Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

RELATIONS + REDUCTIONS = DATA-PARALLELISM

V. Austel March 1993
R. Bagrodia CSD-930009
M. Chandy

M. Dhagat

Relations 4+ Reductions = Data-Parallelism*

Vernon Austel™, Rajive Bagrodiat, Mani Chandy** and Maneesh Dhagat*

Abstract

The thesis of this paper is that a data-parallel language can be designed around two
concepts: relations and reduction operations. There is a wealth of literature on the
theory and implementation of relational database languages. Many parallel machines
provide hardware support for reduction operations (such as summing all elements of
an array}, and these operations are widely used in parallel scientific computing. Our
claim is that a data-parallel language can be created by coupling well-tested ideas
on relations with well-tested ideas on reduction operations. This paper contains a
description of a data-parallel extension of C based on these ideas. The extension, called
UC, has been used for a variety of applications. UC compilers are available for the
Connection Machine CM-2 and for sequential workstations. Compilers for the CM-5
and for multicomputers (such as networks of workstations and the Intel Paragon) are
being developed. This paper expands on its central thesis, describes UC and presents
performance measurements comparing programs written in UC with programs written
in CM Fortran, C*, and =Lisp, executing on the CM-2.

+Computer Science Department, UCLA, Los Angeles, CA 90024

**Computer Science Department, Caltech, Pasadena, CA 91125

*This research was partially supported under NSF PYI Award No. ASC-9157610, ONR
Grant No. N00014-91-J-1605, Rockwell International Award No. L911014, and Rome Lab-
oratories Contract No. F30602-91-C-0061.

Contents

1 Introduction

1.1 Relations
1.2 Reduction
1.3 Data-Parallelism
1.4 Paper Overview
2 UC Constructs
21 IndexSets
22 Reduction
2.3 Parallel Assignment
2.4 Sequential Execution
2.5 Asynchronous Execution
2.6 Fixed-point Computation
2.7 Parallel Functions
2.8 Data Mappings - ..

3 Performance

4 Examples

4.1 Graph Reachability
4.2 Matrix Multiplication
4.3 Stable Marriage
4.4 Simulation of Mosquito Control . . .

4.5 Diffusion Aggregation in Fluid Flow
5 Related Work
8 Implementation Notes
7 Conclusion

A Programs for Reachability

......................

......................

ENEN N JUR I S

oo oo =1

11
11
12
13

16

17
17
18
19
19
22

25

27

28

a3

1 Introduction

The central theme of this paper is that a data-parallel language can be constructed by
coupling well-tested concepts about relations with well-tested concepts about reduction
operations.

1.1 Relations

There is a wealth of literature on relational databases. Here, we summarize the tiny bit
that we need to describe our ideas. A relation is a table in which each row is unique, and
in which each column las a type (eg. integer, string. float) and a name. All entries in
a column are of the type specified for the column. A relation may have a key which is a
column such that each row has a unique entry in the corresponding column. For example, a
table of employees may have the social security number as a key. A relation may be ordered
by giving an ordering on keys.

A linear array A of type T, indexed by 7, 0 < i < N.is a relation with two columns: the
first is an integer indexr which is the index into the array, and the second, value, has type
T. The index field is the key of the relation. There are N rows in the table, and there is a
row in the table where the index field is i. and the value field is A[z], for all i. The relation
can be ordered in increasing order of index. Indeed, the relation can be stored as an array,
with an implicit index field.

Similarly, a sparse linear array is a relation in which there are rows with index field
i and value field Afi] for only non-zero values. Multi-dimensional arrays are relations, in
which the keys are tuples of all the indices. Sets of points, particles, vertices, or employees,
can be represented as relations.

Relations can be implemented in a variety of ways. If the key of 2 relation is a tuple of
integers or characters, then the relation can be stored as a multi-dimensional array, with one
dimension for each field of the key. This array can be very sparse, in which case a hashing or
linked-list implementation is more efficient. A user can suggest an implementation scheme
to the compiler by providing a program annotation. :

Array Notation for Relations Conventionally, we refer to element 7 of an array A as
A[4]. We would like to use the same notation if array A is sparse, and is stored as a relation
with two columns: index i and nonzero value A[z], where the index is the key. In this
case, A[i] is the non-key data of the relation A in the row with key 7. This suggests that,
given a relation employee with key social.security_number, we should refer to an employee
with social security number 111111111 as employee[111111111]. This is merely a notational
convenience, and does not impiy that the implementation of the employee relation requires
1,000,000,000 locations. In general, the row with key k in a relation R is denoted by (¥, R[Kk])

where R[k] is the non-key data.

Sparse Arrays A one-dimensional sparse matrix A with non-zero values for A[2} = 3 and
A[150]= 5 and zeros elsewhere can be stored as a table with rows {2.3) and (150,5). Now,
if we lookup the table for key 6. and don’t find it. we conclude that A{6] = 0. To use array
notation for an arbitrary relation we have to define the meaning of R[k] if there is no row
in relation R with key k.

For each relation R we define a zero element, and the value of R[k]is the zero element of
the relation if there is no entry in the relation with key . So, if we have no employee with
social security number m then emplovee{m] = zero_employee. where zero_employee is the
zero value defined for the relation emplovee. The introduction of zero elements for relations
allows us to treat arravs (particularly sparse arrays) and relations using a uniform notation.
If a zero element is not specified. a default zero element is assumed: for example, as the
default zero element. numbers {integers and floats) have the value 0, characters have the
value ‘a’, and strings have the empty string{*”}).

Relations can also be manipulated using standard operators from relational algebra like
selection. union. difference and intersection. Some of these operators are described in the
next section. The reason for introducing array notation is to keep the relational notation
close to the notation used in scientific applications by programmers today.

1.2 Reduction
Quantification Quantification is used extensivelv in mathematics. For instance,
(VielI:0<i<3:cfij=0)

means that for all ¢ in set I such that 0 < i < 3, the equation cfi] = 0 holds. The notation
for quantification s extended to get reductions with associative. commutative operations
such .as sum (+) and product (*); for example:

(+iel:0<i<3:eli])=el0]+e[l] +e[2]

and
(xi€:0<i<3:efd])=e[0] e[l] *ef2]

For every operator op, we introduce an identity element unity such that, for all w,

w op unity = w

Parallel Composition The meaning of s par t. where ¢ and ¢ are statements, is execute
s and t in parallel. The precise meaning of parallel composition is not important at this
point, except that the parallel composition operator is associative and commutative.

The concept of reduction is extended to control flow operators such as the parallel
composition operator par, in the obvious way.

(pari€ [:0 <t <3: f(#)) = f(0) par f(1) par f(2)

where f(i) is a statement with parameter i.
For an arbitrary boolean expression b(i}, the meaning of

(par i € I:b(1): f(3))

's execute statements f(i) in parallel, for all 7 € I for which (i) holds.

Sequential Composition The meaning of s seq £, where s and { are statements and seq
is the sequential composition operator. is the program fragment s:f in C-syntax. i.e. $is
axecuted first, and after s terminates successfully {i.e.. without aborting) ¢t is executed. If s
does not terminate. or s aborts. then t is not executed.

For an arbitrary hoolean expression (i), and an ordered set [, the meaning of

{seqie T:b(z): f(1))
is given by the program fragment:
for (i € I if (b(1)) fo);

where the for-loop steps over all elements of the ordered set [starting with the smallest
and ending with the largest: for each . if b{¢} holds then f(i) is executed, otherwise that
value of i is skipped.

For example. if [is the ordered set of integers 0..N, A is an array of integers indexed
0..N.and sum is an iateger. then:

sum = 0: (seq i € I: A[{]>0 : sum = sum + A[i]);

puts the sum of all positive elements of A in sum.

Dummy Variables Quantifications in mathematics distinguish the set over which the
quantification is being taken from the dummy variable of the quantification; for example

(+iel:0<i<3cli])

distinguishes the set I from the dummy variable ¢. For notational convenience, we associate
dummy variables with a set, for instance we associate dummy variable ¢ with set I, and we
shorten the notation for a reduction (op i € I : b(1): e(2)) to (op 1 : b(i) : e(1)) where the
dummy i € [is implicit.

In most of our examples, we use upper-case names for relations and sets, and the corre-
sponding lower-case for the dummy variables used to quantify over sets and relations. It is
possible to associate more than one dummy variable with a relation.

1.3 Data-Parallelism

In this section we give an overview of a language fragment that describes constructs for
manipulating relations and reductions. For specificity, we describe the fragment using C-
like syntax.

Declaring a Relation A relation is declared in a manner similar to a record {or struct).
The declaration is of the form:
relation name { non-keys } dummy [keys : maz.size s

The declaration consists of a name for the relation, an enumeration non-keys of the name
and type of each of its non-key fields, the name dummy of the dummy variable associated
with the relation, an enumeration keys of the name and type of its key fields, and mazx_size

the maximum size of the relation. (In future implementations. the max_size field need not
be specified.)

