Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

AESTHETICS-BASED GRAPH LAYOUT FOR HUMAN
CONSUMPTION

M. Coleman March 1993
CSD-930004

UNIVERSITY OF CALIFORNIA

Los Angeles

Aesthetics-based Graph Layout for Human Consumption

A thesis submitted in partial satisfaction of the
requirements for the degree Master of Science

in Computer Science

by

Michael Kar] Coleman

1993

(© Copyright by
Michael Karl Coleman

1993

The thesis of Michael Karl Coleman is approved.

David Martin

Andrew Kahng

D. Stott Parker, Committee Chair

University of California, Los Angeles

1993

1

To those who have
walked
with
me
and made my life
worth

living

iii

TABLE OF CONTENTS

1 Imtroduction.
1.1 The Problem
1.2 Approaches to Solving the Problem
1.3 Overview. e

2 An Aesthetic Approach to Graph Layout
2.1 Layout Aesthetics

2.1.1 Kinds of Aesthetics,
2.1.2 A Partial Enumeration of Layout Aesthetics
2.1.3 Advantages and Disadvantages of the Aesthetic Approach
2.2 Layout as an Optimization Problem
2.2.1 Multiobjective Optimization
222 Utihty Theory
2.2.3 Composition of Aesthetics
2.3 Practical Solutions L L
231 Simulated Annealing L.
2.3.2 TForce-directed Placement and AGLO
2.3.3 Other Methods

3 Implementation.
3.1 Theaglo Library
3.2 Fundamental Aesthetics

3.2.1 Node/Node Repulsion
3.2.2 Edge Length Minimization
3.2.3 Node/Edge Repulsion
3.2.4 Edge Intersection Minimization
3.2.5 Centripetal Repulsion
3.2.6 Parent Left Placement
3.2.7 Level Variance Minimization
3.3 Limitations
3.4 Potential Speedups L
3.4.1 Adaptive Cooling,
3.4.2 Distal-Force Optimization
3.4.3 Other Order-1 Nonlinear Optimization Algorithms

v

4 Results
4.1 An Extended Example
4.2 A Graph Layout Gallery

42.1 General Graphs L.
4.2.2 Directed AcyclicGraphs L.
423 Trees e
4.2.4 Large-scale Examples
425 SUMMATY o e
4.3 Discussion and Comparison
431 Speed
4.3.2 Layout Quality,
433 Robustness

5 Conclusion
51 So What?
5.2 Future Directions L

References

38
39
45
45
73
75
81
84
88
88
89
90

92
92
93

96

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28

LIST OF FIGURES

A3-Decall graphlayout. Lo L.

The AGLO algorithm
The fdp algorithm, for comparison

Organization of an aglo application
Code for the node/node repulsion aesthetic
gloss usage message
Sample gloss input file, ...
Sample monitor display L.

Figure 1 from Davidson and Harel (2.8s)
Figure 1 from Davidson and Harel, variant 2 (13.4s)
Figure 1 from Davidson and Harel, variant 3 (29.3s)
Figure 1 from Davidson and Harel, variant 4 (29.1s)
Figure 1 from Davidson and Harel, variant 5 (27.3s)
Figure 6(a) from Kamada and Kawai (0.5s)
Figure 6(a) from Kamada and Kawai, better (0.8s)
Figure 4 from Kamada and Kawai (0.3s)
Figure 3 from Kamada and Kawai (0.3s)
1{3’3 (048)
Figure 6(c) from Kamada and Kawai (0.9s)
Figure 16 from Davidson and Harel (2.2s)
Figure 16 from Davidson and Harel, variant (6.9s)
Figure 20 from Davidson and Marel (8.9s)
Figure 28 from Iruchterman and Reingold (1.1s)
Figure 28 from Fruchterman and Reingold, another version (6.4s) .
Figure 29 from Fruchterman and Reingold (1.3s)
Figure 29 from Fruchterman and Reingold, better (0.7s)
Figure 7(c) from Kamada and Kawai (0.8s)
Figure 7(a) from Kamada and Kawai (0.4s)
Figure 7(d) from Kamada and Kawai (1.2s)
Figure 2(b) from Eades (0.7s)
Figure 5(c) from Eades (0.3s)
Figure 5(b) from Eades (0.8s)
Figure 5(a) from Eades (4.4s)
Figure 6(c) from Eades (0.5s)
Figure 6(c) from Eades, planar (2.0s)
Figure 47 from Fruchterman and Reingold (0.6s)

vi

4.29
4.30
4.31
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40
4.41
4.42
4.43
4.44
4.43
4.46
4.47
4.48
4.49
4.50
4.51
4.52
4,53
4.54
4.55
4.56
4.57
4.58
4.59
4.60
4.61
4.62
4.63
4.64
4.65
4.66
4.67
4.68
4.69
4.70

