Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

A UNIFIED INDEX ACCESS METHOD FOR PARALLEL
DATABASE SYSTEMS

u June 1993

R.-C. H
J. W. Carlyle CSD-930017

A Unified Index Access Method

for Parallel Database Systems

Ron-Chung Hu and Jack W. Carlyle

Computer Science Department
University of California
Los Angeles, CA 90024-1596

ABSTRACT

Index access methods have been well studied for conventional single-processor systems. In
designing a parallel database system with multiple nodes, one immediately faces a problem:
location of the index rows for non-partitioning attributes. Currently, there exist two index access
methods: (1) the local index mechanism, in which an index record is saved on the same node as
its data record, and (2) the distributive index mechanism, in which an index record is distributed
and stored into a node based on the index atiribute value. Both mechanisms are vulnerable to
the effects of skewed distribution, common and inherent to real-world databases. Furthermore,
neither mechanism is sufficiently robust in a dynamic environment where database contents are
changing rapidly. We propose the unified index access method, which incorporates both local
and distributive index mechanisms concurrently, and adapts to the well-performing one at run
time. We perform simulation experiments to validate the effectiveness of our new index
mechanism. In addition, we describe how to create and maintain the unified index access

method efficiently in parallel database systems.

1. Introduction

Parallel computers composed of multiple independent processors promise to be the technological "dream
machines” of the 199¢’s. During the past decade, database systems employing parallel architecture have
increased in popularity because of their good cosljperfomlancé, high scalability, and easy availability.
Commercially successful systems of this type include Teradata’s DBC/1012 [Tera88] and Tandem’s Non-
Stop SQL {Tand88]; available research prototypes are the Gamma machine at University of Wisconsin
[Dewi90] and the Bubba system at MCC {Bora90]. All these systems horizontally partition a data rela-
tion across the processors based on the range of key values [Dewi9Q], hashing mechanisms [Dewi90]
[Tera88], or access frequencies. Based on this mechanism, such database operations as select, project,

and join, can be performed in paraliel and system performance can be significantly enhanced.

The index mechanism, a fast access method to locate data records quickly, is an effective alternative to
the full relation scan when the number of qualified records is not large. Index mechanisms have been
extensively studied in the literature, and B-tree has become the de facto standard index structure for file
organization [Come79]. When designing the index mechanism for a parallel database system with mulsi-
ple nodes, a database enginecer immediately faces a difficult problem: where to put the index records?
Currently, two methods exist: (1) local index mechanism in which an index record is saved in the same
node as its data record resides, and (2) distributive index mechanism in which an index record is distri-
buted and stored into a node which usually differs from the one on which its data record resides, based on
the index attribute value [Tand88] [Tera88]. When a query references an index, the local index mechan-
ism employs all nodes in execution, while the distributive index mechanism involves only those nodes
containing relevant data records. In practice, either of these methods is useful for certain indexes, and the
choice is dependent on such factors as number of qualified records for a query, number of nodes in a

machine configuration, startup and termination costs of a task, eic.

With the intrinsically skewed distributions found in real-world databases, the number of qualified records
varies greatly from valuoe to value, which can render either of the existing methods useful for only a smali
subset of values for a given index. Furthermore, the number of qualified records may change significantly
in a dynamic environment. In this case, an initially well-performing local index method may become a
troublesome performance problem at a later time, and vice versa. In this paper, we propose a new index
access method, tennéd unified index mechanism, for parallel database systems. Unlike other index
methods, the unified index method takes skewed distribution into account. In particular, our new

mechanism combines both local and distributive index mechanisms, and adapts to the well-performing

one in a dynamic environment.

The remainder of this paper is organized as follows. In section 2, we outline the parallel system architec-
ture under consideration and briefly describe the skewed distribution found in real-world databases. In
section 3, we describe the two conventional index methods: local index mechanism, and distributive
index mechanism, as well as their execution steps in a parallel database system. In section 4, we present
our new index method, unified index mechanism, and show how it performs adaptively at run time. In
section 5, we describe our simulation experiments using CSIM and give experimental results in verifying
the effectiveness of the new index mechanism. In section 6, we discuss how to create and maintain the
unified index mechanism in a dynamic database environment. Lastly, section 7 comments on the user-

friendliness of our new approach and draws final conclusions.

2. System Architecture and Skewed Distribution

To facilitate discussion, we follow the parallel databasc system architecture first outlined in [Nech84],
and later used in the Bubba system [BoraS0] and the DBC/1012 [Tera88). As shown in Figure 1, there
are two kinds of processors; Interface Processor (IP) and Access Processor (AP). The IPs handle the
interaction with users. They receive queries from users and determine the query access plans, which are
broadcast to alt the involved APs. The AP is designed to have a shared-nothing structure [Ston86], i.e.,
each AP has its own cpu, main memory, and disk. The tuples of each relation are distributed across all
the APs, based upon the values directly or the hash values of the partitioning attribute in the tuples. Each
AP is in charge of the access to the tuples appearing on its disk. The AP services the select, insert, delete,
and update database operations against the tables saved on disks. All processors, both IPs and APs, com-
municate and coordinate with each other by messages passed along the interconnection network. Since
the network physically connects a large number of nodes, it must be very fast to handle the high volume

of message traffic.

It is well known that the uniformity assumption is not realistic for describing the distribution of attribute
values in a relation [Chri83]. Data bases often contain information describing populations of the reat
world, and many tuples will have the same attribute value. For instance, a relation storing all UCLA stu-
dents can lead to many tuples with the same value, California, in the state attribute since more than 70%
of UCLA’s students are from California. This phenomenon is common and evident in many databases. It
has been found that the data distributions of many real-world databases follow "Zipf's law”, in which the

n-th most commonly appearing value occurs with a frequency inversely proportional to n [ZipfdG].

