Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

OPTIMAL WIRESIZING UNDER THE DISTRIBUTED ELMORE
DELAY MODEL

J. Cong April 1993
K. S. Leung CSD-930012






Optimal Wiresizing Under the Distributed Elmore Delay Model

Jason Cong and Kwok-Shing Leung®
Department of Computer Science
University of California, Los Angeles
Los Angeles, CA 90024

Abstract

In this paper, we study the optimal wiresizing problem under the distributed Elmore delay model. We show
that the optimal wiresizing solutions satisfy a number of interesting properties, including the separability, the
monotone property, and the dominance property. Based on these properties, we have developed a polynomial-
time optimal wiresizing algorithm for arbitrary interconnect structures under the distributed Elmore delay
model. Extensive experimental results have shown that our wiresizing solution reduces interconnect delay by
up to 51% when compared to the uniform-width solution of the same routing topolégy. Furthermore, compared
to the wiresizing solution based on a simpler RC delay model in [7], our wiresizing solution reduces the total
wiring area by up to 28% while further reducing the interconnect delays to the timing-critical sinks by up to

12%.
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1 Introduction

As the VLSI fabrication technology reaches submicron device dimension and gigahertz frequency, interconnect
delay has become the dominant factor in determining circuit speed [11, 23]. The analysis in [25] and {7
showed that in the conventional VLSI technology, interconnect delay is determined by the product of the
driver resistance and the total wire capacitance. As a result, the minimum interconnect delay is achieved when
the routing tree is an optimal Steiner tree with the minimum wire width for each segment (since it has the
minimum total wire capacitance). Therefore, conventional global and detailed routers aimed at generating
minimum-width Steiner routing trees using the least total wirelength [9, 18, 4]. However, as we reduce the
device dimension, the driver resistance becomes smaller and the wire resistance becomes larger, which results in
a much smaller resistance ratio (defined to be the ratio of the driver resistance versus the unit wire resistance).
In this case, the disiribuled nature of the interconnect structure must be considered, and minimizing the total
wire capacitance does not necessarily lead to the minimum interconnect delay. The impact of decreasing

resistance ratio in modern VLSI designs was discussed in details in [7].

Most existing work on performance-driven VLSI routing concentrates on optimizing the interconnect topol-
ogy of the routing trees for reducing interconnect delay. In {12], net priorities are determined based on static
timing analysis; nets with high priorities are processed earlier using fewer feedthroughs. In [17], a hierarchical
approach to timing-driven routing was outlined. In [20], a timing-driven global router based on the A* heuristic
search algorithm was proposed in building-block designs. In [6], a timing-driven global router was proposed to
minimize both the cost (i.e. the total wirelength) and the radius (i.e. the longest path from the source to any
sink) simuitaneously. Other cost-radius tradeoff methods were reported in [1, 3, 19]. Both the maximum per-
formance tree formulation in [5] and the A-tree formulation in [7] aimed at constructing a minimum wirelength
routing tree which has the shortest path connection between the source and every sink. Experimental results
showed that the algorithm in [7} can construct A-trees which are at most 4% within the optimal, and achieve
interconnect delay reduction by as much as 66% when compared to the best-known Steiner routing topology.
When the critical-path information is available during iterative timing-driven layout, the critical sink routing

approaches in {2, 15] reduce the delays to specified sinks substantially.

Although steady progress has been made in optimizing interconnect topology design for delay minimization,
there was very few work on wiresizing optimization for high-performance interconnect designs. In the past,
wiresizing was used only for clock nets as in the H-tree clock routing by Fisher and Kung [14], and in the
more recent works by Pullela, Menezes and Pillage [21] and by Zhu, Dai, and Xi [27]. Recently, Cong, Leung,
and Zhou first used the wiresizing technique for interconnect delay reduction of general signal nets [7]. They
developed an optimal wiresizing algorithm minimizing the delay in the upper bound delay model in a distributed

RC tree proposed by Rubinstein, Penfield and Horowitz [22]. In their delay model, the signal delay at any node



in a distributed RC circuit is estimated by

t = Y Ria (1)

all nodes k

where R; is the resistance between the source and the node k and ¢; is capacitance at the node k. This upper-
bound delay model was chosen in [7] because it simplifies the wiresizing optimization. However, the simplicity
of this delay model also results in several drawbacks. First, it provides only an upper bound of the worst-case
RC delay in the routing tree and does not distinguish the delays at different sinks. Therefore, it is impossible
to optimize the wiresizing solution to reduce the delays to the specific timing-critical sinks. Moreover, since
this model tends to over-estimate the delays at many sinks in the routing tree, it often results in unnecessary
over-sizing of many wire segments. Oversized wires not only occupy more routing spaces, but also increase
the mutual capacitance and inductance between different signal nets. Thus, there is a strong need to develop

optimal wiresizing algorithms under more accurate interconnect delay models.

In this paper, we study the optimal wiresizing problem under the distributed Elmore delay model [13, 22).
We have shown that the optimal wiresizing solutions satisfy a number of interesting properties, including the
separability, the monotone property, and the dominance property. Based on these properties, we have developed
a polynomial-time optimal wiresizing algorithm for arbitrary interconnect structures under the distributed El-
more delay model. Extensive experimental results have shown that our wiresizing solution reduces interconnect
delay by up to 51% when compared to the uniform-width solution of the same routing topology. Furthermore,
compared to the wiresizing solution in (7], our wiresizing solution reduces the total wiring area by up to 28%

while further reducing the interconnect delays to the timing-critical sinks by up to 12%.

The remainder of this paper is organized as follows: In Section 2, we present the general formulation of
the wiresizing problems under the distributed Elmore delay model. In Section 3, we study the properties of
the optimal wiresizing solutions. In Section 4, we present a polynomial-time optimal wiresizing algorithm.
Section 5 shows the experimental results obtained by our wiresizing algorithm. Section 6 extends our basic
wiresizing formulation to a more general case, and Section 7 concludes the paper with discussions of future

work. An extended abstract of this paper was presented in ICCAD *93 [8].

2 Problem Formulation

Assume that we are given a routing tree T’ implementing a signal net which consists of a source N4, and a set
of m sinks {N1, N2,--+,Nm}. A pode refers to the source, or a sink, or a Steiner node in T, and a segment
connects two nodes in T. Assume that {Ej, Ea,-- -, En} is the set of segments forming the tree T, where n is

the total number of segments in the tree. Notice that n is one less than the total number of nodes in the tree.

In order to model a routing tree as a distributed RC circuit accurately, a grid structure is superimposed on
the routing plane, and each wire segment in the routing plane is divided into a sequence of wires of unit length

as shown in Figure 1. (Adjacent grid points are unit length apart.) For each grid edge ended at u in the tree



T, we use a 7-type RC circuit to model the interconnect, where r, and ¢, are the unit interconnect resistance
and capacitance, respectively. We use ¢’ to denote the node capacitance at u. If u is a sink, c;, represents the
loading capacitance at the sink. If there is a via or bend at node u, it can also be formulated by intreducing a
small capacitance at the node u. For simplicity, we assume that c} is non-zero if u is a sink, and zero otherwise.
To correctly model the driver resistance, we introduce an additional node Ny and connect Np to Ny via an
additional segment with resistance R4 (the driver resistance). Since each grid point u is uniquely identified
with an incoming grid edge in the routing tree, we also use u to refer to that grid edge in the later discussions.
Given a grid point u, we use Des{u) to denote the set of grid points in the subtree rooted at u (excluding u),
and Ans(u) to denote the set of grid points {v|u € Des(v)} (again, excluding u). That is, Des(u) is the set of
“descendant” grid points of u, and Ans{u) is the set of “ancestor” grid points of u. Also, we use sink(u) to
denote the set of sinks in the subtree rooted at u, and C, to denote the total capacitance in the subtree rooted
at u (including both the wire capacitances and the sink capacitances). Furthermore, we use P(u,v) to denote

the unique path from u to v for any grid point u, v in the routing tree.
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Figure 1: A grid structure for the distributed RC interconnect model. (a} The layout of an interconnect tree
T with 3 sinks Ny, N3, and Na. {b) The corresponding distributed RC interconnect model of T. Each grid
edge in T connecting two adjacent nodes is modeled as a 7-type RC circuit containing a resistor of ry and two
capacitors of <& each, where u is the farther end of the grid edge from the source. Each sink has an exira
loading capacitance.

