throughout this thesis, the following order will be used, unless otherwise stated:

1. Input (update ITV values from parallel fibers).
2. Output (generate the vector o(t)).
3. Learn (update LTV values based on o(zj-t{t)).

4. Normatize LTV values.
5. Shift ITV values with wrap-around.

11



In order to be general, the ordered set F will be used to represent the sequence of
operations for each cycle. Thus, in the above list we have F={Input, Output, Learn,
Norm, Shift}. This formal representation allows for the straightforward specification of
alternate cycle ordering, such as turning off learning and/or the normalization process
(remove Learn and/or Norm), or changing the shift operation to one which does not wrap
around (substitute ShiftiNoWrap for Shiff). In addition, as will be pointed out
subsequently, Nenov's basic ordering varies slightly from the one presented above (see
Section 3.1.2). The ordered list format for F mirrors the implementation of the cycle steps

within Ksim.

2.4 Characterizing the Input and Output

The three bit vectors i, 0 and £ contain the binary values 0 and 1 (or -1 and 1). The
length of 0 and ¢ is N,, while the length of i is N,. We can further characterize i by its bit
density # and the redundancy ratios r, and . The bit density is the percentage of 1-bits in
the input; it is used as a constraint in the generation of input vectors, so that each bit within
i has a probability b of having the value 1. The redundancy ratios measure the percentage
of duplicate vectors within a given sequence (in the case of r,) and the percentage of
duplicate vectors within a corpus (in the case of ). An easy way of generating an input
corpus with a specified redundancy rate is to first generate it with all unique vectors, and
then replace at random the appropriate number of vectors with vectors from elsewhere in
the corpus. It is also useful to define an input noise ratto n, which corresponds to a
percentage of input bits which have had their values flipped, relative to a previously learned
corpus in which no noise was present.

KATAMIC input vectors are generally grouped into pattern sequences. A sequence
of length L, is expressed by I={i},is,...,ir,}. Furthermore, a set of L, input sequences

can comprise an input corpus C,={I,,b,...,I1.}, where the vector L; = {I1,l3,...I;.}

12



represents the lengths of the constituents of C.3 A training sequence T={tyt,,...,1.} and
a training corpus C,={T},T,...,T1.} must also be defined in conjunction with f and C,.4

During each cycle 7, the network generates the output vector o() and compares it to
the training vector £(z). To characterize the network's convergence toward ¢, the percentage
of correct bits in o is calculated. This is called the correct ratio. 1 will use this measure in
lieu of the match ratio and spurious ratio measures defined and employed by Nenov.? In
Nenov's simulations, he limited his input space to rather sparsely populated vectors, so that
it was useful to measure convergence based solely on the correspondence of 1-bits between
the output and teach vectors. I prefer to treat both logic levels as active components. As
will be shown, it is possible to configure KATAMIC nets such that they exhibit acceptable
convergence within the fuli-spectrum of input densities, not just in the sparse input case.

This is not to say Nenov's measures are not useful. Depending on the design of the
learning module and the bit density setting, the convergence patterns based on the match
and spurious measures can be different and are worth tracking independently. An alternate
way to monitor this behavior is to define instead the two measures: correctQ (the
percentage of 0-bits in ¢ which match ¢) and correct! (the percentage of 1-bits in ¢ which
match 0). The choice to use either split measure scheme may be motivated by the intended
application for a network. Perhaps there are uses for these networks for which it is only
important to obtain good performance on one logic level. However, at present, I will not
concern myself with such cases. Rather, I will study the conditions for the best
convergence irrespective of logic levels. I feel this is necessary in order 1o define the
KATAMIC model in the most general manner.,

3The simulations reported here, however, will employ only uniform sequence lengths within a COrpus,
Thus, the single variable L, will be used to represent sequence lengths. Implementation of variable length
sequences is on the Ksim development to-do list.

4The separate definition of input and training sequences and corpi are not necessary in the case where
He)=if+1).

5These measures are defined in [9] as follows. The match ratic m is the number of correct 1-bits in o
relative to the number of 1-bits in £. Likewise, spurious ratio s is the number of incorrect 1-bits in ¢
relative to the number of 1-bits in £. The optimum value for m is 1 and that for s is 0.

13



2.5 Initializing the Network

Both the LTV and ITV values must be reset at the beginning of any network
history; the structured constants LTV, and ITV,,, are assigned to each compartment
during initialization. ITV values are also generally reset at the beginning of an input
sequence, in order to clear any previous input traces.

Extra structure is added to the network in order to implement the initialization of the
ITV in the form of a reset signal r;v which connects to every dendritic compartment in the
network. In order to accommodate the generation of ryy at the beginning of an input
sequence in a seamless manner, each input vector iz} within the Ksim implementation is
grouped with the signal r;(7) as if it were a single vector of iength N,+ /. Thus, it is
trivial to schedule the resetting of input traces at any point during an input presentation

corpus.

2.6 Summary of Template Components and Parameters

Following is an accounting of the various template parameters and structures which
must be filled in for each working KATAMIC network. This list can be divided among
those which are configuration parameters and those which are design parameters. Design
parameters are needed for defining each version of the model, while configuration
parameters are necessary for each instance of the model, regardless of version. Also
summarized are parameters for characterizing the input. Note that parameters for the
learning module are listed as a subset of the design parameters.

2.6.1 Design Parameters--The Learning Meodule
ITV -- The input trace memory structure, which resides in each dendritic compartment.

This generally consists of a single real-numbered value. ITV,, s the initial
condition for all ITV values in a network.

14



Urrv() -- The update function for each input trace value ITV,, which resides in a
compartment receiving parallel fiber input. It takes two arguments. The first
argument is the previous value of ITV, ,, while the second argument is the value
carried by the parallel fiber at level y weighted by the decay function d;. The output
of Upv is the next value for ITV, .

LTV -- The learned trace memory structure, which resides in each dendritic compartment.
This generally consists of one or two real-numbered values. LTV,,, is the initial
condition for all LTV values in a network.

Uprv() - The update function for each learned trace value LTV, , which resides in each
dendritic compartment. It takes three arguments. The first two are the current
LTV,,and ITV_, values, while the third argument is the learning condition. The
third argument can take on -1, 0 or 1. Ifitis 0, U,z returns an unchanged LTV, .
If it 1s -1 or 1, the neuron n, produced an erroneous output and a learning condition
exists; LTV, , is updated in the appropriate direction.

A/} -- The activation function for each neuron »n,. It has two arguments, the first being the
set of input trace values ITV, for n,, and the second being the corresponding set of
learned trace values LTV,. The output of A,is a single binary valued bit.

N() -- The normalization function for redistributing the learned trace values LTV, for each
neuron 7, after each learning step. The input and output of Nis LTV,

d.() -- The decay function which reduces input trace memory while it is shifted at the end of
each cycle. This function takes as input and outputs a single ITV value.

2.6.2 Other Design Parameters

d;() -- The decay function along a parallel fiber. It takes the distance between two neurons
as its single argument, and outputs a real number value between 0 and 1.0.

K() -- The mapping function for distributing the dendritic levels which contain parallel

fibers. K takes two arguments, the number of neurons N, and the number of
compartments per neuron N.. The output is the ordered set k.

S() -- The mapping function for distributing the seed compartments for each parallel fiber.
S takes two arguments, the number of parallel fibers N, and the number of neurons
N,. The output is the ordered set s.

F - The ordered set of operations to be performed on the network during each cycle.

2.6.3 Configuration Parameters

N, -- The number of parallel fibers in the network; this determines the size of the input
vector i.

N, -- The number of neurons in the network; this determines the size of the two vectors 0
and £,

15



N, -- The number of dendritic compartments per neuron. It is related to the number of
parallel fibers and the dendritic density: N,=N,/D,.

D,-- The dendritic density. The ratio between the number of parallel fibers and the number
of dendritic compartments per neuron. Thus, D,=N,/N..

k={k, k;,.../ky,} -- The ordered set of dendritic levels for parallel fibers. This can be
determined by the mapping function K.

§={51,53,...5x4 — The ordered set of seed compartments for each parallel fiber. This can
be determined by the mapping function S.

2.6.4 Input Parameters

b -- The bit density for an input vector i. It is the percentage of bits with value 1 within the
vector.

r.-- The vector redundancy within a sequence I. It is the percentage of vectors which
duplicate other vectors in the sequence. In calculating it, a duplicate pair is counted
only once, so that if a sequence of length 10 has an r, of 10%, then there will be 8
unique vectors, and 2 which duplicate each other, In other words, there will be a
total of 9 different vectors in the sequence out of a possible 10.

¥.-- The vector redundancy within a corpus C. Duplicates are not constrained to occur
within the same sequence. It is calculated similarly to r,, above.

n- -- The input noise probability. If noisy input is being simulated (i.e. n>0), then given an
input corpus C, each bit within C will be inverted with a probability ».

L,-- The length of the input sequence I (and training sequence T).
L_-- The number of sequences in an input corpus C; (and the training corpus C)).

L.-- The set of sequence lengths for the sequences which comprise C; (and C).

2.6.5 Some Default Settings

Unless otherwise stated, very simple definitions for the mapping functions K and
§ will be used. § is defined such that each element of s is matched with the next
consecutive neuron, That is, for each s; within s, 5; = { mod N,. This function is called
inOrder. K is defined in a similarly straightforward manner, using the inOrderSpaced

function. In this scheme, k is a monotonically increasing ordered set of dendritic levels,
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where each element is greater than the previous by a uniform interval. The interval is
determined by the inverse of the dendritic density; so each k,=(integer}i/D,.
The input parameters r,, r. and r will be assumed to be 0, except in Sections 4.3

and 4.4, where they will be experimented with.
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Chapter Three: Variations of the Learning Module

3.1 The Original KATAMIC Model

Nenov's original description of the KATAMIC model employs two learned trace
values per compartment. One is updated only during learning conditions in which the
desired output is positive (1), while the other is updated when the correct output is (0). To
generate output, the Euclidean dot product between the ITV values and each set of LTV
values is calculated; the output is determined by the LTV set which most closely correlates
to the current ITV state. Sigmoidal update functions are employed for altering both the ITV
and LTV values.