-2

User Querie

/ \

Interface 1P o IP e o o0

Processors

Interconnection Network

Access
Processors | AP AP AP AP e e

Y CY Y D
Disks L B N N] o
N

N N

Figure 1. Parallel Database System Architecture

3. Conventional Index Methods

We describe the existing index access methods on parallel systems and their corresponding execution

steps, with performance costs specified.

3.1. Local Index Mechanism

When the conventional index method is generalized to a shared-nothing parallel database system, there is
a strong tendency to put the index records into the same node as their data records. This approach,
termed local index mechanism, characterizes the index designs in several systems, including Gamma
machine [Dewi90] and DBC/1012 [Tera88]. The rationale for this approach is that each node of a
shared-nothing system is essentially a "computer” possessing all necessary components; hence building

the index locally is a natural and straightforward generalization of conventional index methods.

For the horizontal partitioning attribute of a relation, it makes good sense to build iis index locally since
the system has a mechanism to determine the node in which a tuple is located, based on the attribute
value. For an index built on non-partitioning attributes, retrieval operations through the local index
mechanism suffer a performance impact. This is because the system has no way to tell which nodes con-

tain the qualified index records since the index rows meeting the predicate condition are scatiered over

-3

the nodes. Hence, each user query which references a non-partitioning index must be dispatched to all

nodes.

To illustrate the performance effects, suppose a relation Student, containing information for each student
in a university, has the columns Studentld, Name, State (from which the student comes), etc. As shown
in Figure 2, the relation is saved on a 10-node system using "Studentld" (Sid) as the partitioning attribute.
An index record normally contains an index attribute value followed by a number of tple identifiers
(TuplelD) of those tuples having the same value for the index attribute. The TupleID (T id) consists of
two parts: the node number and a unique number within the node. These two numbers together uniquely
define the TupleID for each record within the whole parallel system. In our example, an index on the
attribute "State" is built locally. When a query to find all students coming from Texas

SELECT * FROM Student WHERE State = ‘TX’;

is executed, it is sent to every AP to locate the index rows with value “TX’ first, then the TuplelDs of the

qualified records are used to fetch the Student records from the data table.

We use an analytical model to study the performance of various index mechanisms. Suppose there exists
an index with D distinct values in relation R residing on an N-node parallel system. For a condition £,
there are {R (k)} qualified tuples satisfying the condition in the whole system. In order to compare the
performance difference for different index mechanisms, we detail the execution steps required for each
mechanism and associate the cpu pathlength with the corresponding execution step. The cpu pathlength
parameters we have defined are /, for processing a tuple (including locating a column and comparing its
value), I, for sending or receiving a message, [, for initiating a disk 10 access, /. for moving a record
around in main memory, I, for starting a task in an AP, and I,,,,, for terminating a task in an AP. In
our analysis, although we take into account the disk IOs in accessing data blocks, we will not attach the
disk times to the execution steps because the required disk IOs for all the methods are identical in fetch-

ing the data blocks containing qualified records.

We now outline the execution steps for the locat index mechanism after an IP receives a user query and is

ready to dispatch its instructions to the APs:

1. The IP broadcasts a message to every AP.

AP-1 AP-2 cverines. AP-10

Tid | Sid [State Tid | Sid [State Tid | Sid | State ﬂ
b 1:001| S001 | CA 2:0011 S002 | CA 10:001} S010 | SD
ata
Table 1:002 | S011 | CA 2:002 | 8012 | NY 10:002] $020 | CA
1:003 | S021 | TX 2:003 | s022 | ca 10:003| s030 | cA
1:004 | S031 | CA 2:004| S032 | TN 10:004| S040 | CA
1:005| S041 | TN 2:005| S042 | cA 10:005] S050 | OR
1:006 | SO51 | FL 2:006| S052 | NY 10:006] S060 | TX \
e T — 4 i ——— —_—
State | Tid list State | Tid kst State | Tid list
CA | 1:001, 1:002, CA | 2:001, 2:003, CA |10:002, 10:003
Local 1:004, ... 2:005, ... 10:004,
Index FL 1:006, NY | 2:002,2:0068.] | ... | ...
Fie | .. | o OR {10:005, ..
™ 1:005,
TN | 2:004, ... SD | 10:001
TX | 1:003, ... X | 10:006,
— % —t — T —

Figure 2. Local Index Built on a Non-Partitioning Attribute

Each AP receives a message sent from the IP. The total cost is N*/_.

Each AP starts a task to examine its local index to find the qualified TupleIDs. Assuming the
index structure is a B-tree with m entries in an index block, then the height of the B-tree is
approximately log,,(D;) for D; distinct values in node i, and we need about log, (/) comparis-
ons to do binary search within an index page. Thus, the total cost for this step is:

N*1 o + N*1,*logy (m)*10g,(D;).
Each AP retrieves the qualified records through the TupleIDs found in the above step. The
cost to process a single record is: /; for initiating a disk 10, —;-logz({RB H*I, for an average

cost in using binary search for a tuple within a memory page buffer holding {Rp} tuples, and

Inove for moving the qualified tuple to an output buffer. Hence, the total cost to process

{R(K)} tuples is {R(k)}* |14 + %1082({1?3})*1;, ¥ Linovel -

All the APs terminate their tasks and synchronize at the end. The total cost is: N*/,,,,,, + N*/_.

Summing the costs in the above steps, we obtain the total cpu pathiength consumed when the local index

is employed:

Tocat = 2N* + N* (Ugyapy + o) + N*Ip*_logl(m)*logm(Di)

+ (R(k)}*| g+ %1082({133})*1,9 + Imove

Figure 3 draws the control flow for the execution steps using the local index mechanism. The numbers in

parentheses represent the execution steps, as described above, during processing.

