Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

A NEW CACHE DIRECTORY SCHEME

Y. Wu July 1993
R. R. Muntz CSD-930018






A New Cache Directory Scheme *

Yuguang Wu and Richard R. Muntz
Computer Science Department

University of California, Los Angeles, CA 90024

Abstract

Shared-memory multiprocessors use caches on individual CPUs to reduce memory
and network latency. Effective use of caches both provides betier response to memory
request and lessens traffic demand on interconnection network. The problem of cache
coherence has been solved by two approaches: for systems with a bus topology and
hence inexpensive broadcasting mechanism, cache-snooping is an appropriate method to
achieve cache colerence; for systems with a general interconnection network, a message-
passing directory scheme is required. Three primary directory schemes are full-map
directories, limited directories, and chained directories. Full-map directory scheme is
not scalable due to the space demand on the main memory for storing the directories;
limited directory scheme restricts the number of caches having a copy of the same data
block and limits data sharing; chained directory scheme is slow in sequentially carrying
out coherence operations of update or invalidation. Some tree directory schemes were
proposed that either had fixed topologies and deep tree heights or could easily degenerate

into linear lists.

This paper proposes a novel directory scheme with a balanced binary-tree structure
that dynamically changes with current data sharing. It is scalable in allowing unlimited
number of caches to share the same data block, and can carry cut coherence operations

quickly with logarithmic time. This scheme is especially appropriate for update-oriented
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coherence protocols where the sharing structure is preserved across writes. We show how
the tree directories handle cache addition (a cache acquiring a data block copy) and cache
deletion (a cache surrendering a data block copy due to its local block replacement), and
their time complexities. We show that this kind of tree structure is an optimal directory
scheme for scalable architectures, which carries out all cache operations in minimum
possible times. We also discuss some other tree-like schemes and compare our scheme

to them, showing significant improvements in space and time complexities.

Key words: cache coherence, cache directories, scalable shared-memory

multiprocessors.



1 Introduction

Due to the ever increasing disparity in speed between CPU and main memory, caches
have been used as a buffering device between them in both uniprocessor and shared-
memory multiprocessor systems. For the latter, using caches is more appropriate and
necessary. Here the delay of a memory access is a combination of memory latency and
interconnection network (including bus-based interconnections) latency, of which the
network latency is even more significant. Caches with low miss ratios can reduce the
memory delay close to that of the cache and help realize satisfactory CPU utilization;
they also put less demand on network traffic, alleviate network contention on those
memory accesses which have to be serviced by the shared memory.

Having a cache for each CPU raises the prospect of multiple copies of a data block
in the system. Write operations can then cause data in other caches to become out-
of-date. To ensure correct parallel execution, data consistency must be maintained
among the caches. Cache coherence schemes or protocols have been proposed to solve
this problem. For bus-based shared memory multiprocessors, mostly a snoopy scheme is
used[3, 9, 13, 16, 22|, where each cache controller independently monitors bus activities.
If there 1s a memory access on the bus that would make one of its local data block
copies differ from those on other caches or the main memory, the cache controller
takes appropriate actions such as invalidation or updating of all copies of the data
block to preserve data consistency. Snoopy schemes rely heavily on the broadcasting
capability of bus and are unfit for systems with arbitrary interconnection networks.
Due to its limited bandwidth, bus communication topology can only accommodate
a small number of processing elements and is insufficient for building large, scalable
shared-memory systems.

Scalable shared-memory multiprocessors usually use point-to-point or multistage
networks to connect processing elements and the main memory[5]. They have message-

passing as their main communication mechanism; efficient broadcasting is not available



due to inherent implementation difficulties[5, 12]. For such general architectures, di-
rectory schemes have been proposed [1, 4, 5, 6, 12, 17, 25, 26]. These schemes maintain
a data structure called the directory to store the sharing structure, i.e. the locations
of the copies of each cached data block. When a data block is written, the main mem-
ory may send an invalidation or update message, depending on the specific coherence
protocol, to each cache that holds a copy of the effected data block.