A relation. PIXELS. of at most N elements, with two non-key fields called color and
intensity, and two key fields 2 and y. and a maximum size of N where pirelsis the dummy
associated with the relation PINELS. is declared as follows:

relation PINELS { int color. intensity: } pixels{ int x, y:N |5
This relation can be used to store a set of pixels where z and y are the coordinates of the
pixel. The pixel at location (0.1) is denoted by pixels[0,1]; if there is no entry for key (0.1)
in the relation then pixels[0.1] is the zero element of the relation.

Alternately, the key can be specified as a struct which is a tuple of names:

struct position { int x. ¥ }:
and the relation declared as:
relation PIXELS { int color, intensity; } pixels{ position :N IE
Tn this case, if ¢ is declared and initialized as foilows:
struct position q = {0. 1}:
then pixels{q) is the pixel at location q.
Index-sets A relation that does not contain any non-key fields is referred to as an index-
set. Thus an index-set is a set of tuples, where the elements of a tuple are ordered, and the

tuples themselves are ordered lexicographically. The following declares index-set P with at
most 4 elements, and with dummy variable p associated with it, where the set is initially

{(0,0), (0,1), (1,0), (1.1)}.
index_set P:p[4] of position = {(0,0), (0.1}, (1,0), (1,1)};

P refers to the name of the index-set and p refers to an arbitrary member of the set. In
general, the declaration of an index-set must specify a name for the set, an identifier that
may be used to range over elements ‘0 the set, and the size of the set. Optional attributes
include the type of elements in the set (if omitted, this is assumed to be integer) and the
initial values of elements in the set {if the elements are listed, the size may be omitted).
The following statement declares an index-set I which consists of N integers from 0 to N-1.

index_set Iii = {0..N-1};

An index-set (or its subset) may also be used as a key to reference elements of a relation
‘n a reduction. For instance, the following fragment counts the number of elements in
relation pizels whose intensily is greater than some threshold d:

(+ p € P: (pixels[p).intensity >d): 1)

Reductions Cur syntax for reductions is a compromise between the syntax for quantifi-
cations in mathematics and C-syntax. A reduction:

{opiel:b(i):c(i))
is written as
Sop (I st (b{i}) i)

Here st stands for such that. Dummy variable i is declared to be associated with relation
I. For example. the sum of i * A[i] where the sum is taken over the positive elements of an
array A is

8+ (Ist (All] > 0)i = Afi])

If the st clause is true, it can be removed and a semicolon substituted as a separator:
$+4 (I st (true)i = Afi])

can be written as
$+ (I 1 = AliD

Selection on relations or index-sets can be implemented using the select operator in a
reduction. The following fragment selects even elements from index-set [and assigns them
to index-set J.

J = $select (I st {i%2 ==0)1)
A slightly different syntax is used for the control-flow operators par and seq.
(par i€ I:b(i):s(i))
where bfi) is a boolean expression and s(i} is a statement is written in our notation as:
par (I} st (6(¢)) s(z)
For instance, decrement all positive elements of array A by one is:
par (I) st (Afi] > 0) A[i} = Ali}-1;
The following fragment sets all elements of array A to Af0].

seq (I) st (i > 0) Afi}] = Afi-1];

Example We complete the overview with a simple example that is a data parallel imple-
mentation of the sieve of Eratosthienes used to identify the prime numbers in a sequence of
integers. Given a sequence of integers starting with 2, the algorithm is as follows: compute
the smallest integer in the sequence. say nezip. and mark it as a prime. Subsequently re-
move all multiples of neztp from the sequence. This is repeated until the sequence is empty.
The program is shown in figure 1. The reduction (line 9) computes the smallest element in
the sequence. If the sequence is empty, the reduction returns MAXINT (the unity value for
the minimum operator) and the loop terminates. The loop body marks nextp as a prime
number (line 7) and removes its multiples from the index-set (line 8).

6

1 main (void) {

2 int prime[N]; /* initialized to 0. prime[i] is set to L if i is prime */
3 index_set Iii = {2..N-1}: /* assume N > 2 */
4 int nextp = 2:

)

6 while {nextp < MAXINT) {

7 primefuextp} = 1;

3 I1=1- $select(I st (i % nextp == 0) i);

0 nextp = $<(; i)

10 }

11}

Figure 1: Sieve of Eratosthenes

1.4 Paper Overview

Our hypothesis is that the combination of relations and reduction is sufficient for a data-
parallel language for scientific and commercial applications. The language can be based on
existing relational database languages. with the addition of array notation and reduction.
To demonstrate proof of concept. we have implemented a data-parallel language called UC
that integrates relations and reduction: UC executes on the CM-2[Hil85] and on single
workstations. Since our goal was only proof of concept, we implemented a simple extension
of C, rather than a relational language such as SQL with array notation and reduction
operators. This extension is described next.

The extension is not a complete implementation of relational calculus; we only imple-
ment sets of integers in place of relations. Our plan is to evaluate the idea in terms of
an implementation of the simple extension to C, and then implement the idea using exist-
ing relational languages if experiments with the initial implementation are positive. The
experiments conducted so far are positive both in expressivity and in efficiency.

The rest of the paper is organized as follows: section 2 describes the UC language to-
gether with its mapping facilities. Section 3 presents performance results from existing
UC implementations and compares its performance with other langauges such as CM For-
tran, *Lisp and C#. Section 4 describes a number of UC examples. Section 5 discusses
related work. Section 6 is a brief description of the UC implementation and section 7 is the
conclusion.

2 UC Constructs

UC is a data-parallel language that adds the following features to C: a data-type called
indez-set, dynamic array bounds, reductions, and four composition operators: par, seq,
«solve and arb. The primary restrictions that it imposes on C is in the use of pointers and
explicit control flow statements (goto, break, etc.). This section is a brief description of the
preceding constructs. The reader is referred to [BA92] for a detailed description.

-1

index_set I'i = {0.9}.J:j =L
int min, first x, arb_max. a[N]:
float avg;

avg = $4+(I: i) / $4+(1; 1.0);

min = $<(J; afj]h

firstx = $<(I st (afi] == x) i)

arb.max = $,(I st {ali] == $>(J: a[j])) 1};

Figure 2: Reduction in UC

2.1 Index Sets

The current implementation restricts index-sets to ordered set of integers. The following
illustrates commonly used forms for their declaration.

index_set Lii = {0..N-1}, J:j = L idx2:k = {4,3.9};

Index-set 1is an example of a range index-set and consists of N integers from 0 to N-1. Idx2
contains the 3 elements listed explicitly and is an example of an enumerated index-set. A
number of operations including union, intersection and difference are supported on index-
sets. Each of these operations is implemented by an appropriate library routine. Once
an index-set has been initialized, the number of elements in the set cannot be increased.
However the values in the set can be modified either by using the preceding operations or
by using the reductions defined in the next section. The bounds of an index-set are not
restricted to compile-time constants. If they are specified by variables, its size is determined
by the value of the corresponding variable when the index-set is initialized.

In the remainder of this paper, we use upper-case identifiers to refer to an index-set
and the corresponding lower-case identifier to refer to an arbitrary element of the index-set.
Unless otherwise noted, all index-sets are assumed to range from 0 to N-1 and all array axes
are assumed to be of size N.

2.2 Reduction

A reduction operator performs an associative, binary operation on a set of expressions,
and returns the resulting value. The expression being reduced may be guarded, and more
than one guarded expression may be used. The operators that may be used in a reduction
include $&& for logical-and, $|| for logical-or, $> for maximum, $ < for minimum, $=* for
multiplication, $+ for addition. and 3, to return the value of an arbitrary operand.

The code fragment in figure 2 contains several simple examples of reductions. In par-
ticular, first_x computes the index of the leftmost occurrence of x and arb_max uses the
$, operator to return the position of any occurrence of the maximum value. Notice that
arb_max uses a nested reduction, where the inner reduction ($>(J; afj])) computes the
maximum value in the array.

It is sometimes useful to specify reductions that return a sequence of values rather
than a single value; such operations are referred to as tuple reductions in UC. As a simple
example, consider a computation that requires both the maximum value as well as its

8

position in a vector. Such operations may be specified concisely using tuple reductions.
Tuple reductions differ from simple reductions in that the operands in the former may be a
sequence of expressions separated by a semicolon: in addition, a separate operator may be
used to reduce each expression. However. the set of enabled index-elements is the same for
all expressions in the tuple: if a tuple reduction has multiple clauses, the tuple operands
in all clasues must have the same arity. The following example illustrates the use of tuple
reductions in computing the greatest element together with the position of its leftmost
occurence for a vector a.