/ User Query
Interface (1)' .o o o
Processors l
Af & A1 |a Af | a @4

Access :
Processors (3)I (5 (3)1 (5) (3 (5) 3) 5] o ® e

® C)) @ @)

isks | . \L/
DSk \% =1 M=k
N U U

Figure 3. Exccution Steps Using Local Index

3.2. Distributive Index Mechanism

As we demonstrate above, no matter how few data records qualify for the predicate condition, all nodcs
must participate in execution of the query when a local index is used. This situation causes a significant
waste of system resources when a node participates in execution, but later retrieves no tuples from its data
portion. This waste occurs because starting a task, terminating a task, and searching the index files

together consume a non-trivial amount of resources {Cope88] [Ghan92]. The waste can be relatively

large for short-running OLTP (On-Line Transaction Processing) transactions, thereby Ieading to poor sys-
tem performance, when the number of qualified records is fewer than the number of nodes. For instance,
in the previous Student relation spread over a 10-node parallel system, assume there is only one student

from South Dakota. When the query
SELECT * FROM Student WHERE State = *SD’;

is executed through a local secondary index on "State” attribute, all nodes will be involved in the process-
ing. Upon completion, however, only one node will return rows, while all the other nodes perform fruit-

less work and retrieve nothing.

As can be seen, the local index mechanism is not effective in the above case. An efficient way to limit
the number of nodes involved is to partition the index rows horizontally based on the index values. Like
the way a relation is declustered, we can apply either a range partition or hash partition to distribute the
TuplelDs in the index rows, based on index values [Cope88] [Tera88]. That is, all the TupleIDs of the
tuples with same index value are bundled together and stored in a single node, i.e., there is only one index
row for each distinct index value in the entire system. We refer to this index method as the distributive
index mechanism. When the index is not the partitioning attribute of a relation, this mechanism normally
causes TuplelDs in index rows to be saved into nodes different from the ones on which their data records
reside. To clarify the difference between local and distributive index methods, we again use the Student
relation saved in a 10-node system, and use "Studentld” as the partitioning attribute as an example. Fig-

ure 4 shows a distributive index built on the "State” attribute.

With the distributive index, a query referencing a non-partitioning attribute is first sent to a single node.
This is because the IP can compute, based on the known partitioning strategy, and find the exact AP con-
taining the index row having a specified value. This AP locates the TupleIDs of all quatified records, then
transmits only to those APs containing the qualified records. The APs which do not contain qualified
records are not involved in the execution and are free for other work. As an example, the query to find all
students from South Dakota is first dispatched from an IP to AP-1 to locate the TupleIDs of all the stu-
dents from state ‘SD’. Since there is only one student, the only TuplelD identified in the index file will
direct the query to AP-10 to obtain the qualified record. Nodes AP-2 through AP-9, thus, do not partici-

pate in the query execution.

For the distributive index mechanism to be effective, the key is not to have every node involved in

Data
Table

Distri-
butive

Index

File

processing. To make this happen, the number of nodes N (k) holding {R (k)}} qualified records meeting a

condition k£ must be less than the number of nodes N in the configuration. In [Hu93], we find the relation-

AP-1 AP-2
Tid Sid State Tid Sid State
1:001 | SO01 CA 2:001] 8002 | CA
1:002 | SO11 CA 2:002 | S012 NY
1:003] S021 | TX 2:003 | S022 | CA
1:004 | S031 CA 2:004| S032 | TN
1:005 | S041 X 2:005] S042 | CA
1:006 | SO51 FL 2:006| S052 | NY
—_________.___,_.--—'--...______'-, ’________——-‘——-______—
State | Tid list State | Tid list
AZ 6:088, 2:119, CA | 1:001, 1:002,
1:004, ..., 2:00},
KY 5.029 2:003, 2:005,..
..... 10:002,
NY {2:002, 2:006,
Sb 10:001 8:512,
TN 2:004,
. —y.

.......... AP-10

Tid | Sid | Sate
10:001| 010 | SD

10:002 020 | CA

10:003| $030 | CA

10:004| S040 | CA

10:005] $050 | OR

10:006| S060 | TX

[SN S |
State | Tid st

FL |1:006, 3:037,

OR | 4:086, 10:005

TX | 1:005, 7:717,

-

Figure 4. Distributive Index Built on a Non-Partitioning Attribute

the execution steps required for the distributive index mechanism:

1. The IP sends a message to the index-designated AP.

2. The index-designated AP receives the message and starts a task to locate the TupleIDs of the
qualified records. Suppose cach AP has approximaiely D/N index tuples, the total cost is

Io + Lgpap + Ip*logZ(m)*logm(D/N)-

3. The index-designated AP locates and moves the TupleIDs to the output message queue, then
sends them to the N (k) nodes holding qualified records. Afterwards, this index-designated AP
terminates its task and synchronizes. The cost is (/,+ v)* (R(K)} + [N k) + IJ*IC +1

ship between these three parameters as: N (k) = N*{ 1.0 - [1.0 - 11’

{R(K}}
. In

the following, we detail

term-

4. The APs containing qualified records receive the message and move the TuplelDs out of the
input message queue. Each then starts a task within itself to be ready to fetch data records.
The total cost is N (XY, + N (k)Y L0y + Lngve *{R(K)}.

