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Abstract

Colored petri nets have been shown to create greatly simplified models that have
many fewer places and transitions and can be applied to families of systems with
minimal changes. This paper presents a modeling tool that uses a form of colored
stochastic petri nets to model the performance of fault-tolerant multicomputer systems
as resources fail. The model can be viewed as having tokens that collect to form
compound tokens in a manner somewhat analogous to the formation of molecules from
atoms. Therefore we call it the Polyvalent Stochastic Petri Net (PSPN) modeling
system.

Using this approach simple and relatively similar models can be used for systems
of varying sizes and configurations. Complex actions such as backtracking and routing
around failed links in a communications system can be expressed in the transitions.
Failed parts are modeled by simply removing a resource token from a place.

Models are presented of several multicomputer systems, and their performance is
determined with and without various failed parts. Simulations are also shown that
model the effect of locality of message destinations on performance. The paper con-
cludes with a discussion of planned extensions of the modeling technique to include new
applications and building analytic models as simplifications of the simulation models.

1 Introduction

In large multicomputer systems, the probability of faults and errors increases commensurate
with their increased complexity. It is desirable to be able to model the performance of
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such systems as their functionality degrades due to failed components or recovery actions.
Stochastic Petri Nets have proven to be a useful tool for modeling many aspects of fault
tolerant distributed computers but the models are sufficiently complex that they are often
avoided by systems builders.

We have been exploring the use of colored Petri nets to create greatly simplified models,
that are hoped to be more expressive and of greater use to designers. A modeling system
has been developed and called the Polyvalent Stochastic Petri Net (PSPN) model. Models
use tokens with list attributes of variable length and the effect is to have tokens combine to
form compound tokens (analogous to molecules) when resources are acquired and separate
when resources are released. Transitions implement generalized firing rules that vary with
the current state of each compound token. This results in extremely compact models, and
homogeneous systems of varying size have the same model. The size difference is reflected
by initializing with different numbers of resource tokens. Similarly faults are implemented
by removing resource tokens from the model.

Before describing PSPN, it is important to summarize the previous work that led up to
this approach.

1.1 Petri Nets

Petri introduced the graphical models[6] which now bear his name. Petri Nets (PNs) are
defined as follows[2]:
PN =(P,T,A, M)
where P is the set of places, T is the set of transitions, A is the set of arcs, and M is the
initial marking.
Places are represented as circles; transitions are represented as bars and arcs link places

Figure 1: A simple Petri Net.

to transitions and transitions to places. Places may contain tokens which are represented as
black dots inside the place in which they reside.

A place is said to be an input place to a given transition if there is an arc from that place
to the transition. Similarly, a place is said to be an output place of a given transition if there
is an arc from the transition to that place. If all input places to a transition contain at least
one token, the transition is enabled. Enabled transitions are said to fire and, upon doing
so, they remove a token from each input place and introduce a new token into each output
place. With PNs, there is no timing; the order of transition firing can be known, but the



amount of time between firings is not part of the model. Similarly, individual tokens have
no identity, nothing distinguishes one token from another in the same place.

1.2 Stochastic Petri Nets

Stochastic Petri Nets (SPNs) are obtained from PNs by associating with each transition in
a PN an exponentially distributed firing rate. This gives a slightly larger formal definition.

SPN = (P,T, A, M, )

where P, T, A, and M are as above and A is the set of firing rates. It has been shown[1] that
SPNs are isomorphic with continuous time Markov Chains where each Petri Net marking is
equivalent to a state in the equivalent Markov Chain. Petri Nets are, however, generally a
much more compact and intuitive model.

Molloy has also shown that, using the method of stages [4], it is possible to model
transitions with abitrarily distributed firing rates provided that the distribution has a rational
LaPlace transform. In principle, analytic solution is possible for all such systems. Dugan
et. al. [10] allow arbitrary distributions for firing rates and, where analytic solution is not
feasible, suggest solution by simulation. Sanders and others have investigated stochastic
activity networks for performability modeling(7].

