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Abstract

Parallel discrete event simulation offers significant speedup over the tradi-
tional sequential event list algorithm. A number of conservative and optimistic
algorithms have been proposed and studied for parallel simulation. We examine
the problem of transparent execution of a simulation model using conservative
algorithms, and present experimental results on the performance of these trans-
parent implementations. The conservative algorithms implemented and com-
pared include the null message algorithm, the conditional-event algorithm, and
a new algorithm which is a combination of these. We describe how dynamic
topology can be supported by conservative algorithms. Language constructs
to express lookahead are discussed. Finally, performance measurements on a
variety of benchmarks are presented, along with a study of the relationship
between model characteristics like lookahead, communication topology and the
performance of conservative algorithms.
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1 Introduction

Distributed(or parallel) simulation refers to the execution of a (discrete event} sim-
ulation program on parallel computers. A potential for a significant speedup has
led to the design of several algorithms for distributed simulation, which are broadly
classified into two categories - optimistic and conservative. Performance of these al-
gorithms has been studied on various benchmarks. A survey of most of the existing
simulation protocols and their performance studies on various benchmarks appears
in [Fujimoto 90].

[Bagrodia 92a] describes a distributed simulation language called Maisie which
attempts to separate the development and representation of the simulation model
from the specific simulation algorithm which is used to execute it. It also provides
constructs using which the user might optimize the execution of the model under a
particular simulation algorithm. Efficient sequential and parallel optimistic imple-
mentations of Maisie have been described in [Bagrodia 90], [Bagrodia 92b]. In this
paper, we examine the problem of transparent implementation of a conservative al-
gorithm in a simulation language. We use Maisie as a specific example to present our
ideas. We show how special constructs can be added to the language to improve the
performance under a conservative protocol. We also present a performance study of
the implementation using various queueing networks and synthetic benchmarks.

The contributions of this paper are as follows:

e Thus far, the performance studies of conservative algorithms have primarily
used a hardcoding of the simulation protocol into the application, for example,
[Fujimoto 87], [Nicol 88], [Chandy 89]. We show how a simulation model de-
scribed in an algorithm independent simulation language can be executed using
various conservative methods.

o We describe conservative implementations using three different algorithms—
null message algorithm [Chandy 81], conditional-event algorithm [Chandy 891,
and a new conservative algorithm that combines the preceding approaches. Al-
though, the performance of null message algorithm is generally better than that
of conditional-event algorithm, the latter has the nice property of not requiring
lookahead for progress(under the assumption that events with the same times-
tamp can be processed in an arbitrary order). A combination of the two has
almost the same performance as the null message algorithm and would in ad-
dition, also not require lookahead for progress. On certain kind of applications,
the combination could potentially perform better than the null message algo-
rithm.

¢ Knowledge of communication topology plays an important role in controlling
the null message overhead. Most of the existing work on conservative algorithms
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assumnes a static communication topology. In fact, it is widely believed that the
null message algorithm can not be used in a dynamically changing topology.
However, dynamic process and channel creation can potentially improve the
performance of conservative algorithms [Lin 92]. Maisie allows dynamic pro-
cess and channel creation. We describe how these constructs can be supported
with conservative algorithms.

o Lookahead, which is defined as the ability of a process to predict its future out-
puts, plays an important role in the performance of a conservative algorithm.
We present a slightly more general formulation of lockahead than presented
before [Fujimoto 87]. We discuss this formulation in the context of Maisie and
describe how information can be extracted transparently from Maisie programs
to improve the lookahead. We also describe language level features that are
provided to the user to further improve the value of lookahead.

e We study the performance of the conservative implementations using a variety
of benchmarks. The effect of varying different parameters like lookahead and
network connectivity are studied.

The rest of the paper is organized as follows: Section 2 describes the various
conservative algorithms used. Section 3 briefly describes Maisie. Section 4 describes
some of the optimizations for the conservative implementation. Section 5 describes
the benchmarks used in the experiments. Results are explained in section 6. Section 7
discusses related work, and section 8 gives the conclusions.

2 Conservative Algorithms

For the correct execution of a (process based) discrete-event simulation, the underly-
ing system has to ensure that all messages to a Logical Process(LP) are processed in
an increasing timestamp order. Distributed simulation algorithms are broadly clas-
sified into conservative and optimistic based on how they ensure this. Conservative
algorithms, in general, achieve this by not delivering a message of timestamp ¢ (and
hence blocking the process if it can’t proceed without the message) until it can ensure
that the process will not receive any other message with a timestamp lower than ¢.
Optimistic algorithms, on the other hand, allow events to be processed (possibly) out
of timestamp order. The causality errors are corrected by rollback and recomputa-
tions. In this section, we describe three conservative algorithms. We assume that the
communication channels are FIFO, and messages with the same timestamp can be
processed in an arbitrary order.