5. The APs retrieve the qualified records through the identified TupleIDs. The total cost to pro-
cess {R(K)} tuples is the same as for step 4 of the local index mechanism, ie.,

(ROG)* |1+ 21082 (Re 1 + L

6. All the involved APs terminate their tasks and synchronize at the end. The total cost is:
N (kY 1 erm + N (k)*1.

Summing the costs for the above steps, we obtain the total cpu service demand when the distributive

index is employed:

i, = [NG +2)41, + [N(k)+ 1]*(I,m,,+1,,m) (1 + 2yone)* (RO}

+ Ip*logg(m)*logm(%) + {R(. k)}*[fd + %logZ({RB})*Ip + L oove

Figure 5 draws the control flow of the execution steps using the distributive index for a given condition.

The numbers in parentheses represent the execution steps, as described above, during processing.

4. Unified Index Approach

We explain the rationale for proposing the unified index mechanism, then give the execution steps with

performance costs specified.

4.1. Rationale

So far, we have shown that both local index and distributive index can yield good performance under cer-
tain situations. The local index mechanism is an effective altemative to the full file scan by performing
index access in parallef on all nodes. Although the use of a local index involves all APs in execution, it
limits the number of data blocks and tuples 10 be processed by the APs. However, when the number of
qualified records is not large and not all nodes contain qualified records, the distributive index mechanism

should be employed such that only those APs containing qualified rows are engaged in execution, hence

User Query

Interface (1)I _ e o o o
Processors l
P
) T{S) 4) A
Access A 4
Processors '—J (6} tee
5)
© AT T
DlSkS v é/ v * o o0
N A N i

Figure 5. Execution Steps Using Distributive Index

leading to no waste of system resources from those APs which do not hold qualified records.

As described earlier, data skew effects are intrinsic and inevitable in real-world databases. A ubiquitous
fact is that some values for an attribute occur more frequently than the other values. The distributive
index can perform well for those values having few record occurrences, while the local index can do well
for those values having more record occurrences. Neither index mechanism, however, can perform well
for all the values in a single index. Moreover, database contents change quickly in a dynamic environ-
ment. Afier many inserts, an index value which initially has few records so that a distributive index
operates well may come to have 100 many records. If we still have a distributive index, it not only will
cause index-TuplelD placement skew (i.e., many TupielDs in the index row), but also will cause extra
communication overhead in sending/receiving messages. Therefore, we believe that a fixed mechanism
on a shared-nothing parailel system is not sufficiently robust for real-world circumstances. We suggest a
robust index mechanism which incorporates both local and distributive mechanisms concurrently in a sin-

gle index. We refer to this as the unified index mechanism.

The key to the unified index mechanism is to adapt to the well-performing index, either local or distribu-

tive, in a dynamic database with skewed distributions expected. That is, a unified index assumes a hybrid

-10-

form, with both local and distributive methods concurrently existing in a single index. In a unified index
file, there exist two subfiles: namely a distributive index subfile and a local index subfile. In the distribu-
tive index subfile, there exists exactly one row for each distinct index value. Each index row contains the
index value followed either by TupleIDs or a special value like "@@", but not both. If it contains
TuplelDs, the regular distributive index is utilized for this index value; if the special value "@@" is
found, the local index is employed for this index value. In the local index subfile, all values with many
record occurrences have their index rows built locally. Those values which utilize the distributive index
do not appear in the local index subfile. To clarify this point, we again use the Student relation, saved in
a 10-node system using "Studentld" as the partitioning attribute, as an example. Figure 6 shows this

unified index built on the "State™ attribute.

4.2. Execution Steps

As each user query referencing a unified index comes in, the IP directs execution to the index-designated
AP by assuming a distributive method first. If the distributive method is really employed for the specified
index value, then the system proceeds identically as a distributive index. If the local index method is
actually employed, then the designated AP will find a special value such as "@@" to inform the system
that a local index is utilized for this value. Next the designated AP broadcasts an instruction to all APs to
cause the system to switch to proceed in the local index approach from this point. Similar to the analysis

for other index mechanisms discussed previously, we now detail the execution steps required for a unified

index mechanism:
1, The IP transmits a message to the index-designated AP.
2. The index-designated AP receives the message and starts a task to locate the index row in

the distributive index subfile. If the special value "@@" is found in the index row, then go
to step 7. Otherwise, proceed continuously to step 3. The total cost is
I + Lo + I, *log (m)*1og,, (D/N).

3-6. Steps 3 through 6 correspond to Steps 3 through 6 respectively as described for the distribu-
tive index mechanism.

7. The index-designated AP broadcasts a message to every AP, then terminates itself. The cost

isi. +1m.

-11-

Tid Sid Slate‘ Tid Sid | State Tid Sid [State
1:001 | S001 | CA 2:001| S002 | CA 10:001] S010 | SD
Data
Table 1:002{ SO11 | CA 2:002 | s012 | NY 10:002] s020 | caA
1:0031 8021 | TX 2:003 | s022 | ca 10:003| s030 | ca
1:004 | S031 | CA 2:004| s032 | TN 10:004] S040 | CA
1:005| So41 | TX 2:005| S42 | CA 10:0051 S050 | OR
1:006 | S051 | FL 2:006| S052 | NY 10:006) S060 | TX
State | Tid list) State | Tid list | State | Tid List
o AZ | 6:088, 2:119, FL | 1:006, 3:037,
Distri-
butive KY OR
Index | ... } ... || P IN {200 || | ...
Subfile | SD TX
State | Tid list State
CA | 1:001, 1:002, CA
Local 1:.004,
index NY | 1:128, 1:407, NY
Subfile — L e
TX | 1:006, 1:286, .. TX | 2:093, 2:124, .. TX
"-.._.—-—" e R,

Figure 6. Unified Index Built on a Non-Partitioning Attribute

8-11. Steps 8 through 11 correspond to Steps 2 through 5 respectively as described for the local

index mechanism.