We assume that each wire segment has a set of discrete choices of wire widths {Wy, W, - Wi} (W <
Wi < --- < W,), and the wire width within the same segment does not change. This segment-based wiresizing
model resembles more closely to the realistic design style and reflects the actual technological constraint whete
arbitrary width variation within & segment is usually undesirable. Nevertheless, this segment-based formula-

tion can be generalized to handle the case where variable wire width is allowed within a segment, simply by



introducing artificial degree-2 Steiner nodes in the segment. Given a node u, we use w, to denote the width of
the grid edge u, and wg and Ig to denote the width and length of the segment E, respectively. Assume that a
unit-width .unit-grid-]ength wire has wire resistance rp and wire capacitance ¢o, then r, = =% and ¢, = ¢o - Wy

for any grid edge u.

In this paper, we use the Elmore delay model [13] as the objective function for delay optimization. Given
a distributed RC circuit tree T, the signal delay at a particular node N;, denoted as t(N;), is computed as
follows:

Ny = 3 -(%"+Cu) (2)

u€ P(Np.N,)

where the summation is taken over all the grid points on the path from the driver Ny to the node N;. An
elegant hierarchical algorithm was presented in [24] for computing the Elmore delay in any RC tree in linear

time.

2.1 Delay Minimization Formulation with Single Critical Sink

We shall first study the case where there is only one critical sink N; in the net. According to (2), the signal

delay ¢(N;) at N; under a given wiresizing solution W is:

¢
t(W) = 3 ru - (5 +Cu)
uEP(Ng,Ni)
Tg Cop- Wy
= Z E: . —-—2 -+ Z LTI Cu
ueP(Ny N)) uEP(No, M)
= 3 ro;o + RiCvg + Y. mu-Cy
wEP(N4,N:) wEP(N4 . Ny)
ro- ¢
= 3 °2°+{RJ-ZcQ+Rd-cD-Zwu}+
uvEP{NL N) ueT ueT
Z Ty - Z ¢y + Z Py - Z cl
wEP(NL N vEDes(u) ueP(N4,.Ny) vEsink(u)
o -
= E 02co+Rd-Zc;+Rd'Cn-Ewu+
u€P(N4 . N)) uegT ueT
w 1
ro€o- Z: E w—"+ro- Z 2 ¢ —
wEP(Ny NOvEDes(u) ° GEP(Ny Ni)vesink(u) u
Let
Ky = S ——r";"
UEP(N4 N}
K:z = Rd-ZCf,
ueT
Ks = R4-co (3)
Ki = ro-co
Ks = To



Note that K, K2, K3, K4, and K5 are all constants. Furthermore, let
{ 1 ifu € P(Ng,Ni) and v € Des(u)

0 otherwise

i

fl'(uv ?)

) . el if u € P(N4, N;) and v € sink(u)
gilwv) = { 0 otherwise

That is, fi(u,v) = 1 if and only if u is on the path from the driver to the critical sink N; and v isin the subtree
rooted at u. Similarly, g;(u,v) = ¢! if and only if u is on the path from the driver to the critical sink N; and v
is a sink in the subtree rooted at u. Then, we have:

Wy 1
W) = K1 + Kz + m-%m + K4~H§Tf;(u,v)-w—u + Ks-UUZETg,-(u,v)-I—U;. (4)

where u and v refer to the grid pointsin T.

Now, we shall transform the grid-based formulation into the segment-based formulation. We first extend the
definition of ancestors and descendants to the domain of segments. That is, Des(E) is the set of segments in
the subtree “rooted” at E (excluding E), and Ans(E) is the set {E'|E € Des(E')} (again, excluding E). Given
two distinct wire segments E and E’, for any grid edges u,u' € E, and v,v" € E', we have fi(u,v) = fi(u',¢').
Therefore, we use fi( £, E') to denote fi(u,v) when u € E and v € E' {provided that £ # E'). Similarly, since
Yeer 9iln, v) = 3 g7 gi(u, v) for any pairs of grid edges u and u' in the same segment E, we use ¢;(E) to

refer to 3, ¢7 9i(u, v) when u € E. Therefore, we can rewrite the last three terms in (4) as follows:

Ks-zwu = Kia'zfa-wa

weT EeT
Koo 3 Aiwn) 22 = K 3N w4 K 3 > Slwn) o
wo €T Wy E€T uweE B.E'€T.EZE' |ueEveE
= K T flwe) + Kae Y gl (B E)-EE
EeT uveE E.E'€T,E£E’ w
1
Ks - z gi(u,v) - — = ICs-Z{Zg,(u v): —-—}
uveT Wy ueT \veT
= Ks- Z g gl(E
EeT

where K3, K4, and K5 are constants depending only on the technology and interconnect topology as shown in
(3). Note that Kq-Y ger 2y ver fi(u) v) is a constant for a given routing tree because f;’s are independent of

the wiresizing solution. Therefore, our objective is find a wiresizing assignment W which minimizes:
w
(W) = Ks- 3 lg-we + Ka- D, e -lp fi(EE): w_i + K5 ) le-ai(B)-— (5)
EeT E,E'eT E£E’ EeT

Note that the first term minimizes the total wiring area of T. Moreover, a careful study of f;’s and g;’s reveals

that
fi{E1,E2) 2 fil Ev, Ey) if Es € Des(E3)
fi(Bv, E2) 2 fi(EY E2) if Ei€ Ans(E})

g:(Er) 9:(F}) if E, € Ans(E})

v

v



Note that given a routing tree and a specified critical sink Nj, all f;(E1, E2)’s can be precomputed and stored
in a two-dimensional n x n matrix before wiresizing optimization. Similarly, all g;(E)'s can be precomputed

and stored in a linear array.