At any simulation instant, let n be the next message, with timestamp ¢, to be
processed by an LP. In conservative protocols, n will have to wait for some time
after its arrival, until the LP can make sure that there won’t be any messages with
smaller timestamps, before it can be processed. This waiting period, which is the
main overhead in conservative protocols, can be reduced by estimating t, in advance.
Earliest Input Time(EIT) for an LP, at a given simulation instant, is a lower
bound on #,. Under conservative protocols, therefore, an LP can not process any
messages with timestamp greater than EIT. Different protocols compute the value of
EIT differently. In general, efficiency of a protocol is determined by how close the
value of EIT is to the actual ¢,. In the ideal case, if EIT is always equal to t,, the
waiting period would be zero for every message, and the simulation protocol would be
optimal. We now describe how EIT is computed in the three conservative protocols
that we have studied.

2.1 Null Message Algorithm

Earliest Output Time(EOT), for an LP, at a given simulation instant, is a lower
bound on the timestamp of the next message sent by the LP. It is equal to EIT
plus the value of lookahead(described in detail in section 4) for the process at that
simulation instant. Every LP uses null messages to inform the LPs, corresponding
to all its output channels, of the value of EQT whenever it changes. The EIT of
a process is simply equal to the minimum of the last EOTs received on every input
channel. Note, therefore, that the knowledge of communication topology is crucial
for the performance of null message based algorithms. Null message overhead can be
reduced by piggybacking null messages with regular messages, and by requiring that
the entities send null messages only when they have no regular messages to process.
A non zero lookahead is required [Misra 86] in every cycle of entities to ensure that
the simulation model doesn’t deadlock(i.e. EIT keeps advancing).

2.2 Conditional-Event Algorithm

Consider an instantaneous global snapshot of the system. We define Earliest Con-
ditional Output Time(ECOT) for an LP to be the timestamp of its earliest un-
processed input plus the minimum timestamp increment(lookahead), if any. The
minimum over the values of ECOT of all the LPs and the timestamps of all the mes-
sages in transit is the (Globally) Earliest Conditional Event Time in the system, and
gives an estimate for the EIT of every LP in the system. Note that the computa-
tion of Earliest Conditional Event Time is similar to GVT calculation in optimistic
algorithms. Hence, any of the the GVT computation algorithms can be used.



2.3 A New Algorithm

Assuming that messages with same timestamp may be processed in an arbitrary order,
the conditional-event algorithm doesn’t require lookahead for progress. However, in
presence of good lookahead, the null message algorithm performs much better than the
conditional-event algorithm(which requires frequent global computations to ensure
progress).

We superimpose the null message protocol on top of the conditional event algo-
rithm. The conditional event algorithm uses a GV'T algorithm that doesn’t require
freezing of normal computation in order to calculate the Earliest Conditional Event
Time(hence allows the null message protocol to perform unhindered). The EIT for
any process is, therefore, the maximum of the estimates computed by the two algo-
rithms. This method has the potential of combining the efficiency of the null message
algorithm in presence of good lookahead with the ability of the conditional event algo-
rithm to execute even without lookahead(a scenario in which null message algorithm
alone will deadlock).

3 Maisie

Maisie [Bagrodia 90]is a distributed simulation language derived form May [Bagrodia 87).
The central construct introduced by the language is that of an entity. A Maisie
entity-type models physical objects (or a collection of objects) of a given type. An
entity-instance, henceforth referred to simply as an entity, represents a specific ob-
ject. Interactions among the physical objects in the system are modeled by message
exchanges among the corresponding entities.

An entity may be created and destroyed dynamically. An entity is created on
a specific processor and cannot be migrated subsequently. Message-communication
among the entities is based on buffered message-passing. An entity-type specifies the
types of messages that may be received by it. A message-type consists of a name and a
list of parameters. Every entity has a unique message-buffer. A message is deposited
in the message-buffer of an entity on the execution of an invoke statement. Each
message carries a timestamp, which corresponds to the simulation time at which the
corresponding invoke statement was executed. Messages sent by one entity to another
are delivered to the destination buffer in FIFO order.