Figure 49 from Fruchterman and Reingold (0.9s)
Figure 49 from Fruchterman and Reingold, planar (4.5s)
Figure 11 from Davidson and Harel (1.2s)
Figure 2 from Davidson and Harel (4.0s)
Figure 2 from Davidson and Harel, planar (60.1s)
Figure 57 from Fruchterman and Reingold, version 1 (2.85)
Figure 57 from Fruchterman and Reingold, version 2 (20.0s)

Figure 37 from Fruchterman and Reingold, version 3 (19.8s)

I (018)
I{3
I\,4

Ke

Ko, another variant (0.9s)
Figure 18 from Davidson and Harel (1.5s)
Figure 18 from Davidson and Harel, better (0.7s)
Figure 18 from Davidson and Harel, their proposed ideal
Figure 48 from Fruchterman and Reingold (2.0s)
Figure 48 from Fruchterman and Reingold, symmetric (13.3s)

Figure 48 from Fruchterman and Reingold, another variant (13.1s) .
Asmall DAG(2.9s)
A small, symmetric DAG (3.4s) L.
A small, nonplanar DAG (1.2s)
A small binary tree (3.9s) L.
A binary tree conundrum (26.1s) L.
Figure 40 from Fruchterman and Reingold (0.4s)
Figure 14(a) from Davidson and Harel (6.1s)
Figure 14(a) from Davidson and Harel, as a tree (28.0s)
Figure 4(a) from Eades (2.4s)
Figure 14(b) from Davidson and Harel (2.95)
Figure 7(b) from Kamada and Kawai (0.6s)
Figure 4(b) from Eades (1.9s)
A large call graph (55.8s)
A large call graph, variant (57.8s)
Ellipsoid mesh (917.8s)
Ellipsoid mesh, minus one edge (917.7s)
Toroidal mesh (909.5s)

vii

72
72

4.71 Mobius strip mesh (229.4s)
4.72 Klein bottle mesh (908.5s)

viil

LIST OF TABLES

4.1 gloss aesthetic arguments L.
4.2 Summary of Chapter 4 figures
4.3 Summary of Chapter 4 figures (cont.)

ix

ACKNOWLEDGMENTS

glow—u. To show elation.

First and foremost, I would like to thank my advisor, Stott Parker, for his
invaluable support during my stay at UCLA. Stott gave me the room and resources
to explore, provoked my curiosity during many helpful discussions, and encouraged
me when things looked dark. I am truly in his debt. The rest of my committee,
Andrew Kahng and David Martin, also were very helpful and provided many useful
comments on this work.

Paul Eggert provided much useful advice and encouragement on this research.
My reviewers Junio Hamano, Scott Kalter, and Dorab Patel read and made many
valuable comments on the text. Scott, Dorab, and Paul also provided much insight
into the deeper significance of the university. John Armato, Kay Bailey, and
Karla Harrington proofread various drafts, catching numerous errors and greatly
improving the style and language of the thesis.

Dan Greening provided the source code from his version of Lam’s simulated
annealer ([Lam88]), which was of great use in the early stages of this research. Ju-
nio Hamano provided several large (and fascinating) graph data sets which appear
in this thesis.

This research benefited from the use of gnuplot, written by Thomas Williams
and Colin Kelley, and from the Free Software Foundation programs emacs and

gec, written by Richard Stallman et al. This thesis was prepared using Donald

Knuth’s TEX typesetting system with Leslie Lamport’s IATEX macros. All of this
software is freely available.

I received substantial financial support under a UC MICRO grant funded jointly
by Fwin Sun, Inc., and the state of California. This funding was greatly appre-
ciated. Some of the research was performed on equipment provided by National
Science Foundation grant number IRI-8917907, and on equipment granted by In-
ternational Business Machines, Inc., under a UC MICRO grant.

Finally, this thesis would have never been completed without the friendship,
love, moral support, and forbearance of my friends and extended family: John
and Diane Armato, Courtney Chatfield, Guylene Citta, Chris Coleman, David
and Dorle Coleman, Steve Graham, Dan Greening, Al Goerner and Nancy Smith,
Karla Harrington, Jean Hauser, Mark and Maureen LaRouche, Jennifer Peltz,
Deb Trytten, Kim Woods, Jim Wyatt, my fellow Slothbusters (past and present),
many others unnamed but not forgotten, and, especially, Monica Markiewicz. My

deepest thanks to all of you. :-)

X1

ABSTRACT OF THE THESIS

Aesthetics-based Graph Layout for Human Consumption

by

Michael Karl Coleman
Master of Science in Computer Science
University of California, Los Angeles, 1993

Professor D. Stott Parker, Chair

Automatic graph layout is an important and long-studied problem in computer
science. The basic straight-edge graph layout problem is: Given a graph, position
the vertices in a way which maximizes some measure of desirability. When graph
layout is intended for human consumption, we call this measure of desirability an
aesthetic. We seek an algorithm which produces graph layouts of high aesthetic
quality, and which handles trees, directed acyclic graphs, and general graphs.