2.2 Delay Minimization Formulation with Multiple Critical Sinks

Let sink(T) denote the set of sinks in 7. When there are several critical sinks of different priorities in the
routing tree, the previous formulation can be generalized to optimize:
W)= ).  A-TiW) (6)
Ni€sink(T)
where }; is the weight of the delay penalty to sink N;. The larger ); is, the more critical sink N; is. We

normalize A;’s such that 3-y ey Ai = 1. We can rewrite (6) as follows:

Z Ai - Ti(W)
N;€2ink(T)
= z /\i-t'Ca'ZIE-wE+
Ni€sink(T) EeT
i wE.l 1
Z MioKar Y IE-IE'°ﬁ(E,E)-w—E+ Z ’\""C5'Z'E'g"(E)'E_E
N, €sink(T) E,E'€T,EZE' Ni€sink(T) E€T
= Ka- ) lg-wg +
EeT
wgrs
Ka- I P L 4
4 Y Is-lp e { YA fs(E,E)} +
E E'eT . E£E' N.esink(T)
1
Ks - e ;g
509 l5 = { 2 A y(E)}
EeT Niesink(T)

Let F(E,E') = YN cpinkir) A - fi(E, E'), and G(E) = YN, esink(r) i * gi(E). Then, our new objective is to
find a wiresizing solution W which minimizes:
= ry . WE! . G(E) =
TW) = Ks -g;ts wg + Kq -E‘E'E;E#E’ lg lg - F(E,E)- 25 + Ks ;'5 G(E)- o= (D)
Again, K3, K4, and K5 are constants given in (3). Note that the objective function for multiple critical sinks
is very similar to that for a single critical sink, except that f and g in (5) are replaced by F’ and G in (7),
respectively. In fact, we can show that F" and G behave in the same way as f and g, since F and G are convex

combinations of f and ¢:

F(E\,E2) > F(E: EY) if E, € Des(E%)
F(Ei,E3) > F(E{ E2) if Ey € Ans(E}) (8)
G(E1) 2 G(EY) if E; € Ans(E})

Moreover, given a routing tree and the weights of the delay penalty to all the sinks, we can precompute the two-

variable function F and the one-variable function G by taking weighted sum of f;’s and gi’s. Since computing



each f; and g; takes O(n?) time {n is the number of wire segments in the routing tree), the computation of
F and G takes O(n®) time, and it can be carried out before the wiresizing optimization. Except that the
complexity of computing F and G is slightly higher than that of computing f and g, for all other practical
purposes, wiresizing optimization algorithm for multiple critical sinks behaves exactly the same way as that
for a single critical sink. In the remaining sections, we shall use the multiple-critical-sink formulation in our

wiresizing algorithms,
2.3 Combined Delay and Area Minimization

In general, wiresizing will reduce the signal delay but increase the wiring area. In many cases, we want to
minimize both the interconnect delay and the routing area, especially when the global routing solution is very
dense and mutual capacitance and inductance cannot be ignored. Therefore, we want to explore the tradeoff

between area and delay. This tradeoff can be formulated as finding a wiresizing assignment ¥ which minimizes
a - Area + (- Delay (9)

where a and 3 are constants.

This formulation is, however, captured by the general formulation in (7) since

a- Area + (3-Delay

= a- Y lg-wg + 8-T(W)

EeT
' 1
= (a+8Ka)- S lg-wp + BKa- Y. 15-1,3,-F(E,E')-%E— + BKs- Y lg-G(E)- —
EeT E.E'€T E£E' B EET wEe
wgt 1
= KZQZIEIUE'FK:; z IEIErF(E,E')w—E-{-K'stEG(E)EE

EeT E.E'€T.E£E’ EeT
where K% = a + 9Kz, K} = BK4, and K5 = SKs remain as constants. Therefore, we shall concentrate on

finding a wiresizing solution which minimizes the objective function in (7).

3 Properties of Optimal Wiresizing Solutions

In this section, we study several interesting properties of optimal wiresizing solutions, including the separability,
the monotone property, and the dominance property. These properties are very useful in the development of
the wiresizing algorithms in the next section. The proofs of these properties, in a more general context, will be

given in the Appendix.

3.1 Separability

Theorem 1 If the width assignment of a path P originated from the source is given, the optimal widlh assign-

ment for each subtree branching off P can be carried out independently. m]



Figure 2: A routing tree can be decomposed into a main path P from the source, and a set B = {1, Ty, , T}
of subtrees branching off the main path.

Figure 2 illustrates the separability, where the optimal width assignemnt for Ty, T3, - - -, Tm can be computed
independently if the width assignment of path P is given. We shall show later that the separability indeed

plays a significant role in the development of our polynomial-time optimal wiresizing algorithm.

3.2 Monotone Property

According to (7), we can see intuitively that wider wire widths should be used for segments near the source
(which minimizes the third term), and narrower widths for segments far away from the source (similar to a city
water-pipe system). In fact, this turns out to be a very general property of any optimal wire width assignment

. based on the Elmore delay model.

Definition 1 Given a routing tree T, a wiresizing solution W on T is a monotone assignment if wg > wg

for any pair of segments E and E' such that E € Ans(E").
Theorem 2 For any given iree T, there exists a monotone optimal widih assignment W*. ]

According to the monotone property, the optimal wire width assignment W* can be represented by a set of
“wavefronts” radiating outward from the source N4. Each wavefront defines the boundary where the segment
width decreases, as illustrated in Figure 3. These wavefronts do not intersect, except that they may touch each

others at the nodes in the tree, and all the segments enclosed between two wavefronts have the same width.

3.3 Dominance Property

Definition 2 Given two wire width assignments W and W', W dominates W' if for any segment E, the width

assignment of E in W is grealer than or equal to thai of E in w'.

Definition 3 Given a roufing tree T', a wire width assignment W on T, and any particular segment E€T, a
local refinement on E is the operation to optimize the width of E based on the objective function in (7), subject

to the fized assignmeni of W on the other segmenis.



Figure 3: The optimal wire width assignment can be represented by a set of wavefronts.

Note that when wg is the only variable in (7), we can rewrite (7) as:

1
TW) = A + Brwg + C- = (10)

Local refinement of £ in W can be obtained by minimizing (10) subject to the constraint W) < wg < Wi
Since coefficients A, B, and C can be computed in O(n) time, and minimization of (10) can be carried out in
constant time, a local refinement operation takes O(n) time, where n is the number of segments in T. With
definitions 2 and 3, we can derive the following theorem which is very useful in the development of a fast

wiresizing algorithm in the next section.

Theorem 3 Let W* be an optimal width assignment. If a width assignment W dominates W*, then any local
refinement of W still dominates W*. Similarly, if a width assignment W is dominated by W*, then any local
refinement of W is dominated by W*. a

The separability, the monotone property, and the dominance property were shown to be true for the optimal
wiresiz-ing solution under the upper-bound delay model in [7]. The results in this section show that these three
properties are also true for the more complicated distributed Elmore delay model. In fact, these properties also

hold in other general delay models as long as the F' and G functions satisfy (8).
4 Wiresizing Algorithms

4.1 Optimal Wiresizing Algorithm

We first introduce the notion of a single-stem tree used in the following discussion. A single-stem tree is a tree
with only one segment (called the stem segment of that tree) incident on its root (see Figure 4(a)). We use

SST(E) to denote the single-stem tree with stem E.

According to the separability, once E and every segment in Ans(E) are assigned the appropriate widths,



the optimal wire width assignment for the single-stem subtrees SST(E.1), SST(E.z2), - -+, SST(Ex) of the tree
SST(E) (with respect to the width assignment of E and segments in Ans(E)) can be independently determined,

where the segments E,, -, E are the children of E.

Assume we are given a single-stem tree with stem £, and a set of possible widths {W, Wy, -, W, }, we
can determine the optimal assignment W* on T(E) by enumerating all the possible width assignments of E.
For each of the possible width assignment Wy of E (1 < k < r), we determine the optimal assignment for
each single-stem subtree SST(E;) (1 < i < b) of SST(E) independently by recursively applying the same
procedure to each SST(E.;) with {Wy, Wa, -, W,} as the set of possible widths (to guarantee the monotone

property). The optimal assignment for E is the one which gives the smallest total delay.