For an invalidation-based coherence scheme, a writing cache first becomes the only
cache with a copy of the data block by invalidating all other cache copies, i.e. the
exclusive owner of the data block; subsequent writes from the same cache only need
to be done locally on the cache, improving the efliciency of coherence operations.
Exclusive ownership is terminated whenever another cache writes to the same data
block, at which time if the copy has been written (is dirty) by the previous owning
cache since its exclusive ownership was established, the dirty copy is sent back to the
main memory. Such an invalidation-based coherence protocol is usually called write-
back with ownership.

For an update-based coherence scheme, a writing cache does not need to first obtain
the exclusive ownership of a data block. Instead data is written directly into the main
memory and all caches that hold a copy of the data block. An update-based coherence
protocol is usually called write-through.

The directory entry may contain other state information on the data block, such as
dirty bit and exclusive ownership bit[2, 4, 5, 22, 25]. The directory is either centralized
within the main memory or distributed among the processing elements. Distribution
can be done in two ways: distributed with the main memory among the processing
elements(1] in so-called distributed main memory, or distributed among the caches of
the processing elements[6, 12, 26].

This paper proposes a new distributed directory scheme that can carry out coher-
ence operations in an eflicient manner and is suitable for scalable large shared-memory

multiprocessors. Moreover, for each type of cache operation, it has provably optimal



time complexity. In section 2 we first review the major existing directory schemes. Sec-
tion 3 presents the binary-tree directory scheme and discusses its time complexity for
each cache operation. In section 4 we examine some other tree-like directory schemes,
including a redundant-pointer list structure proposed previously in the literature; com-
pared to these other schemes, our approach is superior in space and time complexities.

Section 5 concludes with a summary.

2 Directory Schemes

First we discuss how each cache does read and write, which is common for all directory
schemes. Usually, a cache has a few state bits for each cached block, such as validity bit,
ownership bit, and dirty bit, the last two usually used by invalidation-based coherence
protocols. A read can proceed if the cache’s validity bit for the target data block is
set. For an invalidation-based coherence protocol, a write can proceed if the cache’s
ownership bit for the target data block is set. For an update-based coherence protocol,
a write 1s always sent to the main memory and relayed to all other caches that have
a copy of the target data block. For each data block, there is at most one cache with
its exclusive ownership bit set at any time. If a cache has a read-miss (its validity
bit is not set), it sends a read request to the main memory or the memory module
which controls the requested data block (we will not differentiate these two cases from
now on), which sends back, or asks a cache with the most recent copy to send back, a
copy of the data block. For an invalidation-based coherence protocol, if a cache has a
write-miss (its ownership bit is not set), it sends a write request to the main memory,
which sends back the permission to set its ownership bit, and possibly a copy of the
data block if it is missing. For an update-based coherence protocol, if a cache has a
write-miss (here its validity bit is not set), it sends a write request to the main memory,
which updates everyone else, and send back a new copy of the data block.

Between the time the main memory gets a read-miss/write-miss request from a



cache and the time it replys, the main memory usually carries out some cache coherence
operation. For read-miss, it includes recording the requesting cache as one holding a
copy of the requested data block; and for invalidation-based protocols, it also resets
the exclusive ownership bit of some other cache which had ownership of the data
block, if there is one. For write-miss, it includes invalidating all current holding caches
of the data block for an invalidation-based coherence protocol, and resetting as well
the exclusive ownership bit of a former owner cache for invalidation-based protocols.
Normally the main memory waits to receive acknowledgement from all caches involved
in the coherence operation, before replying to the original requesting cache[5]. Update-
based coherence protocol requires that each write be sent to the main memory, which
in turn relays the update to all the other holding caches. The details of coherence
operations are directory-scheme dependent and may differ for protocol variations.

When a full cache has a miss, it must replace one of its blocks. Information con-
cerning the replacement block needs to be sent to the main memory along with the
miss request, so that the main memory is aware that the replaced block is no longer
in that cache. For invalidation-based protocols, if the cache currently has exclusive
ownership of the replaced block, and the corresponding dirty bit is set, then the dirty
data block needs to be sent back to the main memory.

There are primarily three popular directory schemes{l, 4, 18, 12]: full-map directo-
ries, limited directories, and chained directories. Their data structures are essentially
a linear list. Some tree schemes were proposed recently[11, 19, 27, 29, 30]. There
was a brief description of a tree-like structure using redundant pointers on a chained
directory[12], proposed as a possible standard for scalable coherent interface. We will
examine it closely in section 4 and point out its inadequacies compared to our scheme,
in terms of structure simplicity and time complexity for handling a cache miss, i.e.,
adding a new cache (O(log N) v.s. O(1)).