An entity accepts messages from its message-buffer by executing a wazit statement.
The wait statement has two components: an integer value called wait-time (¢.) and
a Maisie statement called a resume block — a (non-empty) sequence of resume state-
ments. A resume statement is like a guarded command, where the guard consists
of a message-type (say m,) and an optional boolean expression(say b;). A resume
statement is said to be enabled if the message-buffer contains a message of type my,
which if delivered to the entity would cause b; to evaluate to true; the corresponding
message is called an enabling message. If the buffer contains one or more enabling



message, in the most commonly used form of the wait statement, the message with
the earliest timestamp is removed from the buffer and delivered to the entity. If two
enabling messages have the same timestamp, they are processed in an arbitrary order.
The only exception is in the case of a timeout message (this special message-type is
described below) which is delivered to an entity only if the buffer does not contain any
other enabling message. By selecting the guards appropriately, the walt statement
may be used to ensure that an entity accepts a message from its input buffer only
when it is ready to process the message.

If the buffer does not contain any enabling messages, the entity is suspended for
a mazimum duration equal to its wait-time ¢.; if omitted, £; is set to an arbitrarily
large value. If no enabling message is received in the interval t., the entity is sent a
special message called a timeout message. An entity must accept a timeout message
that is sent to it. A non-blocking form of receive may be implemented by specifying
t.=0.

If a wait statement contains exactly one resume statement and its guard specifies
timeout as the message-type, the entity will resume execution only when it receives
a timeout message after the wait-time specified in the statement has elapsed. As this
timeout message cannot be cancelled, it is referred to as an unconditional timeout
message. Wait statements that schedule an unconditional timeout message are used
frequently and are often abbreviated by a hold statement. The example at the end of
the section illustrates their use in a simulation. If the wait statement contains muitiple
resume statements, only one of whose guards include timeout as the message-type, the
entity may resume execution on the receipt of a message other than timeout. Thus,
the timeout message scheduled by such statements is referred to as a conditional
timeout message.

As a simple example, consider the simulation of a preemptible priority server in
Maisie. In the physical system, the server receives two types of requests, respectively
referred to as high and low, where the requests of the first type have a higher priority
and can interrupt the server if it is currently serving a request of type low. Figure 1
describes the Maisie model of the system. In the interest of brevity, the program
ignores issues concerned with the initiation and termination of the simulation.

Entity-type server models the priority server and hisrc and losrc respectively
model the sources for the two types of requests. The server entity defines two types
of messages, high and low to represent the two types of requests that may be received
by it. Henceforth, we will use high message to mean a message of type high; similarly
for low. The body of the entity consists of an infinite number of executions of the
wait statement. When idle, the entity accepts the next message from the buffer.
If the message is of type high, the entity executes a hold statement to schedule an
unconditional timeout message for the future time at which the service of the request
will be completed. On receiving the timeout message, it simply increments the count
of requests that have been serviced and is ready to accept the next message from
its buffer. If the entity services a low message, it schedules a conditional timeout



message; this message will be automatically resceduled, if the entity receives a high
message in the interim. In this case, the high message is again processed by executing
a hold statement, after which service of the low message is resumed.

The two source entities simply generate appropriate requests at periodic intervals
sampled from an exponential distribution. The hold statement in each source is used
to delay the entity by the appropriate time-interval; after the time has expired, the
entity sends the appropriate request message to the server.

4 Optimizations

Two factors which affect the performance of conservative algorithms most are the
knowledge of the exact communication topology, and lookahead. Since the
conditional event algorithm finds the earliest conditional event over the entire system,
knowledge of communication topology affects only the null message based algorithms.
In this section, we discuss the language level constructs provided in Maisie to support
these optimizations.

4.1 Dynamic Communication Topology

Any conservative method that uses null messages requires the knowledge of the com-
munication topology. In absence of this knowledge, the null messages would have
to be broadcast which would severely degrade the performance. Since, typically, the
communication pattern keeps changing over the course of the simulation, having a
static communication topology, which would necessarily have to encompass all the
channels that exist at any point during the simulation, would mean that each LP,
at any given time, might be synchronizing (using null messages) with a large num-
ber of LPs that its not going to be interacting with in the near future. Allowing
dynamic process and channel creation(and destruction), therefore, can improve the
performance considerably {Lin 92]. However, it is widely believed that null message
based algorithms can’t support these constructs.

The main problem in allowing dynamic channel creation in conservative schemes
is illustrated by the following example: In Figure 2, there already exists a channel
from @ to b and from a to ¢. A channel is to be created from b to ¢ at time t(i.e. the
first message on that channel will have a timestamp equal to ). If the information to
add b to its source set reaches ¢ after ¢’s local simulation clock is past time ¢, then, it
could result in a violation of causality(i.e. the message from b to ¢ might arrive in the
past of ¢). Also, if entity b didn’t add ¢ to its destination set until after simulation
time ¢, it could lead to a deadlock, since, b would inform(through null messages) only
the entities currently in its destination set about the value of its EOT, whereas, ¢
would start waiting for b's EOT at or before time £.