If the original routing tree T is not a single-stem tree, however, we can decompose T into b single-stem trees,
where b is the degree of the root of T, and apply the algorithm to each individual single-stem tree separately
(see Figure 4(b)). The Optimal Wiresizing Algorithm under the Elmore Delay Model (OWSA/ED) is formally
described in Table 1. In the algorithm, W(E) and W(SST(E)) denote the wire width assignment of E, and
the wire width assignments of segments in the single-stem subtree with stem E, respectively. All segments in

the minimum-width assignment have width Wy.

— PootNade

Il
»
4
.
\‘

- 2nd SS-Sublree

(@) (b)

15t 85-Subtree

Figure 4: (a) A single-stem tree consists of a stem and a set of single-stem subtrees. In this example, E is the
stem of the single-stem tree SST(E), and SST(E.;) and SST(E.2) are the single-stem subtrees of SST(E)
(E.; and E. are the children of E). (b) Any general tree T can be decomposed into a set of independent
single-stem trees.

Theorem 4 Given a routing tree with n segments and r possible wire widths, the worst case time complexily

of OWSA/ED is O(n").

Proof: First, assume that T is a single-stem tree. Let N(n,r) be the mazimum number of calls to OWSA/ED
among all possible single-stem routing trees with n segments and r possible choices of wire widths. For n = 1,
or ¥ = 1, it is easy to see that N(1,7) = 1 and N(n,1) = 1. Consider a general n-segment single-stem tree

with b single-stem subtrees connected to the stem. Assume that the #** subtrees has n; segments. For each

10



Optimal Wire Sizing Algorithm under Elmore Delay (OWSA/ED)

Function SST_OWSA/ED(SST(E), W, monotone)

/: Given a single-stem subtree SST(E) with stem E, a partial wire width assignment W

(where the width assignments of the segments in SST(E) are not specified), the index
monotone which sets an upper bound Wponotone of segment widths in SST(E) due to
the monotone property, and a set of possible wire widths {Wy, Wa,--- W}, return W
which includes the optimal wire width assignment of SST(E) under the distributed Elmore
delay model subject to the fixed width assignments of ancestors of E.

* A W

*/

Whest +— W,
Woiest(SST(E)) — minimum-width assignment;
for each width Wi, W) < Wi € Whonotone do
W(E) — Wi;
for each single stem subtree SST(E,;) of SST(E) do
W(SST(E)) — SST.OWSA/ED(SST(Ex), W, k);
if delay(W) < delay(Whes) then
Whest — W,
end for;
return Wy.,;
end Function;

Function OWSA/ED(T)
/* Given a tree T and a set of possible wire widths {Wy, W, -, W, }, return the optimal
wire width assignment of T under the distributed Elmore delay model obtained by applying

Ny SST_OWSA/ED() to each single-stem subtree SST'(E;) of T.

W +— minimum-width assignment;
for each single stem subtree SST(E;) of T do
W(SST(E;)) — SST.OWSA/ED(SST(E;), W, W;);
return W,
end Function;

Table 1: The Optimal Wiresizing Algorithm under the Elmore Delay Model (OWSA/ED).

width assignment W; of the stem (2 < j < r), there are at most ZLI N(n;, j) calls to OWSA/ED. Hence, the

maximum number of calls to OWSA/ED would be at most 1+ .7 _, 3, N(n,j). In short, we can express

N(n,r) recursively as follows:

N(ﬂ. 1') < maxpeb<n—1,n1+ -+np=n~1 {1 + E;::z Zf’:l N(ni,j)} n,r> 9
| i ! n=1lorr=1

We proceed to prove that N(n,r) is bounded by n™~! using mathematical induction on n and r: For n =1,

we have N(1,r) = 1 < 1"~ for r > 0. For r = 1, we have N(n,1) = 1 < n!=! for n > 0. Assume that

N(k,7) < k™! forr > 0and k < K. Then,

r b
N(n;, )
N(I{+ 1,1‘) S 1 + b,n.>0.nl?f:}'{'+ﬂb=K {ZZ (n”J)}

j=2i=1

11
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By induction, N{(n,r) < n""! for any n and r.

If T is not a single-stem tree, however, we can consider T as a union of b single-stetn trees where b is the degree
of the root (see Figure 4(b)), and apply OWSA/ED to determine the optimal wire width assignment for each
single-stem subtree independently. The overall complexity is O™ ) +0ny™ )+ -+ O™l = O(n™ 1),
where n; is the number of segments in the " single-stem tree, and ELI n; = n. Each call to OWSA/ED
requires at most O(B - r - n) time (including linear time delay computation but excluding recursive calls to
OWSA/ED), where B is the maximum degree in the tree. Both B and r can be considered as constants (in the
Manhattan plane, B < 4, and r is a small constant in practice). Hence the overall complexity of OWSA/ED
18 O(n™). o

In essence, OWSA/ED enumerates all the possible combinations of monotone wire width assignments along
every source-to-leaf path in the routing tree'. The complexity indeed can grow exponentially with respect to
r (which is usually a small constant in practice). This is the case when the tree is simply a chain of segments,

where the total number of possible assignments evaluated by OWSA/ED equals to ( " ji; ! ) =Qn""1).

Nevertheless, our optimal wiresizing algorithm is a significant improvement over the brute-force enumeration
method which has complexity O(r*). In the next two subsections, we shall show how to further improve the
runtime of the OWSA/ED algorithm. Note that although we assume that each segment has the same set
of width choices {Wy, Wa,---,W,}, it is clear to see that the OWSA/ED algorithm can also handle the case
where each segment width wg has to satisfy a lower and upper bound constraint Wrgy < we < Wue)
(L(E) € U(E)). In fact, this general version of the algorithm will be used in the FOWSA/ED algorithm in
Section 4.3.

We would like to point out that a simple botlom-up dynamic programming approach, where the width
assignment of each subtree is determined independent of its ancestors, does not produce optimal solutions in
general. This is due to the fact that the optimal width assignment of any particular segment E depends on the
wire width assignment of both its descendants and ancestors. In fact, our experimental results indicate that

the wire width assignments generated by such an approach are in general relatively poor in quality.

1OWSA/ED, however, does not enumerate all the possible monotone assignments for the entire tree.
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Greedy Wire Sizing Algorithm under Elmore Delay (GWSA/ED)

Function GVSA/ED(T, Winit)

Given a tree T, an initial wire width assignment Wi, and a set of possible wire widths
{Wy, Wa, .-, W,}, return the greedy wire width assignment under the distributed Eimore
delay model.

*
#*
*/
W — Wini;
repeat
progress — false;
for each segment £ of T do
w +— local.optimal width(T, W, E);
if w £ W(E) then
progress «— true;
W(E) — w;
end if
end for;
until progress = false;

return W;
end Function;

Table 2: The Greedy Wiresizing Algorithm under the Elmore Delay Model (GWSA/ED).

4.2 Greedy Wiresizing Algorithm

In this subsection, we present a simple greedy approach based on an iterative refinement technique for efficient
wire width assignment, which allow us to achieve significant speedup of the optimal wiresizing algorithm
when we incorporate the greedy algorithm into the OWSA/ED algorithm: Starting with an initial wire width
assignment (say, all segments have the minimum width), we traverse the tree and perform a local refinement
on each segment whenever possible. This process is repeated until no improvement is achieved on any segment
in the last round of traversal. The Greedy Wiresizing Algorithm with Elimore Delay Model (GWSA/ED) is
described formally in Table 2, where local_optimal_width(T, W, E) is a function returning the local optimal

width of segment E in T (with respect to the rest of the width assignments in W).