1.3 GSPNs and SHLPNs

Marsan, Conte, and Balbo [2] present cxtensions of SPNs which they call Generalized
Stochastic Petri Nets (GSPNs). They allow nets to have both timed and immediate transi-
tions, thus the formal definition is identical to that for SPNs with the exception that the set
A may have fewer elements than T. They specify that if more than one immediate transition
is enabled, a probability distribution is used to select which transition among those enabled
will fire. They also present inhibitor arcs, which can often achieve the same result except

Figure 2: A transition with inhibitor arc.

that they require that there be no token in the inhibited input place.

Lin [11] presents Stochastic High Level Petri Nets where he investigates the simplifications
that can be obtained by combining into one transition(place) the transitions(places) which
have the same or similar function but differ in name. He shows that the philosophers problem
can be compactly represented (see figure 3) with a much smaller net where where all E places
have been combined into one E place and similarly for the transitions and other places. The
tokens now have identities and the transitions have predicates which must be satisfied in order
for the transition to be enabled. Also presented is the idea of using compound markings to
reduce the size of the equivalent Markov chain.
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Figure 3: Philosophers High Level Petri Net.

1.4 Colored Petri Nets

Colored Petri Nets[3] give structure to tokens and greatly enhances the decision making
power of transitions. Jensen defines CPNs as

CPN = (P,T,A,IN,N,%,C,G, E)

While this initially seems imposing, there are really only three new pieces to this system as
compared to PNs. P, T, and A, are as above, and IN in CPN’s is the same thing as M above
(i.e. the initial state of the system). This leaves us with

1. N is the node function.

2. ¥ is a finite set of types, called color sets.
3. C is the color function.

4. G is a set of transition guard functions.
5. E is a set of arc expression functions.

The node function N exists as a tacit assumption in the previous models. It is simply the
specification of the source place(transition) and destination transition(place) for each arc. &
is one of the new features. It is a set of data types (like Pascal records) each of which must
be both finite and non-empty. As previously mentioned, tokens in CPNs have structure to
them; each token has one of the structures enumerated in X. Similarly, each place can hold
only one type of token, hence we have C which specifies which type structure is associated
with each place. Another new feature is the transition guard functions, G, these are boolean
predicates which must be satisfied in order for the transition to fire. Guard functions appear
in square brackets next to the transition. Guard functions which always evaluate to true are
omitted. Finally, there are the arc expressions, E. These expressions evaluate to a value of
the same type as the place from which they emanate and define, with the guard functions,
how many and which tokens are needed from each input place in order for a transition to

fire.



Figure 4 is an example of CPN’s. Upon initial inspection, one finds much new information.
Places, transitions and arcs take the usual form. The node function, N, is defined pictorially
in the usual way. In the upper left corner of the picture is the definition of the color sets

| ¢olor U = with plg: |
color I = int; 1
color P = preduct U*Ir
color R = with rlalt;

q
1'r+3'g+2't

Figure 4: A portion of a CPN.

(¥). It is quite simply a list of declared types with type U being an enumerated type whose
allowed values are p or q. Type R is similar, but with a different value set. Type I is the
integers and type P is a record with two fields, one field is of type I, the other of type U.
Two variables, x and i, are also declared.

Next to each place, in italics, is a declaration of its type; this is C, the color function,
which defines the type of the tokens which occupy each place. The initial marking of the
net is denoted by the underlined inscriptions next to the places. In this case, place Res
initially has six tokens (one with value r, three with value s, and two with value t) and place
B initially has 2 tokens (both with the value p for the first field and zero for the second).
There is one transition guard function in the example and several arc expressions.

T2 illustrates the use of both arc expressions and guard functions. It is said that T2
has two variables; this is because when we examine the guard function of T2 and the arc
expressions of all input arcs, we find a total of two distinct variables. These are x and i. The
guard function for T2 specifies that x must have the value p in order for the transition to
be enabled. Examining the arc expression for the arc from place B tells us that x gets its
value from the first field of the token from place B and i gets its value from the second field
of that token. The arc expression from place Res tells us that if the value of x is p, then we
need two tokens of value s from place Res and that if the value of x is q, then we need only
one token of value s from Res. Thus in order for T2 to be enabled, there must be a token in
B whose first value is p and there must be at least 2 tokens with value s in place Res.



2 PSPN Modeling Techniques

Our modeling system can be viewed as an amalgamation of Colored Petri Nets (CPNs) [3]
and Generalized Stochastic Petri Nets (GSPNs) [2] with some extensions. A formal definition
of our system is thus the following.