Following is the complete specification for the learning module as described by
Nenov, stated in my terminology. I have tried to be faithfu! to the original version on all
points. This version of the leaming module will be referred to by its name within Ksim:

Loriginal.,

3.1.1 Specification of Loriginal

ITV -- A single, real-numbered value, ranging in the closed interval [0,1]. ITV,,.,=0.001,
by default.

Umv(A,B)=sig(sig'(A) + grB), where A is a real numbered input trace value (i.e.
ITV,.), and B is the real numbered weighted input (i.e. i,{t)d,(4,.)). The
sigmoidal function is: sigf{x)=1-(1/(1+e*)} and the inverse is defined as:
sig(y)=In(1/(I-y) -1). The input update rate constant ;1 is an additional
parameter. As a default, its value is set at 5.0.

LTV -- Two real-numbered values, pLTV and nLTV, each of which can range in the
closed interval [0,1]. LTV,,, is the structured initial condition for each component.
By default, it is set at {0.5,0.5}.

Uv(A,B,C) is defined such that only one component of the learned trace value A (i.e.
LTV, ,) is updated, based upon C, the error direction (-1, Oor 1). B is areal
numbered input trace value (i.e. ITV, ). If C is 1, then pLTV, is updated as
follows: pLTV,, —sigfsig?(pLTV,,) +e,B). If C=-1, nLTV,, is updated
similarly. No change in A occurs for C=0. The learning rate constant €; 5 is an
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additional parameter, whose default value is 1.0, The sigmoid (and its inverse) are
defined as for Uy, above.

AfA,B)=P(A+B), where A is a vector of learned trace values (i.e. LTV,), Bis a vector of
input trace values (i.e. ITV,), * is the Euclidean inner product between A and the
difference between the two components of B (i.e. pLTV.-nLTV,); P is the
threshold function: P(x)=1iffx>8, else P(x)=0. 8,is set at 0 as a default.

N(A) is defined such that the total amount of activity within each LTV component remains
constant during learning. Thus, the value of LTV, is used to set the amount of
activity in the initial condition: a,,;= LTV, *N,. Foreach pLTV, which has
undergone learning, N updates each element pLTV, , by multiplying it by a,,,/a,,
where a, is the sum of all elements in pLTV,. The calculations are the same for
updating nLTV,.

d.(A)=Ae™, where A is an input trace value (ITV,,). The temporal decay constant 7,is set
to -0.01 as a defauit.

3.1.2 The Cycle Order
One alteration I have made to the original description is in the cycle order. Nenov

outlined a nine step cycle sequence, which can be condensed in my terms to F'={input,

learn, norm, shifi, output}. Notice that when there is an error in the output, learning will
occur using input that did not exist when the erroneous output was generated. The
ordering F' can be understood in part by noting that Nenov viewed the KATAMIC neuron,
which he called a predictron, as a predictor of the next input (see Appendix A). Thus, the
output step at the end of the cycle is essentially a prediction for the next input. But since
the inpur step includes the updating of the ITV values in the network, the condition which
generated the predictton is corrupted, and leaming is impaired.

I have changed the order to the more straightforward F=finput, owtput, learn,
norm, shift} previously outlined. 1am able to do so by relaxing the constraint that the
KATAMIC neuron predict its next input; instead, a teach vector ¢ is used, which may or
may not contain a copy of the next input. If it does, I have made the plausible assumption
that the next input will be available in the current cycle, to be assigned to 7.

I'have been unable to achieve acceptable learning using Nenov's original cycle

order. I do not believe that this is due to my having left out much of Nenov's structure
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concerned with recognition and feedback, since the essential learning still must occur
within the dendritic structure of the neuron. However, it is conceivable that by alternately
feeding back the internal output to the input, as can occur within Nenov's full model, the
learning can be intermittently jarred out of stable local minima until a correct configuration
is reached, as in simulated annealing. 1 have not attempted to analyze and simulate this case

further, however,

3.1.3 Removing The Spatial Decay Function

Nenov defines the exponential spatial decay function dd(ALy)=e|A‘-y|TS, where A, , is
the distance between two neurons n, and n,, and the spatial decay constant 7 is a variable
parameter (default: 7, = -0.01).

The need for a spatial decay function 4, is unnecessary, however, in the absence of
lateral interaction between neurons. It can be replaced by the constant function d; =1.
Intuitively, this makes sense, since the spatial decay serves only to reduce the amount of
context information available to each neuron. My investigations have shown this to be a
valid simplification.

The use of input spatial decay may be advantageous in some instances, such as
when statistical dependence exists between the input and training corpi. In this case, one or
more input bits might correlate strongly with only a subset of the bits in the teaching
corpus. Thus, one would want an input paralle] fiber to have as its seed the neuron whose
output needs to have the strongest correspondence with it. Implementation of a perceptive
field is one example, since a neuron may only be concerned with a localized subset of the
input arriving in its neighborhood. The spatial decay function would allow this neuron to
observe distal activity to an exponentially decreasing degree.

However, the work in this thesis is primarily concerned with learning in the most
general cases, in which there is no such correlation between input lines and output lines.

As a consequence, no decay function will be used in subsequent simulations. This also
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means that the notion of a dendritic seed, the seed distribution s, and the mapping function
S are no longer needed. Arguably, any optimization of the learning module will remain
valid in the presence of spatial decay.

Removing the spatial decay function essentiaily has the effect of rendering each
neuron independent within a network, since relative position is no longer important.
Likewise, the input trace values will be identical at all times for each neuron, as long as
they receive the same input lines and have the same dendritic configurations and
connectivity. This means that in simulation, at least, it is only necessary to update one set
of ITV locations.

With this result in mind, the number of neurons in a network being simulated can
be somewhat arbitrary. When testing for storage capacity or speed of convergence, for
example, having multiple neurons reduces to simply having multiple test cases for a given
input corpus. Each neuron must learn a different training sequence, but will receive the
same input. Thus, running a network is somewhat like obtaining an averaged result. Asa

convention, I have run experiments with N,=5 or 10.

3.1.4 Benchmark Simulations

As a benchmark simulation, 1 have repeated two important tests run by Nenov [9].
There are several motives for doing this. The first is for the sake of scientific
completeness; it is important to duplicate results achieved by previous research,
Successfully simulating the experiments also provides validation for the Ksim environment
and supports the assumptions I have made in altering the original description. Finally, I
wish to have a standard testbed in order to compare subsequent versions of the learning
module.

The experiments duplicated are intended to test for storage capacity. In each case, a
network with 64 inputs, 64 neurons and a dendritic density of 0.25 was used (N,=64,

N,=64, N.=256). In light of the conclusions of the previous section, I will use a network
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with just 10 neurons. The first test attempts to measure the capacity in the case of a single
input sequence (L,=1). The network is trained on sequences of increasing length from 10
to 100 vectors, in increments of 10. The network is allowed a maximum of 40 cycles to
learn each sequence. In this test, the input was constrained to a 1-bit density b of 15%. An
input set for this test was generated, and will be used as input for subsequent versions of
the model. For reference, this input set will be labeled: Ls7est_I5 (i.e. sequence length
test, with b=0.15). LsTest_15 contains five different corpi for each sequence length
increment, so that experiments with it can befter demonstrate average learning behavior for
a given sequence length. Unless otherwise stated, subsequent input sets will contain five
input corpi for each parameter setting.

Table 3.1 shows the results of this experiment. The format of this table will be
repeated for subsequent tests. The number of input presentations required by the network
to completely learn each of the five input corpi is shown by each sequence length
increment. In cases where the network was not able to obtain 100% convergence, the
correct ratio after 40 repetitions is shown in parentheses. Also shown is the execution time
consumed per KATAMIC cycle (in terms of CPU time) for the fifth trial of each sequence
length.

Table 3.1 also highlights two performance milestones. The first is for rapid
convergence, which will be defined as the longest sequence learnable by the network in ten
or fewer repetitions. As a convention, this level will be demarcated by a light outline at the
largest input level for which at least three trials meet the condition (i.e. L,=30 in Table 3.1).
Another milestone is for the number of sequences learnable after 40 repetitions. This will
be referred to as long convergence. In the table format, the largest input level for which
three or more trials exhibit long convergence will be denoted by shading (i.e. L;=40 in
Table 3.1).

22



The results in Table 3.1 only partially agree with those reported by Nenov.
Nenov's experiment showed acceptable convergence for all tests where L, £ 50. His
network also learned a sequence of length 60 to roughly 90% accuracy, before stabilizing,
He used this case (L,=60) in a calculation of the network's storage capacity.

In my experiment, learning is perfect for all sequences of length 10, 20 and 30. In
these cases convergence is also quite rapid. For L,=40, convergence is still quite
successful. In four out of the five trials, the network learned the sequence, and in the fifth
it learned the sequence to within 98% accuracy. For L,=50, however, only one of the five
trials exhibited near convergence with a correct ratio of 96%. No convergence was
observed for any sequences with length greater than 50.