{max;pos) =8>8<(I st (afij==8<(L: a[i])) (afilsi)):

2.3 Parallel Assignment

Parallel assigniments are the most common UC constructs. A parallel assignment is executed
synchronously: all instances evaluate the same expressions at the same time. An instance
of a program fragment is one where every occurrence of a dummy variable is replaced by
an element of the corresponding index-set. The following assignment transposes array ¢ by
synchronously executing N? instances of the assignment statement:

par (1.J)
cfiili] = clillil;

The body of a par statement may be a compound statement that includes variable
declarations. In this case, each statement is evaluated synchronously. For instance, the
following fragment swaps the contents of arrays a and b.

par (I) {
int tmp[N]:
tmpli] = b[i};
bli] = alil;
ali] = tmplil;
}

A par statement may use a predicate {called the guard) to select a subset of enabled
clements from the index-set. An index element is enabled if on substituting its value in
the predicate, the predicate evaluates to irue. The par statement is executed in parallel
for all enabled elements. The guard together with the statement to be executed is called
a guarded command or a clause. A par statement may contain multiple clauses, which are
executed asynchronously. For instance, the following fragment sets the even elements of b
to 0 and the odd elements to 1.

par (I)
st (%2 == 0) bfi] = &
st (1%2 = 0) blij = L;

As the multiple clauses of a par statement are executed asynchronously, they are a potential
source of race-conditions: if a variable is modified in two differnet clauses, its final value is

no longer deterministic. To guarantee a deterministic execution model, the multiple clauses
are required to be non-interfering. Two clauses are said to interfere if a variable modified
by one clause is referenced by the other clause. Note that each array element is considered
a distinct variable.

A par statement may contain nested if statements. The semantics of such a statement
is identical to that of a par statement with multiple clauses, where each clause is equivalent
to an arm of the corresponding if statement. The following is an example of an if statement
nested within a par statement and the corresponding par statement:

par (1) { par (I} {
if (b(2)) st (b(3))
S 5t
else st (!b(1))
52 S2

} }

Note that statements SI and $2 are required to be non-interfering,.
A par statement may also include C iterative constructs. For instance, consider a par
statement with a nested while loop.

par (I) while (8]|(Z;5[:]))
while (bi]) par (I) st (b[s])
S, St

For every iteration, the loop condition is evaluated for all elements in 1. The loop is ter-
minated if the condition evaluates to false for every element; otherwise statement 51 is
executed synchronously for every enabled element. The operational semantics of the par
statement is specified by the fragment on the right-hand side. The semantics of other
iterative constructs. including the do-while and for, are defined similarly.

2.4 Sequential Execution

The seq statement can be used for repeated sequential execution of a nested statement, once
for each element of an index-set, in the order determined by the definition of the index-set.
The syntax of a seq statement is identical to that of a par statement except for the obvious
substitution of keyword seq for keyword par. As a simple example, consider the following
statement which prints out the pairs (0, 9), (0, -2), (1, 9), {1, -2) in that order:

index_set Ii = {0..1}, J:j = {9.-2};

seq (1, J)
printf(“(%d, %d) 7, i, j);

As another example, the following fragment computes the all pairs shortest path using a
simple algorithm described in [CMS88]. For a given k in 0..N-1, the parallel assignment
computes the shortest path between every pair of nodes such that no intermediate node
is labeled greater than k. It follows that when k=N-1, dist[{][j] will contain the shortest
path in the graph from node ¢ to node j. The seq statement ensures that the parallel
assignment is executed N times for consecutive values of k£ in 0..N-1. In the program, we
omit the initialization and definition of the macro MIN which returns the smaller of its two
arguments.

10

#define N 32
index_set I'i = {0.N-1}.J:j = L Ktk = &
int dist[N][N]; /* initialized appropriately */
seq {K)
par (1.J)
dist[i][i] = MIN(dist[i][k]+dist[k][j], dist[i}{i]);

2.5 Asynchronous Execution

Parallel assignments require that the specified statements be evaluated synchronously for all
enabled index elements. We define another composition operator called arb for arbitrary
order which allows the statement instances to be executed using an arbitrary interleav-
ing. Thus unlike the par statement. given a fragment arb {(I) {si; s2;}, an instance of s
could begin execution before all instances of s; have been completed. Asynchronous exe-
cution is particutarly useful when compiling UC programs for execution on asynchronous
architectures. The asynchronous execution requires that the enabled instance of an arb
statement be nou-interfering as defined in the previous section. Note that an arb statement
may alwayvs be written as a par statement. but not vice-versa. The arb statement may be
viewed as a refinement of an equivalent UC program with par statements. where the former
introduces greater asynchrony in its execution.

2.6 Fixed-point Computation

The solution to a number of scientific and graph problems may be expressed succinctly by
using fixed-point semantics. UC provides a construct called ssolve that may be used for
this purpose. A *soive statement executes iteratively until its computation reaches a fixed-
point, i.e. further execution of its body will not alter the value of any variable modified by
the statement. We illustrate the use of *solve to solve the graph reachability problem: given
a directed graph G, it is required to compute . the all-points-reachability matrix for the
graph. Assume that the edge connectivity of the graph is represented by matrix e, where
e[]{j]=1 if G contains an edge from i to j, and is 0 otherwise. We develop a UC program
that sets r{s[J] to L. if jis reachable from ¢ and 0 otherwise. A node jis said to be reachable
from i if

e an edge exists from i to jin G or
o some k is reachable from i and an edge exists from ktojin G.

The preceding specification can be directly implemented as the UC program of figure 3.
Lines 1-2 of the program declare arrays € and r and the appropriate index-sets. The init
function in line 6 initializes the arrays such that the adjacency information is read into the
array e and the array ris initially set equal to e. The ssolve statement in line 6 contains a
single assignment (line 7} that simply codes the definition of reachability between a pair of
vertices in UC syntax. The reduction in line 7 determines if node j can be reached from node
i based on the preceding definition of reachability and the current set of reachable pairs that
have been computed. The enclosing «solve construct specifies that the assignment statement
should be executed in parallel for all elements in the index-sets [and J; additionally, it also
specifies that the statements be executed tepeatedly until they reach a fixed-point. In

11

/* a prototype program */

1 index_set Ii = {0..N-1}. I:j=L K:k=[
2 int e[N][N], r[N][N]:

3

4 main{void) {

5 init{):

6 *xsolve ([.1)

7 } ri]fj] = $II0K ofif[k] && efk]{i]):
8

Figure 3: Graph Reachability using *solve

float alN][N]. epsilon;

index_set i = {1.N-2},I;j= L
index_set :k = {-1,1}:

xsolve (I, J) to epsilon

alilfi]= $+(K; (ali+k]] + afifli+k])) / 4.0:
Figure 4: Iterative Convergence for Real Numbers

other words, the *solve statement terminates only when further execution of the statements
enclosed within its scope will not modify the value of any variable referenced within the
statement.

For programs that use floating-point arithmetic. the computation may not necessarily
reach a fixed-point: instead the computation may converge such that successive execution
of the program perturbs the value of each data item within an arbitrarily small interval.
The #solve construct may optionally specify this convergence interval, as demonstrated
by the example in figure 4. This program computes the value of the interior points in
a grid as the average of the values of its North. South, East and West neighbors. The
computation terminates when the successive value of every data-item is within some epsilon
of its previous value. The epsilon is referred to as the convergence interval and may be
specified in a program in the optional to clause of the *solve statement. If omitted, as it
was in the shortest path example, the convergence interval is assumed to be zero, in which
case execution terminates only when the computation reaches a fixed-point.

2.7 Parallel Functions

Functions in a UC program may be invoked in parallel; however the different instances of
the call are executed asynchronously. Thus functions provide a simple mechanism for UC
programs to weaken the expression level synchronization assumed for parallel assignments.
Asynchronous execution of the function calls also implies that there is a similar possibility
for non-determinism as in the execution of par statements with multiple clauses. As before,
UC avoids non-determinism by declaring parailel function calls semantically ill-formed if

12

the instances of the function call interfere with each other. A parallel function can cause
interference only if it modifies shared variables. Sharing of variables by parallel instances
may occur either by sharing global variables. sharing static variables or by passing pointers
or array parameters. The compiler uses a conservative check and issues an appropriate
warning if a function uses any of the preceding forms of sharing.

2.8 Data Mappings

A UC program need not specify how each program data structure is to be mapped on the
memory hierarchy of the parallel architecture. The compiler uses built-in heuristics to dis-
tribute the data on the architecture and dynamically change it, if necessary. However, there
are a variety of complex data mappings that may significantly improve program efficiency,
but may not be easy to extract from a local analvsis of the program. UC provides a general
mechanism that may be used to describe different forms of data distributions[BM91j. This
facility may be used by the programmer to explicitly specify many types of data mappings.
The following types of data mappings are currently supported: permute. fold and copy.
A permute mapping is used to reorder the elements of an array so that corresponding
elements of different arrays that are accessed in a single assignment can be stored locally;
fold allows part of an array to be folded over so that corresponding elements of the same
array that are accessed together can be stored locally. A copy allows data to be replicated.
In particular, it may be used to replicate an array along an extra dimension to reduce the
need for broadcasts.
Mappings may be used for a variety of purposes in a UC program:

o Separation of program logic from data distribution and hence improved code porta-
bility.

e Reducing remote references and hence improving program performance.
e Support for {dynamic) data partitioning and hence for load-balancing.

Remote references may be reduced by changing the layout of the array. Alternately, the
array elements may be replicated to make them available at all locations of use. The former
can be achieved with the permute mapping, while the copy mapping is useful for the latter.

Mapping declarations may also serve as a tool to partition data. The fold mapping can
be used to map several data element to each processor. This mapping may also be used to
dynamically change how the data is partitioned.

As map declarations exist separately from the program body, they can be used to tune
the program to different architectures. Ideally, the user may write the program indepen-
dently of the architecture and map declarations may then be used to provide architecture-
specific information such as partitions, alignments, etc.