At the time of process creation, Maisie automatically creates a channel from the
creator to the created process. Any other channels have to be created or destroyed



entity hisrc{srvrid,mean}
e_name srvrid; int meanh;
{ while (true) do
/* delay entity by inter-arrival time for requests */
{ hold(exp(meanh));
invoke srvrid with high;
}

}

entity losrc{srvrid,meani}
e_name srvrid; int meanl;
{ while (true) do
{ hold(exp(meanl));
invoke srvrid with low;
}

}

entity server{cmeanh,cmeani}
int cmeanh,cmeanl;
{ int hent = 0, lent = 0, remtim lostart;
message high;
message low;
while (true) do
wait until {
mtyp(high) : {hold(ezp(cmeanh)); hent++;}
| mtyp(low) :
{ lostart= clock(); remtim= ezp(cmeanl);
while (remtim>0) do
wait remtim until
{mtyp(high :
{ remtim-=clock()-lostart;
hold( exp(cmeanh)); hent++;
}

| mtyp(timeout): {remtim=0; lent++; }
}
}
}

Figure 1: Maisie Model of Priority Server



Figure 2: Creating channels dynamically

explicitly by the entities by (locally) adding or deleting entities from their source or
destination sets. Four constructs, namely, add.source, add_destination, del_source,
and del_destinalion are available to an entity for this purpose. In order to avoid the
potential problem of causality violation as described above, if the earliest message on
a channel from entity b to ¢ has a timestamp ¢, then, the user has to ensure that the
following conditions are satisfied:

1. b should add ¢ to its destination set before or at simulation time t.

2. ¢ should add b to its source set before or at simulation time ¢.

First condition is easily satisfied, since, b can simply execute an add_destination(c)
just before it sends a message to ¢ . In order to satisfy the second condition, ¢ needs
to be informed about the ename of the entity b before or at time ¢(normally, in Maisie,
the destination doesn’t need to know source’s name). In most applications, b and c
are created by the same entity, say, a(typically the driver entity), and the channel
from b to c is created at the simulation time ¢, when the two entities are created (see
Figure 2). In such a case, a can send the ename of b to ¢ right after creating the two
entities, thus ensuring that it reaches c at time t. (note that this is just one possible
way of satisfying the second condition).

The only responsibility of the user is to satisfy conditions (1) and (2). The actual
synchronization with the source-set and destination-set is a part of the algorithm
used, and hence is transparent to the user.



4.2 Lookahead

Informally, lookahead is defined as the ability of a process to look ahead into the
future. Quantitatively, we define lookahead(t) for a process, at simulation time t, to
be the value of EQT —t after all and only the inputs to the process with timestamp
less than ¢ have been processed by the process (for simplicity, we assume that the
EOT, and hence lookahead, is same on all output channels). Note that the value
of lookahead depends on the semantics of process behavior(local factor), and the
message arrival pattern(global factor). The above definition is similar to the one
used by Fujimoto [Fujimoto 87). They define the lockahead for a process to be t',
if upon having processed all messages with timestamp ¢ or less, it can predict all
future messages with timestamp ¢ + ¢’ or less. However, they assume the lookahead
to be fixed throughout the simulation which, we believe, is inadequate to explain the
lookahead characteristics of most of the applications.

An eager server [Fujimoto 87] is defined to be one in which the departure event
is scheduled(i.e. the corresponding output message is sent) as soon as the arrival
event for a job is processed. (this is possible only for FCFS servers). A lazy server ,
on the other hand, waits until the simulation time advances past the departure time
before sending the output message. Consider the lookahead of an eager FCFS server
in a Closed Queueing Network. If the message arrival pattern and the service time
distribution is such that the number of messages received with timestamp less than
¢ is n and the server is never idle during the time interval [0,t], then, the value of
lookahead(t), for the eager server, is equal to iy serv_time; — t. If, in addition,
the server also precomputes the service time of the next job [Nicol 88], the value
of lookahead(t) is equal to .72 serv.iime; + serv.time, — t. The lookahead(t) of
the lazy server , irrespective of the message arrival pattern, is zero, for all t. For a
lazy server which precomputes the service time of the next job, serv_time,, lookahead
depends on the message arrival pattern. If the message arrival pattern and the service
time distribution is such that the server is idle at simulation time ¢, lookahead(t) is
equal to serv_time,. If the server is busy with a job that has a remaining service
time left of r_time, then lookahead(t) is equal to r_time.