The above execution steps show that a unified index mechanism does not incur any extra overhead, when
compared with the distributive mechanism for a particular value, if it tumns out to actually use the distri-
butive one. Compared with the local mechanism for a value with more record occurrences, the unified
index mechanism incurs an overhead because the index-designated AP must bear extra communication
work, task startup and termination costs, and an additional search in the distributive index subfile. The

total overhead cost for this case is:

Islarl + Ilerm + 2*1c + lp*logZ(m)*IOgm(D/N)

-12 -

Compared with the index values for a fixed index mechanism improperly applied, the overhead brought
by the unified index approach is more than offset by the savings in the proper and adaptive use of the

well-performing mechanism. We can verify this point using simulation experiments.

5. Simulation Experiments and Results

In order to evaluate the effectiveness of the unified index approach, we established a modeling study to
compare the performance of the three index mechanisms. Since the analytical model has difficulty in pre-
cisely modeling the fork-synchronize (also called fork-join) operation required for parallel executions, we
chose the simulation approach in our modeling study. In turn, we describe the performance model with
queuneing network specified, simulation experiments having numerous parameter values, and experimen-

tal results with different workloads.

5.1. The Performance Model

We evaluate system performance in a multi-user environment. The query used in our study is a simple

Select statement to retrieve records through a secondary index built on a non-partiioning attribute:;
SELECT column_name FROM relation WHERE index = :input_value;

The provided index value (i.e., input_value) determines the number of the qualified records {R (k)} based
on the data distribution of a relation. Since the above query, a typical on-ling retrieval transaction, nor-
mally has a very short response time, we follow the standard OLTP benchmark and utilize system

throughput as the primary performance metric for our evaluations [TPC90].

To better reveal the relative throughput of various index mechanisms, we employ a closed queueing net-
work model with a batch workload [Lazo84]. The batch workload is usually characterized by a fixed
number of active jobs (or Multi-Programming Level) with zero think time. Figure 7 illustrates the simu-
lation queueing model for executions utilizing the local index mechanism. While keeping track of the
Multi-Programming Level (MPL), the IP supplies transactions and directs all the APs to retrieve records
for a given index value. When an IP broadcasts a query under the local index methed, the query is actu-
ally split (or forked) into a number of sub-queries equal to N, the number of access processors in the sys-
tem. Each sub-query ris an independent job in an individual AP gueueing model. As shown in Figure 8
for a typical AP node, a sub-query cycles between the CPU queue using the CPU, and the Disk queue

using the disk. In an AP node, while the disk is modeled as a service center with FCFS (First-Come-

-13-

First-Served) service discipline, the CPU is modeled as a round-robin service center with time slice set to
3 milli-seconds. We also compute the memory hit ratio for a data relation, then determine whether or not
a data page is memory resident. If a data page is not in memory, a disk access in random mode is neces-
sary to bring in the data block. When a sub-query finishes its work within an AP, it moves to the "Syn-

chronize” node, where it waits for all its siblings to complete.

AP-1 -
het
~ o AP2 o
o
e =
> o AP‘3 -
- o
=
-~ lan
N
4

AP-N

Figure 7. Queucing Model for Local Index Mechanism

from
Interconnect

to Interconnect

Figure 8. Queueing Model for a Typical AP Node

Figure 9 depicts the simulation queucing model for executions using the distributive index mechanism.

_14 -

The IP first passes the query to the index-designated AP, which then splits the query into a number of
sub-queries equal to N (k), the number of access processors containing the qualified records. The sub-
queries are sent in turn by the index-designated AP to only those APs involved in the processing. Later,
only those APs, not all the APs in the system, travel to the "Synchronize" node to wait for their sibling
sub-queries to finish. Our simulation queueing models closely follow the execution steps of their index
mechanisms. Also, in a separate analysis, we found that on-the-wire interconnect bandwidth is definitely
under-utilized for our workload, allowing us to ignore it. However, the to-wire and from-wire communi-
cation costs are included as processor work. Moreover, we simplify the IP as a delay center because there
is no requirement to have an IP in a parallel database system [Hu93}]. In one sense, our model is simple
and may yield optimistic results, but we use it only for predicting the relative throughput of the different

index methods.

Smch-

AP-1 > ronize
> AP-2 » yes

3 > > AP-3 =Qne ?
o no

Figure 9. Queueing Model for Distributive Index Mechanism

-15 -

5.2. Simulation Experiments

We employed the CSIM package, a proceés-oriented discrete-event simulation package for use with C
programs [Schw90], to develop our simulation program. Although simple yet sufficient, the CSIM has a
library of routines which implement all of the necessary operatioﬁs. Because it is process-oriented, it pro-
vides a good simulation environment for parallel programs. Our simulation program is outlined in
[Hu93]. In our experimenis, the values of the performance parameters, chosen to be representative of
high-performance technology available today [Cope88] [Dewi90] [Ghan92], are: 500,000 tuples in rela-
tion R; Rows of 200 bytes long each saved in 4-Kbyte blocks; N = 32 nodes in the system; 4 MIPS rating
for each CPU; 3 megabytes data buffer space per AP; 25.93 milli-seconds for a disk block access in ran-
dom mode; I, = 2000 instructions for processing a tuple; /. = 2000 instructions for sending or receiving a
message; I, = 4000 instructions for initiating a disk 10; I,,,,,. = 4000 instructions for moving a tuple; /;,,,
= 5000 instructions for starting a task on an AP; /1,,,,, = 10000 instructions for terminating a task on an

AP; and m = 200 entries in an index block.