Each map declaration removes or adds a number of expensive operations to the program.
The cost of such operations may be available as published timings or they can be determined
by running an appropriate test-bed. This knowledge can then be used to estimate the effect
of the mapping on performance. A performance estimation facility is being developed to
facilitate a compile-time evaluation of the impact of different mappings on the performance
of a UC program.

13

A mapping specification has five parts: the type of mapping which may be one of permute,
fold or copy, the source which refers to the data structure that is being mapped, the target
which is the data structure that the source is modified with respect to, a predicate which may
restrict the mapping to a subset of the source and a mapping function which describes how
the source array is to be transformed. The GC data mappings may be relative or absolute;
the former use a program data structure as the target while the latter use a virtual data
structure. A virtual data structure is tyvpeless and does not occupy physical memory: its
only purpose is to define a template that is used to describe a subsequent mapping. A
mapping is syntactically similar to the par and seq statements of UC.

For relative mappings. the layout of the source array is modified relative to the current
layout of the target array. The target array may itself have been mapped previously. In
this case, the source array is mapped relative to the mapped target array. If the source and
the target are the same. the array is heing mapped relative to its own previous layout.

Mappings may be dynamie. In general, a mapping statement may occur at any place in
a program where a declaration would be legal; however the source and target data structures
must have been declared prior to the map statement. Dynamic mappings imply that a given
array may be re-mapped several times in deeper nested scopes. This raises the possibility
that several, variously mapped versions of an array may exist in the program. For this
reason, the compiler needs to generate operations at the beginning and end of new scopes
to copy the data to and from newer versions of the array respectively.

We now describe each of the three types of mappings supported by UC and provide
experimental measurements that indicate the performance improvements that have been
realized for a variety of programs.

Permute

Permute is a one-to-one mapping. Each element of the source array is mapped to one
location in the target array. The compiler ensures that the target array is at least as large
as the source array.

Arbitrary functions may be used to reference the target array in the map specification.
However, experience suggests that a mapping specification is most effective when the sub-
scripts in the transformed array can be simplified sufficiently to distinguish local and remote
references. This analysis facilitates optimal code generation for the mapped data structures.
For subscript expressions to be evaluated at compile-time, identifiers in the expression must
be restricted to constants or index-elements. and operators to +, —. and mod. If the pre-
ceding restrictons are not observed, the compiler must generate code that potentially refers
1o remote data; efficiency of the generated code then depends on the sophistication of the
communication library in detecting and optimizing for local communications. Under certain
conditions, it is possible to generate code that uses run-time analysis to decide whether data
is local or remote and executes appropriate code segments.

As a simple example of a permute mapping. consider the following code fragment:

int a{N][M], b[N]{M];
perm (LJ)

afi]fj] = bI(i+1)%NI{l;
par (I,J) st {i > 0)

bli][j} = ali-1]i};

14

{ int c{M][N];
perm (I,])
afijli] == alilli];
par (I.J) st (i > 0)
ali]f§] += clijfi-1):

}

The arravs a and b initially have identical layouts (perhaps one element per virtual pro-
cessor). The first map declaration changes the layout of a so that the (i,7)t" element of a
is aligned with the (¢ + l.j)”‘ element of b {note that this is a circular shift). In the next
deeper scope, a is re-mapped (a transpose) with respect to its previous layout. As a result,
the (i.)" element of a is now aligned with the (j,i+ 1) element of c.

We complete the discussion of permute mappings by presenting measurements on the
offectiveness of tiese mappings on the CA-2 {16K processors) for a variety of simple exam-
ples.

operation permute unmapped | mapped
mapping (millisecs) | (millisecs)
aliji] += dl]] d[j]fil = ali]lj] 1.793 0.217
a[4](j] = <[j! clj] :- al4]li 0.831 0.203
mat(i][i] = diali] dia[i] :- mat{i][i] 0.843 0.322
ali][] = bli-1}j] | b] - a[{i+1)%NIlj] 0.331 0.205

Copy

Copy is a one-to-many mapping that may be used to replicate parts of a data structure.
The compiler is responsible for ensuring that the multiple copies of a data item are coherent.
Tle most common use of this mapping is to replicate an array along one or more additional
axes. Due to the overhead of maintaining coherence. efficient implementations for this
mapping require that data items that are being replicated be identified at compile-time.
If not. the compiler may need to generate code that must ensure that all data elements
are kept coherent. even though only a subset of the elements are replicated. Once again,
this condition may be enforced by requiring that the operands in the predicate and the
expressions in the source and target for the mapping be restricted to constants and index-
elements.

The utility of the copy mapping in improving execution efficiency of a program is illus-
trated in the context of a UC program that models mosquito populations. The example
and the mappings together with measurements that indicate the performance improvement
are presented in section 4.

Fold

Fold is a many-to-one mapping. It is primarily a tool to partition arrays when the number of
physical processors available is less than the number of data elements. Tt can also be thought
of as a way to control how virtual processors are simulated on each physical processor. A
fold mapping requires that source and the target array have the same number of dimensions.

15

Once again, optimal code generation requires that the subscript expressions be known at
compile-time. This may be enforced by requiring that all operands be constants or index-
elements and that operators used to subscript the target array be restricted to mod or div
which may be used to respectively specifv a cyclic or block partition.

As examples of simple decompositions. consider the following:

/* cyclic partitioning */ /* block partitioning */
int a[N]; int a[N};
virtual M[N/F]; virtual M[F];
fold (I) fold (I)
afi] :- M[i%f]; afi] :- M{i/F];

In contrast with standard block and cyclic decompositions supported by most languages.
a UC fold mapping can specifv a variety of partitions, whose size and distributions can be
changed dynamically. For instance. consider the following fold mapping:

int f (int af]. K. F1, F2)
{
fold (I) st {i<K)
afi] - ali/F1]
st (i>=K)
afi] :- a[/F1 + (i-K)/F2]

, :

The preceding example allows parts of array a to be blocked in different sizes. For simplicity,
assume that K is a multiple of F. The mapping specifies that that the first K elements are
decomposed into blocks of F1 elements and the rest into blocks of F2 elements. As F1,
F2 and K are function parameters, their values may change with different invocations of
the function allowing the blocking size to be modified dvnamically, perhaps in response to
the relative density of computation in different parts of the array over different phases of
execution.

The mosquito application is also used to demonstrate the use of a copy mapping in
improving execution efficiency of a program. The example and the mappings together with
measurements that indicate the performance improvement are described in section 4.

3 Performance

In this section, we summarize the comparative performance of a number of applications
when written in UC, C+. and CM Fortran. Some of the examples are described in greater
detail in the next section and where feasible a complete listing of the UC program has been
included. For brevity, complete listings of the programs in the three languages have been
included for only one application - graph reachability in Appendix A. Figure 5 contains the
comparative timings for some small graph algorithms and numerical applications. All runs
were done on a 16K partition of a CM-2 and the reported times refer to the elapsed wall-
clock time to execute the complete program. As seen from the timings, the performance of
the UC program is comparable with both the C# and CM Fortran versions of the program.

16

Program CMFE | Cx vC
Reachahility 3.2 3.0 3.4

AMatmaul 9.8 104 9.5
Primes 3.0 3.1 4.2
Spath 2.0 20 |23
Diffusion 12.3 | N/4 1115

Gauss-Jordan | 12.8 12.6 116.1

Figure 5: Performance comparisons (time given in seconds)

4 Examples

The current UC implementations have been used to design appiications in a variety of areas
that include Computational Fluid Dynamics. Partial Differential Equation Solvers, Com-
putational Biology. Image Processing and Graph Algorithms. The compilers have been
used by researchers to develop more efficient programs for specific applications as also by
students interested in learning parallel programming. Student programs have been devel-
oped for graph algorithms (minimum spanning tree, shortest path, maximum flow, traveling
salesman problem etc.), numerical applications (Fast Fourier Transforms, Gaussian elimina-
tion, parameter estimation, etc.}, search applications (8 queens problem, optimal strategy
for playing Othello, etc.), and misceilanous applications that include DNA-matching and
unstructured grid computations.

In this section, we describe a variety of examples across different application spectrums
that have been developed in UC: measurements are reported where meaningful. Unless
stated otherwise. all measurements reported here were taken on a CM-2 with 16K processors
with floating-point accelerators, and a SUN front-end.

4.1 Graph Reachability

As described in section 2.6. the UC program for computing all nodes that are reachable
from a given node is straightforward and may be written as follows:

xsolve (I)

rfi] = $11(J: £[j] && efilli]);

where r contains the vertices reachable from vertex zero and e is the incidence matrix of
the graph.

The complete programs that implement this algorithm in UC, CM Fortran and C#
are given in appendix A. The listings include the input-output statements as well as the
‘nstructions to measure the performance of the programs. As seen from the listings, the
UC program is the shortest. with Fortran coming in a close second and C+ a distant third.
The relative timings for the three applications were given in the previous section. Figure 6
includes the timings for a slightly different configuration and includes both the CM time
and total time. The CM time refers to the amount of time during which the CM actually
executed instructions, and total time measures the elapsed wall-clock time; any difference

17

Language | CM time (secs) | Total time (secs)
CAF 134 15.5
Cx 12.9 14.8
uc 143 16.2

Figure G: Performance of reachability

between them is time that the CAl spent waiting for instructions from the front-end. All
programs were executed on a SK partition of a CM-2; the input was a graph with 512
vertices that required 511 iterations of the loop. As seen from the timings, the performance
of the UC program is always within 10-15% of the others.