A full-map directory[4, 18] allows a data block to be cached simultaneously in all

caches. It uses a presence vector of 0/1 bits to represent the presence or absence of a



data block in each cache. A separate dirty bit is used to indicate if there is any cache
with a more up-to-date copy of the data block than the one in main memory. When
the dirty bit is set, exactly one element in the presence vector can be set, which is
for the cache with the most up-to-date version of the data block; that cache currently
has the exclusive ownership of the data block. The presence vector and the dirty bit
constitute the directory entry for that data block. If there are N caches in the system,
the size of a directory entry is O(N). Full-map has good performance for invalidation
and update coherence operations. Its drawback is high main memory overhead of the
directory entries.

To reduce the memory demand of directory entries, a limited directory scheme][l]
was designed. It limits the number of caches that can simultaneously store a copy of the
same data block to some number & < N. Its main memory overhead is O(klog V), as
each element is now a cache ID. When a directory entry is already full and another cache
requests to cache the data block, a previously cached copy must be invalidated, which
can be chosen by a replacement policy. The limited directory scheme restricts sharing;
highly shared data blocks can therefore experience poor performance. A combination
of full-map and limited directory schemes is implemented in [6], where the full-map
scheme is emulated in software.

The chained directory scheme[12] distributes directory entry information among
the caches that hold a copy of the concerned data block; these caches are chained
linearly in a linked list. The main memory has a pointer to the header cache of the
list. There are minor variations between using singly-linked list[5] and doubly-linked
list[12], and whether the main memory or the header cache on the list provides the
most recent copy of the data block, but the main idea is the same[5, 12, 26]. A
cache always joins a linked list by becoming the new header. When a cache has a
miss, it sends a request to the main memory; the main memory changes the header
pointer to point to the new cache, and returns the ID of the old header cache to the

requesting cache; upon receiving the cache id, the requesting cache joins the cache list



by making its forward pointer to the received cache ID. Coherence operations are done
from the header through the linked list in serial fashion; invalidation removes the list.
Cache replacement is handled by purging a cache from the list of the replaced block;
with doubly-linked list, it is easily done in constant time O(1)[12]. Chained directory
has only O(log N} memory overhead for the header pointer, making it applicable for
large scalable systems. Compared to limited scheme, it does not impose limitation on
sharing. The drawback is slow coherence operations: invalidation or update is done
sequentially on the linked list, needing O(N) time.

The above directory schemes have the drawback of performance bottleneck at the
main memory, any cache missing a data block has to access the main memory to
get a copy. To this end, Wilson{29], Haridi[l1], Yang et al. [30] proposed bus-based
hierarchical tree structures where each node is a bus-full of processing or storing el-
ements. Each element in the tree records which blocks are cached by its descendant
elements[27}. A processor in want of a data block sends its request up the tree until
a copy 1s located. These schemes have difference in whether the intermediate level
only store directory information[11, 30|, and whether the main memory is attached at
the top of the hierarchy{29, 30]. Wallach{[27] proposed a similar tree hierarchy scheme
and its mapping onto k-ary n-cubes, with differnt hierarchies for different data blocks,
further reducing bottleneck.

All these hierarchical schemes have a fixed sharing structure containing all caches:
at any time the tree may have many irrelevant caches. A requesting cache would have
to send its message past several caches before finally locating a cache with a copy of
the requested data block; cache invalidation/updating also may have to pass irrelevant
caches on way to the destination caches. It is desirable to have a dynamic sharing
structure that adjusts to changing data-sharing and contains only relevant caches.

Maa et al. [19] proposed two tree directory schemes that dynamically change and
contain only the sharing caches. However, their tree structures are unchecked, hence

can become unbalanced and in the worst case degenerate into a linear list, reducing to



the chained or full-map scheme.

A good directory scheme should be free of these problems.

3 Balanced Binary-Tree Directory

To achieve true scalability, the directory space must be bounded per block entry, i.e.,
only a limited number of pointers are employed in each directory entry, for both the
main memory and for each individual cache. If we view the main memory and the
caches as nodes in a directed graph, and the directory pointers as arcs of the digraph,
then the digraph of a scalable architecture has bounded out-degree for its nodes. The
time complexity of message-broadcasting in such scalable architectures is that of broad-

casting a message in the corresponding bounded-degree digraph, which clearly has a

lower bound of O(log N).