PN =(P,T,1,0,H,M, )\ R,p)

—

P is the set of places.

T is the set of transitions.

I is the set of input arcs.

O is the set of output arcs.

H is the set of inhibitor arcs.

M is the initial marking.

A is the set of transition timing distributions.

R is the set of firing rules.
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p is the set of transition predicates.

All Petri Nets also include tokens which are not explicitly mentioned in the above list
since they fall more properly under the heading of initial marking. A marking (initial or
otherwise) of a Petri net is a distribution of tokens among the places. Tokens reside only in
places.

Tokens: Tokens in our PSPN Petri nets as in CPNs have attributes or data values which,
like a record in Pascal, may be of whatever structure one needs. All tokens in a given place
have the same attribute structure (color in Jensen’s work), and an attribute may be a list
of varying length. The value of various attributes distinguishes one token in a given place
from another. The implementation of list attributes is probably the most unique features of
our modeling technique. As mentioned above, tokens have whatever attribute structure one
needs, and we allow fields in the attribute structure to be lists of more primitive types.

For example, a token representing a request for service may reach a transition that
also has an input from a place with resource tokens. The transition function will select a
resource token, add its identity to the list in the requesting token, and fire by passing along
the modified compound token. This can be done in a looping fashion so that the same
transition is used repeatedly to collect new resources such as communication links, with the
transition function examining what new link is needed on the basis of those already collected.
At another transition, the list will be modified, and the resource token returned to its home
place.

This feature has allowed us to keep our graphical models quite small, but still very
expressive. It also allows the use of one graphical model for systems of varying size. List
attributes are alluded to in [3], but no extensive use is made of them.



Transitions: Transitions define the manner and timing of token motion about the net.
Stochastic Petri Nets associate a set of rates with the transitions such that each transition
has a firing rate (usually exponentially distributed) unless it is an immediate transition. In
our model, all transitions have a timing distribution. This distribution may be exponential,
deterministic, or any other distribution that is codeable in C. Immediate transitions are
thus just a special case of deterministic timing distributions; i.e. they are transitions with
deterministic distributions and the time to fire is zero.

Predicates: Fach transition has associated with it a predicate (in special cases there are
more, as is discussed below) which specifies a relationship between the various attributes
of the input tokens. This predicate must be satisfied (evaluate to "true”) in order for the
transition to be enabled. At the moment the transition becomes enabled, it is scheduled to
fire at a time in the future that is determined by the transition’s timing distribution. These
predicates work in the same manner as guard expressions in CPNs.

Firing Rules: In addition to predicated transitions, we have what we call a firing rule.
This is a specification (one for each transition) that tells what data values are taken from
the various input tokens and where they assigned in the output token(s). This concept is
roughly equivalent to the arc expressions in CPNs.

Figure 5: Complementary Qutput Transition (COT)

Arcs: Arcs are usually specified as being either input arcs or output arcs depending on
their relationship to a transition. Input arcs define on which places a transition depends
(input places). Output arcs define to which places transitions introduce tokens upon firing
(output places).

We use a generalization of inhibitor arcs to expand the modeling power of our nets without
greatly increasing their size. A typical transition with inhibitor arc is shown in figure 2; it
functions as follows: if there is a token in places B and C and no token in place A, the
transition may fire. When it fires, it consumes a token from places B and C and places a
token in the output place or places.

In order to incorporate the general idea of inhibitor arcs into our framework of predicated
transitions, it was necessary to modify and extend the idea somewhat. The result is the
Complementary Output Transition (COT) shown in figure 5. A COT may fire in two different
ways. It may fire along its "true” path and consume a token from all input places, or it may
fire along its "false” path and consume tokens from only the uninhibited input places. A
COT has two predicates associated with it. The first predicate references only the uninhibited
input places (B and C in this example). The second predicate may make reference to any or
all input places. In order for the T branch to be taken, both predicates must be satisfied, if
only the first predicate can be satisfied, the F branch is taken. Of course if it is not possible
to satisfy even the first predicate, the transition may not fire. Additionally, a COT has two



timing distributions, one for each firing branch.
The COT extension brings together useful features from Colored Petri Nets [3] and
Generalized Stochastic Petri Nets [2].