In comparing Nenov's resuits with Table 3.1, it is useful to point out that Nenov
ran only one trial for each setting of L, As my results show, there can be a wide variance
in the learning behavior for a given set of parameters. The results for sequence lengths 40
and 50 are good examples of this. It is conceivable that in conducting only one trial, the
network could be seen to show good convergence for L,=50. My numbers do not show

any tendencies toward convergence for L, =60, however,

Sequence Length Test with Loriginal and b=0.15

Repetitions to Convergence (or correct ratio after 40 reps) Trial 5 cpu time
] 2 3 4 5 (ms/cycle)
4 3 4 4 4 48
5 6 6 6 5 45
6 _ 7 6 5 5 44
(.66) (.87) (.77) (.96) (.66) 63
60 (.68) (.39) (.52) (.48) (.45) 80
70 (.56) (.56) (.60) (-54) (.60) 73
80 (.52) (.54) (.49) (.56) (.49) 76
90 (.53) (.62) (.53) (.60} (.60} 66
100 (.60) (.42) (.62) (.43) (.54) 72

Table 3.1 Convergence resuits for different single sequence lengths, using a network with the Loriginal
learning medule, 10 neurons, 64 inputs, dendntic density of 0.25, and input 1-bit density of 0.15.
Tabulated under "trials™ are the number of repetitions of the input needed to completely learn each training
set (or the correct ratio reached after 40 repetitions, listed in parentheses). The right column lists the
average cpu time required during each KATAMIC cycle for the fifth trial of each row. The outlined level
represents the highest level at which three or more trials show rapid convergence, while the shaded row
depicts the similar case for long convergence.
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The cpu time listed in Table 3.1 is of interest. Notice that the number of
milliseconds per KATAMIC cycle increases as the correct ratio decreases. This is perhaps
an artifact of Ksim's sequential implementation of the model. Since each neuron only
undergoes learning and normalization during cycles in which it produced an incorrect
output, one Ksim optimization is to execute those steps only when they are needed. If
Ksim were implemented in paraliel, the execution time would be more constant for a given
network configuration, regardless of input and convergence.

The second duplicated experiment measures the number of different sequences of
length 10 that are learnable by the network. The network is aliowed 40 cycles to train on
input corpi of lengths 1 through 20. In this test, b is set to 10%. Once again, the input set
used here is generated and set aside for use with subsequent experiments. It will be

referred to as LcTest_10. Table 3.2 shows the results.

Multiple Sequence Test with Loriginal and b=0.10
Repetitions to Convergence (or correct ratio after 40 reps) Trial 5 cpu ime

L. 1 2 K] 4 5 {ms/cycle)
1 4 4 3 4 3 51
2 4 5 4 3 4 41
3 4 4 6 4 6 40
4 4 5 7 5 5 40
5 5 5 5 5 4 43
6 5 7 7 9 6 38
7 7 6 5 6 7 40
8 7 6 6 6 6 39
9 6 14 6 5 7 42
10 9 6 8 8 6 40
11 6 9 6 7 14 39
12 8 11 10 17 12 39
13 7 15 10 6 8 39
14 17 14 12 38
15 (.996) 18 22 38
16 15 21 26 37
17 15 16 12 39
18 39

Table 32 Convergence resuits based on the number of different sequences of length 10, using a network
with the Loriginal leaming module, 10 neuroas, 64 inputs, dendritic density of 0.25, and input 1-bit
density of 0.10.
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Nenov conducted this test with 5, 10 and 20 10-vector sequences. His network
was able to learn 5 sequences quickly (after less than 5 presentations), and leared 10
sequences to 97% accuracy after 10 repetitions. However, he reported that for 20
sequences, the performance was "poor.” My results show acceptable convergence for
virtually all cases tested. Rapid convergence occurs quite reliably for L, < /1. Notice that
the cpu time is more constant, as opposed to the previous experiment. This is a result of
improved convergence.

The results of this experiment show that the Loriginal learning module is better at
learning multiple short sequences than it is at learning a single long sequence. As Nenov
pointed out, this is due to the fact that ITV values are reset at the beginning of each
sequence presentation. Thus, with multiple short sequences, the input trace is reset often

and exhibits more sparsely populated activity patterns.

3.1.5 Increasing the Bit Density

Nenov's original version of the model is optimized to obtain good performance on
sparse input vectors. This can be seen by observing the nature of the ITV update function,
as defined in the Loriginal learning module. In this case, Uy is based on an active/passive
logic scheme. That is, the ITV value will be adjusted only if the input is 1. If the input is
0, there is no change. As a result, the network is selectively sensitive to 1 bits. This is
helpful for learning sparse input vectors, since only a few active I'TVs are needed to
uniquely identify a given input state. However, this strategy is not as useful when the bit
density increases to 50%, since in this case 0-bits are equally important in distinguishing
input states. When the bit density is very high, it is the 0-bits which contain the most
interesting information.

To see how the Loriginal learning module performs under increased bit density, the
two experiments of the previous section were repeated using b=0.50. The input sets
LsTest_50 and LcTest_50 were generated. Tables 3.3 and 3.4 tabulate the results.
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Sequence Length Test with Loriginal and 5=0.50
Repetitions to Convergence (or correct ratio after 40 reps) Trial 5 cpu time
L, Ji 4 (ms/cycle)
10 6 5 4 5 5 47
30 (.80) (.79) (.84) (.81) (.81) 51
40 (.61) (.60) (.65) (.58) (.60} 66
50 (.53) (.53) (.57) (.50 (.60} 67
60 (.56) (.47) (.47) (.45) (.54) 69

Table 3.3 Results from sequence length test, as in Table 3.1, but with &=0.50.

Multiple Sequence Test with Loriginal and b=0.50
Repetitions to Convergence {or correct ratio after 40 reps) Trial 5 cpu time

L, 1 2 3 4 5 (ms/cycle)
| 5 4 5 5 4 47

2 6 7 5 6 5 46

3 7 7 6 6 7 44

4 9 9 ] 10 3 45

6 (94) 28 (.94) (.83) (.86) 48

7 (.92) 32 (.81) (.72) (.82) 53

8 (.74) (.73) (.75) (.71) (.80) 56

9 (.69) (.71) (.72) (.73) (71) 60

10 (.74) (.70) (.70) (.71) (.80) 56

Table 3.4 Results from multiple sequence test, as in Table 3.2, but with 5=0.50.

Notice that convergence is significantly impaired by the increased bit density. The
network is able to reliably learn a sequence of length 20 (as opposed to 40 for b=0.15).
Similarly, convergence drops below acceptable levels for more than 5 multiple sequences
of length 10 (as opposed to 19 for b=0.10). In these tests, there is little distinction between
rapid and long convergence. Performance seems to degrade quite abruptly after the

boundary of rapid convergence is reached.

3.2 Avoiding the Dependence on Sparse Input

In order to achieve more successful learning for the case of non-sparse input, the
update function Uy must be equally sensitive to Os and 1s. This can be achieved by
treating input 0-bits as if they were -1, and updating the ITV values either positively or
negatively. Following is the specification for a modified version of Loriginal which does
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this. The sigmoid functions for both the ITV and LTV values are shifted to range from -1
to 1 (as opposed to 0 to 1). The normalization function is altered as well. Since the range
of the LT Vs is now centered about an initial condition of 0, it is no longer sensible to
constrain the net activity to remain constant, based on the initial conditions. Instead, an
upper bounds for activity is defined, and normalization only occurs when the boundary is
exceeded.

3.2.1 Specification of LoriginalB

ITV -- A single, real-numbered value, ranging in the closed interval [-1,11.8 ITV,,,=0.0,
by default.

Umv(A,B)=sig(sig(A) + e;B), where A is a real numbered input trace value (i.e. ITV,,),
and B is the input (i.e. i,(z)). The sigmoidal function is changed to range from
-1to 1: sig(x)=1-(2/(1+€*)) and its inverse is defined as: sig’(y) = In(2/(1-y) -1).
The input update rate constant gy is set at 5.0 as a default.

LTV -- Two real-numbered values, pLTV and nLTV, each of which can range in the
closed interval [-1,1]. LTV,,= {0.0,0.0}, by default.

U,rv(A,B,C) Same as for Loriginal, except the sigmoid (and its inverse) are defined as for
Uprv above.

Af{A,B)=P(A+B). Same as for Loriginal.

N{A) is defined so that the total activity of the LTV of a given neuron remains within a
bounds. Normalization only occurs if the activity surpasses the normalization
threshold €,=N.*@,,,. O 1s 0.50 by defauit. To normalize a set of pLTV,
components, the activity a, is calculated as the sum of the squares of each
component pLTV,, for i=1,2,...,N.. Each component pLTV; is multiplied by
8,/a. if a>en. nLTV, is normalized similarly.

d.(A)=Ae", same as for Loriginal.

3.2.2 Simulations with LoriginalB
The learning module LoriginalB is was tested on the previously generated sets
LsTest_50 and LcTest_50. The results are reported in Tables 3.5 and 3.6.

6 Actually, within Ksim, this is currently implemented as ranging from [0,1}, and Uy converts it to
I-1,1] before proceeding. This was necessary in order to allow a common interface within Ksim and the
different learning modules. The computational cost for this step is slight, as the cpu time reported in Table
3.5 shows (as compared to Table 3.1).
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Sequence Length Test with LoriginalB and 5=0.50
Repetitions to Convergence (or correct ratio after 40 reps) Trial 5 cpu time
L, ! 2 3 4 5 (ms/cycle)
10 4 4 3 4 5 46
20 4 5 5 4 4 48
30 6 5 6 4 4 50
40 5 5 5 5 5 46
50 6 7 6 5 7 44
60 6 6 8 8 8 44
70 9 6 9 7 8 45
80 9 9 9 8 8 46
90 12 8 10 10 9 44
100 12 10 10 16 16 43
110 18 12 22 12 15 42
120 20 17 21 21 14 42
140 | (.996) (.99) (.999) 27 (.99) 41
150 (.96) (.99) (.96) (.99) (.98) 43
160 (.95) (.92) (.97) (.98) (.98) 44
170 (.90) (.87) (.93) (.94) (.93) 46
Table 3.5
Multiple Sequence Test with LoriginalB and 5=0.50
Repetitions to Convergence (or correct ratio after 40 reps) Trial 5 cpu time
L. Ji 2 3 4 5 (ms/cycle)
1 4 5 4 4 4 50
2 3 5 4 4 4 49
3 5 5 4 4 6 45
4 5 6 5 6 5 48
5 6 6 6 6 6 47
6 6 5 8 7 7 47
7 6 6 7 7 7 46
8 7 11 10 11 10 43
9 11 13 9 15 10 43
10 12 10 16 12 15 41
11 14 21 18 30 14 43
12 22 18 23 (.998) 35 40
13 34 22 30 18 43
17 (.94) (.89) ( 89) (. 86) (.85) 53
18 (.84) (.90) (.89) (.87 (.82) 54
19 (.86) (.88) (.80) (.86) (.85) 51
Table 3.6
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As expected, LoriginalB significantly out-performs Loriginal when the input
contains non-sparse vectors (b=0.50). In the sequence length test, it performs quite well,
showing acceptable convergence for L,=130, and rapid convergence for sequences of
length 90. In the multiple sequence test, LoriginalB is successful with 14 sequences of
length 10.