Lemma 3.1 The time lower bound of broadcasting in a bounded-degree N -node digraph
is O(log V).

Proof. Suppose a constant d > 1 is an upper bound on the out-degrees of all nodes,
and at time 0 some node s is to send a message to N other nodes. Message-passing
from one node to another directly connected node takes unit time. For simplicity, we
assume that it takes zero time for a node to emit message to its out-bound channel, so
there is no difference in time between sending a message to one out-bound channel and
sending a message to all (at most d) of its out-bound channels. Since this assumption
could only underestimate the amount of time required by communication, it does not
affect conclusions on the lower bound of communication time.

At time 1, at most d of the destination nodes have received the message, since s
is one-hop away from at most d destination nodes. Using induction, at time k, at
most d! + d* + --- + d* = (d**! — d)/(d — 1) destination nodes are reached. From
(' —d)/(d — 1) > N, it gives k > log,({(d — 1)N +d) — 1. As d is a constant, the



lower bound on the number of steps k& to send messages to all N destination nodes is
O(log N). O

In a shared-memory multiprocessor system with N caches, each cache pointer in the
directories uses log N binary bits to identify N caches. This is the minimal requirement
on pointer bits. For any bounded-degree directory scheme, the minimum memory
overhead per directory entry is therefore O(log N).

In order to obtain a Oflog N) communication time for invalidation and update
in scalable shared-memory multiprocessors, a tree data-structure is a viable way to
organize the sharing structure. Due to constant cache joining (a cache miss) and cache
purging (a block replacement), i.e., addition and deletion on the sharing structure,
the tree can degenerate into a linear list. To guarantee the logarithmic time scale,
the tree must be kept balanced. The issue is to efficiently update and balance the
tree with continuous node addition and deletion. Deletion can be done simply in O(1)
time, as shown below. The trick is with addition. A naive way of adding a node is to
search from the tree-root down to a leaf node, taking O(log N) time. Due to the high
frequency of occurrence, node addition requires a more efficient method.

We will use a balanced binary-tree to represent data block sharing, in which both
cache-miss and block-replacement take only O(1) time. Since the tree is balanced,
invalidation and update only take O(log N) time, which is optimal, by Lemma 3.1, for
any directory scheme with bounded-degree for each directory entry. Therefore such
balanced binary-tree scheme is an optimal directory scheme to represent the sharing
structure for scalable shared-memory multiprocessors.

For each data block, there is a well-balanced binary tree structure whose nodes are
caches that have a copy of this data block, as illustrated in Figure 1. In its directory
entry of that data block, the main memory has a pointer to the root of the tree, and a
pointer to the “last™ leaf of the tree, which is the last leaf on the last level. The main
memory directory entry also has an oddity bit to indicate whether the tree height is

odd or even: 1 for odd height and 0 for even height. Each cache node has five cache



Figure 1: Balanced Binary-Tree

pinters—parent, left child, right child, left sibling, right sibling. Sibling pointers are
depicted by dashed lines in the diagram. The memory overhead of each directory entry
is O(log N) for main memory and every cache; the directory entry information for a
data block is distributed among the main memory and its resident caches.

We first explain how to add and delete one tree node, then discuss how to handie
simultaneous node additions and deletions by locking directory entry on the shared

main memory.

Node Addition. For brevity we will omit discussing the details of how to set various
state variables such as validity bits and ownership bits, and whether most recent block
copy is provided by the main memory or a cache. While variations on these points can
yield many different protocols, they are orthogonal to the sharing data structure under
study.

Initially the tree is empty: the data block is not cached anywhere. When a cache
has a miss on this block, it sends a request to the main memory. A single-node tree is
created with the main memory setting both of its root pointer and last pointer to the
requesting cache, and setting the oddity bit to 1. The data block and a null pointer
are returned to the cache, which sets all five of its pointers to null. Subsequently,
each added node becomes the new last node, and the binary tree grows level by level,

filling up one level before advancing to the next one. The arrows in Figure 1 show the
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direction of node expansion on each level of the tree. The direction (left or right) to
fill new nodes on the bottom level of the tree is easily determined by the tree’s current
oddity bit. For oddity bit 0 (even tree height}, the nodes are added from left to right,
while for oddity bit 1 (odd tree height), the nodes are added from right to left. In order
to add a new node, the question is how to efficiently find the correct parent node.