The experiments were performed on a Sun Microsystem’s SPARCstation SLC rated at about 12.5 MIPS
with 16 mega-bytes main memory space. Limited by available system resources, we set N = 32,
representing a medinm-sized configuration. Each data point, simulating thousands of transactions, ran
long enough to achieve a stable system performance. We obtained the system throughput by excluding

both initial and final transients.

5.3. Experimental Results

In order to justify the existence of each of the altemative index methods, we choose three workloads for
this performance evaluation. In the first case, we have a workload of single job class with all jobs retum-
ing a small number of tuples such that only a small subset of nodes will hold the qualified records. In the
second case, we have a workload of single job class again with every job returning a large number of
tuples so that all the nodes must get involved. The third case is a mixed workload with some jobs retriev-
ing few tuples and others selecting many rows. In fact, all the jobs come from the query defined in Sec-
tion 5.1. The number of tuples returned is determined by the data distribution of an attribute. While the
single job class workload implies a uniform distribution, the mixed workload case typifies a real world

situation, i.e., an uneven data distribution for a given index aitribute.

In Figure 10, we present the system throughput as a function of thc multi-programming level with cach

-16-

query retuming 5 records. Since the number of qualified records, {R(k)} = 5, is much smaller than the
number of nodes (N = 32), only a small subset of nodes will contain the qualified records. The local
index always involves all the APs no matter how many records we may get for a given index value, hence
quickly saturating the system at low MPL degree. At an MPL of 5, the CPU for each AP is almost 100%
utilized, causing throughput to level off. As for the distributive mechanism, it calls only those nodes con-
taining useful records for operation, freeing other nodes for other work, thereby producing much higher
throughput. At a muiti-programming level of 80, the throughput for the distributive mechanism is five
times greater than that of the local mechanism. It is essential 1o observe, however, that the local index
actually outperforms the distributive index at very low multi-programming levels (MPL = 1 or 2). This
occurs because of a communication hot spot at the index-designated AP, which must send messages in
tum to all the involved APs. This hot spot effect is noticeable at low degree MPL in which only a small
degree in concurrency can be realized, leaving most nodes under-utilized with the distributive index
mechanism. Finally, the throughput for the distributive and the unified index methods is identical for atl
multi-programming levels since the unified mechanism actually adapts to the distributive strategy without

incurring any overhead for this workload.

Figure 11 shows the throughput for a single job class workload with every query retrieving 500 records.
With this workload, the number of qualified records, {R (k)} = 500, is much larger than the number of
nodes (N = 32). Almost certainly cach node holds some qualified records and is involved in the job
operation. This workload represents the best case scenario for the local index method and the worst for
the distributive index method. The distributive index has the index-designated AP identify the TuplelDs
of the retrieved records, then inform each AP individually. This approach not only incurs extra overhead
by notifying all the nodes, but also causes a communication hot spot, thereby slowing down the job
response time. Again, the local index quickly saturates the system with an MPL equal to 5, but sustains a
higher throughput than the distributive index for all the multi-programming levels. At MPL equal to 30,
the distributive index provides a throughput at 7.2 queries per second, while the local index doubles the
throughput to 14.2 queries per second. As for the unified mechanism, it maintains the throughput within
3% of that of the local mechanism. While the unified index has to search the index-designated AP first,
then switch to the local index mechanism to fetch records, the execution time for this workload in retriev-

ing 500 records is high enough to render the overhead insignificant.

In the third experiment, we employ a mixed workload with queries returning the following number of

records with equal chance: 0, 5, 10, 15, and 500 respectively. Since a difference in the number of tuples

-17 -

400 -
Distributive/Unified

300 —
Throughput

(in queries 200 _
per second)

100 —

0 - I T T T
-0 20 40 60 80

Multi-Programming Level

Figure 10. Throughput for Queries Retuming 5 Tuples (Single Workload)

retrieved implies a distinguishable amount of system resources consumed, we essentially have a mixed
workload with 5 job classes. Given the resource constraints, it is ime prohibitive to simulate every point
in a Zipf distribution. Therefore, we only selected 5 representative job classes in this experiment. The
" job classes of remuming 5 and 500 records were included since we knew their performance from the previ-
ous experiments. We observed that, in decreasing order, the frequency in a Zipf distribution quickly
drops with most index values having low frequency {or few records). In order to maintain the flavor of
the Zipf distribution, we included two job classes of retrieving 10 and 15 records to represent those index

values having few records.

The job class of returning zero records deserves some explanation. When a query retrieves nothing {(or
zero tples), it often means either wrong or non-existent input value has been provided. We decided to
include this case for realism because, for example, typing errors are commmon for most human beings, and
also because a user with little or no knowledge about the database contents may easily supply meaning-
less input values to the query. It should be noted that retrieving no row represents the best case scenario
for both distributive and unified index methods, since both involve exactly one node, the index-

designated AP, to quickly verify the non-existence of the input value. At the same time, retricving no

-18 -

15 Local (dashed line)
Throughput 10 —
(in queries
per second)
5
0 T | I

-0 10 20 30
Multi-Programming Level

Figure 11. Throughput for Queries Returning 500 Tuples (Single Workload)

row represents the worst case scenario for the local index, because all nodes are involved in searching

their own index files and none will find a qualified record.