Despite its greedy nature, GWSA/ED performs very well in terms of the quality of assignments and runtime.
Given a tree T with n segments, if we start with an assignment that is dominated by the optimal width
assignment W*, say the minimum width assignment, each iteration will generate a better assignment (closer to
the optimal) and still remain dominated by W*. Therefore, GWSA/ED will converge after at most n - (r — 1)
traversals. During each traversal, each segment is locally refined exactly once, and each refinement takes O(n)

time as shown in Section 3.3. As a result, the worst case complexity of GWSA/ED is O(n® - r).

Moreover, the dominance property suggests a strategy of using the GWSA/ED algorithm to compute the
lower and upper bounds of each segment width of the optimal assignment. If we start with the minimum-width

assignment where each segment has the minimum wire width (and is dominated by the optimal solution W*),
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the resulting assignment computed by GWSA/ED gives a lower bound of the optimal width for each segment,
since each intermediate assignment computed by GWSA/ED including the last one, is dominated by W*.
Similarly, if we start with the maximum-width assignment, the resulting assignment computed by GWSA/ED

gives an upper bound of the optimal width for each segment.

In most circumstances in our experiments, we are able to obtain identical lower and upper bounds of all

segments in the tree using the GWSA/ED algorithm, which lead to an optimal assignment.

4.3 The Combined Approach to the Wiresizing Problem

We have presented an Q(n”) time optimal wiresizing algorithm, and a fast O(n® - r) time greedy wiresizing
algorithm. It is not difficult to see that these two algorithms can be combined into a new algorithm which
guarantees the optimal assignment and runs extremely fast. The combined algorithm, called the Fast Optimal

Wiresizing Algorithm under the Elmore Delay Model (FOWSA/ED), is described as follows:

First. we obtain the lower and upper bounds W gy and Wy(g) of each wire segment E using the GWSA/ED
algorithm. Then, we run the OWSA/ED algorithm in Section 4.1 with lower and upper bounds on each segment
E such that Wigy < wg < Wy(g). Since the lower and upper bounds of each segment obtained from the
GWSA/ED algorithm are very close or even identical in most cases, the total number of candidate assignments
ever generated by FOWSA/ED algorithm is much smaller than that by the OWSA/ED algorithm alone. As a
result, the upper and lower bounds obtained by GWSA/ED help to speedup the optimal algorithm significantly.
Since in most cases the optimal wiresizing solutions are completely determined by the upper and lower wire
width bounds computed by GWSA/ED(i.e. Wy gy = Wy (g) for most segments E), FOWSA/ED is competitive

with GWSA/ED in runtime while it guarantees the optimality of the wiresizing solution.

5 Experimental Results

We have implemented the optimal OWSA/ED algorithm, the greedy GWSA/ED algorithm, and the combined
FOWSA/ED algorithm in ANSI C for the IBM-PC and Sun SPARC station environment. We have tested the
wiresizing algorithms on both the MCM and the advanced 1C technologies on signal nets of 4 and 8 sinks.
The MCM and IC technology parameters are summarized in Table 3. The IC technology parameters are based
on the 0.5um CMOS process provided by North Carolina Microelectronic Center (MCNC), and the MCM

technology parameters were obtained from [10].

5.1 Comparisons Between Different Wiresizing Solutions

We have compared our FOWSA/ED wiresizing solutions with the minimum-width solution (MIN), the maximum-
width solution (MAX), and the wiresizing solutions by OWSA based on the upper-bound RC delay model in

[7]. In our experiment, the set of wire width allowed is {Wy,2W;, 3W,,4W, }, where W) is the minimum width.
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[ Technology: | Integrated Circuits (ICs) | Multi-Chip Modules (MCMs) |

Driver Resistance: 156 2 25 Q
-Unit Wire Resistance: 0.112 /um 0.008 Q/um
Loading Capacitance: 1fF 1000 fF
Unit Wire Capacitance: 0.039 fF/um 0.060 fF/um
Total Area: 5mmxbmm 100 mm x 100 mm
(200 grids x 200 grids) (4000 grids x 4000 grids)

Table 3: Technology parameters based on advanced IC and MCM designs.

Hence, every segment in MIN has width W, and every segment in MAX has width 4W;. The placement of 100
4-sink nets and 100 8-sink nets were generated randomly and routed by the batched 1-Steiner algorithm([16].
For each Steiner tree, a critical sink is chosen randomly. The delay to the critical sink(s) and the total wiring
area of the different wiresizing solutions are compared. The signal delay is computed using the two-pole circuit
simulator developed by Zhou et al., which was shown to produce results comparable to SPICE in term of
delay simulation, but runs much faster [26]. Table 4 summarizes the averages of the delays and areas for the

d-sink and 8-sink nets used in different wiresizing solutions, based on the 1C and MCM parasitic parameters,

respectively.
IC Delay (ns) Normalized Wiring Area
# Sinks MIN MAX OWSA FOWSA/ED | OWSA FOWSA/ED
4] 0238 0497 (+109.01%) 0.224 (-5.88%)  0.220 (-7.42%) | 1.2745 1.2422
8| 0.327 0.706 (+116.00%)  0.300 (-8.05%) 0.288 (-12.01%) | 1.3599 1.2719
MCM Delay (ns) Normalized Wiring Area
# Sinks MIN MAX OWSA FOWSA/ED | OWSA FOWSA/ED
4| 7.906 7.250 (-8.18%) 4.777 (-39.57%) 4.391 (-44.50%) | 2.3677 1.8565
8| 13.899  11.860 (-14.67%) 7.671 (-44.82%) 6.750 (-51.44%) | 2.3762 1.7214

Table 4: Comparisons of the average delay (in nanoseconds) and normalized wiring area among different
wiresizing algorithms. The normalized wiring areas for MIN and MAX are 1.0000 and 4.0000, respectively.

We can see from Table 4 that our wiresizing solution reduces interconnect delay by up to 51% when compared
to the minimum-width solution (MIN) of the same routing topology. Furthermore, compared to the wiresizing
solution obtained by OWSA, our wiresizing solution reduces the total wiring area by up to 28% while further
reducing the interconnect delays to the timing-critical sinks by up to 12%. Although area minimization was
not considered here, one can use the combined delay and area objective shown in Section 2.3 to achieve delay

and area tradeoff in wiresizing optimization, which will be demonstrated later in this section.

5.2 Effects of Multiple Critical Sinks

We have studied the effect of multiple critical sinks on the overall quality of the wiresizing solution by
FOWSA/ED as compared to the minimum-width solution and the solution obtained by the OWSA algo-

rithm in [7]. Figure 5 shows the different wiresizing solutions for a typical Steiner routing tree under the MCM
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technology. The width assignments of the trees are obtained by the following ways: {a) using the minimum-

width solution (MIN); (b) by OWSA based on the upper-bound RC delay model(7]; (c) by FOWSA/ED with

a single crifical sink X; (d) by FOWSA/ED with a single critical sink Y; (¢) by FOWSA/ED with two critical

sinks X and Y; (f) by FOWSA/ED with all sinks being critical. The delay and the normalized wiring area are

shown in Table 5.

. 7

N,
X X X {¢ritical)
J Y (a Y ) Y (@
* {critical)
{critical)
N, !
X X (critical)
e
(critical)
*—] {critical
¥{critical) (d) ¥ (critkcal) () ¥ (critical) n

Figure 5: Different wiresizing solutions obtained using the following algorithms: (a) the minimum width; (b)
by OWSA based on the RC delay model; {c) by FOWSA/ED with a single critical sink X; (d) by FOWSA/ED
with a single critical sink Y; (€) by FOWSA/ED with two critical sinks X and Y; (f) by FOWSA/ED with all

sinks being critical.