Notice that LoriginalB is as successful with single, long sequences as it is with
multiple short sequences. This is an improvement over the behavior shown for Loriginal.
The same phenomenon is most probably responsible. Remember that LoriginalB has been
modified to be actively sensitive to both input logic levels, and thus is able to perform better
in conditions of high activity within the input trace values.

It is important also to test LoriginalB in the sparse input case, as was done for
Loriginal. Tables 3.7 and 3.8 show the results of input sets Ls7esr_15 and LeTest_10run

with LoriginalB. 1t is evident that LoriginalB is not successful with sparse input.

Sequence Length Test with LoriginalB and 5=0.15
Repetitions to Convergence (or correct ratio after 40 reps) Tnal § cpu time
L, I 2 3 4 b) (ms/cycle)
10 4 | 4 e 3 3 43

40 | (.89 (.93) (.94) (.83) (.94) 40
50 | (.79) (.74) (.76) (.80) (.61) 55
60 | (62) (.61) (.67) (.73) (.56) 56

Table 3.7

Multiple Sequence Test with LoriginalB and b=0.10
Repetitions to Convergence (or correct ratio after 40 reps) Trial 5 cpu time

L. 1 2 3 4 5 (ms/cycle)
| 3 4 4 4 5 41
2

4

5 (.86) ( 87) (.94) (. 92) (.86) 51

6 (.94) (.91) (.75) (.96) (.93) 43

7 (.89) (.81) (.94) (.64) (.84) 48

8 (.89) (.82) (.68) (.74) (.74) 52

9 (.58) (.67) {.89) (717 (.76) 50
Table 3.8
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3.3 Simplifying the Computation Using Linear Update Rules

It is of interest to reduce the computational cost required to simulate the learning
module. One way to do this is to replace the sigmoidal update rules used by Urrvand Uprv
with simple linear update rules. This has been done with the LoriginalC leaming module
outlined below. One further change is to replace the exponential shift decay constant with a
simple linear decay constant. This simplifies the specification nicely, although it does not
offer any speedup since the decay function used in the exponential case can be pre-
computed.

The specification for LoriginalC is identical to that for LoriginalB, except for those

aspects listed.

3.3.1 Specification of LoriginalC

U(A,B)=(A + g;nB), where A is a real numbered input trace value (i.e. ITV, ), and Bis
the input (i.e. i,(t)). The input update rate constant &;ry is set at 1.0 as a default.

U,{A,B,C) is defined such that only one component of the learned trace component A
(i.e. LTV, ) is updated, based upon C, the error direction (-1,0 or 1). Bisareal
numbered input trace value (i.e. ITV, ). If Cis 1, then pLTV,, is updated as
follows: pLTV,,—(pLTV, )+e,rvB). If C=-1,nLTV,, is updated similarly. No
change in A occurs for C=0. The learning rate constant €, 7 is an additional
parameter, whose default value is 0.1.

d.(A)=¢c, A, where A is an input trace value (ITV,,). The temporal decay constant &, is
set to 0.5 as a default.

3.3.2 Simulations with LoriginalC
LoriginalC was tested on the four input sets LsTes_15, LcTest_10, LsTest-_50,

and LcTest_50. The results are presented in Tables 3.9 through 3.12. As expected, the

non-sigmoidal version executes significantly faster under Ksim than does LoriginalB

(speedup of ~44/25=1.8), but shows a slight degradation in convergence behavior. Like

LoriginalB, LoriginalC is more successful when b=0.50.
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Sequence Length Test with LoriginalC and b=0.15
Repetitions to Convergence (or correct ratio after 40 reps) Trial 3 cpu time
L, Ji 3 4 J (ms/cycle)
10 6 4 5 4 4 25
20 8 8 7 6 5 25
Bt o e =
60 (.73} 29
70 (.73 ) 31
Table 3.9
Multiple Sequence Test with LoriginalC and =0.10
Repetitions to Convergence (or correct ratio after 40 reps) Trial 5 cpu time
4 (ms/cycle)

4 6
6 N

5

3

4 (.97) (.98) (- 93) (.93) (.96) 24
5 (.89) (.95) (.88) (.90) (.86) 25
6 (.95) (91) (.90) (.93) (.91) 24
7 (.86) (.75) (.87) (.64) (91) 24
Table 3.10
Sequence Length Test with LoriginalC and 5=0.50
Repetitions to Convergence (or correct ratio after 40 reps) Trial 5 cpu time
L, 1 2 3 4 5 (ms/cycle)
10 4 3 4 4 3 26
20 4 4 5 4 4 25
30 6 5 6 5 5 25
40 6 5 6 6 7 25
50 10 7 8 7 7 26
60 9 9 8 8 7 25
70 8 11 8 9 8 27
80 11 10 9 8 11 25
90 10 10 12 12 13 25
100 19 14 15 14 14 25
110 14 20 20 13 13 25
. . (.98) (.94)
140 (.85) (.95) (.90) (.95) (91) 25
150 (.78) (.86) (.81) (.82) (.84) 26
Table 3.11
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Multiple Sequence Test with LoriginalC and b=0.50
Repetitions to Convergence (or correct ratio after 40 reps) Trial 5 cpu time

L. Ji 2 3 4 b (ms/cycle)
| 4 4 3 3 4 26

2 5 5 4 5 3 26

3 5 6 5 5 5 26

4 6 6 6 6 6 26

5 8 5 7 7 8 25

6 9 10 7 9 9 26

7 9 11 9 12 10 26

8 12 11 9 11 12 26

9 12 14 17 9 10 26

10 14 17 12 16 12 25

11 14 16 16 39 18 25

Table 3.12

3.4 The Bipolar Model

Michael McNally has demonstrated that it is possible to design the learning module
with a single valued bipolar LTV component [5]. This is obviously an attractive
improvement, since it decreases the amount of computation required in calculating the
activation function A, by a factor of two. It also reduces the amount of storage space
required per dendritic compartment from 3 values to 2 (1 ITV component and 1 LTV
component).

McNally did not observe’any benefits for learning and convergence with his
implementation of the bipolar modification. As my resuits will show, however, using only
a single LTV component actually increases convergence and storage capacity. I have
defined two bipolar versions of the learning module, Lbipolar and LbipolarB. The first
uses an ITV update rule similar to Loriginal in that it is passive/active relative to input Os
and 1s, although it is not sigmoidal. LbipolarB, on the other hand, uses the full logic

version of Uy, as in LoriginalC.
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3.4.1 Specification of Lbipolar

ITV -- A single, real-numbered value. I7TV,,=0.0, by default.

Urv(A,B)=(A + g;vB), where A is a real numbered input trace value (i.e. ITV, ), and Bis
the input (i.e. i.(z)). The input update rate constant €5 is set at 1.0 as a default.
Note that U does not cause a change in value for i,(1)=0.

LTV -- A single, real-numbered value. LTV,;,=0.0, by default.

U,rv(A,B,C) =A+ g, BC, where A is a learned trace component (i.e. LTV, ), Bis an
input trace value (i.e. ITV,,), and Cis the error direction (-1, O or 7). The learning
rate constant g; v has a default value of 0. 1.

A{A,B)=P(A+B), where A is a vector of learned trace values (i.c. LTV,), B is a vector of
input trace values (i.e. ITV,), + is the Euclidean inner product between A and B; P
is the threshold function: Pfx)=1iffx>@,, else P(x)=0. @,isasetatOasa
default.

N(A) is defined so that the total activity of the LTV of a given neuron remains within a
bounds. Normalization only occurs if the activity surpasses the normalization
threshold 8,=Nc*6,,. 8., is0.50 by default. The activity a, is calculated as the
sum of the squares of each component LTV, for i=1,2,...,N,. Each component
LTV, ; is multiplied by @,/a, if a,>8,.

d.(A)=¢,A, where A is an input trace value (ITV, ). The temporal decay constant €, 1s
set to 0.5 as a default.

3.4.2 Simulations with Lbipolar

The results for Lbipolar running the input sets Ls7est_15 and LcTest_10 are shown
in Tables 3.13 and 3.14, As expected, simulating Lbipolar is significantly faster than any
of the previous versions based on 2 LTV components per compartment (speedup of ~4
over Loriginal)

Notice that Lbipolar is superior to Loriginal in several ways, including execution
speed, simplicity of design and, most importantly, learning behavior. It not only exhibits a
relatively high storage capacity, but degrades in performance quite gracefully. In the
multiple sequence test, it shows reliable long convergence for 31 sequences, but is able to

successfully learn sequences of length 40 (or more) to 99% accuracy.
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Sequence Length Test with Lbipolar and b=0.15
Repetitions to Convergence (or correct_ratio after 40 reps) Trial 5 cpu time

L, 1 2 3 4 b (ms/cycle)
10 4 3 4 3 3 12
20 5 5 4 4 5 12
30 5 4 5 5 7 11
40 6 5 5 5 6 11
50 6 8 8 8 7 11
60 7 7 9 8 8 11
70 8 10 9 8 8 11
80 1t 8 8 7 9 11
90 12 10 10 10 10 12
100 10 11 11 11 10 11
110 11 12 10 11 9 11
120 12 10 8 10 11 11
130 12 13 11 15 16 11
140 17 13 15 18 16 10
150 17 13 14 20 18 11
160 14 20 14 18 17 11
170 18 19 19 17 20 10
180 29 25 29 23 19 10
190 19 22 19 21 21 11
200 22 25 24 21 23 11
210 25 18 21 29 31 10
220 28 28 23 26 29 10
230 24 25 33 31 27 11
240 37 (.999) 32 29 38 10
250 32 34 38 (.999) (.998) 10
260 38 (.998) 33 31 34 11
290 | ( .