4,2 Matrix Multiplication

If A =(a;)isan mx n matrix and B = (bjz)isan nxp matrix. then the matrix product
AB is defined to be the matrix ' = (¢j%) with the elements

I

cir = 3 aiibsk

J=1

Assuming appropriate initializations, a straightforward program that uses O(N?) pro-
cessors is as follows:

par (1.J)
seq (K)
clili] += afillid + BIKIG):

However, each multiplication involves expensive remote accesses. An efficient variation on
the preceding algorithm (that also uses O(N?) processors) for the CM-2 is described in
[Tic89]. This algorithm uses commutativity of addition to modify the standard systolic al-
gorithm for matrix multiplication. The algorithm periodically permutes the operand arrays
(using efficient global communication primitives) before every multiplication such that the
multiplicands are available locally. In the UC program given in this section, variables tmpl
and tmp2 are used to store the permuted operand arrays. Relative performance for the UC,
Cx and CM Fortran programs were presented in the previous section. The definitions of
input/output routines have been omitted for brevity.

#define N 8

int a[N][N], b[N][N];

int acc[N][N], tmp1{N][N], tmp2[N]{N};
index_set Li = {0..N-1}, J;j=L. K:k=[;

int main (void) {
par (LJ} {
alijfi] = i;
b{il[f] = J;
}

18

par (1) {
/* Skew the input matrices. */
empl{iJfj] = alil[{i-+]))7%N]:
tmp2(i][j] = bIO+HZN]]

accfillj] = 0;
/* N times, add in the product of this pair, then shift */
/* each matrix over one in the appropriate direction. */
seq (K) {

acclilj] += tmp1fifi * tp2ilGl:

empL{i)[j] = tmplfi]f(j+1)%N}:

tmp2[i]fj] = tmp2[(i+1)%N][j]:

} o}

4,3 Stable Marriage

This problem as described in [And91] is as follows: let Man and Woman each be arrays of n
processes. Each man ranks the women from 1 to n. and each woman ranks the men form 1
to n. A pairingis a one-to-one correspondence of men and women. A pairing is stable if, for
two men m, and my and their paired women wy and wy, both of the following conditions
are satisfied:

e m; ranks wy higher than w; or w2 ranks mg higher than my; and

s m, ranks ws higher than wy or wy ranks m, higher than mg.

Put differently, a pairing is unstable if a man and woman would both prefer each other to
their current pair. A solution to the stable marriage problem is a set of n pairings, all of
which are stable. The program in Figure 7 is the UC code to solve the stable marriage
problem. Once again, input/output and initialization functions have been omitted for
brevity. The program generates astable pairing as follows!: in a given iteration, each woman
tries to find the lowest ranked mate {note that a lower rank implies a higher preference) such
that the pairing is stable. A stable pairing is discovered when all men have been assigned
to a womad.

4.4 Simulation of Mosquite Control

A biological model of the life of Culer pipiens mosquitoes[FTD89] was programmed in
+Lisp. This model was executed on the CM-2 to study the growth of mosquito populations
in Orange County[JT92]. The model studies mosquito development during the four primary
stages: egg, larva, pupa, and adult. Each life stage can have three different types of organisms
(genotype aa, Aa. and AA). The area comprising Orange County was subdivided into a grid
of locations. Each location is associated with a varible number of breeding sites, each of
which is identified as a gutter, pool, drain. channel, or container. FEach site may have

In general, many stable pairings are possible,

19

#define UNASSIGNED -1

index_set I:i={0..N-1}:
index_set J:j={0..N-1};

/% used for the women =/
/* used for the men =/

int rank{N][¥], /* rank[i][j} : rank assigned by w_i to m_j */
prefer [N][N]; /» prefer[jI[-] : preference list for m_j */
int unassigned{N], /+ unassigned[jl=1 ==> m_j is unassigned =/
next[N], /* next[j] : current top preference for m_j +/

fiancee{N]; /% fiancee[i]

int main(void)

{

int best_rank[N],
new_fiancee[N];

init();

. current mate for w_i */

/* rank of best man suitor for w_i */
/* new man selected as mate by w_i =/

/% initializations of rank and prefer »/

/* all v_i and m_j are initially available */

while ($+(I; unassigned{il))

/* while at least one man is unassigned %/

{
par {I) /# try to assign each w_i a ‘stable’ mate */
{
/* Each w_i chooses the suitor with lowest (hence best) rank. =/
best_rank([i] /* for all m_j, such that =/
= $<(J st({unassigned(j] == 1) && /% m_j is available and */
(prefer[jl[next[i]] == i) &k /% w_i is most preferred by m_j */
({fiancee[i] == UNASSIGNED) || /# and @_i is unaseigned or =/
(rank{i] [fiancee[il] > rank[il{j]1))) /* prefers m_j to current mate */
rank[1][j1); /# choose the m_j with lowest rank */
if (best_rank[i] < N} /* it w_i found a suitor */
{
new_fiancea[il /* extract nev suitor for w_.i */
= §,(] st (best_rank[i] == rank[il1[jD i):
if (fiancee(i] != UNASSIGNED)
unassigned[fiancee[i]] = 1; /* unassign old husband and w/
fianceal[i] = new_fiancee[i]; /* and assign a new one w/
unassigned[fiancee[il] = 0;
}
}
par (J) st (unassigned[j] == 1) /» for each unassigned man \J
next[j] = next[jl+1; /* update index into preference list «/
}
print_fiancee():

}

Figure 7: Stable Marriage in UC

20

populations of all 12 different types. with each population containing organisms at different
tiers of development.

The simulation is initialized by assigning a certain number of sites to each location and
identifying one of four weather stations with each location. The atmospheric conditions
(air temperature. precipitation. etc.) at a location are determined from data read from the
corresponding weather station. Finally, the egg. larva. pupa, and adult female populations
are initialized at each site. The simulation is subsequently executed for a number of steps,
with each step responsible for simulating one day.

The computation at each step is as follows: initially, the weather conditions at each
location are determined from the input data. This is followed by the calculation of the sur-
vival, development, and reproduction rates for each different type of mosquito as described
in [FTD8Y|. The development rates are used to age each of the life stages in three phases:
in the first phase. the number of organisms that will move from one stage to another are
computed; the second phase ages organisms that will progress only within their current
stage; and in the last stage. new-entrants to each stage are introduced. Populations at
each stage are subsequently reduced as determined by the corresponding survival rate. The
last part of the simulation step uses the reproduction rate for the females to determine if
eggs are laid either at the home site. at a new site in the same location, or at a site in a
neighboring location.

The performance summary for the UC? and «Lisp program was as follows: The runtime
to simulate mosquito development for 365 days for a UC program was 40 minutes, as
compared with over 2 hours for xLisp. The UC program was approximately 950 lines of
code, whereas the *Lisp program was 12% longer — 1075 lines.

Subsequently, the UC program was refined by introducing map statements to improve
the execution efficiency of the simulation. Both fold and copy mappings were used as
described below. The primary data structure used in the simulation are multi-dimensional
arrays representing various attributes of the mosquito population: dimensions 0 and 1
represent the grid coordinates of the location, dimension 2 represents the sites and dimension
3 is used for tiers in the stages of development. In particular, four such arrays are used,
one each for the four major phases in the development of the mosquito.

The following program fragment iliustrates a simple instance of the fold mapping:

1 int eggs[ROWS][COLUI\-‘INS][SITES][TIERS],

2 la,rvae[ROWS][COLUI\INS][SITES][TIER.S],

3 pupae[ROWS][COLUMNS][SITES][TIERS],

4 fema,les[ROWS][COLUMNS][SITES][TIERS],

5 egg.count, larva.count, pupa-count. female_count;
6

7

8

fold (R,C.S,T) {
eggslrllci(si[t] - egas{ri[clls/4lt];
9 larvae[t][c](s][t] - larvae[r]{c][s /4ilth;
10 pupaelr][c]is][t] - pupaelcj{c[s/4][th
11 females(r}[c][s)[t] :- females[r][c](s/4][t);
12}

2This program was developed in collaboration with Professor Chuck Taylor of the Department of Biology,
UCLA.

21

13

14 void count_populations{void) {

15 ..

16 egg_count = $+(R.C.S.T: eggs[r][c](s][t]);
17 larva.count = $4(R.C.S.T: larvae[r]{c](s](t]):
18 pupa_connt = $4+(R.C.S.T: pupaelr][c[s][t]):
19 female_count = $+(R.C.S.T: females[r][c][s][t]):
20 ..