3 PSPN Models

In order to illustrate the use of the PSPN tool, a 4 place model is presented in figure 6 below.
The same net is used for modeling Toroid and N-cube architectures of varying sizes.

3.1 Modeling Assumptions

The systems we have modeled have many common elements. Since our primary goal is to
measure average message latency, a number of simplifying assumptions have been made.

All processors act identically. Each processor spends a random amount of time executing
locally and then needs to send a message. Unless otherwise specified, the destination chosen
at random, uniformly distributed over all other processors in the system. The processor is
assumed to be busy until the message is delivered and upon delivery it resumes executing
locally.

In order to deliver a message, it is assumed that a continuous chain of links from node to
node through the system must be acquired and held until the message is delivered (circuit
switched system).

Neither the destination node nor any of the intermediate processor nodes need to par-
ticipate in building the links; it is assumed that each node has a "link controller” which is
capable of accepting link requests and granting link usage without interrupting the main
processor of the node. Upon delivery of a message, all links in the chain are released.

3.2 Model Overview

The Petri Net model used is the same for all systems modeled. It consists of four places and
six transitions. The tables in figure 6 list the places and transitions and describes themn.

Each of the places corresponds to a physical aspect of the system being modeled. Tokens
in the P place represent processors executing privately; tokens in the CB place represent
messages in the process of building a link chain; tokens in the L place represent available
links, and tokens in the BT place represent messages who, for various reasons, were unable
to obtain the next link in the chain are attempting some sort of backtracking. The types
(or colors) alluded to previously are shown in the token structure portion of the table. For
instance tokens in place CB have three attributes, msrc, mdst, and Ichain. The first two
attributes represent the processor number of the source and destination processors and the
last is a list which contains all of the intermediate nodes in the link chain. Tokens in the L
place represent links and the connection between a pair of nodes i and j is represented by
two links, one from i to j, the other from j to i.

Each of the transitions, together with their associated predicate(s), represents a change
in the physical systems being modeled. While the PSPN graph we are using is the same



for all systems, the predicates sometimes vary to reflect the differing requirements of the
systems being modeled.

Place  Purpose Token Sutucture

CB connection building <mssrc,mdst,lchain>
P private processing <pid>
L idle links <src,dst>

BT backtracking <mssrc,mdst,lchain>

Trans Purpose
mgl message gencration
md message delivery
Ib Ichain building
thil) backtracking - chain empty
thtl backtracking - chain non empty

tbt_punt  backtracking - give up and start over

Figure 6: Net Model

Processors deciding they need to send a message are represented by mgl; since there
are no needed conditions on this transition, its predicate is always true. The output token
represents a message starting through the system, and it is deposited in the Chain Building
(CB) place where it (i) gathers links by rules determined in transition Ib, and (ii) returns to
place CB. The transition md represents succesful delivery of those messages; tokens in the
CB place that have acquired all links needed to make a continuous chain from the source to
the destination will satisfy the md predicate and enable this transition.

Transition 1b represents the attempted acquisition of links and is implemented with a
COT. If all of the 1b transition’s predicates are satisfied (a forward link is available), 1b
attaches the new link to the token and returns it to the CB place. If no forward links are
available, the token is sent (via the F branch of the Ib transition) to the BT place where the
three tbt transitions are used to implement backtracking.

As explained previously, transitions of this type have two predicates; tokens from the
uninhibited input places must satisfy the first predicate; tokens from all input places must
satisfy the second predicate in order to fire the true branch. If no combination of tokens
from the CB and L places can be found to satisfy both predicates, the false branch is taken
(assuming that a token from the CB place satisfies the first predicate). The first predicate
on 1b checks that the link chain is still incomplete. The second predicate checks three things.
First, the link must originate at the current last link of the chain; second, the link must go
in the correct direction. The third criteria relates to backtracking and is best discussed with

the various tbt transitions.
The three tbt transitions implement a rudimentary backtracking algorithm. When no



links are in the link chain, the tbt0 predicate will be satisfied. In this case we simply take
any available link that originates at the source node - going off in a random direction. When
at least one link is in the link chain, the tbt1 predicate will be satisfied. Here, we simply
give up the last link in the chain and send the token back to CB to try again. The tbt_punt
transition, as the name implies, takes a rather drastic action; it gives up all links in the
chain, obtains a link that goes in a random direction, then sends the token back to CB to
continue building its link chain. This only occurs when a token is making its second try at
backtracking without making any significant progress in building a link chain.