300 | (.996) 12

Table 3.13
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Multiple Sequence Test with Lbipolar and b=0.10

Repetitions to Convergence (or correct ratio after 40 reps) Trial 5 cpu time
L. 1 2 3 4 5 (ms/cycle)
1 4 4 3 3 3 11
2 4 4 3 3 3 11
3 4 3 4 5 5 11
4 5 4 6 4 8 11
5 5 6 4 6 6 11
6 5 6 8 6 8 11
7 7 8 6 7 8 11
8 7 11 7 8 5 10
9 10 8 6 7 6 11
10 10 7 7 9 11 10
11 7 3 8 ] 10 10
12 10 1 11 7 16 10
13 12 10 12 14 12 11
14 10 13 9 11 15 10
15 17 13 15 12 16 10
16 22 15 14 13 18 10
17 11 20 13 15 10 10
18 22 13 23 17 20 10
19 12 14 17 19 13 10
20 16 20 20 25 (.999) 10
21 11 30 20 14 21 11
22 20 15 16 14 21 11
23 21 27 29 28 25 11
24 30 25 28 26 33 11
25 31 17 37 38 22 11
(.99)
38 (.99) (.99) (.98) (.99) (.998) 10
39 (.996) (.99) (.98) (.99) (.998) 10
40 34 (.97) (.99) (.98) (.997) 10
Table 3.14
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Sequence Length Test with Lbipolar and 5=0.50

Repetitions to Convergence (or correct ratio after 40 reps) Trial 5 cpu time
L, i 4 (ms/cycle)
2

130

140 . . .
150 . (.99) (.99) 12
160 Q98) (.92) (.99) (.98) 12
Table 3.15
Multiple Sequence Test with Lbipolar and 5=0.50
Repetitions to Convergence (or correct ratio after 40 reps) Trial 5 cpu time
L, Jj 2 3 4 3 (ms/cycle)
1 6 5 6 7 6 12
2 6 7 6 7 6 13
7 7 9 9 8 8 12
4 8 14 8 11 15 11
5 8 7 12 10 10 12
6 14 11 10 12 9 13
7 14 12 17 14 21 11
8 12 11 15 15 16 11
9 17 19 25 15 15 12
10 12 15 17 14 14 12
11 17 18 25 22 20 11
12 29 19 23 25 30 11
13 27 26 21 30 27 12
14 21 32 31 26 26 11
15 29 24 (.996) (.997) 22 11
19 (.999) (.998) (.99) (.96) 36 12
20 (.99) {97) (.99) (.996) 36 12
21 (.999) (.98) 35 (.99) 36 11
22 (.94) (.998) (.997) (.95) (.997) 11
23 (.94) (.96) (.95) (.97) (.98) 11
24 40 (.96) (.89) (.88) (.96) 12
Table 3.16
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Tables 3.15 and 3.16 show the convergence of Lbipolar for the non-sparse input
sets LsTest_50 and LcTesr_50. As expected, there is a noticeable drop-off in performance
for b=0.50. However, it is comparable with LoriginalB, for which non-sparse input is its

best case.

3.5 Full Logic Bipolar Model

Although Lbipolar seems to have performed relatively well on the non-sparse input
set, it is worth defining and simulating a full-logic version, which is actively sensitive to
both input bit tevels. The specification for LbipolarB, is the same as for Lbipolar in every
regard, except for the input trace update function, which expects its second argument B to

have values of -1 and [ instead of G and 1.

3.5.1 Simulations with LbipolarB

The results for LbipolarB running the input sets LsTesr_15 and LcTest_10 are
shown in Tables 3.17 and 3.18. Predictably, LbipolarB shows a marked improvement
over Lbipolar in the non-sparse input case. Tables 3.19 and 3.20 display the results for
LbipolarB run on LsTest_50 and LcTest_50.
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Sequence Length Test with LbipolarB and b=0.15
Repetitions to Convergence (or correct_ratio afier 40 reps) Trial 5 cpu time
L, Ji 2 3 5 (ms/cycle)
10 6 4 5 4 4 12
20 8 8 7 6 5 11
30 9 6 6 7 8 11
40 9 7 6 8 8 11
50 9 16 10 11 12 11
60 12 13 16 11 13 11
70 14 19 20 9 13 11
80 15 20 14 16 16 1
90 12 18 19 17 20 1
100 20 18 24 16 17 11
110 18 28 20 21 18 11
120 21 18 24 26 23 11
130 40 27 22 25 29 11
140 30 (.999) 35 25 33 11
150 | (.999) 28 30 (.98) (.98) 11
25 24
3)
190 (.99) (97 . 11
200 (.99) (.98) (.97) (.98) (.98) 11
Tabie 3.17
Multiple Sequence Test with LbipolarB and b=0.10
Repetitions to Convergence (or_correct ratio after 40 reps) Trial 5 cpu time
L, 1 2 3 4 5 (ms/cycle)
| 7 5 3 4 6 11
2 5 5 5 7 6 11
3 6 5 5 6 7 11
4 8 9 6 9 6 11
5 8 7 6 7 i1 11
6 9 9 8 6 8 11
7 11 Y 8 14 13 10
8 10 19 8 7 8 12
9 16 10 6 7 9 11
10 8 11 10 12 17 11
11 6 13 12 12 13 11
12 15 20 25 10 16 11
13 12 15 19 25 15 10
14 11 13 15 15 13 11

Table 3.18
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Sequence Length Test with LbipolarB and b=0.50
Repetitions to Convergence (or correct ratio after 40 reps) Trial 5 cpu time
L, 1 2 3 4 3 (ms/cycle)
10 4 3 4 4 3 14
20 4 4 5 4 4 14
30 6 5 6 5 5 13
40 6 5 6 6 7 12
50 10 7 8 7 7 12
60 9 9 8 8 7 12
70 8 11 8 9 8 12
80 i1 10 9 8 11 12
90 10 10 12 12 13 11
100 19 14 15 14 14 12
110 14 20 20 13 13 12
120 13 15 16 14 17 11
130 18 17 20 16 14 12
140 23 20 25 18 24 12

Table 3.19

Multiple Sequence Test with Lbipolar and 5=0.50
Repetitions to Convergence (or correct ratio after 40 reps) Trial 5 cpu ime

L, 1 2 3 4 5 {ms/cycle)
1 4 4 3 3 4 13
2 5 5 4 5 3 14
3 5 6 5 5 5 12
4 6 6 6 6 6 12
5 8 5 7 7 8 12
6 9 10 7 9 9 12
7 9 11 9 12 10 12
8 12 11 9 11 12 12
9 12 14 17 9 10 12

Table 3.20
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3.6 Perceptron Learning

In order to add perspective to the learning modules discussed so far, I have also run
a simple perceptron version of the learning module on the same 4 input sets. Itis
implemented in Ksim as is LbipolarB, except that the ITV update function has no memory,
so that U=i(t). Also, shifting of the ITV is turned off, and the dendritic density is fixed
at 1 (no hidden compartments). This learning module will not be a considered a variation
of the KATAMIC model.

In the input sets tested, there are no redundant vectors (i.e. r, and r.=0). Thus, it is
important to compare the KATAMIC models against an implementation which makes no
use of temporal information and therefore can only learn on a one-to-one mapping between
each input and teaching vector. The performance of the Lperceptron learning module will
be viewed as a sort of minimum level for acceptable learning characteristics among the
KATAMIC learning modules, which attempt to take advantage of temporat context. Tables
3.21 through 3.24 display the results for Lperceptron.

As expected, this learning module shows essentially the same performance for both
the sequence length test and the multiple short sequence test. This is because it has no
input trace values to be reset at the beginning of a cycle, and thus it is imperceptive to any
sequential structure within an input corpus. Lperceptron is superior in learning behavior to
both Loriginal and LoriginalB for some cases. Notice, however, that it does win big in the

areas of simplicity and speed of execution.
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Sequence Length Test with Lperceptron and b=0.15
Repetitions to Convergence (or correct ratio after 40 reps) Trial 5 cpu time
2 3 4 5 (ms/cycle)

3

3

3

3

3

3

. . 3

90 (.98) (.99) (.95) (.97) (.98) 3
100] (.97 97) (.92) (.93) (.97) 3

Table 3.21

Multiple Sequence Test with Lperceptron and b=0.10
Repetitions to Convergence (or correct ratio after 40 reps) Trial 5 cpu time

L. 1 2 3 4 5 (ms/cycle)
1 5 7 3 5 7 3
2 7 6 10 7 5 3
3 5 5 7 7 10 3
4 13 17 20 7 12 3
5 (.94) 3
3
(.95) (.96) 3
9 ; (97) 13 (.97) (97) 3
10 . (.98) (.98) (.90) (.90) 3
11 (.96) (.996) (97) (.92) 3
12 ) (.93) (.92) (.97) (.90) 3

Table 3.22
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Sequence Length Test with Lperceptron_and b=0.50
Repetitions to Convergence (or correct ratio afier 40 reps) Trial 5 cpu time

2 4 5 {ms/cycle)
3 3 4 3 3
5 5 5 5 3
5 5 5 6 3
9 8 9 15 3
10 11 3
31 14 | (96) (.96) (.99) 3
80 (.87) (.75) (.81 (.83) (.89) 3

Table 3.23

Multiple Sequence Test with Lperceptron and b=0.50
Repetitions to Convergence (or correct ratio afier 40 reps) Trial 5 cpu time
2 4 (ms/cycle)

L. 1 3 b]

1 4 4 3 4 4

2 5 6 4 4 4 3

3 6 6 7 6 5 3

4 8 8 ) 10 7 3

> 14 8 13 9 1z
) e .- g (-9 -. L - :

8 (.87) (.89) (.82) (.73) (.88) 3

Table 3.24

3.7 Comparison of Learning Modules

Table 3.25 summarizes the six learning modules tested in terms of execution
efficiency and storage capacity. Of the KATAMIC variants, both bipolar versions offer a
speedup of 4 over the original version within the Ksim environment, and use 33% less
storage. Lperceptron, of course, is the fastest and least memory expensive model.