Our approach is to model graph layout as a multiobjective optimization prob-
lem, where the value of a layout is determined by a user-controlled set of layout
aesthetics. We justify this model theoretically, and describe our Aesthetic Graph
Layout (AGLO) algorithm and its implementation, the aglo library.

The AGLO algorithm combines the power and flexibility of the simulated an-

nealing approach of Davidson and Harel (1989) with the relative speed of the

xil

method of Fruchterman and Reingold (1991), and provides a better theoretical
foundation for these methods. In addition, we have developed several new layout
aesthetics to support new layout styles. Using these aesthetics, we are able to

produce pleasing displays for graphs on which these other methods flounder.

X1il

CHAPTER 1

Introduction

lay out—uv. To knock unconscious.

Automatic graph layout is an important and long-studied problem in computer
science. Graphs are a fundamental and effective way of displaying relational in-
formation and appear everywhere in computer science, and other disciplines as
well. Graph layout can be done by hand, but this is tedious for small graphs and
impractical for the large graphs encountered in real tasks. If graph displays are to
be widely used, automatic graph layout is required.

In this thesis, we present the Aesthetic Graph Layout (AGLQ) algorithm, es-
tablish its theoretical foundations, describe the aglo library implementation of this

algorithm, and present over 70 layout examples to demonstrate its capabilities.

1.1 The Problem

The basic straight-edge graph layout problem is:

(ziven a graph, position the vertices in a way which maximizes some

measure of desirability.

If the graph layout is intended for human consumption, we will call this measure
of desirability an aesthetic. Examples of aesthetics include beauty, symmetry, and
clarity. In this thesis, we will restrict our attention to the placement of vertices and
straight edges in two dimensions. For us, a layout (or placement) is a positioning
of vertices on a bounded plane, called the tableau. Since the edges are straight
lines, their position is completely determined by the positioning of the vertices.

A good graph layout algorithm will strive for these properties:

good theoretical foundation—It should be clear why the algorithm works

and how it can modified to perform different styles of layout.

o generality—The algorithm should be able to lay out different kinds of

graphs using different styles so that an appropriate style can be used.

o uniformity—The algorithm should be able to do layout of different classes
of graphs using different aesthetic styles all within the same basic framework.

Ad hoc solutions are less useful.

o malleability—The user should be able to understand the algorithm and

should be able to tune it to do the style of layout desired.

¢ competence—The algorithm should scale up, or at least degrade gracefully

for large problems.

¢ speed—The algorithm needs to be sufficiently fast for its intended purpose.

For interactive use, a layout should take less than a minute on a Sun SPARC-

station ELC with eight megabytes of memory.

In this project, we consider only the problem of graph layout using aesthetics

intended to maximize readability.

1.2 Approaches to Solving the Problem

In previous work, graph layout problems have been attacked using two different
broad approaches. In both approaches, one starts with a class of graphs (e.g., tree,
directed acyclic graph (DAG), general) that one wishes to lay out and a general
or specific idea of what qualities the resulting layout should possess.

Using the procedural approach, one tries to come up with a simple algorithm
that will lay out the graph in a desirable way. The aesthetics used are chosen by the
designer of the algorithm, though the user may be able to adjust some algorithm
parameters. The aesthetics are usually chosen so that they do not conflict, to
avoid the need for a framework for resolving conflicts. If they do conflict, a simple
method of conflict resolution is used, such as ordering the aesthetics and letting
the “higher” aesthetic win over the “lower.”

The emphasis in this approach is to come up with a fast algorithm, not neces-
sarily one that is ideal or even well-founded theoretically. In terms of the objectives
mentioned in the previous section, these algorithms are generally fast and scale up
well, but they have an ad hoc character and lack generality, uniformity, malleabil-

ity, and theoretical foundation. The bulk of previous work in graph layout has

been of this type. Typical examples of this approach include [WS79], [Vau80],
[RT81], [Rob87], [GNV88], and [Tri88].