Since both tbt0 and tbt_punt cause links to be selected which possibly go in the ”wrong”
direction, it is necessary for the Ib transition to be constrained to not back up over the last
link (even though that might be a step in the "right” direction).

It is customary to represent immediate transitions as thin lines and timed transitions as
thicker lines or as boxes, we have adhered to that custom in the figure. Of the five timed
transitions, all but 1b have only a single timing distribution associated with them. We chose,
as implied by the As associated with those transitions, to use exponential distributions for
them. The bifurcated 1b transition has one distribution for its true firing branch and a second
for its false firing branch. For the true branch we again chose an exponential distribution
and for the false branch a deterministic distribution to demonstrate its availability.

3.3 A Detailed Example

The operation of the model is best understood by example. The 8 node N-cube system is
the simplest of the three we studied and demonstrates all of the features in our system. We

Figure 7: 8 node N-cube with broken links

will follow processor 1 as it sends a message to processor 6. Additionally we will assume
that the links (0,1) and (6,7) are broken. The resulting cube is shown in figure 7. This is
implemented by simply removing the tokens representing those links from the L place prior
to simulation.

We initialize our systems with all processors in the P place and all available links in the
L place. The simulation then starts and all enabled transitions are scheduled. For our 8
node N-cube system, this results in 8 instances of mgl one being scheduled, one for each
processor in the P place. At some time in the future, determined by its timing distribution,
mg1 will fire for processor 1. The token representing p; 1s removed from the P place and a
destination address for the message is selected which is uniformly distributed on [0,7]. As
mentioned above, we are assuming that the destination is node 6. Tokens in CB also have

10



a chain of links, which may be empty, thus the new token, p;jmjglcy is inserted in the CB
place. The last item in the name of the token, l¢, is the link chain which begins at the source
node and extends through all the links specified in the chain. For now, the last node in the
chain is 1.

Predicates
mgl 1
md last(cb.lchain) == cb.mdst
1b0 last(cb.lchain) != cb.mdst
b1 last(cb.lchain) == l.src &&

direction of 1 is correct &&
1 does not reverse the last step made

tbt0 Ichain is empty &&
m.sr¢ == l.src

tbtl Ichain not empty &&
btentr == 0

tbt_punt Ichain not empty &&
btentr > 0 &&

m.src == l.src

Since the net has changed state, it is necessary to schedule all newly enabled transitions.
The only possible ones are md and 1b since these are the only transitions whose input places
have had new tokens added. Checking the predicate for md, we find that its predicate, which
specifies that the message destination must be equal to the last node in the link chain; this
is not the case so md is not enabled. We then check the predicates for b and find that the
first predicate satisfied by the p;miglc; token and so we check links available in the link place
trying to find one which, together with pym;gle,, satisfies the second 1b predicate. Since the
(1,0) link is broken, it is unavailable, but either of the two links (1,5) and (1,3) will satisfy
the predicate. Qur model specifies no preference and our simulator simply selects the first
token which satisfies the predicate. We assume that link (1,5) is selected; the transition is
scheduled to fire, and some time later will fire. The token p;migle; is removed from CB, /15
is removed from L, and a new token pymygle;s is placed into CB where the process starts
over.

If the pymyslcss token selects link (5,4) next it will proceed without incident on to node
6. Let us assume that link (5,7) is selected instead. We then have the situation of pymieleisy
in CB which still does not satisfy the md predicate, but does satisfy the first 1b predicate.
Unfortunately, link (7,6) is unavailable and so there is no link which, when taken with
pimyglersy, will satisfy the second 1b predicate. It does not matter that the link is broken;
the situation would be the same if the link was merely in use by another processor trying to
send its own message. The complementary output of Ib is now scheduled since it is enabled
and the primary is not.

This removes the pymiglcisz token from CB and places it in BT where we find that
neither the tbt0 predicate nor the tbt_punt predicate is satisfied. Thus, tbt1 is scheduled
and fires (immediately). This gives up the most recent link, returning it to the L place
and the reduced token pymgle;s is returned to CB. Since, in the case where more than one
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token in a place would satisfy a transitions’ predicate(s), the token is selected at random,
the pymgless will eventually select the (5,4) link and continue to deliver the message.