The learning behavior of the six learning modules over the four input sets tested is

Learning Typical cpu time Memory locations
module (ms/cycle) used per neuron
Loriginal 44 768
LoriginalB 43 768
LoriginalC 25 768
Lbipolar 11 512
LbipolarB 11 512
Lperceptron 3 64

Table 3.25 Relative requirements for the six learning modules tested
in terms of execution time and memory cost.
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Figure 3.1 Relative convergence for six learning modules on the input set LsTest_15. The
vertical axis represents sequence length.

displayed graphically in Figures 3.1 through 3.4. Both rapid convergence and long
convergence are depicted.

Figure 3.1 shows the relative behavior for the input set LsTest_I5. In this case,
Lbipolar clearly has the best convergence characteristics. LbipolarB also does relatively
well on this input set for long convergence, but is only average in the rapid convergence

category. Lperceptron is superior to all variations of the original model in terms of long
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Figure 3.2 Relative convergence for six leaming modules on the input set LcTest_10 The vertical
axis represents the number of sequences of length 10.
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convergence.

In Figure 3.2, the same graph is displayed for the results with the input set
LcTest_10. Once again, Lbipolar is superior for long convergence. But, both Loriginal
and LbipolarB are successful, and Loriginal has the best rapid learning characteristics.
Figures 3.1 and 3.2 reassert that Loriginal is better on multiple, short sequences. Notice
that neither LoriginalB nor LoriginalC perform well in the sparse input case for multiple
sequences, and are outperformed by Lperceptron.

The results for the non-sparse input set LsTesz_50 are depicted in Figure 3.3.
LbipolarB is superior in terms of long convergence, while LoriginalB has a slight edge in
terms of rapid convergence. Notice that Lbipolar has rather poor rapid convergence
characteristics (worse than Lperceptron), but is relatively successful for long convergence.
Given its superior execution speed and reduced storage requirements, LbipolarB is the clear
winner in this test.

The comparative results for the fourth input set LcTest_50 appear in Figure 3.4.
There is no clearly superior candidate in the test, in terms of either convergence measure.
However, the bipolar entries are better choices than LoriginalB and LoriginalC, since they
not only have better long convergence, but also are also simpler and more efficient.

In these convergence graphs, the scale for sparse input is almost double that for the
non-sparse case. This can be understood by observing that the sparse input learning task is
a substantially easier problem, since the number of permutations of the input where & is
low is far smaller than for b=0.50. This means that the number of possible classifications
of the input is reduced substantially.

In these experiments, I have not reported the case where & is high (i.e. 0.90). For
those learning modules which are equally attentive to both input levels, the high bit-density
case is statistically identical to the sparse input case. Therefore similar convergence
characteristics can be assumed for LoriginalB, LoriginalC, LbipolarB and Lperceptron for
high 1-bit density as was observed for sparse input. For Loriginal and Lbipolar, which
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Figure 3.3 Results with the input set LsTesz_50.

only update their input traces for input 1-bits, this extrapolation can not be made.
However, I have observed that the convergence characteristics for these models degrades

as the bit density increases.

In light of this, LbipolarB can be seen as the best choice for the learning module in
general, since it exhibits the most stable convergence behavior throughout the range of bit
density settings. In Chapter Four, some further experiments with LbipolarB will be
reported. Lbipolar is perhaps the best choice for 5=0.50 or lower.
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Figure 3.4 Comparative results for six leaming modules on the input set LeTesr_50.
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3.7.1 Why the Bipolar Model Shows Better Convergence

The question remains as to why the bipolar implementation is so successful, relative
to the dual LTV approach for the three original implementations. For instance, LoriginalC
and LbipolarB are directly comparable, in that they both employ linear update rules and are
actively sensitive to both input logic levels.

LbipolarB performs as well as or better than LoriginalC in every test, especially in
the sparse input case. Perhaps this can be explained by noting that in the dual LTV
component models, only one of pLTV or nLTV is ever updated at a time. Consequently,
each component is trained on a subset of the available information. In cases of sparse input
(and output), the nLTV is updated far more frequently than the pLTV, because the desired
output is more often 0 than 1. Since the LTV values are normalized, the nLTV may not be
able to compete if the pLTV rarely changes. Perhaps a solution in this case might be to
use a different normalization threshold for each component. When the input is sparse, the
nLTV might be given a higher activity boundary, allowing it to surpass a stagnant pLTV.
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Chapter Four: Some Further Simulations

The simulation results in this chapter were obtained using the full-logic bipolar
learning module LbipolarB. In each case, tests were performed using an input bit-density
of 50% (b=0.50), a single sequence of length 100 (L,=100, L.=1), and 5 neurons (N,=5).
As in Chapter Three, an input set was generated which includes five trials for each
parameter setting. In this case the input set includes corpi for testing with varying numbers

of inputs. All tests in this section were conducted using the same input set, NpTest_50.

4.1 Testing Convergence Relative to the Number of Inputs

In the first test, I measured the network's convergence based on the number of
inputs N,, given a constant dendritic density of 25% (D,=0.25). Note that as N, increases,
the number of dendritic compartments per neuron N, will also increase. Alternatively, this
experiment can be viewed as testing for convergence as a function of the number of
dendritic compartments.

Table 4.1 displays the results of this test. For each input corpus, the network was
allowed a maximum of 25 repetitions to train. As expected, convergence improves as N,
and N. increase.

One reason for this is that the sequence length remains constant (L,=100). As the
number of the input bits increases, the number of different possible vectors increases

exponentially. Thus, the task of classifying a constant number of vectors becomes

Repetitions to Convergence (or_correct ratio after 23 reps)
N, | N. 1 2 3 4 5
16 | 64 (.75) (.71) (.72) (.70) (.70)
32 | 128 | (.996) (.986) (.98) (.97) (.99)
48 1192 21 14 22 20 15
64 | 256 14 10 12 13 11
80 | 320 9 11 12 10 9
96 | 384 8 11 7 9 8

Table 4.1 Convergence results for different numbers of inputs, with constant dendritic

density.
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progressively easier.
Also, as the number of dendritic compartments increases while L, remains constant,

the network's capacity to distinguish between different states within the input trace values

improves.

4.2 Testing Convergence Relative to Dendritic Density

In this experiment, I attempted to test convergence as the dendritic density
decreases. Two tests were run, one with N,=32 and the other with N,=64. The results are
tabulated in Tables 4.2 and 4.3.

These results are quite interesting. Convergence in each test improves dramatically
as the dendritic density decreases from 1 to .25. However, very little change in
convergence is observed as D, is reduced further. In several cases, the performance

actually becomes worse with decreased D, (each column in Tables 4.2 and 4.3 represents

Repetitions to Convergence (or correct ratio afier 25 reps)
D, | N, 1 2 3 4 5
1 32 (.52) (.57) (.54) (.66) (.56)
S| 64 (.74) (.64) (.71) (.80) (.71)
33 ] 9% (.94) (.83) (.88) (.97) (.90)
25 | 128 (.996) (.98) (.98) (.97) (.99)
.20 | 160 (.98) (.98) (.95) (.99) (.98)
.167| 192 25 (.95) (.96) (.996) (.998)
143 223 (.99) (.97) (.98) (.99) (.98)
1251 256 (.98) (.98) (.98) 25 24

Table 42 Convergence results for decreasing dendritic depsity, for a network with N,=32.

Repetitions to Convergence (or correct ratio after 25 reps)
D, | N. 1 4 5

| 64 (.66) (.65) (.69) (.67) (.63)
S5 | 128 13 12 14 16 18
331192 13 9 13 15 12
.25 | 256 14 10 12 13 11
.20 | 320 14 12 12 13 15
.167| 384 9 10 10 11 11
1431 447 12 10 10 15 11
125] 512 11 12 11 11 13

Table 4.3 Convergence results for decreasing dendritic density, for a network with N,=64.
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tests run on the same input corpus).

The setting for the shift decay constant might directly affect a network's
performance relative to dendritic density. In the above tests, the default shift decay
constant of 0.5 was used. After shifting an ITV value 3 times using this setting, an input
trace is reduced to only 12.5% of its original value. After being shifted 7 times, a trace is
only 0.8% of its former self.

As the dendritic density increases, the number of hidden compartments between
each compartment receiving input increases. When the shift decay is as active as in the
above tests, it may cause the input trace values to be virtuaily invisible near the end of a set
of hidden compartments.

Perhaps a better experiment would be to vary the shift decay function in addition to
the dendritic density. One finding might be that the optimal setting for the shift decay
function is dependent on dendritic density.

4.3 Testing Convergence with Duplicate Input Vectors

Up until this point, all tests in this thesis involved input sets with all unique vectors.
A model which uses context information in distinguishing its input should be able to
correctly classify redundant vectors which occur at different points within the input
sequence.

Table 4.4 displays the resuits for a test in which duplicate vectors were added to the

same input corpi at increasing rates of redundancy r.. A network with N,=64 and D,=0.25

Repetitions to Convergence
r, I 2 3 4 J
0.0 14 10 12 i3 11
0.1 13 15 12 11 13
0.2 12 12 12 11 15
0.3 13 14 18 14 14
0.4 15 21 16 14 16
0.5 18 17 25 19 17

Table 4.4 Convergence results for increasing sequence redundancy 7.
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was used.

These results show that the model shows no ill-effects from duplicate vectors for a

redundancy ratio of 20% or less. As r, increases from 30% to 50%, the time to

convergence increases gradually.

4.4 Testing Convergence with Noisy Input

It is of interest to test the KATAMIC model's ability to recognize a sequence it has
learned in the event of noisy input. As defined in section 2.4, the amount of noise » in the
input is the probability that each bit has been changed in vatue.

An experiment was run in which a network with N,=64 and D,=0.25 was used.
Noise was introduced to pre-learned input corpi at a successively increasing rate. Table 4.5
displays the results for this experiment.