If the bottom level is already full, addition is easy; the old last node is the parent
of the new node. See Figure 2. In this case the main memory switches its oddity bit.
If the parent node of the old last tree node has only one child, addition is simple too;
that parent node is exactly the needed parent node for the new node, as shown in
Figure 3. We describe in detail the general case where the old last node is neither on
the boundary of the bottom level, nor does it share parent node with the new node.
The basic idea is to find the proper sibling of the parent of the last node, which will
be the parent of the newly added node.

A. Before adding a node B. After adding a node

Figure 2: Node Addition: New Level

When a new cache (say cache 11) experiences a miss on this block, it sends a miss
request to main memory; main memory sets the last node pointer to the new cache,
and returns the old last node (cache 10) and the oddity bit of tree height (0) to the
new cache; see Figure 4A. The new cache sets its left sibling pointer to received node
pointer (cache 10), and sends a parent request and the zero oddity bit to that node

(cache 10}, which sets its right sibling pointer to the new cache (cache 11), and returns
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A. Before adding a node B. After adding a node

Figure 3: Node Addition: Common Parent

with a pointer to its parent (cache 5). Now the new cache sends a sibling request and
the zero oddity bit to the received node pointer (cache 5); that node (cache 5) sends
back its right sibling pointer (cache 4). The new cache sets its parent pointer to the
received node pointer (cache 4}, and sends a child request and the zero oddity bit to
its newly adopted parent node (cache 4). Upon receiving the message, the new parent
node (cache 4) sets its left child pointer to the new cache (cache 11). The new cache
completes the addition be sending an acknowledgement back to the main memory.
Now a new tree is created, shown in Figure 4B. If the oddity bit was 1, then “left” and

“right” should be switched in the above description.

A. Before adding a node B. After adding a node

Figure 4: Node Addition: Distinct Parents
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To add a cache to the binary-tree sharing structure, the worst case requires the new
cache to communicate with four parties: main memory, last node, last node’s parent,
and real parent. It may take up to a total of ten messages (the last two messages are to
and from the main memory to release the lock on directory entry, see Locking below),
thus the complexity in latency is O(1). To avoid message-queue deadlocks, messages
should not be directly forwarded by the main memory or the caches, as indicated in[12].

Notice that we did not differentiate between a read-miss and a write-miss. H the
write protocol is invalidation-based, then a write-miss cache does not join the tree;
instead the main memory nullifies the tree by sending an invalidation the tree root,
which propagates it down to every descendant node, and acknowledgements are prop-
agated upward in the tree back to the root, then the root sends its acknowledgement
to the main memory. If the write protocol is update-based, the write-miss cache first

joins the tree, then sends each write to main memory and relays to every tree node.

Node Deletion. Deletion occurs when a cache voluntarily discards a cached data
block, due to miss-incurred block replacement. When the node to be deleted is the last
node, it is quite simple. If it is not the last node, we just substitute it by the lasf node.

Specifically, the deletion node sends a deletion request to the main memory, which
decides that it is not the last node, sends back to the requesting node a pointer to
the last node. Now the deletion node sends a substitute message together with its
five pointers (parent, left/right child/sibling) to the last node. The last node informs
its parent and sibling (there is at most one) to cut their links, and substitutes its
five pointers with the corresponding five pointer values just received, effectively taking
the place of the deletion node in the tree. For all the non-null pointer values, the
nodes they point to must properly adjust their pointers from the deletion node to the
new substitution node; this can be done with the substitution node sending a adjust
message, together with its node ID and the deletion node 1D, to these adjacent nodes;
these nodes can find the correct pointer to change by comparing with the deletion node

ID, and change it to the new substitution node ID.
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After that, the substitution node returns to the deletion node its sibling pointer if
it is not null, or its parent pointer if it has no sibling; the deletion node in turn sends
the new last node ID back to main memory. In the first case, the sibling is the new last
node. In the second case, the old last node was the only node on the bottom level, and
its parent becomes the new last node; the main memory switches the oddity bit for the
tree height is now decremented by one. Now the main memory sends acknowledgement
to the deletion node, informing the completion of deletion.