FOWSA/ED FOWSA/ED FOWSA/ED FOWSA/ED
Comparison MIN OWSA (X eritical) (Y critical) (X, Y critical)  (all critical)
0(X) (ns) | 9619  5.824 " 4.560 6.310 ~ 4945 *5.008

t(Y) (ns) | 12.117  6.773 8.116 * 6.141 * 6.651 " 6.715
HXHUY) (o) | 10.898  6.299 6.338 6.226 5.798 5.862
t(ALL) (ns) | 8.962 5611 5.762 5.638 5.331 5.222
Normalized Area | 1.0000  2.3267 1.4554 1.7525 1.5050 1.5941

Table 5: Comparisons (delay and normalized wiring area) among wiresizing assignments obtained by different
algorithms (with MCM technology). Numbers with an asterisk (*) are critical delays. t(X) and t(Y) are the
delays at X and Y, respectively, and t{ALL) is the average delay to all sinks.

This experiment shows that FOWSA/ED outperforms OWSA in terms of both delay and wiring area
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reduction even in the presence of multiple critical sinks. Comparing Figure 5(c), Figure 5(d), and Figure 5(e),
we can see that FOWSA/ED assigns wider widths only to segments along the critical path(s), and at the same
time try to minimize widths of other segments. In general, when the number of critical sinks increases, delay
to each sink (such as t(X) and t(Y)) increases, but the average delay to the critical sinks (such as %ﬁ)
decreases. Furthermore, comparison between Figure 5(b) and 5(f) reveals that the OWSA algorithm, which uses
the upper-bound RC delay model, indeed tends to over-size wires: even when every sink is critical, FOWSA/ED

still gives smaller delay and wiring area than the OWSA solution.

5.3 Tradeoff Between Area and Delay Minimization

We have studied the tradeoff between area and delay minimization. In our experiment, the same set of 8-sink
MCM signal nets (with the same critical sink as chosen before) in the previous subsection is used, and the
average areas and average delays under different area/delay tradeoff are compared. Instead of choosing a pair
of fixed & and 3 for all the interconnect structures, we used a scaled objective

o Area + Delay
OptArea OptDelay

in our studies, where @ and 2 are fixed constants with « + 8 = 1, and OptArea and OptDelay are the
optimal area and optimal delay, respectively. Note that OptArea and OptDelay are constants for a given
interconnect structure. The use of the scaled objective avoids the problem of choosing a different pair of a
and 3 in (9) for each interconnect structure. The comparisons are shown in Figure 6, where a smooth tradeoff
between area and delay optimization is observed. Notice that the two ends of the tradeofl spectrum are the

optimal wiresizing solution (& = 0, 8 = 1) and the minimum-width solution (e = 1, 3 = 0), respectively.

6 Extension

In actual layout designs, interconnects are often routed using more than one layer, and each layer may have
different parasitic characteristics. As a result, unit wire resistance ro and unit wire capacitance ¢g are different
for segments in different layers. In this section, we will extend our wiresizing algorithms to cope with this

preblem.

Assume there are a total of M possible routing layers. We represent the values of the unit wire resistance
and unit wire capacitance of the I** layer by ¢f - ro and ¢ - co, respectively. In other words, ¢f and ¢f are
the scaling factors of the unit wire resistance and unit wire capacitance of the I*# layer with respect to some
reference wire resistance (rg) and wire capacitance (co). Segments in the {** layer has a discrete set of choices
of wire widths {W] Wi, - "W:(r)}- Civen an interconnect tree T routed in M layers, our objective is again to
compute the optimal wire width assignments of all the segments in T to minimize the weighted delay to the

critical sinks as in Section 2. Notice that when there is only a single layer, M = 1 and ¢{ = ¢f = L.

We can carry out a similar sequence of simplifications and transformations as previously done. Given a
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Figure 6: Tradeoff between area optimization and delay optimization as captured by the combined objective

function o - Uf%t% +43- ;ﬂelz " with @ + # = 1: (a) normalized wiring area as a function of a; (b)

normalized delay to the critical sink as a function of a.

segment F routed on the k** layer, we define layer(E) = k, ¢"(E) = ¢f, and ¢°(E) = g;. It is casy to see that

our new objective is to find a wiresizing solution W which minimizes:

TOV) = Ka-3 1 o*(B) we + Koo 3 lp-lp - F(EB)-q'(E)-¢(E) —= +
E€T E,E'€T,E£E wE
1
Ks- > ie-G(E) ¢'(E) o= (11)
EeT WE

6.1 Separability, Monotone Property, and Dominance Property

We can show that the separability and the dominance property can be directly extended to the generalized
wiresizing problem. However, to generalize the monotone property, we need to properly extend the definition

of monotone assignment:

Definition 1 {Generalized Monotone Assignment} Given a routing tree T, a wiresizing solution W on T is
a monolone assignment if wg > wgs for any pair of segmenis E and E' in the same routing layer with

E € Ans(E").

In essense, monotonicity is maintained within each routing layer. With this extension, we can show that

the following three theorems in Section 3 still hold (the proofs of which are given in the Appendix):

Theorem 1 (Separability) For the generalized wiresizing problem, if the width assignment of a path P origi-
nated from the source is given, the optimal width assignment for each subiree branching off P can be carried

oul independently. . ]
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Theorem 2 (Monotone Property) For any given iree T routed in multiple layers, there ezisis @ monotone

optimal width assignment W*. a

-

Theorem 3 (Dominance Property) Let W* be an opiimal width assignment for the generalized wiresizing
problem. If a width assignment W dominates W*, then any local refinement of W still dominates W*. Similarly,
if & width assignment W is dominated by W*, then any local refinement of W is dominated by W*. m]

6.2 Extended Wiresizing Algorithms

With the generalized separability and monotone property, we can extend the OWSA/ED algorithm properly to
handle multiple routing layers. In the original OWSA/ED algorithm, the separability guarantees the correctness
of a dynamic-programming-like assignments of wire widths, while the monotone property is used to Lmit
the search space. We can extend these ideas to the construction of the generalized OWSA/ED algorithm,
named EOWSA/ED, as follows: Instead of passing the index of the maximum allowed width (monotone) as
a parameter as in the recursive call to FOWSA/ED, we pass an array of indices of maximum allowed widths
(monotone[l..M]) as a parameter to EOWSA/ED. The I** element in the array is the maximum allowed width
for the [*® layer, which is used to enforce the monotone requirement in all layers. It should be clear that when

M =1 (a single layer), EOWSA/ED is the same as OWSA/ED.

On the other hand, the GWSA/ED algorithm can be used to handle multiple routing layers without any

change, except replacing the objective function (7) by (11).