It appears in this test that the model is quite sensitive to input noise. Although

performance degrades gradually, the output generated is generally 1.5 to 2 times more

noisy than the input.
Correct Ratio after 25 Repetitions
n J 2 3 4 S
.01 98 98 97 9 98
.03 .95 .94 .94 93 93
05 91 91 91 91 .90
.10 .84 .84 .85 .85 .85

Table 4.5 Convergence results for increasing input noise n. Each table entry
represents an averaged result from five different sub-trials in which random noise

was re-introduced to the same input corpus.

4.5 Removing the ITV Wrap-Around During Shifting

Up until this point, the shifting of input trace values during the KATAMIC cycle
has been implemented to wrap-around from one end of the chain of dendritic compartments
to the other. It would be a useful simplification if the wrap-around could be removed,

since this would substantially simplify the model's potential hardware implementation.
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wrap Repetitions to Convergence
around 1 2 3 4 5
on 14 10 12 13 11
off 11 12 10 12 11

Table 4.6 Convergence characteristics for a network using N,=64 and D,=0.25, with and
without the use of wrap-around during the ITV shift operation.

Table 4.6 reports a simple experiment in which the ITV wrap-around was turned on
and off, with N,=64 and D,=0.25. Over five trials, it appears in this case that there is no
drop in performance when the wrap-around is removed (in fact, convergence is slightly
improved is some instances). This is not a surprising result, since only 1 of 256 input trace
values is lost during each cycle. While this is only a preliminary experiment, it appears that

removing the shift wrap-around can be a valid simplification.
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Chapter Five: On Scalability and Hardware Implementation

One of the nice things about the KATAMIC model is its relatively simple
connectivity. Since all neurons receive the same primary input (or a weighted version of
the same input, when spatial decay is used), there is no exponentiai growth in the number
of signals that must crossover each other as the size of the network increases. This useful
feature might make KATAMIC nets an attractive choice for hardware implementation.

This is not true for models based on multi-layered feed forward networks, such as
back-propagation type recurrent nets, in which each node is fully connected to the nodes in
subsequent levels [1]. This means that the number of connections from one node in a level
A to a node in a higher level B must crossover an exponentially increasing number of
signals as the number of nodes per layer increases.

The need for adding nodes in the hidden layer of feed forward type networks might
be for improving storage capacity. In KATAMIC nets, the number of dendritic
compartments can be increased to augment capacity. This can be implemented such that the
degree of signal crossover does not increase.

While each neuron must be capable of calculating an activation function (Euclidean
dot product) based on the contents of each of its dendritic compartments, this can be
implemented as a serial process, in which the computation begins with the most distal
dendritic compartment, and progresses towards the neuron's output port. In this case, each
compartment would need to calculate the product of its ITV and LTV components and add
it to the accumulated total of the previous compartments. Structure already in place for
shifting and decaying ITV values could be used for this purpose. However, this would
cause a linear increase in computation time, relative to the growth in the number of

compartments per neuron.’

7A simple perceptron-like neuron used in the layers of a feed-forward network must still be able to
handle many inputs within a dendritic structure, however. Any implementation will show some reduction
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Although each KATAMIC neuron is considerably more complex than are the nodes
for many other models, I view the KATAMIC network as relatively simple, since its
scalability in terms of signal crossover and dendritic density is non-exponential. It can
perhaps be speculated that because of its single layer topology, the KATAMIC neuron has
a limited ability to perform any arbitrary classification of its temporal input, in a manner
similar to the problems of the single-layer perceptron in recognizing the exclusive-or
function [6]. While this issue remains to be investigated, I would argue that the

KATAMIC model is clearly useful over a wide range of input spaces.

in speed as the number of inputs to a node increases. The KATAMIC neuron compounds this by adding to
the computation with hidden compartments.
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Chapter Six: Concluding Remarks

6.1 The Virtues of Simplicity

A well known saying in engineering circles is "simple is better.” This is true, since
the cost of design for complex systems is directly affected by the ability of those who build
and maintain them to understand and optimize performance. My work with the KATAMIC
model was originally motivated by a desire to simplify for simplifications's sake. In doing
so, my understanding of the KATAMIC learning process was enhanced, allowing me to
improve its learning characteristics.

The non-sigmoidal bipolar learning model represents a substantial refinement of
Nenov's original description. In addition, the results included in this thesis demonstrate
that this modification is not only valid, but quite desirable in terms of performance.

While I have concentrated on the essential learning properties within the dendritic
structure of the KATAMIC neuron, any results should be quite extendible to Nenov's fuller
version of the model, which included structure for recognition and feedback.

Important findings of this thesis include:

(1) The learning mechanism can be simplified to require half the storage for
learned trace values, with a significant reduction in the number of
computations needed per cycle.2 More importantly, this modification
greatly improves the convergence behavior of the model.

(2) The spatial decay function between neurons along the input parallel
fibers can be replaced in the most general case by a flat constant function.
This has the effect of rendering each neuron independent from the rest of the
network.

(3) Several further simplifications have proven to be valid modifications
which offer significant speedup in computation, including the use of a linear
update function during training (as opposed to sigmoidal).

(4) The format of the input can be switched to have values of-1and 1
(instead of 0 and 1), allowing the model to be successful in a broader range

8Michael McNally first successfully demonstrated this simplification [5].
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of input 1-bit densities (previously, the model was only successful in cases
of relatively sparsely populated input vectors).

(5) Altogether, simulation results show that improvements to the model can

result in a speedup of 4 to 1, and an increase in learning capacity of six
times.

6.2 De-Constructing the Neuroscience Perspective

The original design of the KATAMIC network was rooted very closely to known
neurotogical structure. In fact, Valeriy Nenov completed his Ph.D. in neuroscience before
continuing on for that same degree in computer science [7].

The KATAMIC framework is modeled after the relatively regular structure of the
human cerebellar cortex. In the cerebellum, the largest and most important neurons are
called Purkinje cells. Purkinje cells are organized in one-dimensional rows, while smaller
granular cells reside beneath them, The axons of these granular cells extend upward to the
level of the Purkinje dendrites, and then bifurcate in order to extend in either direction along
the axis of the Purkinje cell rows. These fibers are catled parallel fibers and connect to the
dendritic arborization of each Purkinje cell in their path. Thus, each Purkinje cell in a row
receives similar input, although there may be a time-delay along the paralle] fibers.

Nenov's predictrons are the KATAMIC analog to the cerebellar Purkinje cell. The
additional structure in Nenov's original description was also motivated by cerebellar
structure. Although Nenov makes no claims that the KATAMIC network should be
viewed as 2 model of the cerebellum, it does exhibit some similar behavior. The
cerebellum is considered to be a regutator of motor function. It does not initiate motor
control, but it does smooth and facilitate the process. Likewise, the full KATAMIC model
was designed to learn to predict its input and regularize it on output. Since it is able to
selectively route its output to its input, the KATAMIC neuron can effectively run by itself

after having received an initial stimulus.
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Tt is an ongoing debate within the cognitive science community whether it is more
important to replicate and simulate exactly existing structure within the human nervous
system, or whether to build models based solely on their perceived computational merits.
Clearly, I think the answer lies in between. Understanding can only be enhanced by
greater interaction between research in these related fields of study. This is not an easy
proposition, however, since historically there has been so little overlap in the educational
backgrounds of researchers in computer science and neuroscience.

There is a need for bi-directional feedback between the computational sciences and
the neurological and cognitive sciences. Nenov bridged the gap, and in the process started
the useful study of a promising temporal recognition mechanism.

Tt has been enlightening for me to learn introductory neuroanatomy, having come
from a computer science background. In so doing, my understanding of the KATAMIC
model has been enhanced, while at the same time I can now fully appreciate how far from
its neurological beginnings the model has come. AsIhave attempted to simplify and
improve the model, I have also removed much of its original neuroscientific flavor. It is
perhaps ironic that as I came to appreciate the neuroscience perspective, I sought only to
extract, isolate and formatize the most computationally expedient pieces of the puzzle.
While my results appear useful and interesting, they are still relatively inconsequential
when compared against the tremendous cognitive power of the "real thing.”
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Appendix A: Changes to KATAMIC Terminology

In describing the KATAMIC leamning module, T have taken the liberty of renaming
some of the features, as compared to their description by Valeriy Nenov [9]. In addition, I
have only concentrated on part of the original model.

Nenov's KATAMIC net has three basic processing units. Of these, the predictron
is the most interesting, in that it is where the essential temporal learning process occurs. As
noted in section 3.1.2, Nenov thought of this unit as a predictor of its next input.
However, | have generalized the description to the case where the network can be trained to
learn any arbitrary sequence (of which predicting the next input is a special case). Asa
consequence, I have not retained the term predictron. Instead, I view it as the fundamental
neural element around which all KATAMIC networks are based. Thus I have referred to
Nenov's predictron simply as a KATAMIC neuron (or neural processing element).

In addition, I have also changed terminology regarding the internal structure of
dendritic compartments within Nenov's predictron. He referred to the memory
components as short term memory (STM) and long term memory (LTM, which is made up
of pLTM and nLTM). I have changed these to the input trace value (ITV) and the learned
trace value (LTV), respectively.® I feel these to be intuitive changes which add to the
descriptive nature of the KATAMIC definition. The original terms do not highlight the
essential function of these components, which is to store and temporally encode the input
over time as a rrace. 1 view this as one of the unique aspects of the KATAMIC framework.

I have also condensed and simplified the outline of steps for executing a KATAMIC
cycle. Where I refer to the input step, Nenov described the process as the three steps: get

input, inject STM, and update STM. Nenov also refers to LTM resource maintenance -

9 Actually, Valeriy Nenov suggested the use of TTV and LTV as opposed to ITR and LTR, which I was
using initially.
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forgerting. 1have renamed this step normalization. 1have also changed the step temporal
encoding to shifting, and the step predict next input to output.