To remove a cache from the binary-tree sharing structure, the worst case requires
the deletion cache to communicate with two partners: the main memory and the
last (substitution) cache. The substitution cache in the worst case needs to commu-
nicate with five partners: the parent, two siblings, and two children of the deletion
node. The time complexity in latency remains O(1). Like node addition, to avoid
message-queue deadlocks, messages for node deletion are not forwarded by the main

memory or caches.

Locking. To avoid data structure corruption due to race conditions, the main memory
locks the directory entry of a data block on which there is a cache addition or deletion
activity going on. Any request from other caches on the directory entry is rejected or
queued to be serviced later. The binary tree updating messages (parent,child, sibling)
have higher priority than normal cache operations. A cache waiting on an outstanding
request still participates in tree updating: whenever it receives a tree updating message,
it properly adjusts one of its tree pointer. Since any change to the tree goes through

the main memory, concurrent addition and deletion are serialized.

Drawbacks. As any change in tree structure involves the main memory, it can become
a performance bottleneck. Static distribution of main memory space among a number
of memory modules or processing elements{6] may alleviate the bottle-neck problem,
provided data usage is evenly spread among all blocks in the address space. Skewed

data usage is better served by some kind of dynamic distribution of “home” locations
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of the data blocks[11, 27, 29, 30], in order to balance the traffic demand on the memory
modules, processing elements, or connecting networks. There are issues of when and
how to do the redistribution under changing circumstances. For example, the Data
Diflusion machine[l1] takes a simple approach: it relocates a data block only when
its last copy is being replaced; the new home node is found at another leave node
inside the shallowest subtree that also contains the old home node, by traversing the
tree bottom-up to its root. In general, these issues are hard to solve satisfactorily.
Bus-based hierarchical architectures also suffer the performance hit due to bottleneck
at or near the top of their hierarchies[11, 29]. Using different hierarchies for different
data blocks[27] is analogous to distributing the main memory among many memory
modules or processing elements.

While the asymptotic time complexities of the cache operations are optimal, in
practice the accumulated cost of building up a big tree is still expensive. It may not be
good for invalidation-based coherence protocols that completely nullify the tree each
time some CPU issues a write to the data block. Instead, it is more proper for update-
based coherence protocols, which do not change the sharing structure on writes but
keep using the same tree structure for propagating new data values. In this way the
cost of building the tree is amortized by the saving in coherence operations. An update
coherence protocol is especially suitable for some event synchronization; for example,
all processors waiting on a barrier variable are released efficiently with an update-
based write to the barrier[17]. Update is also perceived to have better performance
than invalidation on normal data blocks[20]. Applications with high degree of read-
sharing and relatively infrequent write-sharing are good candidates for applying an

update-based coherence protocol, and hence our binary tree directory scheme.

Synchronization. Goodman, et al. [L0] proposed an efficient method of FIFO access
to synchronization variables by linearly queueing requests. The binary tree scheme pro-
vides efficient implementation for locks, in a manner similar to a linked list queue[12].

With the sibling and children pointers, a lock can be passed sequentially from the root

15



through each level to all tree nodes, in the same order that node addition is done. As
mentioned earlier, event synchronization such as barrier release is done most naturally

by our binary tree scheme.

Performance Comparison With Full-Map Scheme. Full-map directory provides
a performance upper bound for centralized directory schemes[5]. We compare our
binary tree with full-map in terms of invalidation /update speed. For both main memory
and caches, let the average inter-transmission delay between sending a message to
two out-bound channels be ¢;, the average processing time of invalidation and update
message at each cache be t,, and the average point-to-point transmission delay among
the main memory and the caches be ¢,. For simplicity, we shall assume that the
message-processing time of acknowledgement is negligible; this won’t fundamentally
change the comparison.