Clearly, In order to be compared across applications, the absolute value of looka-
head has to be normalized with respect to the service time(timestamp increment)
[Fujimoto 87].

Now, we discuss how the value of EOT is calculated for Maisie entities (which
determines the value of lookahead at any instant). Every Maisie entitiy has a C'lock
variable associated with it. Whenever an input message is processed by an entity, the
value of its Clock is updated to the maximum of its current value and the timestamp of
the message. In Maisie, the timestamp of a message is equal to the Clock value of the
sender entity. Since the value of Clock increases monotonically, an obvious estimate
of EOT, at any simulation instant, is equal to Clock. Therefore, lookahead(t) is
equal to Clock, — t, where Clock, is the value of Clock when all and only the inputs
with timestamp less than ¢ have been processed(or are ineligible to be processed by
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the current selective receive command) and the entity is waiting for the next input.
The following subsections outline how this estimate of EOT can be further improved
upon.

4.2.1 Transparent extraction of Lookahead

hold(t.) statement is frequently used in Maisie programs to model servicing of jobs.
Semantically, hold(t.) is equivalent to a wait(t.) statement with the only resume con-
dition being timeout. Therefore, upon processing a hold(t.) statement, the Clock
can be incremented by t¢. time units. It is easy to see how in applications which fre-
quently use hold statement, for example, the code for an eager FCF'S server, the value
of Clock, can progress far beyond the value of ¢, thereby improving the lookahead
estimate C'lock; — t.

4.2.2 User specified Lookahead

If the user is able to guarantee that the minimum timestamp increment to Clock
between processing the next input and sending the corresponding output is equal to
8, then the estimate of EOT can be improved to Clock + 6. Maisie provides a special
function call, lookahead, to allow the user to express this minimum timestamp
increment in form of an expression consisting of local variables and the function call
sclock() which gives the current value of the Clock for the entity. This expression
is evaluated whenever its value is used by the underlying system. In the simple case
of an FCFS server the expression could simply be ntime, where the variable ntime
contains the precomputed service time of the next job. The expression for the pre-
emptible priority server is more complicated and is shown in Figure 3. In presence
of the user defined lookahead, therefore, the estimate for lookahead(t) improves to
Clock, + 6; — t, where §, is the value of the lookahead expression at .

5 Experiments

Two sets of experiments, one comsisting of queueing network simulations and the
other using synthetic benchmarks, were carried out to evaluate the performance of
the conservative implementations.

The Closed Queueing Networks(CQN), used in our experiments, consist of N
switches. Each switch has a tandem queue of Q servers(note that the server process
includes a queue where the incoming jobs are stored before being processed) associated
with it. Each switch routes the jobs to the first server in any one of the tandem queues,
with equal probability. Each server services the job, with a shifted-exponential service
time distribution(a shifted-exponential distribution is chosen so that the minimum
lookahead for every entity is non-zero, thus preventing a potential deadlock situation
in the null message protocol) and sends it to the next server in the queue, the last
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#define MIN(a,b) ((a <b)?a:b)
entity server { mean }

int mean;
{

1
2
3
4
3 message high { ename hisid; } ;
6 message low { ename hisid; } ;
7 ename jobid;

8 int rem_time, dep_time, nezt_time, nezt_nezt_time, busy;
9 rem_time=MAXINT,

10 busy=0;
11 next_time=expon(mean);
12 next_nezxt_time=ezpon(mean);

13 lookahead(busy ? MIN(nezt_time,dep_time-sclock()) : MIN (next_time,next_next_time));
14 for(;;)

15 {

16 wait rem_time for

17 { mtype(high)

18 { if(busy)

19 { rem.time=dep_time — sclock();
20 dep_time=dep_time + nezt_time; }
21 hold (nezt_time);

22 next_ttme=next_next_time;

23 next_nert_time=ezpon(mean);

24 invoke msg.high.hisid with done;
25 or mtype(low) st (/busy)

26 { busy=1; jobid=msg.low.hisid;

27 rem_time=next_time;

28 nezt_time=nezxt_next_time;

29 next_next_time=ezpon(mean);

30 dep_time=sclock() + rem_time;
31 or mtype(timeout)

32 { busy=0; rem_time=MAXINT,;

33 invoke jobid with done;

34 }

35 }

36 }

Figure 3: Maisie code for Pre-emptible Priority Server incorporating user defined
lookahead
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Switch Server Queue