If the (4,5) link were also broken, it would be possible for the pymigle;s to run through
a cycle obtaining and giving up the (5,7) link. We prevent this by having and additional
backtracking transition tbt_punt, which as the name implies takes drastic action to try to
get the message delivered. A counter is maintained (not shown in the figure) which counts
passages through Ib. This counter is set to 2 by tbt1; it is decremented (with 0 as a floor)
at each passage through lb. If a token with a backtrack counter value greater than 0 arrives
in BT, it will satisfy only the tht_punt predicate. tbt_punt returns all current links in the
link chain to the L place and selects a new link which goes in any direction.

4 Simulation Software

Qur simulator is more precisely a simulator generator. Descriptions files (shown in the ap-
pendix) are processed by the generator which outputs a C program to simulate the described
PSPN. The description files consist of 2 major sections: declarations and definitions. In the
declarations portion, all places and transitions are declared. The definition portion is where
the real definition of the model occurs.

The place definitions define which places are inputs and outputs to which transitions.
This section could actually be dispensed with since the same information is included in the
transition definitions.

The transition definitions reiterate the input and output places, define the timing dis-
tribution(s), the predicate(s) for each transition, and the firing rules. The reader of the
appendix will notice that the variable names used in the paper (l.src for example) are higher
level language constructs than are used in the actual description files (1{0] for example). The
predicates can be any arbitrarily complex C boolean expression. The body of each transi-
tion definition, which defines the firing rule, allows some high level language constructs too
though it is not yet as extensive as that allowed in the predicates.

The final section of a description file defines the initial marking of the net. For each
place, all tokens that are to exist in that place at the start of the simulation are declared.

The flow of the software is relatively straightforward. After each transition firing (and
at the start of simulation), all possibly live transitions are checked to see if they may be
scheduled, if so, the tokens which will participate are marked (so that they won’t be scheduled
for something else), the timing distribution is evaluated and a firing event for each scheduled
transition is place in an event queue. Next, the event on the front of the queue is executed.
The firing rule for the appropriate transition determines how tokens are moved around in
the net, transitions are marked as being potentially live based upon changes in their input
places and the process repeats itself.

5 Results

We model two different systems using PSPNs. The first is the binary N-cube, the second
is the toroidal mesh. Two different sized N-cubes are modeled, the first with 8§ nodes, the
second with 64; for the toroid, only size 64 is investigated. In each case we measure the
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average time to deliver a message with varying numbers of broken links. While our models
actually use two distinct links (one in each direction) for each internode link, when the word
“link” 1s used in this section, we mean both the ij and ji links.

The mean times for all transitions except mg1l were fixed. The exponentially distributed
transitions all had a mean time of 1 (with no units); the deterministic transitions were 0 in
the case of thtl and 0.5 in the case of the F branch of lb. The mean time for the mgl
transition was varied in order to vary the the utilization factor p, and was a parameter used
to generate a family of curves in the other graphs. Except where noted, destination nodes
are chosen at random, uniformly distributed over all nodes in the system other than the
originating node.
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Figure 8: Service Time in 8 node N-cube as a function of p.

As a base line test of our system, we wanted to use it to investigate how average message
delivery time varied as a function of the system utilization factor p. In typical queueing
systems, p is usually just A/u using the notation of [8]. However our system is structured
such that the average interarrival time of customers depends on both their average system
time T and their average generation time 1/A,1. Thus we have

_ e _
P—m—

T

T
T T+1/dnp

Where % is the average service time. We take this to be the average time for a message to be
delivered when there is no competition for the systems resources. Thus T = 1/Ana+12/7)n,
and, since all of the As except Amg: are equal to 1, T = 2.71. The graph in figure 8 shows how
the service time in the system we modeled compared to both the M/M/1 and M/M/k//k
queueing systems. One would expect, that with very long interarrival times, the Ncube 8
system would act very much like the k-server k-customer queueing system and that it would
always be better than the single server system and that is just what we found.