The performance of the three index mechanisms for this mixed workload is presented in Figure 12.
While the fixed distributive index can quickly process the queries returning 0, 5, 10, 15 rows, it will per-
form poorly in processing the 500-row case. On the other hand, the fixed local index method may exe-
cute efficiently in retrieving 500 tuples, but it will waste system resources for other cases. Neither index
can work efficiently for all the cases in this mixed workload. As for the unified index mechanism, it actu-
ally adapts to the local mechanism when munning queries returning 500 tuples and defaults to the distribu-
tive mechanism for the others. Except at MPL equal 1 or 2, where the communication hot spot effect
impacts somewhat, the unified index mechanism provides the best performance for all other multi-
programming levels. At a multi-programming level of 30, for example, the unified index outperforms the
fixed local index by 53%, and betters the fixed distributive index by 73%. We want to emphasize the
significance of this result as various skew effects are inevitable in real-world applications. Whichever

mechanism performs best in the mixed workload is the real winner.

-19-

60— Unified
Throughput 404 / _ _.---""""""7TTTTTTm oo om oo e
Gnqueties | /e
Distributive
per second)
20 -
| I I |
-0 10 20 30

Multi-Programming Level

Figure 12. Throughput for Queries of a Mixed Workload (5 Job Classes)

6. Creation and Maintenance

In creating a unified index, the choice to use a local mechanism over a distributive one depends on the
number of record occurrences for a given index value. For a given set of values for the system parameters
N, L, I, Lgats Lieyms-.-, €1C., We can compute the frequency threshold using the formulas derived for /.,
and I;,;. For a given index value, the local mechanism should be employed if the number of record
occurrences having this value is larger than the frequency threshold; otherwise, the distributive mechan-
ism is utilized. Figure 13 gives a high level illustration of setting a frequency threshold 8 to separate the
two mechanisms for a unified index with Zipfian data distribution. It should be clearly pointed out that
the frequency threshold always depends on the efficiency of a system’s implementation. Besides, for a
given implementation, its threshold is not an absolute value true for any configuration. Instead, its value
should be determined relative to the size N of a system configuration, i.e., the number of APs. For
instance, 50 records have the same index value in a relation. For this particular index value, a distributive

index mechanism is good for a 100-node systemn, but bad for a 10-node system.

Once the frequency threshold is determined, a unified index can be created via a multi-phase operation.

220 -

Frequency

A
!
I\‘
l\‘
\\‘
N
Thres- S
.
hold |+ ..
3] ~.
\""--..__ Index
T Values
e Fe S —- .
Local Index Distributive Index

Figure 13. Zipfian Data Distribution on a Unified Index

We describe each phase as follows:

1. In phase one, since the data records are partitioned across all the APs, each AP must group
together the TuplelDs of the records having the same index value. For every index value,

there should be a counter to record its frequency within that node.
2. Inphase two, the system aggregates the total frequency for each index value.

3. Inphase 3, alocal index method is built for an index value with its frequency higher than the

computed threshold 6. A distributive method is used otherwise.

In a dynamic environment, there are many inserts, deletes, and updates to the database contents at a fast
speed. Apparently, a system needs to monitor the frequency for each index value whenever there is a
change affecting the index. A database system normally maintains a counter in the index row to track the
number of tuples having the same index value. For an index value with a local mechanism built, the sys-
tem needs to convert it into a distributive index when the number of record occurrences drops below the
frequency threshold. The index conversion involves these steps: (1) each AP sends the TupleIDs for a
given index value to the index-designated AP, (2) each AP removes its local index row for the given
value, and (3) the index-designated AP collects all the TuplelDs for the given index value, then sorts

them before writing to a distributive index row. Clearly, the conversion is an expensive and 10-intensive

-21-

operation since all the changes among all APs must be written to disks. With the Write-Ahcad-Logging
protocol normally implemented in a DBMS, the number of disk IOs required for the conversion is at least
2*N.

Figure 13 shows a single frequency threshold when an index is initially created. For an index value with
its frequency around the neighborhood of the threshold, it may convert from local to distributive when a
single record is deleted, then convert the other way around immediately when another record is inserted.
Although the index conversion occurs on the affected index value individually, too many conversions
back and forth can consume significant system resources. To circumvent this problem, we propose a
two-threshold-mechanism in which there are two frequency thresholds 81 and 82. The range between 81
and 02 is called as transition range. Threshold 01, which is the lower bound of the transition range, is
equal to the default threshold 0. Threshold 82, the upper bound of the transition range, has a value (about
20% to 50%) greater than 01, depending on the intensity of update operations. Figure 14 shows two
thresholds defined on a unified index.

MK

Index

Ol Transition 92 Number of Records
Range (Frequency)

Figure 14. Two-Threshold-Mechanism on a Unified Index

When the two-threshold-mechanism is employed in a unified index, an index value enters the transition
range when its frequency changes to fall between thresholds 81 and 82, Its index method stays the same
one as it enters the transition range. Its index method converts only when its frequency falls outside the
transition range and a different method is required by the system. We use the following example to illus-

trate the savings by the two-threshold-mechanism.

222

Example 1:

Assume a parallel system has its performance parameters as defined in section 5.2. For such a sys-
tem, we compute its frequency threshold to be 8 = 60. We therefore set 81 = 60 and 62 = 78 for the

unified index mechanism [Hu93].

By counting the disk 10s required for both data records and logging records, we estimate 3 disk 10s
for any insert/delete under a local mechanism, and 4 disk 10s for an insert/delete under a distribu-

tive mechanism.

Suppose a specific index value is initially based on a distributive mechanism with frequency at 59.
We now assume a hypothetical set of 100 insert/delete transactions (60 inserts and 40 deletes)
affecting this index value. The sequence of the transactions is: insert and delete altemnate in the first
20 operations, inserts only in the 2nd 20 transactions, deletes only in the 3rd 20 transactions, again
insert and delete alternate in the next 20 operations, and inserts only in the last 20 transactions.

After all the changes, the index value will have a local mechanism built for it.