21 }

The computation in lines 16-19 is a series of reductions that compute the total number
of mosquitoes in each of the four phases. As stated earlier, the fold mapping allows the
user to control how virtual processors are simulated on each phiysical processor. Here. we
block each array along the third axis {corresponding to mosquito sites) such that each
virtual processor simulates four array elements. On the CM-2, this mapping resulted in
a considerable improvement in the performance of the model. reducing the execution time
of this routine to 13.25 msecs as opposed to the 23.9 msecs that was required without the
mapping. Folding was done along the third axes instead of the fourth. because other parts
of the program perform nearest-neighbor moves along this last axis: performance of these
operations would have suffered had the fourth axis not been retained parallel,

We next illustrate the use of the copy mapping in improving execution efficiency of this
simulation. Figure 8 contains a program fragment to age the female population. ‘

The array site_used is a mask which is used as a guard in several operations. But
note that, while it has three dimensions. in the last two par operations it is used to guard
operations over all four dimensions. Using a copy mapping, we can make it available at all
locations of use.

Similarly, surv.rate is a two dimensional array which is used several times in operations
involving all four dimensions. It can be copied along the last two dimensions to make all
these operations local. Similar optimizations were made in other routines of the program.
The measurements given in figure 9 demonstrates the significant reduction in execution
time that was obtained by using the map statements.

4.5 Diffusion Aggregation in Fluid Flow

This application was developed in colla horation with Dr Indranil Chakravarty, Schlumberger
Laboratory for Computer Science. Austin.

The purpose of this simulation is to develop computer models that account for changes
in microstructure and porosity in carbonate rocks resulting from fluid flow. The simulation
begins with a model in which there is a collection of unhydrated material clusters scattered
over a plane. These clusters represent the original unreacted rock grains and are separated
by pore space. The proportion of the plane occupied by unhydrated material is referred to
as the packing fraction. The proportion of the plane that is pore space is the porosity. The
packing fraction and the initial geometric configuration of the unhydrated materials are
strong determinants of the simulation result. The starting configuration for the simulation
is typically an approximation to rock structures. The various implementations we report
use a random placement of circles.

22

void age_females{int females[ROWS][COLUMNS][SITES]{TIERS],
int female_jump.
int site.used[ROWS)[COLUMNS][SITES],
float surv_rate[ROWS][COLUMNS])
{
int i,
float jumpers[ROWS{COLUMNS](SITES];
copy (R.CS.T)

surv.rate(r]{c] :- surv_rate{c][c][s][t]:

par (R,C.S) st (site_used[r][c][s])

{
jumpers[t][c][s]
= 84+(T st (t >= (TIERS - female_jump})
surv_rate[r][c] * females[r][c]{s][t]);
}
{

copy (R,C.5.T)
site_used(r}[c][s] :- site_used(r][c]{s](t};

.f.c'»r (i = 0;1 < female_jump; i++)
par (R,C,S.T) st ({t+1 <= TIERS-1) && site_used[r][c][s])
{
females(r]{c][s][t+1] = females[r](¢][s]{t!;
females(r][¢][s][0] = O
}

par (R,C.S,T) st {site_used(r](c][s])
femalesir]ic][s][t) = surv_rate[r]{c]
* females(r]{c]{si[t];

Figure 8: Copy Mapping - Mosquito Simulation

unmapped mapped improvement
CM busy Time | 31.578 mins | 24.971 mins 20.92 %
Total Time 39.270 mins | 29.442 mins 25.02 %

Figure 9: Performance Improvement for Mosquito Simulation

23

Dissolution takes place at the surface laver of the unhydrated materials, i.e.. those unhy-
drated materials that are in contact with the pore space. The selection of the surface layer
material that dissolves is random. The dissoived unhydrated materials become diffusing
particles. The particles diffuse (perform a random walk) in pore space until they encounter
a solid (unhydrated material or previously hvdrated product) whereupon they become an
immobile hvdrate product. When all diffusing particles have settled. the process repeats
again starting from the dissolution step. Taken to the extreme, the dissolution/diffusion
cycle would be repeated until there were no more surface level unhydrated material. This
is not necessarilv the wayv the simulation would be used in practice.

From the physics of the problem. we must augment the number of diffusing particles
immediately after the dissolution step. This new phase, which we will refer to as volume
correction. consists of the random injection of particles into the pore space. The number
of additional particies has been determined empirically [WL33] and is a proportion of the
number of particles that dissolved.

An entire simulation can be viewed as an iteration consisting of three distinct steps. A
random dissolution step selects surface unhydrated material to dissolve. Volume correction
is then applied to augment the diffusing particle count. The diffusion phase moves the
particles in random walks until they all have livdrated. The number of diffusion rounds
is determined by the length of the random walk followed by the last diffusing particle to
hydrate. All particles are assumed to move at the same speed. The model is assumed to
admit a periodic boundary condition for the simulation grid.

Rather than include the entire UC code for the problem, we only include the code that
implements the most complex operation - diffusion. A complete listing of the UC code may
be found in [CKW*90].

For simplicity, we represent the simulation grid as a one-dimensional array d[0..N — 1]
where d[i].s represents the state of particle 7 and d[i).select is the index of a neighboring
D particle. Array dest[0..NV — 1] is used to store the next step of the random walk, where
dest[i] denotes the potential destination of the particle in position i. Some commonly used
UC reductions have been defined as C macros: count.D counts the total number of diffusing
particles and count.ND counts the number of D-neighbors for a given particle. We have
omitted the definition of constant identifiers like U/, H, etc. The code fragment executes
the diffusion step until the number of D particles is 0. In each iteration, a D particle whose
potential destination is an H or U particle immediately becomes hydrated. Subsequently,
all P-particles randomly select a D-neighbor (if it exists) and swap positions. If some ¢
particle does not have a D-neighbor. d[i).select will be computed to be INF (the identity
value for the $, operator) and the corresponding particle does not move. The CM Fortran
version of this code fragment was considerably longer.

#define count D ($+(I st (dfi].s == D) 1)
#define count_ND (8+(J st ({d[i+j].s == D) && (dest[i+j]==i))} 1))

struct D {int s, state:} d[N1:
int dest[N];
index_set Lii = {0.N-1}, J;j = {-1.1};

phase = diffusion;

24

while (count.D '= 0) {
par (I) st ({d[i].s == D} && ((d{dest[i]].s == H) || (d[dest[i]l.s == U})})
dli].s = H:
par (D) st (dfi].s == P)
{
dfi].select = 8,(J st ((d[i+j].s == D) && (dest[i+]] == 1)) i+j);
if (dfi].select '= INF) {
dfi}.s = Dt
dd[i] select] = P:
Yorol

The running time of the UC program was found to be almost identical with that of
an equivalent CM Fortran program written for this application: for a 128 x 128 grid size

with a porosity of 30 percent. each program took about 30 seconds to complete on an 8K
CM-2[CKW*90].

5 Related Work

A large number of parallel languages and notations have been designed. Bal et al.[BST89]
is a recent survey of parallel languages. Paraliel langauges may be broadly classified into
languages with explicit concurrency and synchronization and those where the parallelism
is implicit and is typically extracted by the compiler with the aid of optional programmer
annotations. We compare our approach with those of other explicitly parallel languages.

Explicitly parailei languages may embody either synchronous or asynchronous execution
models. The language may use a universal shared memory model[BCZ90, LLG*92] where
any thread can access any variable or a local memory model where each thread has exclusive
access to its private data. Asynchronous languages with a local address space are perhaps
the most common paradigm for parallel languages. Typically, such langauges provide ex-
plicit primitives for the specification of parallelism, interprocess communication and process
synchronization. Within the asynchronous programming paradigm, example languages in-
clude CSP{Hoa78], Occam[May83], Ada[Ada83]. PCN[CT91], Linda[Gel85), Maisie[BLIO}
and C+-[Sei®0]. Although efficient implementations have been developed for most of the
preceding languages, programming i these notations is complicated by the need to ex-
press the required global svnchronization explicitly in the programs. Efficiency of programs
written in the preceding languages is primarily determined by the process decomposition
and process to processor mapping that is specified for the program. Recent notations like
Strand[Tay89}, PCN[CT91] and TDFL[PSJ90] attempt to simplify the problem of explicit
distributed synchronization by allowing the synchronization to be specified implicitly based
on an underlying data-flow graph or other mechanisms.

Asynchronous parallel programs with distributed synchronization have multiple loci of
control which may complicate the programming task. Synchronous or data-parallel lan-
guages have a single locus of control and deterministic semantics making them conceptually
easier to program. Data-parallel languages use the universally addressable memory model
and typically provide optional data distribution primitives to specify how the program
data is distributed over the memory hieracrhy of the parallel architecture. Although some
languages attempt to do this purely on the strength of sophisticated compilation tools to

25

deduce optimum data distributions {e.g. ParallelDistributedC[HQL*91a], Crystal[CCL38]
and in particular the work in [KLS90. Who91. GB92]). most provide explicit language fa-
cilities to specify data distribution{C'[N8%]. A large number of data-parallel languages have
been designed including C*[RSS87]. €' Fortran[Labs9]. DINO[RSWIL]. High-Performance
Fortran[For92], SUPERB[ZBGR6], Paragon[Ree90], Pandore[APT90]. KalilMR90], Parla-
tion Lisp[Sah87] and pC++{Gand3]. Some languages like C*[RS87] specify strict synchro-
nization at the expression level, while other languages weaken the synchronization granular-
ity and are synchronized at the block level[LR91]. The code executed between synchroniza-
tion points is not allowed 10 access non-local data. FortranD[HKK*91] and Kali[MR90] are
good examples of such langauges. which are sometimes referred to as block SIMD languages.
Considering the langauge constructs. synchronization granularity. and the underlying com-
munication model of UC. perhaps the projects that are most closely related include Kali,
Dino, HPF and Cx.