Figure 4: Closed Queueing Network(N=2, Q=3)

server in the queue sending it back to the unique switch it is associated with. The
topology of the network, for 2 switches, is shown in Figure 4. Each switch has J jobs
initially. The simulation is carried out up to simulation time H. Two variations of
the above CQN model are considered - CQNF, where every server is First-come-first-
serve, and CQNP, where every server is a Pre-emptible priority server. In the CQNP
model, a fixed fraction of jobs are HIGH priority and the rest are LOW priority. The
second set of experiments used synthetic benchmarks. These benchmarks consist of
closed networks of processes with fixed number of messages circulating between them.
Each process in the network processes the messages it receives in the FCFS order with
a shifted-exponential service time. The processes are organized in an N X M array.
Each process can send outputs to any of its I consecutive neighbors to the right(in a
modulo fashion) along the same row or any of its K consecutive neighbors below(in a
modulo fashion) along the same column. During parallel simulation, all the processes
in the same row are assigned to the same processor. The probability that a process
will send an output to the same row(hence, to a process on the same node) is given
by P. Having decided to send the output to the same node(or a remote node), it wilt
send it to any of the I{or K) processes with equal probability. Each process starts
with J messages. Upon processing a message, the process executes L iterations of
a for loop. L can be varied to vary the computation granularity. The values of the
parameters N, M, I, K, P, J, and L can be changed to study the effect of various
factors on performance of the conservative algorithms. Figure 5 shows the topology
of the synthetic benchmark for N=M=3, I=2, and K=1.
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Figure 5: Topology of Synthetic Benchmark(N=M=3,1=2, K=1)

6 Results

All the experiments were carried out on an implementation of Maisie on Symult 2010
hypercube where each node uses a Motorola 68020 cpu and has 4MB of main memory.
All the programs were written in Maisie. The programs used for the parallel imple-
mentations were the same as the ones used for sequential implementation, except for
(a). explicit assignment of Maisie entities to specific nodes of the multicomputer,
(b). code to create the source and destination sets for each entity, and (c). speci-
fication of lookaheads. The speedups were calculated with respect to the sequential
version(using the Global Event List algorithm implemented using splay trees) running
on one node of the multicomputer.

6.1 Closed Queueing Network Experiments

Two different Maisie models of the CQNF network(Figure 4) were constructed. The
first one, called CQNF1, modeled each FIFO server by a separate Maisie entity.
The second model, called CQNF2, modeled all the FIFO servers associated with one
switch by a single entity. Each switch is modeled by a separate entity in both the
models. For the parallel implementation, each switch entity and the associated queue
entities(in CQNF1) and entity(in CQNF2) were allocated to the same processor.

Figure 6 and Figure 7 show the speedup, using 16 processors, for the CQNF1 and
CQNF2 models, respectively.

As shown in the figures, the performance of the null message algorithm is much
superior to the conditional event algorithm for both the experiments. This can be
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Figure 6: CQNF1: Speedup: Jobs/Switch
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attributed to the high overhead of the global communication required to compute the
next event time in case of the conditional event algorithm. However, the performance
gap between the two narrows considerably for higher values of Jobs/Switch, since,
processes have more jobs to process between successive global computations in case
of conditional event algorithm resulting in a better computation to overhead ratio.
The combination of null message and conditional event algorithms performs almost
as well as the null message algorithm in both the cases.

Figure 8 shows how the speedup varies with the number of processors used to
execute a particular configuration of CQNF1. Again the performance of conditional
is worse than both null message and the combination. Note that 1 node execution
of any of the three algorithms is faster than the global event list algorithm(which is
used as the basis to calculate the all the speedups reported in this paper) and higher
than linear speedup is observed in many cases. This is because the global event list
algorithm executes events in strictly timestamp order across all processes, whereas
in case of conservative algorithms, for good lookahead processes, a number of events
may be executed on the same entity before other events with lower timestamp are
executed on a different process. This results in fewer context switches. Also, since
the context switching overhead is not linear in terms of number of processes, the total
overhead decreases when they are divided over many processors.

Figure 9 shows the variation of speedup with the number of servers per switch in
CQNF1. Since the servers are FIFO and have only one source each(except for the
first server in the queue which has N sources), they don’t incur much overhead in
processing the jobs. As a result, increasing the number of servers per switch improves
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Figure 9: CQNF1: Speedup: Servers/Switch

the computation to overhead ratio, resulting in improved performance until saturation
1s reached.