If we employ the single threshold in the index conversion, we have a total of 41 conversions, and 20
transactions applied to distributive index and 80 transactions applied 1o local index. If we employ
the two-threshold-mechanism in the index conversion, we have only 3 conversions, with 80 and 20
transactions applied to distributive and local mechanisms respectively, since our two-threshold-
mechanism does not require a conversion until the second threshold is hit. While the single thres-
hold incurs a total of 2,944 disk 10s, the two-threshold-mechanism has only 572 disk 10s in total,

corresponding to a 80% reduction in disk block accesses.

7. Conclusions

In this paper, we have studied two conventional index methods, i.e., fixed local index and fixed distribu-
tive index, used with parallel database systems. We have demonstrated that both index mechanisms are
useful for certain indexes, depending on the number of qualified records, the size of a machine
configuration, and other system parameters. Due to the intrinsically skewed distributions of data in real-
world databases, some values for an index occur much more frequently than other values. Restricted by
their fixed index accesses, conventional index mechanisms are not sufficiently flexible to always yield

good performance.

-23-

To accommodate the inevitable skew effects, we propose the unified index mechanism which incor-
porates both local and distributive mechanisms concurrently in a single index. We have designed the
unified index file and provided the execution steps. As demonstrated by the simulation experiments, the
unified index mechanism can bring significant performance imbrovemcnts over a fixed local or a fixed
distributive index mechanism especially for mixed workloads caused by real world’s skewed distribu-
tions. We also have shown how to create and maintain the new index method using the two-threshold-

mechanism for a dynamic database environment.

In addition to performance improvement, another benefit of the unified index mechanism is its potentiat
for user-friendliness. For instance, Teradata’s DBC/1012 supports 3 fixed index mechanisms: local index
(or known as Non-Unique Secondary Index in Teradata’s terminology), unique distributive index (or
known as Unique Secondary Index), and non-unique distributive index (or known as Hashed Non-Unique
Secondary Index) [Nech86] [Tera88). These index options impose an extra burden on users in designing
their databases, which is difficult in a dynamic environment. Our unified index mechanism, employed in
this situation, would provide just one simple form for the Create Index statement for users. The actual
determination is made by the system, which adapts to either local or distributive mechanism to deal with
the skew effects. Furthermore, our unified index robustly adjusts to the proper method using the two-
threshold-mechanism in case of intense changes. In this manner, users need not worry over index tuning
in future maintenance. The ease in creation and maintenance implies that our new index mechanism
potentially affords a higher-level of user-friendliness. With the ever increasing cost of human manpower,

our unified index mechanism seems to point toward a more cost-efficient parallel database system.

8. References

[Bora90] Boral, H., W, Alexander, L. Clay, G. Copeland, S. Danforth, M. Franklin, B. Hart, M. Smith,
and P. Valduriez, "Prototyping Bubba, A Highly Parallel Database System", IEEE Transac-
tions on Knowledge and Data Engineering, Vol. 2, No. 1, 1990.

[Chri83] Christodoulakis, S., "Estimating Record Selectivities”, Information Systems, Volume 8, No.
2, 1983.

{Come79] Comer, D., "The Ubiquitous B-Tree", ACM Computing Survey, Vol. 11, No. 2, 1979.

[Cope88] Copeland, G., W. Alexander, E. Boughter, and T. Keller, "Data Placement in Bubba",
Proceedings of ACM SIGMOD International Conference on the Management of Data, 1988.

-24-

[Dewi90]

[Ghan92]

[Hu93]

[Lazo84]

[Nech84]

[Nech86]

[Schw90j

[Ston86]

[Tand88]

[Tera88)]

{TPC90]

[Zipf49]

DeWitt, DJ., S. Ghandeharizadeh, D.A. Schneider, A. Bricker, H.-1. Hsiao, and R.
Rasmussen, "The Gamma Database Machine Project”, IEEE Transactions on Knowledge and
Data Engineering, Vol. 2, No. 1, 1990.

Ghandeharizadeh, S., D.J. DeWitt, and W. Qureshi, "A Performance Analysis of Alternative
Multi-Attribute Declustering Strategies”, Proceedings of ACM SIGMOD International
Conference on the Management of Data, 1992.

Hu, R.-C., "Investigating Skew Effects in Shared-Nothing Paraile]l Database Systems”, Ph.D.
dissertation, Computer Science Department, UCLA, February 1993,

Lazowska, E.D., J. Zahorjan, G.S. Graham, and K.C. Sevcik, "Quantitative System Perfor-
mance: Computer System Analysis Using Queueing Network Models”, Prentice-Hall Inc.,
Englewood Cliffs, NJ., 1984.

Neches, P., "Hardware Support for Advanced Data Management Systems”, IEEE Computer,
Vol. 17, No. 11, 1984,

Neches, P., "Teradata Corporation Presents the Data Base Computer DBC/1012", Computer
Science Department Seminar, UCLA, May 1986.

Schwetman, H., "CSIM Reference Manual (Revision 14)", Microelectronics and Computer
Technology Corporation, Austin, TX., 1990.

Stonebraker, M., "The Case for Shared Nothing", IEEE Database Engineering, Vol. 9, No. 1,
1986.

Tandem Performance Group, "A Benchmark of NonStop SQL on the Debit-Credit Transac-
tion", Proceedings of the ACM SIGMOD International Conference on the Management of
Data, 1988.

Teradata Corporation, "DBC/1012 Data Base Computer Concepis and Facilities”, Teradata
document C02-0001-05, Los Angeles, CA., 1988.

Transaction Processing Performance Council (TPC), "TPC Benchmark B Standard
Specification”, August, 1990.

Zipf, G.K., "Human Behavior and the Principles of Least Effort” Addison-Wesley Publishing
Company, Reading, MA., 1949,

.25.