Tn addition to the predictron, Nenov also described the recognitron and the bi-stable
switch (BSS). Recognitrons are intended to recognize when one or more predictrons
within a neighborhood have produced the correct output. There is one recognitron per
predictron, which controls a BSS. The BSS is essentially a multiplexer, whose output
becomes the parallel fiber connected to the seed compartment of the predictron with which
it is associated. Based on the current state of the recognitron, the BSS switches its source
between the current external input and the internal input prediction (which is the last output
of the predictron). If the recognitron asserts that recognition has occurred (to within a
threshold), the BSS will continue to use the external input source. If the recognition has
failed, however, the BSS will use the current output of the prediction (which is possibly
erroneous). The BSS uses an exponential delay to prevent it from immediately switching
back to the external input source when recognition has been reasserted. This has the effect
of allowing a predictron to "run on its own" for a period of time, if it comes to disagree
with the current input. Nenov's KATAMIC cycle had steps for using the recognitron and
BSS: artempt sequence recognition and generate next input.

While I have not addressed the behavior of this added structure, 1 do feel that there
are open questions left for further research. It appears that the recognitron-BSS
combination could serve as a regulator of the output, in the event of noisy input. This is
similar to the function of the cerebellar cortex, which is thought to smooth control of motor

output within the mammalian nervous system.
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Appendix B: Overview Ksim

The experiments reported in this thesis were conducted using the simulation
environment Ksim. Ksim has evolved to become a versatile KATAMIC simulator. I have
designed it in a2 modular way in order to make it easy to add features and simulation
parameters.

Ksim was developed using the object-oriented programming language C++,and
runs in a UNIX environment. The different KATAMIC learning modules are implemented
as data objects, and all use a common interface to the Ksim execution engine.

Ksim is built around a command interpreter. It is also able to run in batch mode
from a file of commands, making it easier to run an exhaustive set of repetitive
experiments.

Listed in this appendix is a complete set of Ksim commands, followed by a header

file for writing learning modules.

B.1 List of Commands for Ksim
All Ksim commands are one or two characters (subsequent characters are ignored).
Commands are case sensitive. The commands are divided into seven categories: main,

barch, configuration, input, learn, routing and run.

B.1.1 Main Commands

hicl|i|l|rujro}ba|m}
Help for the seven different command categories.

v {<var>|c|i{l|ru|ro|m}
Display the value of a specific scalar variable, or all the variables from one of the
categories configuration, input, learn, routing, run or main.

V (<var>) {idx1 {idx2 {idx3}}}
Display the contents of a vector or matrix variable, within an optional index range.

VM (<var> {idx1 {idx2 {idx3}}}
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Same as V, but displays in Mathematica format.

VF (<var> {<filename> {idx1 {idx2 {idx3}}}}
Same as V, but writes in Mathematica format to a file.

sa(clill|ru|ro}all) {<filename>}
Save the current simulation state information to a file. One of the five (or all five)
states will be written: configuration, input, learn, routing or run.
re(c|i|l|ru|ro]all) {<filename>}
Restore the current simulation state information from a file. One of the five (or all
five) states will be read: configuration, input, learn, routing or run.

os {<filename>}
Set output stream, which will duplicate all information printed to standard output.

q Quit Ksim.

B.1.2 Batch Commands

ba { <filename>}
Do commands from a batch file.

se <strNum> <string>
Set value for 1 of 20 string variables. Once set, a string can be echoed using
'‘$<strNum>'.

se <strNum> % <var>
Set the value of a string using the value of an environment variable.

se <strNum> %pr <promptString>
Ask the user to enter input, after prompting with promptString.

LAY Show the current value for all string variables.

pr <prompt>
Echo prompt to screen

st Set the date_time stamp to the current date and time.
dt Show the current date_time stamp, without resetting it.

ao Set/reset the askOverWrite flag, which determines whether to ask the user before
overwriting existing files.

fe Set the fileError flag (usually for resetting after error). Resetting this will turn off
fileReadFError and fileWriteError. Any executing batch file will cause Ksim to quit
if fileError becomes true.




fr Set the fileReadFrror flag. Setting this will turn on fileError.
fw Set the fileWriteError flag. Setting this will turn on fileError.

B.1.3 Configuration Commands

Nn {<val>}
Set value for Nn (the number of neurons in a network).

Nc {<val>}
Set value for Nc (the number of dendritic compartments per neuron).

Np {<val>}
Set value for Np (the number of input parallel fibers).

Dd {<val>}
Set value for Dd (the dendritic density).

KF {<funcNum>}
Set KFunction (the mapping function for the parallel fiber distribution vector kVec).

SF {<funcNum>}
Set SFunction (the mapping function for the seed distribution vector sVec).

dd {<funcNum>}
Set ddFunction (the function for determining the spatial decay, which initializes the
set of decay weights, stored in ddMatrix).

v (c|Nc |Nn |[Np|Dd|Ds | KF | SF | dd)
Display a configuration scalar variable ('c’ shows all configuration variables).

VIVMIVF (k | s | dd) {idx! {idx2}}
Display kVec, sVec or ddMatrix.

B.1.4 Input Commands

bd {<val>}
Set the input bit density variable.

sb {<val>}
Turn on/off strict bit density flag.

si {<val>}
Tumn on/off similarity checking flag.

ms {<val>}
Set maximum similarity to be allowed in input (if si turned on).
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Ls {<val>}

Set the sequence length,
Lc {val}
Set the corpus length.
1s {val}
Set the sequence redundancy rate.
rc {val}
Set the corpus redundancy rate (only if rs=0).
il Re-generate a new input corpus (this is done automatically if relevant input
parameters are changed).

di Add duplicates to current input based on rs or rc.

v(i|bd|Ls{Lcirs|rc)
Show the value of an input variable ('i' shows all input variables).

(VIVM|VF) (i|_#{1IC) {i@xl {idx2 {idx3}}} - _
Display current input corpus, sequence or vector (_i is the internal input vector).

B.1.5 Learn Module Commands

IM {<moduleNumber>}
Choose one of the instalied learning modules.

il Re-initialize ITV.

il Re-initialize LTV,

Vv <var>
Show learn module variable(s). These can vary for different moduiles (h I' will
cause the current learn module to display its own help screen).

V (ITILT) {idx1 {idx2}}
Display ITV or LTV state.

The following commands are active with the bipolar learning module:
Li Set ITVinit.

Li Set LTVinit.

Ir Set ITV update rate.

Lr Set LTV learn rate.

ol Set outThreshold.
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Lt Set LTVthreshold (the amount of activity per dendritic compartment to be used for
normalization).

nT Set normThreshold (default is Nc*LT Vthreshold).
sD Set shiftDecay rate.

B.1.6 Run Commands

r {<seq> {<vec>}}
Reset the network and set the input corpus to the sequence and vector pointed to by
seq (default=0) and vec (default==0).

g(s]ctS1C) {<num>}
Run num (default=1) steps, cycles, sequences or COrpus reps.

g U {<mThresh> {<sThresh> {<maxReps> {<plusReps>}}}}
Run corpus until: matches>=mThresh (default=1), spurious<=sThresh
(default=0), or until maxReps (defauit=100). Run for plusReps after condition met
(defaulit=0).

g u {<cThresh> {<maxReps> {<plusReps>}}}

Run corpus until: correct>=cThresh (default=1) or until maxReps (default=100).
Run for plusReps after condition met (default=0).

cy Display current cycle step order.

co {<orderNum}
Set cycle order; will prompt if orderNum not specified.

1s {<fileName}
Set stream for logging matches/spurious/correct will prompt if fileName not

specified; default is NULL(no logging).

le {<vai>}
Turn on/off learning flag.

no {<val>}
Turn on/off normalizing flag (turned off if learning is turned off).

sh {<vat>}
Turn on/off shifting flag.

wr {<val>}
Turn on/off wrapAround during shifting of ITV.

sd {<val>}
Turn on/off spatial decay flag.

sl {<val>}
Turn on/off single ITV flag (can only be on if spatial decay flag is off).
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B.1.7 Routing Commands
ti Set teach initializer function (can be set to random, or to predict next input).
¢l Set input/output routing function (simple pass through, or introduced noise).

V(t|T|Cto]|_o) {idx1 {idx2}}
Display teach/output matrices.

v(ro|ti|n)
Show value of routing variable(s).

B.2 Template for Learning Module Header File
Listed here is the header file "leambase.h”. All learning modules must be defined

as derived classes of learnbase.

#ifndef learnbase h
#define learnbase h

#include <String.h>
#include “mystream.h"
#include "int.AvVec.h"
#include "doubleAVec.Vec.h"
#include "commands.h"

//#included in ®*run.h®
extern short useSinglelITV,useSpatialDecay;

//#included in "config.h"
extern doubleAVecVec *ddMatrix;

class learnbase f{

String rum;
public:

learnbase() ;
learnbase{int Nn,int Ng&);
virtual ~learnbase();
volid setName (String& nmStr) {nm=nmStr;}
sString& name() {return(nm);}

virtual void resize2(int Nn,int Nc)=0;
virtual void uITV{intAvVec& ivec)=0;
virtual void ulTV{intAvVec& lVec)}=0;
virtual void shiftITV()=0;

virtual void shiftITvwrap({)=0;
virtual void normLTV{intAVecs lVec)=0;
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};
inline
inline

inline

#endif

virtual
virtual
virtual
virtual
virtual
virtual

virtual

virtual

virtual

virtual
virtual
virtual

void initITv()=0;

void initLTv{)=0;

void output {intAVec **0)=0;

short savelearnState(fstream& stateFile)=0;
short restorelearnState(fstreams& stateFlle)=0;

void displayITVv(fstream& dispStream=coutStream,

int start=0,int end=-1);

void displayLTV{fstream& dispStream=coutStream,

int start=0,int end=-1);

void displayMathematicaITV(Strings varStr,
fstream& dispStream=coutStream,

int start=0,int end=-1);

void displayMathematicaLTv({String& varStr,
fstream& dispStream=coutStream,

int start=0,int end=-1);

short setParams();

void showParams{short inval=0};

void paramHelp (};

learnbase::learnbase() inm="learnbase";}
learnbase::learnbase(int Ne¢, int Nn) {nm="learnbase";}
learnbase: :~learnbase() {}
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