High Performance Fortran[For92] extends the specification of Fortran 90 with features
designed to improve performance on a variety of parallel machines. The pricipal additions
are data distribution features and parallel statements. The ALIGN directive allows coallo-
cation of data. and DISTRIBUTE allows partitioning of data among memory regions. HPF
provides the FORALL statement to express parallel assignment to array sections and the
INDEPENDENT directive to identify statements that do not exhibit any sequentializing
dependencies.

In Kali[MR90]. the compiler depends on the user for data and iteration distribution.
It provides a restricted set of data distribution primitives (block and cyclic) and the forall
statement. Communication. which is aljowed only at the beginning and end of forall loops.
is generated by compile-time analysis and optimized using run-time analysis (inspector
forall loops are generated to collect information for optimizing subsequent ezecutor forall
loops}. Other approaches to run-time optimization of communication can be found in
(DSBO1, HKK+91].

In DINO[RSWO1]. a program cousists of a host (or front-end) program which makes
calls to node routines that run on each processor. Although DINO provides a more flexible
SPAMD model similar to that of UC. unlike UC, it requires that local and remote reference
to data be distinguished statically?. Data distributions are specified with declarations, and
may be one from among a set of predefined types (block, cyclic, replicate).

The primary difference between UC and existing data-parallel languages is the uniform
treatment of arrays and relations in UC. The notion of relations and index-sets together
with reductions provides a simple mechanism to express a wide variety of data-parallel com-
putations. Our experience indicates that efficient implementations of these ideas is possible
when the key for a relation is restricted to integers. Extension of this notation to a complete
relational calculus is in progress. Secondly. UC allows the granularity of synchronization to
be varied arbitrarily under programmer control. Langauges like C+ define strict expression-
tevel synchronization. Efficient Cx implementation on asynchronous architectures requires
that the compiler be able to costruct control dependency graphs that minimize global syn-
chronizations while maintaining the semanticsf HQL*91b]. On the other hand, although
block SIMD synchronizations can be implemented more efficiently, they may force an un-
natural program decomposition on computations where the communictaion does not follow

3 A later version, Dino2[RS92], proposes removal of this restriction. Another variant, DYNO[WS92], uses
a graph-based approach to perform dynamic load balancing.

26

this model[RSW91]. UC programs may be synchronized at the expression level within par
statements. at the function level within parallel function calls and with arbitrary granularity
using the arb statement. Thus an initial program written only using par statements may be
refined subsequently by replacing some of the par statements by functionally equivalent arb
statements to reduce global synchronizations. Lastly, UC provides modular and dynamic
data mapping primitives that could be used to change the distribution of specific arrays in
subsequent invocations of a given function.

6 Implementation Notes

UC compilers are currently operational on the C\-2 and on UNIX workstalons; compilers
for networks of workstations and multicomputers are in progress. The current implemen-
tation does not support tuple reductions or dyunamic index-sets. Implementation of these
constructs is in progress. This section gives a brief overview of the compiler; a detailed
description is in [Aus91].

The compiler is divided into three main phases: in the first phase, the compiler deter-
mines attributes of arravs and functions used in the program, the most important being
whetler the array or function is ever used in parallel. Next the program is transformed into
an equivalent simpler UC program that only uses very simple SIMD-like assignments and
reductions. Finally, this translated T"C' program is printed in a target language. such as
C/Paris{Thid1] or Cx(for data-paralle! implementation), C(for sequential implementation)
or PVM{BDG?*91] for implementation on workstation networks.

The heart of the compiler is the rewrite rule based translator that rewrite the source
UC program into an intermediate language prior to the emission of object code. The
intermediate language is called UCina and was desiged to mimic the assembly language
for a data-parallel architecture. A UCgimd prograin can be translated in an almost trivial
manner into existing data-parallel langauges like C/Paris and C+. The rule system consists
of rewrite rules that translate the source code and primitive rules that match a statement
that belongs to UCgma. Taken together, the primitive rules describe all possible constructs
in the intermediate language.

A UC construct is parsed and stored internally as a tree, which is henceforth referred
to as t. We rewrite a tree ¢ using algorithm rewrite:

algorithm rewrite ¢
while true
while some rewrite rule r matches ¢
rewrite ¢ using r;
recursively call rewrite on the subtrees of t;
if no subtree was rewritten then
exit the loop;
fail if no primitive rule matches &

The rewrite process succeeds only if the input tree is eventually transformed into a tree
that matches a primitive rule; otherwise a diagnostic is printed and the compiler aborts. If
all Tules fail to match the tree, the algorithm rewrite is called recursively on the subtrees of
the input tree; this allows rules that match a complex tree to fire before it is decomposed

27

by recursive calls. Most rewrite rules decompose complex constructs into simpler ones, but
we also use rules to perform simple optimizations (such as loop fusion).

7 Conclusion

This paper proposes that data-parallel programiing languages can be languages for rela-
tional databases extended {a) to treat arravs and relations using the same notation, (b)
with reduction operators and {¢) data-mapping constructs.

The novel features of the approach are:

1. The introduction of relations and index-sets. and reduction operations extended to
the program composition operators par and seq.

2. Svnchronization (or barriers) at dilferent levels of granularity: either at the assignment
or function level.

3. The introduction of the *solve command to simplify calculations leading to fixed-
points.

1. A set of declarative mapping facilities which can be used by the programmer to de-
scribe the relative distribution of the program data structures on the local memories
of the individual processors. If the mappings are omitted, the compiler uses simple
heuristics to generate defanlt mappings. As changes in the data mappings do not af-
fact correctness of the UC program. efficient and portable programs may be designed
for different architectures simply by modifying the data mappings.

UC compilers are available for the (/M-2 and for sequential workstations running ANSI
C'. Measurements of the compiler for a number of applications indicates that the compiler
delivers performance that is comparable to those of exiting languages on the CM-2 including
C+ and CM Fortran. An implementation on a network of workstations is in progress.
Since the performance and expressivity results are positive, we plan to continue with an
implementation of an extended relational database language.

28

References

[Ada83]

[Andol]

[APTO0]

[Aus91}

[BAY2]

(BCZ90]

[BDG*91]

[BL9O]

[BMO1]

[BSTSY]

[CCLSS]

[CKsS]

[CKW+90)

[CMS8)

[CTO1]

United States Department Of Defense. Reference Manual for the Ada Program-
ming Language, 1983,

G.R. Andrews. Concurrent Programming: Principles and Practice. Benjaming
Cummings. 1991.

F. Andre. J. Pazat. and II. Thomas. Pandore: A system to manage data
distribution. Tn Praccedings of the 1990 International Conference on Super-
computing, ACM. 1990,

V. Austel. Compiling UC using source-to-source transformations. Masters
report. Computer Science Department. UCLA. 1991,

R. Bagrodia and V. Austel. [7C User Manual, Computer Science Department,
University of California at Los Angeles. 1992

J. K. Bennett. J. B. Carter. and W. Zwaenepoel. Munin: distributed shared
memory based on type-specific menory coherence. In 1990 ACM Conference
on Principles and Practice of Parallel Programming, March 1990.

A. Beguelin, J. Dongarra. A. Geist, B. Manchek, and V. Sunderam. A users’
guide to PVM: Parallel virtual machine. Technical Report ORNL/TM-11826,
Oak Ridge National Laboratory, March 1991.

R. Bagrodia and Wen-toh Liao. Muaisie User Manual. Computer Science De-
partment, University of California at Los Angeles. 1990.

R. Bagrodia and S. Mathur. Efficient implementation of high-level parallel
programs. In ASPLOS-IV, April 1991

H.E. Bal. J. Steiner. and A.S. Tanenbaum. Programming languages for dis-
tributed computing systems. ACM Computing Survey, 21(3):261-322, Septem-
ber 1989.

M. Chen. Young-Il Choo. and Jingke L. Compiling parallel programs by opti-
mizing performance. Journal of Supercomputing, pages 171-207, 1988,

D. Callahan and K. Kennedy. Compiling programs for distributed-memory
multiprocessors. Journal of Supercomputing, 2:151-169, 1988.

I. Chakravarty, M. Klevn. T. Woo. R. Bagrodia, and V. Austel. UNITY to UC:
Case Studies in Parallel Program Construction. Technical Report TR-90-21,
Schlumberger Laboratory for Computer Science, November 1990.

K.M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-
Wesley, Reading, Massachusetts, 1988,

K.M. Chandy and S. Taylor. Introduction to Parallel Programming. Jones &
Bartlett, 1991.

29

(DSBO1]

[For9?]