Figure 10 plots the speedup with respect to the fraction of HIGH priority jobs in
the CQNP experiment(same as CQNF1 with the FIFO servers replaced by priority
servers). While processing the high priority jobs, the code uses hold(service_time)
instruction to model the servicing of the job because the HIGH priority jobs can’t
be preempted. This allows the transparent extraction of lookahead to take place.
Hence, increasing the fraction of HIGH jobs should improve the performance. This
expected behavior is confirmed by the figure. When all the jobs in the system are
HIGH, performance is similar to that of CQNF1, since, the priority servers behave
like FIF'O servers in such a case.

In order to study the effect of the user defined lookahead, we repeat the CQNP
experiment without the user defined lookahead, and the results are shown in Figure 11.
As explained before, the null message algorithm deadlocks in absence of the user
defined lookahead(the transparent lookahead is not guaranteed to break the deadlock
in general). As predicted, the new(combination) algorithm is able to execute even in
absence of a lookahead guarantee in every cycle, and is able to utilize (transparent)
lookahead where its available(when the fraction of HIGH jobs is high. Note that
the lookahead in every cycle is still not guaranteed to be non zero). Comparison of
Figure 10 and Figure 11 reveals that presence of user defined lookahead improves the
performance dramatically when the transparent lookahead is minimal(i.e. low fraction
of HIGH jobs), but, the improvement is negligible when the transparent lookahead
is high. Presence of user defined lookahead marginally improves the performance of
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conditional event algorithm too. This is because we utilize the user defined lookahead
in computing a better estimate of the globally earliest conditional event.

6.2 Synthetic Benchmark Experiments

In order to study the effect of specific network characteristics like lookahead, commu-
nication topology, and processes per node on the performance of the simulation, we
used synthetic benchmarks. These benchmarks are homogeneous i.e. all the processes
have the same characteristics(except for lookahead properties in the experiments on
non-homogeneous lookahead) as far as connectivity, processing time etc. are con-
cerned.

6.2.1 Entities per processor

First experiment attempts to study the effect of varying the number of entities allo-
cated to each processor on the speedup. Figure 12 plots the speedup(on 16 processors)
as the number of entities per processor(M) is increased.

The increase in speedup with an increase in the number of entities per processor
can be attributed to two factors. First is an increase in the amount of parallelism
available. Since each entity has a fixed number of initial messages, more entities means
more messages in the system. Therefore, the chances that one of the processors has
a message to process at any given instant are higher, resulting in a higher utilization
of processors. The second factor is due to context switching overheads. With the
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Figure 13: Synthetic: Speedup: Connectivity

increase in number of entities, the increase in the context switching overhead of the
sequential algorithm(which uses the global event list scheme) is much more than the
corresponding increase in case of the parallel algorithm(because the context switching
overhead on any processor increases non linearly with the number of entities on that
processor)

6.2.2 Communication Topology

We study the effect of changing communication topology by changing the connectivity
of 16 entities arranged in a circular fashion, with each entity mapped on to a different
processor. A connectivity of 1 corresponds to a ring topology, with each entity sending
all its outputs to the following entity. A connectivity of ¢ means that each entity is
connected to the following 7 entities, and distributes its outputs to each one of them
with equal probability. A connectivity of 16, therefore, corresponds to a completely
connected network.

Figure 13 shows how the speedup(on 16 processors) changes as the connectivity 1s
changed. As expected, the speedup for the null messages based algorithms degrades
as the connectivity increases. This is because of the increased null message over-
head(each entity has to send null messages to more entities), and the fact that each
entity has to wait for more entities in order to make progress. The speedup of the
conditional event algorithm remains more or less constant because progress is made
by global synchronizations which are independent of the communication topology.
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6.2.3 Lookahead

We study the effect of improving the lookahead of a system on the performance in
two ways: one in which lookahead characteristics of all the entities in a simulation are
the same and are improved across different simulations (lookahead in homogeneous
networks), and the other in which some of the entities in the simulation have good
lookahead characteristics and others have poor lookahead characteristics, with the
proportion of each type being varied across different simulations (lookahead in non-
homogeneous networks).