Again, we can combine the optimal algorithm and the greedy algorithm to get a wiresizing algorithm
which guarantees the optimality of the assignment solution and runs extremely fast. The new algorithm,
called the Extended Fast Optimal Wiresizing Algorithm under the Elmore Delay Model (EFOWSA/ED) is
constructed from EOWSA/ED and EGWSA/ED in exactly the same fashion as FOWSA/ED is constructed
from OWSA/ED and GWSA/ED. The optimal EOWSA/ED algorithm, the greedy EGWSA/ED algorithm,
and the combined EFOWSA/ED algorithm are described in Table 6-8, respectively. As before, W(E) and
W(SST(E)) denote the wire width assignment of £, and the wire width assignments of segments in the single-
stem subtree with stem E, respectively. In the minimum-width assignment, segments in the I** layer has width

wl.
6.3 Combined Delay and Area Minimization

Although the same delay/area tradeoff formulation in (9) can be generalized to handle multiple wiring layers,
it is no longer captured by the generalized delay formulation in (11). Instead, we have the following combined

formulation:

a-Area + §-Delay
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Extended Optimal Wire Sizing Algorithm under Elmore Delay (EOWSA /ED)

Function SST_EOWSA/ED(SST(E), W, Wiswer, Wupper, monotone[l..M])
/*  Given a single-stem subtree SST(E) with stem E, a partial wire width assignment W
*  (where the width assignments of the segments in SST(E) are not specified), the lower-

*  bound width assigment Wiouer. the upper-bound width assigment Wypp.r, the array
: monotone[l.. M) of indices which sets an upper bound menommm of segment widths
. 1N SST(E) for each layer I {1 <1 < M) due to the monotone property, and a set of
,  Possible wire widths {W{, Wj, .-, W/} for each layer { (1 <1< M), return W which
4  includes the optimal wire width assignment of SST(E) under the distributed Elmore delay
] mode! subject to the fixed width assignments of ancestors of E.

| — layer(E);
Wiest +— W;
Whest(SST(E)} +— minimum-width assignment;
for each width Wi, Wipuer(E) < Wi < min{W), . ;on.py) Wapper(E)} do
W(E) — Wy
monotone[l] — k;
for each single stem subtree SST(E,;) of SST(FE) do
W(SST{E.;)) — SST_EOWSA/ED(SST(E ), W, Wiswer, Wupper, monotone[l.. M]);
if delay(W) < delay(Wh.s:) then
Wiess — W,
end for;
return Wi..:;
end Function;

Function EOWSA/ED(T, Wiswer, Wupper)
/: Given a tree T, the lower-bound width assigment Wigwer, the upper-bound width assigment
. Woepper, and a set of possible wire widths {W], Wi, ..., W:(, } for each layer i {1 < { < M),
return the optimal wire width assignment of 1" under the distributed Elmore delay model

:/ obtained by applying SST_EOWSA/ED() to each single-stem subtree SST(E;) of T

W — minimum-width assignment;
for each single stem subtree SST(E;) of T do
for each 1 <!{< M do
monotone[l] — r(l)
W(SST(E;)) +— SSTEOWSA/ED(SST(E:), W, Wiower, Waupper, monotone[l.. M]);
return W;
end Function,

Table 6: The Extended Optimal Wiresizing Algorithm under the Elmore Delay Model (EOWSA/ED).

= {a- > ig-we + ﬂfcs-ZlE-q°(E)-wE} +

EeT EeT
e T loola£(B) (B FEE)
E,E'€T,E£E' wE
BKs- Y g G(E)-¢"(E)
EeT
Fortunately, it can be shown that optimization under this objective satisfies the separability, the monotone

wg

property, and the dominance property. As a result, we can still apply the EFOWSA/ED algorithm to compute
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Extended Greedy Wire Sizing Algorithm under Elmore Delay (EGWSA /ED)

Function EGWSA/ED(T, Win::)
/* Given a tree T, an initial wire width assignment Wi,i,, and a set of possible wire widths
. (Wi, Wi, -, W:(l)} for each layer { (1 < 1 < M), return the greedy wire width assignment
Wy under the distributed Elmore delay model,
W — Wini;
repeat
progress — false,
for each segment £ of T do
w «— local optimal width(T, W, E);
if w £ W(E) then
progress — true;

W(E) — w;
end if
end for;
until progress = false;

return W;
end Function;

Table 7: The Extended Greedy Wiresizing Algorithm under the Eimore Delay Model (EGWSA/ED).

xtended Fast Optimal Wire Sizing Algorithm under Elmore Delay
(EFOWSA /ED)

Function EFOWSA/ED(T)

/: Given a tree T and a set of possible wire widths {Wf,Wé,---,W:(,)} for each layer !
(1 < 1 < M), call EGWSA/ED() to find the lower-bound and upper-bound wire width

*
. assignments, and then return the optimal wjre width assignment under the distributed
« Elmore delay model obtained by calling EOWSA/ED() with the lower-bound and upper bound

./ information.

for each segment £ € T do

[ — layer(E);

w!ower(E) At Wll:

Wepper (E) — W,E(;);
end for;
Wiower +— EGUSA/ED(T, Wlower);
Wapper — EGWSA/ED(T, Wupger);
return EONSA/ED(T, Wiower, Waugper );

end Function;

Table 8: The Extended Fast Optimal Wiresizing Algorithm under the Elmore Delay Model (EFOWSA/ED).

the optimal wiresizing solution which gives the best tradeoff between area and delay.
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7 Conclusion and Future Work

The results in this paper have shown convincingly that proper sizing of the wire segments in a routing tree can
lead to significant reduction in the interconnect delay. Although the Elmore delay model is more complicated
than the upper-bound delay model used in [7], our study has shown that optimal wiresizing under the dis-
tributed Elmore delay model can still be achieved in polynomial time very efficiently when the separability, the
monotone property, and the dominance property are used to prune suboptimal wiresizing solutions. The use
of the distributed Elmore delay model successfully avoids the over-sizing problem in [7] and leads to additional
reduction of the delays to the timing-critical sinks. We have further extended the problem formulation to
handle wiresizing in multiple routing layers, and proved that the separability, the monotone property, and the
dominance property are still valid in the generalized formulation. As a result, the general wiresizing problem
for multiple routing layers can also be solved efficiently.

Allowing variable-width routing considerably complicates the global and detailed routing steps in VLSI
layout design. The focus of our research in the next step will be on the development of channel routers and
general area routers which can generate compact routing solutions of non-uniform wire width. Furthermore,
our currently wiresizing algorithm optimizes each routing tree independently. It will be of practical interest
to develop efficient wiresizing algorithms and detailed routers which can take into consideration the mutual

capacitance and inductance between different routing trees.
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Appendix

We shall prove the Separability, the Monotone Property, and the Dominance Preperty for the multi-layer wire-
sizing problem, in which different physical routing layers have different resistive and capacitive characteristics.
The corresponding properties for the original wiresizing problem stated in Section 3 (with uniform unit wire
resistance rp and unit wire capacitance cg), being a special case when the number of routing layer is one, can

be derived once we have established the proofs of the general case.

1 Separability

Theorem 1 For the generalized wiresizing problem, if the width assignment of a path P originailed from the
source is given, the optimal width assignment for each subiree branching off P can be carried out independently.
Proof: Let P be a path originated from the source, and B = {T1, T2, - Tm} be the set of subtrees branching

off P (as illustrated in Figure 2). To simplify the notations, we define:

ME)

Ka-lg -¢°(E)
wW(E,E") = Ka-lg-lg F(E,E) q(E) -¢°(E)

v(E) Ks-lg G(E) ¢ (E)

We then rewrite (11) as a function of the subtrees in B and the path P:

3 ME)-we + Z{ZA(E).WE} +

EcP beB LEeb
S WEE) = 4+
E.E'€P.ELE we
l wE
}:{ S WEE) } Z{ Y wuE.E) wE}+
beB { E€b.E'EP beB | EcP.E'€b
wgs wEi
Y8 OY wEE)_ o+ D Y. REE) ==} +
seB | E,E'ch, E£E’ £ s0eByab | Ech E'ed! E
1
S
EcP wE beB \Eeb WE
We define:
Hpy = S ME)-ws + 3, MEF) =+ 3 vE) -
EEP E.E'cP,EZE' EeP
w wge
HP,:;(b) = ZA(E)WE + Z p(E’E’) we + Z P(E,E')‘F +
Ech E€b,E'€P,ERE’ WE EcP.E'€bEZE" E
wEg
wer EY. ——
Y WEE) =+ Y vE):

E,E'eb,EZ£E' Eebd
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We then have:

wg

T = . =
(W) MHpi + 3 Hpa(d) + 3 { > u(EE) _— } (12)

beB bbeBbzd | Egb Eed
where Hp is 2 constant because it depends only on the width assignment of the path P. For any b € B,
Hpo(b) is a function whose only variables are the widths of the segments in the subtree b (assuming that the
segment widths in P are given).