Denote by T the average overall delay between the beginning (main memory issues
the operation) and the end {main memory receives acknowledgements from all caches

involved) of a invalidation or update coherence operation. For full-map directory with

N caches,
Tful]——map - (N - l)ti +1i:+ tp +i, = (N - l)t: + 2t.r + tp

where (N — 1}¢; is inter-transmission time before the message to the last cache is sent,
t; is the transmission time to the last cache, £, is the processing time at the last cache,
and t, is the acknowledgement from the last cache. When the last acknowledgement
arrives at the main memory, it has already received acknowledgements from the other
N —1 caches. For binary tree directory with N caches, the longest delay occurs to the

leave nodes on the lower-right corner of the binary tree:
Thin-tree < to 4+ [lﬂg N] (tp + i;’ + tm) + [log N-I t. + 1
= [log N|(t; + 2t + t,) + 21,

Here the first ¢, is the transmission time from the main memory to the tree-root cache;

(t, -+ t; +1.) is the delay between the receiving time of an internal node and that of its
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right child (the sum of the processing time at the parent, the inter-transmission time
for the right child, and the transmission time), this happens at each of the [log N tree
levels; last two terms are transmission delays for acknowledgements to go bottom-up
to the root cache, and back to the main memory.

Trall—map grows with O(N), while Tyin-tree grows with O(log N), and
Tfull—map/Tbin—tree 2 (N - 1)t,‘/( [log 2N-| (ti + Qtz + tp))'

When 2t, +t, < (N — [log N] = 1)t:/[log N1, Toin_tree < Trutlmap. Compared to the

full-map scheme, binary tree scheme could be competitive in performance for large

systems.

Performance Comparison With Chained Directory Scheme. Obviously the
chained directory scheme has the worst performance. For the sake of completeness, we
compare our balanced binary-tree scheme with it as well. Use the same notation as

above,

Tchained = N(tz' + tp) + t.z'

where N(¢, +1,) is the total transmission and processing time from the main memory
to the last cache on the chain, and the last z; is the transmission time of the final
acknowledgement from the last cache on the chain back to the main memory. Since

t << 1,

Toin-tree < 3|-10g N-l (t_-,; + tp) + 2t
< 3([log N1+ 1)(t: +1,)
3Mlog 2V] (1 + 1,)

A

Tehained grows linearly with N, while Thin—tree grows logarithmically with N, and
Tcha.ined/Tbin—tree 2 N/3 I-log 2N—! -

Compared to the chained directory scheme, balanced binary-tree scheme is much better.
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To sum it up, like any directory scheme, our binary tree scheme is suitable for
general interconnection networks without relying on a broadcasting mechanism. Unlike
previously proposed tree schemes, which either has a fixed structure and contains many
non-sharing caches, or can easily degenerate into linear lists, our scheme guarantees
balanced structure without wasting any time on irrelevant caches. Compared to the
chained directory scheme, it provides the same scalability by distributing directory
entry information among caches with unlimited data sharing, while its logarithmic tree
height allows much faster coherence operations than chained directory. For very large
scale architectures with thousands of processing elements, our tree scheme could even
compete wilth the full-map scheme in performance, when the large value of the number
of nodes N makes the point-to-point transmission time ¢, among caches comparable
with O(N/log N) times the inter-transmission delay ¢; at each cache node. We also
prove that among all directory schemes with bounded-degree for each directory entry,
our balanced binary-tree is an optimal scheme in terms of time complexity for each

cache operation.

Generalization to d-ary Tree. In passing we note that there is nothing intrinsic
about the tree structure being binary. The above discussion can be generalized to
any d-ary tree with some constant integer d > 1. Each tree node now has d children
pointers, while the numbers of parent pointer and sibling pointers remain unchanged.
Node addition and deletion are carried out in exactly the same way, except that now
each parent node can accommodate more children nodes, a new addition node is more
likely to share parent with the old last node, making node addition faster by alleviating
the usual searching sequence of “last to parent to sibling” in looking for the parent of
a new node. On the other hand, node deletion becomes slower, as the substitution
node has more pointers to update. Since the number of node deletions is at most the
number of node additions, a bushy d-ary tree seems to have better performance than

the binary-tree. Of course, their asymptotic time complexities are the same.
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4 Discussion on Other Tree-Like Schemes

Redundant List. James, et al. briefly described a tree-like directory scheme[12], as
depicted in Figure 5. It uses redundant pointers in the linked list to reduce coherence
operation delays from linear to logarithmic. But the details of node addition and

deletion were not given.