Lookahead in homogeneous networks: The effect of changing lookahead in
a network is closely related to its communication topology. We choose a simple
topology, namely, a ring of entities. Each entity is an FCFS server. As noted before,
an FCFS server can be programmed as a lazy server or an eager one, and with or
without precomputed service time as the lookahead. In order to further vary the
degrees of lookahead in the synthetic workload, we express only a fraction, called
LAF, of the precomputed service time as lookahead(using the Maisie constructs to
specify lookahead). Thus, although, the application knows the amount of timestamp
increment on the next message that it would process, it expresses only a fraction of
it. In the studies done by Fujimoto [Fujimoto 87], the process knows{and expresses as
lookahead) only the minimum possible value of the timestamp increment. The ratio of
mean timestamp increment and the minimum possible timestamp increment is defined
as the Lookahead Ratio(LAR). Therefore, LAF, as defined above, corresponds to the
inverse of LAR. Fujimoto varies LAR by changing the service time distribution(hence
the ratio of mean to minimum service time), whereas in our case LAF is specified
directly by the user(and is independent of the service time distribution).

Figure 14 shows how the speedup(on 16 processors) varies with the value of LAF.
For the case of lazy server, the speedup improves dramatically as we increase LAF
from 0.1 to 1.0. Note that we choose the minimum value of LAF to be non-zero
since a zero value for LAF might lead to a deadlock in case of the null message
algorithm. The speedup of the eager server is not affected much because of an increase
in LAF. This is because the lookahead of an eager server is very good even without the
precomputed service time (as explained before) and presence of precomputed service
time as lookahead doesn’t help appreciably. In fact, in some cases, the performance
might even degrade slightly because of increased null message overhead.

Lookahead in non-homogeneous networks: We use an eager server with an
LAF of 1.0 to represent a good lookahead entity, whereas a lazy server with LAF of
0.1 represents a bad lookahead entity. Again , a ring of entities was chosen as the
communication topology for simplicity. However, the connectivity of the ring was
varied across experiments.

Figure 15 shows how the speedup(on 16 processors) varies as the number of con-
secutive bad lookahead nodes are increased in different ring topologies. All the curves
show a gradual degradation in performance as bad lookahead nodes are introduced,
instead of a sharp decline.
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7 Related Work

Languages/systems that support conservative simulation protocols include Yaddes
[Preiss 89], SIMA [Rajaei 92], and OLPS [Abrams 88]. Yaddes requires user to use
system calls to send null messages, and therefore the simulation protocol is not com-
pletely transparent to the user. SIMA, on the other hand, uses synchronous protocols
which are radically different from the algorithms used by us. OLPS requires the user
to choose different types of processes for different simulation protocols, and hence,
is not algorithm independent. Most of these languages don’t provide language level
constructs to express lookahead and dynamic topology.

Performance of the null message deadlock avoidance algorithm [Chandy 81] using
queueing networks and synthetic benchmarks has been studied by Fujimoto [Fujimoto 87].
Chandy and Sherman [Chandy 89] describe the conditional event algorithm and study
its performance using queueing networks. They use null messages in the conditional
event algorithm too, but, since their implementation is synchronous (i.e. all LPs carry
out local computations followed by a global computation), its performance is quite
sensitive to load balancing.

Effect of lookahead on the performance of conservative protocols was studied by
Fujimoto [Fujimoto 87]. Nicol [Nicol 88] introduced the idea of precomputing the
service time in order to improve the lookahead. Cota and Sargent [Cota 90] have
described the use of graphical representation of a process in automatically computing
its lookahead.

8 Conclusion

An important goal of parallel simulation research is to facilitate its use by the discrete-
event simulation community. We have designed a simulation language called Maisie
which separates the simlation model from the specific algorithm (sequential or par-
allel) that is used to execute the model. Transparent sequential and optimistic im-
plementations of Maisie have been developed and described previously [Bagrodia 90],
[Bagrodia 92b]. This paper addressed the problem of transparent implementation of
conservative algorithms for parallel simulation languages. In particular, it describes
how three different conservative algorithms can be implemented transparently under
the Maisie simulation language.

The paper also described how conservative methods can be implemented to handle
dynamic communication topologies. Previous studies of conservative implementations
have used a static communication topology. If the communication pattern in the
model varies dynamically, this assumption leads to sub-optimal performance. We
describe language constructs to ensure that topological changes are made consistently
by the run-time system. Lastly, the paper describes how certain types of lookahead
behavior can be extracted transparently by the simulation system. It also introduces
language constructs that can be used by a programmer to specify the lookahead
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behavior of a specific object.

The three algorithms that were studied include the null message algorithm, the
conditional event algorithm, and a new algorithm that combines the preceding ap-
proaches. Maisie models were developed for standard queuing network benchmarks.
Various configurations of the model were executed using the three different algorithms.
The implementations were optimized to exploit the lookahead properties of the mod-
els. The benchmarks were used to compare the performance of the three algorithms
and were also used to evaluate the effect of variations in lookahead characteristics on
the performance of the algorithms.
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