Given two segments E € b; and £’ € b; such that i # j, we have F(E, E') = 0 and hence pu(E, £} = 0 (see
definition of F(E, E') in Section 2.2) since £’ is not a descendent of E. Therefore, the third term in (12) is
zero, and we conclude that:

T(W) = Hp1 + 3 Hpa(b) + 0 = Hey + D Hpa(b)
beB teB
Since the contribution from each subtree & to the summation is independent of each other, T(W) is optimized

if and only if for each b € B, Hp2(b) is optimized. Separability follows as a consequence. a

2 Monotone Property

Theorem 2 For any given tree T rouled in multiple layers, there exists a monolone optimal width assignment

W,

Proof: Assume that the monotone property fails for a tree T, that is, all the optimal width assignments
are not monotone. Then for any optimal assignment W*, there must exist two edges E and E; such that
layer(E,) = layer(E2) = 1, E1 € Ans(E2), and wg, < wg, (see Figure 7(a)). Note that ¢"(E1) = ¢"(£2) = qf
and ¢°(E)) = ¢°(E;) = ¢f. Since W* is optimal, the increase in the cost function when we change the width of

E, in W* from wg, to wg, (see Figure 7(b)) is:

ATW"/Ey : wg, — wE,)

‘LD,E;1 — WE,

= Ka-lg, ¢f - (wg, —wg,) + K4~ z lg, lp - F(E', E3) - qi -q1 - p— +
E'cAns(E3) E
noe ¢ (WE  WE
Keo > plp-F(Ep,EN-qf qf (== ——=) +
E'eDes(E;) YE WEa
2
1 1
Ks-lg, -G(Eq)-qf - (— —
s-lg, - G(E2) - qf (’wm wE:)
> 0

Moreover, the increase in the cost function when we change the width of E; from wg, to wg, (see Figure 7(c))
is:
AT(W*/E; : wg, — wg,)

= KS"E]."I?'(WEQ*wEl)'{'K‘i' z ,ExlIEF(E’vEl)QIqIC
’ E'€Ans(E,)

wg, — WE,

weg

+
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we: +
Ke- S Ip, -l F(ELE) ¢ qf - (=2 - ZEy 4

w w
E'e€Des(Er) Ea By

1 1
“Ks -1g, -G(E1) - q7 - (

wWE, wg,

AT(W*/E;:wg, —~wg,)

AT(W* /Esiw g, — : .
(W /Bswg,—wey) with — 2} term-by-term and use the properties of the F

IE; 'El

If we compare

El E2
Root Noda
(a)
Wf E2:0g— Of; / z \ E W/ El:0p— @p
E1 E2 E1 E2
()] (©)

Figure 7: (a) If the monotone property fails for an interconnect tree T, for any optimal assignment W*, there
must exist two edges Ey and E- such that layer(E)) = layer(Ey) = I, E1 € Ans(E3), and wg, < wg,; (b) The
width assignments obtained by replacing the width of Ey with that of £y; (b) The width assignments obtained
by replacing the width of E; with that of E.

and (7 functions in (8), we have:

Ks-qf - (wg, —wg,) = Ka-qf - (wg, —vwE,)
Koo S lw FELE) o o SEE < Ky 3 g F(ELE)-f g =R
E'€Ans(Ea) E E'€Ans(E1) E

we: we: r we: wee
Ks- 3 ’E"F(EzlE’)'q{-qf‘(w—-—wE < Koo Y lE“F(EI:E’)"h'QF‘(T—‘wi
E'¢Des(E3) 2 Ea E'eDes(Ey) £y £a

Ks - G(Es) -4} - (—— = =) < K G(EY) - qf (o — —)

5 2)-q wg,  wg, - 5 1) q we,  w,

Summing up the inequalities, we have:

AT(W*/E, : wg, — wg,) < _AT(W‘/E1 twp, — WE,)
Iz, g,

{
= ATW*/E, : wg, — wg,) < -f* . AT(W"/E; : wg, — wg,) < 0
E

2

Therefore, the delay T(W") will be reduced if the width of segment E, is increased from wg, to wg,, which

contradicts to the assumption that W* is already optimal. m]
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3 Dominance Property

Theorem 3 Let W* be an optimal width assignment for the generalized wiresizing problem. If a width assign-
ment W dominates W*, then any local refinement of W still dominates W*. Similarly, if a width assignment
W is dominated by W*, then any local refinement of W is dominated by W*.

Proof: Define

(W, E)

I

Ka- E g -q"(E’)-wEf +
E'¢T-{E}
wEu

Ky - Z lge - lgu qr(Ef) _qc(Eu) . F(E', E”) wer
E! EveT={E},E'#E" WE:

Ko Y leGE)-q(E) ——
E'eT—{E)} we!

— 1
®W.E) = Ka-lg-¢°(E) + Ks- D gl F(E'\E) ¢ (E') ¢"(E) —
E'eAna(E) WE

OW,E) = Ki- 3 lg-lg-F(EE) ¢ (E) ¢"(F) -wer + Ks-lg-G(E) ¢ (E)
E'¢Des(E)

We can then rewrite (11) as follows:
T(W) = YW, E) + ®(W,E) wg + e(w,‘E‘)-w—: (13)

Since ¥(W, E), ®(W,E), and @(W, E) are independent of wg, they are considered as constant for local
refinement of E. Minimizing (13) gives the local refinement wg of segment E. Notice that for any pair of
wiresizing solutions W and W' such that W' dominates W. We have ®(W,E) > ®(W',E) and O(W,E) <
oW’ E).

Let wj be the width for segment E in the optimal assignment W*. We have:

YW, E) + ®W,E) -ug + e(w,f)-:‘}% < YW, E) + ®W,E) wg + e(w,E)-—l_— (14)
Wg

Since w} is also the locally optimal width assignment for edge £ with respect to the rest of the width

assignment in W*, we have:
1

— _ — 1 —_ _ a
¥W*,E) + ¢W"E)-up + OW',E) — < ¥(W',E) + W, E) v + oW, E) - = (13)
E

Summing up (14) and (15), we obtain:

1A
<

wg w;:-,-

{®(W,E) — oW E)} - {ws - wi} + {@(W,E)—e(w*,f)}.{_}__ 1 }
= {CD(W,E‘-)—@(W',"E_) . 8 E) - W, E)

WE - W

b i) < o

If W dominates W*, we have $(W, E) < ®(W*, E) and e(W* E) < ©(W, E), and therefore wp — wi > 0
(i.e. the refinement of W still dominates W*). Similarly, if W* dominates W, then W* dominates the local

refinement of W. d
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