Figure 5: List with Redundant Pointers

If we number the nodes by 0,1,..., N —1 from the header on the left to the tail on

the right, the interconnection can be described as follows:

170 1 2 3
210 2 4 6
411 5 9 13
8( 3 11 19 27
6| 7 23 39 55
32 115 47 79 111

Each row to the right of the vertical line is a sequence of nodes that are linearly
connected; the first column is the difference in ID numbers between consecutive nodes.
Generally, nodes 2m~1 — 1,2m-1 — 1 4 2m 2m-1 1 4 2m2 2™~ — 1 4 2™3,... are
linearly connected. A node n = 2™~! — 1 4 2™ has up to four connected neighbors:
n—1,n+1,n—2" n+2"; here m is one plus the number of consecutive 1’s in the
lower order of binary n.

Node deletion can be done by substitution with the last node, as we did above.

Using double links for each connection, this takes (O(1) time. To add a new node,
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backward links need to be created to two predecessors. One is to the tail of the list,
which is easy; the other one is to some node in the middle of the list, which is difficult.
To add, say, node 2™ +2™~! — 1, one has to find node 2™~ — 1, for which the searching
takes at least O(m) time. The time complexity for adding a node to such a structure
with N-node is therefore O(log N). However, in order to decide which existing nodes
are to be connected with a new node, the main memory has to keep track of the number
N of current nodes in the list, requiring a counter of log N bits per directory entry.
While this does not change the O(log N) space complexity, it does incur more directory
overhead on the main memory than the balanced tree scheme does.

Another way might be to keep pointers to all the “loose” nodes in the current list,
that do not have four neighbors yet, in the main memory; when a new node is to be
added, the farthest predecessor node can be found in O(1) time. However, this requires
a memory overhead of O(log® N) for each directory entry in the main memory (for up

to O(log N) loose node pointers, each using log N bits), which is less scalable.

Perfect Shuffle. One might consider the perfect shuffle structure[24] as another
alternative. Shown in Figure 6, the interconnections are[14] (0,1),(N —2,N — 1), and
(7,20), (i + N/2,20 4+ 1),(2¢,2i + 1), for: = 1,...,N/2—2. It has a O(log N) bound on
the length of its paths with no repeating nodes, so invalidation and update only take
time O(log N). The difficulty is with node addition and deletion, which requires the
changing of (N) pointers on all the connections (i + N/2,2¢ 4+ 1), due to the change
of N’s value. In addition, the number N of current nodes must also be kept by the

main memory, using O(log V) bits per directory entry.

Figure 6: Perfect Shuffle List
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Therefore, our tree scheme, compared to the above tree-like schemes, has the following

advantages:

5

it has a simpler structure that is easy to understand and implement.

. it needs O(log N) time for invalidation/update, the minimum for bounded-degree

directory entry schemes.

. it needs minimum time O(1) for addition and deletion. Without O(log? N) mem-

ory overhead, the redundant-pointer list scheme cannot achieve O(1) addition

time. The perfect shuffle scheme requires O(N) addition time.

. it uses the bounded-degree space of O(log V) for each directory entry on both

main memory and caches. The redundant-pointer list scheme requires O(log N)

space for O(log V) addition time, and O(log? N) space for O(1) addition time.

. 1t only uses one oddity bit for each directory entry on the main memory, while

the redundant-pointer list scheme requires a log N-bit counter to keep track of

the number of nodes in the list.

Summary

We propose a balanced binary-tree directory scheme as an alternative to represent

the block sharing structure of shared-memory multiprocessors. It is scalable such

that unlimited number of caches can share the same data block, with the bounded-

degree directory space O(log V) for each block entry of the directory table in the

main memory and each cache. All cache operations are done with provably optimal

time complexity: cache-miss and cache replacement use O(1) time, while coherence

operations of invalidation and update use O(log N) time. Compared to some previous

tree directory scheme, it never degenerates into a linear list; since only the sharing

caches are contained in its sharing structures, its trees are smaller (hence shorter) in
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comparison to those of some previous tree scheme, making faster coherence operations.

Compared to other tree-like schemes such as redundant list, its structure is simpler

and easier to implement, and cache-miss is handled much more efficiently. For update-

based coherence protocols where the sharing structure is not destroyed by invalidation,

our tree scheme is a promising choice.
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