For the 8 node binary cube, one cannot break many links before the structure ceases to
be connected. If more than 5 links are broken, the structure becomes disconnected, and it is
possible for the structure to become disconnected with only 3 broken links. One can break
5 links and still have a connected structure, but it has degenerated into a one dimensional
array. We chose to break links lying in the (0,1) direction and simulate the system with
up to 3 links broken. The links in question are (0,1), (7,6), and (2,3). Among these three
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links, the choice of the second link to break makes a significant difference in the system’s
performance. The (0,1) and (2,3) links are on the same face and breaking these two gives
much lower performance than if (0,1) and (7,6) are selected.
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Figure 9: Total Messages Delivered as a function of Number of Broken Links

Figure 9 shows the total messages delivered with varying numbers of broken links for
Tmgt = 200 (relatively sparse message traffic) and #,, = 20. We found that the simple
backtracking algorithm which we chose to model was totally inadequate for the 8 node
cube with 3 links broken. When 3 links were broken, competition for the one available link
between the two halves of the cube reduced message throughput to nearly 0 Performance
of the system varied with 2 links broken depending on the configuration selected; with two
links broken on the same face performance was degraded in terms of both throughput and
delay. The graphs have divergences in them where multiple configurations with the same
number of broken links was investigated.

8 Node N-cube Message Delivery Time

uniform-20 —,
3.8F uniform=200

1
Number of Broken Links

Figure 10: Service Time in 8 Node N-cube

What can be seen in figure 10 is that message delivery times are always lower for the
system with large interarrival times for messages. The 3 broken link case is not included in
the figure since message traffic was so low that the results were erratic. A better backtracking
algorithm (or different selection of which links are broken) is needed to study this case. As
previously mentioned, the data for 2 broken links varies depending on the relative location
of the links. Figure 10 reflects this and we see that with two parallel links on the same face

14



broken, average message latency increases dramatically compared to breaking two parallel
links that are opposite each other across the body diagonal.

64 Node N-cube Message Dalivery Time
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Number of Broken Links
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Figure 11: Service Time in 64 Node N-cube

For the 64 node N-cube we also looked at message delivery times with varying numbers
of broken links. The links we chose to break were the (0,1), (16,17), (32,33), (48,49), (8,9),
(24,25), (40,41), and (56,57). If one divides the 64-cube up into 8 8-cubes, these are the (0,1)
links of all of the subcubes. Again we measure delay with Z,.41 set to both 20 and 200. We
also varied the selection of the destination node for messages. In the top set of set of curves,
destination nodes are selected at random, uniformly distributed over all other nodes in the
system. In the bottom set of curves, the destination is selected with a geometric distribution
stich that nodes a distance 2 away are only 1/2 as likely as nodes of distance 1 and similarly,
with decreasing probability out to distance 6. In the upper curves, the mean distance is 3.04
(we exclude the originating processor as a destination); in the lower curves, it is 1.90. It
might be expected that a system with greater locality of message traffic would experience
less impact from link breakage, and, in absolute terms, this is true. As a percentage of the
average message delay, the difference, while still there, is very small. With 8 links broken,
there is a 9% degradation in service time for the system with locality and compared to 11%
degradation with uniformly distributed destinations.

64 Node Mesh Message Deliivery Time

toroid2(

a8 b toreid200

[} 1 2 3 4 5 & 7 8
Number of Broken Links

Figure 12: Service Time in 64 Node Toroid

For the toroid, we looked at service time as a function of the number of broken links. In
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this case the destination nodes are again uniformly distributed. This gives a mean distance
of 4.06 and hence T = 5.06 at zero load (md has mean time of 1 also). Here we see that
the toroid, at light loads, suffers somewhat more (17%) degradation in delivery time with 8
links broken, but with the heavier traffic (mg1 = 20), the delivery time is seriously degraded
with a 36% increase.

6 Conclusion

The PSPN modeling techniques presented in this paper represent a concise and powerful
tool for the analysis of computer systems. PSPN models of several computer systems have
been developed to demonstrate their utility in the area of fault tolerance modeling. PSPNs
are a natural extension of CPNs and GSPNs and, with appropriate timing distributions,
should be amenable to analytic solution of the corresponding Markov Chain; this need to be
investigated.

Other areas for future work include improvements in the capabilities of our software
system and modeling of other interesting systems such as distributed shared memory multi-
computers.
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