[FTD39]

(Gan93]

(GBY2

[Gel35]

[Hil85]
(HKK+01]

(HoaT8§]

[HQL*91a]

[HQL+91b]

(JT92]

[KLS90]

[Labg9]

R. Das. J. Saltz. and H. Berrvman. A Vanual for PARTI runtime primitives.

Institute for Computer Applications in Science and Engineering. NASA Langley
Research Center. Hampton. Virginia 23665, May 1991.

High Performance Fortran Forum. High Performance Fortran Language Spec-
ification. DRAFT. November 1992

J. Fryv. C. E. Tavlor. and U. Devgan. An expert system for mosquito control in
orange county california. In Bulletin of the Soceity of Vector Ecology. December

1989.

D. Gannon. pC++: High-Perfromance data parallel programming in C++.
Technical report. CS Department. Indiana University., 1993.

M. Gupta and P. Banerjee. Demonstration of Automatic Data Partitioning
Techniques for Parallelizing Compilers on Multicomputers. [EEE Transactions
on Parallel and Distributed Systems, 3(2):170-193, March 1992.

Dave Gelernter. Generative communication in Linda. ACM TOPLAS, 7(1),
January 1983.

D.W. Hillis. The Connection Machine. The MIT Press, Cambridge, MA, 1985.

S, HUiranandani. K. Kennedv. C. Koelbel, U. Kremer, and C. Tseng. An
Overview of the Fortran D programming system. Report CRPC-TRI1121,
Center for Research on Parallel Computation, March 1991,

C.A.R. Hoare. Communicating sequential processes. Communications of the
ACM, 21(8):666-67T7, August 1978,

P. Hatcher, M. Quinn. A. Lapadula. B. Seevers, R. Anderson, and R. Jones.
Data-parallel programming on MIMD computers. [EEE Trans. on Parallel and
Distributed Systems, July 1991

Philip J. Hatcher, Michael J. Quinn, Anthony J. Lapadula, Robert R. Jones,
and Ray J. Anderson. A production-quality C* compiler for a hypercube mul-
ticomputer. In Proceedings of the Third ACM SIGPLAN Symposium on Prin-
ciples and Practices of Parallel Programming, pages 73-82, Williamsburg, VA,
April 1991. ACM SIGPLAX. Available as SIGPLAN Notices 26, 7, July 1991.

Fry J. and C. E. Taylor. Mosquito control simulation on the connection ma-
chine. In Proceedings of California Mosquito and Vector Control Association,
1992,

K. Knobe, J. Lucas. and G. Steele. Data Optimizations: Allocation of arrays to
reduce communication on SIMD Machines. Journal of Parallel and Distributed
Computing, 8, 1990.

Argonne National Laboratory. Using the Connection Machine System (CM
Fortran). Technical report anl/mes-tm-113, Argonne National Laboratory, 9700
South Cass Avenue, Argonne, IL 60439, June 1989.

30

[LLG+92]

[LR91]

[(May85]

[MR90]

(PSJ90]

[Reed0]

[RS87]

[RS92]

[RSWO1]

[Sab87]

[Sei90]

[Tay89]
[Thio1]

[Tic89)

[Who91]

D. Lenoski, J. Laudon. . Glarachorloo. W. Weber, A. Gupta. J. Hennessy.
M Horowitz. and M. S. Lam. The Stanford DASH multiprocessor. [EEE
Computer, March 1992

M. Lam and M. Rinard. Coatse-grain parallel programming in JADE. In Third
Symposium on Principles and Practices of Parallel Programming, April 1991.

David May. Communicating processes and occam. Technical note 20, INMOS
Corporation. 1985.

P \lehrotra and J. Van Rosendale. Programming distributed memory architec-
tures using Kali. Reporr 99-6G9. [ustitute for Computer Application in Science
and Engineering. Hampton. VA, 1990.

K M. Korner P.A. Subler. J.Biswas and J.C.Browne. TDFL: A task-level
dataflow language. Journal of Parallel and Distributed Computing, 13:103-113,
1990.

A. Reeves. The Paragon programming paradigm and distributed memory com-
pilers. Report EE-CEG-90-7. Cornell University Computer Engineering Group,
[thaca NY, June 1990.

J.R. Rose and G.L. Steele. C*: An Extended C Language for Data Paral-
lel Programming. Technical report PL-87.5, Thinking Machines Corporation,
March 1687,

R. Rosing and R. B. Schnabel. Efficient language constructs for large parallel
programs — an overview of Dino2. Technical Report Technical Report CU-CS-
578-92, University of Colorado at Boulder. January 1992.

M. Rosing. R. B. Schnabel, and R. B. Weaver. The DINO parallel programming
language. Journal of Parallel and Distributed Computing, -13:30-42, 1991,

G. Sabot, The paralation model as a basis for parallel programming Inguages.
Technical report, Harvard University, April 1987,

C.L. Seitz. Multicomputers. In C.A.R. Hoare, editor, Developments in Con-
currency and Computation. Addison- Wesley, 1990,

S. Taylor. Parallel Logic Programming Techniques. Prentice Hall, 1989.

Thinking Machines Clorporation. ('ambridge. Massachusetts. Paris Reference
Manual., 6.0 edition, Febuary 1991.

Walter F. Tichy. Parallel matrix multiplication on the Connection Machine.
In Horst D. Simon. editor, Scientific Applications of the Connection Machine,
pages 174-187. World Scientific, 1989.

S. Wholey. Automatic Data Mappings for Distributed Memory Parallel Com-
puters. PhD thesis, School of Computer Sciences, Carnegie-Mellon University,

1991.

31

[WL83]

(Ws92]

[ZBGS6]

T.A. Witten and L.M..Sander. Diffusion Limited Aggregation. In Physical
Review, pages 3686-3G97. 1983,

R. P. Weaver and . B. Schnabel. Automatic mapping and load balancing
of pointer-based dyvuamic data structures on distributed memory machines.
Technical Report Technical Report CU-CS-584-92, University of Colorado at
Boulder. Felyuary 1992,

H. Zima. H-J Bast. and M. Gerndt. SUPERDB: A tool for semi-automatic
MIND/SIMD parallelization. Parallel Computing. 6:1-18, 1986,

32

A Programs for Reachability
Reachability in UC
#define N 512

void CM_timer_clear(), CM_timer_start();
void CM_timer_stop(), CM_timer_print();

int main{void)

{
index_set I:1i = {0..N-1}, J:j = I;
int e[NJ[N], r[N];

/% initialize e so each node is connected to next higher node */
par (I,J) {
o[i1[3]1 = (i==3):
if (i<(N-1))
e[i+1][i] = t;
}

/* r[i] is true if node 0 is connected to node 1 %/
par (I)
r[i] = e[il[0];

CM_timer_clear(1);

CM_timer_start(1);

xsolve (I) / continue until r stops changing */
rli] = $11¢3; rlj] & e[il(jl);

CM_timer_stop(1);

CM_timer_print(1);

33

100

Reachability in CM Fortran

program reachability
implicit ncne

integer, parameter :: n=512
logical, array(n) :: r, temp
logical, array(n,n) :: e

integer i,j

each node is connected to itself and the next node
e = _FALSE.

forall (i=t1:n) e(i,i) = .TRUE.

forall (i=1:n-1) e{i,i+1) = .TRUE.

r contains the nodes that node 1 is connected to
r(i:n) = e(i,t:n)

call CM_timer_clear(l)
call CM_timer_start(1)
do while (.TRUE.)

temp = any(spread(r, DIM = 2, NCOPIES = n) .and.

DIM = 1)
if (all(temp .eqv. r)) then
goto 100

end if

r = temp
end do
continue
call CM_timer_stop(1)
call CM_timer_print(1)

end

34

Reachability in C*

#include <cscomm.h>
#include <stdlib.h>
#include <stdio.h>

#define N 512
#define N_PROCS 8192

int main{int argc,char *argv([])

{
shape [N_PROCS]si; /* shapes must have more than 512 elements */
shape [NJ[N]sZ; /* 512x512 > N_PROCS, so no padding needed */
int:s2 e, conn, s2mask;
int:s1 r, temp, simask;

/% initialize e so each node is connected to next higher node */
with (s2) {
e =0;
[pcoord(0)] [peoord(0)]e = 1;
where (pcoord(0) < (N-1))
[pcoord(0)] [pcoord(0)+1]e = 1;
}

/* these masks prevent collisiens in sands */
with (s1) simask = (pcoord{(0)<N);
with (s2) s2mask = (pcoord(0)<N && pcoord(1)<N);

/* r[i] is true if node 0 is connected to node 1 */
with (s2)
where (s2mask & pcoord(0)==0)
[peoord(1)]r = e;

CM_timer_clear{l);
CM_timer_start(1);
while (1) {
with (s1) /* send r to 2d shape */
where (ailmask)
[pcoord(O)][O]conn = r;

with (s2)
where (s2mask) {
conn = copy.spread(&conn, 1, 0); /* spread */
conn &= e; /* combine */
raduce(&conn, conn, 0, /* reduce */
CMC_combiner_logior, 0);

33

where (pcoord{0)==0)
[pcoord(1)]temp = conn; /* return result */

by
with (s1) { /#* stop if r hasn’t changed */

if (&=(temp==r))
break;
r = temp;
¥
}

CM_timer_stop(1};
CM_timer_print(l);

Y

36