An alternative is the declarative approach, where one starts with a fairly spe-
cific, though not necessarily operational, set of aesthetics defining the desired ap-
pearance of a layout. Often, layout is modeled on some sort of physical force model,
and the aesthetics are analogues of features of that model. For example, “springs”
or electric charges may be used to model certain aesthetics. Whereas procedural
aesthetics can be quite crude, the specific aesthetics used in the declarative ap-
proach provide a means of quantifying the quality of a given layout, thus allowing
objective comparison of the quality of two layouts. This quantitative nature leads
to a solution involving some form of numerical optimization. As a result, this
approach more easily admits aesthetics of a conflicting nature, thereby providing
a means for articulating aesthetic tradeoffs. It also allows a greater degree of user
control over the layout aesthetics; in some cases, the user may devise aesthetics of
his own.

The biggest problem with declarative algorithms is speed. The algorithms in
this class work harder to produce a good solution; thus, they are typically slower
than procedural algorithms, taking minutes and sometimes hours of CPU time on
common small workstations. Much less work has been done in this area—the most
significant examples are [Ead84], [KK88], [DH89], and [FR91]. With the exception

of [DH89], none of this work has attempted to exploit the potential generality and

malleability of this approach, and [FR91] provides the only implementation fast

enough for interactive use.

1.3 Overview

In this thesis, we present the Aesthetic Graph Layout (AGLO) algorithm and
an implementation, the aglo library. AGLO expresses graph layout as the task of
optimizing appropriate aesthetic functions, which is performed via multiobjective
optimization methods. AGLO takes the declarative approach because of its ex-
pressive power, generality, flexibility, and better theoretical foundation but strives
to match the speed and competence of the traditional procedural approach. The
aglo library includes a basic set of layout aesthetics suitable for performing sev-
eral different common layout styles. The library is intended to be used by client
programs that need to do graph layout and is fast enough for practical use in a
small workstation environment.

In the next chapter, we discuss layout aesthetics, the theoretical foundation
for AGLO in multiobjective optimization and utility theory, and possible practical
implementations. In Chapter 3, we cover the aglo library, its limitations and
potential speedups, and our fundamental set of aesthetics. We present our results
in Chapter 4, beginning with an extended example, moving on to a showcase of
aglo layouts, and concluding with a discussion of the results. Finally, the results

are summarized and possible future directions discussed in Chapter 5.

CHAPTER 2

An Aesthetic Approach to Graph Layout

lie—w. To be placed.

In this chapter, we describe our Aesthetic Graph Layout (AGLQO) method.
We begin with a discussion of layout aesthetics, then discuss graph layout as an
optimization problem, and finish with a description of several practical solutions

to this problem.

2.1 Layout Aesthetics

The Aesthetic Graph Layout method uses aesthetics to do graph layout. We
permit virtually any layout aesthetic but argue for aesthetics that seem particu-
larly good based on intuition, past usage, and the principles of visual perception.
Furthermore, we express graph layout as a multiobjective optimization problem
and explore the ramifications of this formulation.

The foundation of the AGLO model of graph layout is the assumption that the
aesthetic merit of a graph layout can be described by a computable function. We
call such a function a layout aesthetic. A layout aesthetic is a function that takes

a graph placement as input and returns a numerical evaluation of that placement,

where smaller values denote better layouts.

An example of a layout aesthetic would be intervertex distance. Intuitively, if
the vertices of a graph are displayed too close to one another, the visual result is
undesirable—it becomes difficult for a user to look at the display and understand
the structure of the graph. So, the intervertex distance aesthetic might consider
each pair of vertices, assess a penalty for pairs that are too close, and sum the
penalties to determine the overall aesthetic “score” (i.e., the value of the aesthetic
function).

In the AGLO model, aesthetic functions can be user-specified and multiple
aesthetics combined to give composite aesthetics. Only a few existing layout algo-

rithms take this approach (e.g., [DH89]).

2.1.1 Kinds of Aesthetics

Various kinds of aesthetics are possible. Syntactic aesthetics, such as con-
straints on intervertex distance, control the layout according to basic visual princi-
ples and the structure of the graph. Semantic aesthetics control the layout based
on the meaning (secondary attributes) of graph elements. For example, the con-

straint

Don’t place vertices too close together.

is a syntactic aesthetic, while the constraint

Vertices in a call graph that denote functions in the same

module should be placed close together.

is a semantic aesthetic.
Static aesthetics specify layout without consideration of previous or future lay-
outs. Dynamic aesthetics come into play when a graph is modified over time. An

important dynamic aesthetic is “minimal edit disruption”:

Placement of existing vertices and edges should change as

little as possible when a change is made to the graph.

2.1.2 A Partial Enumeration of Layout Aesthetics

In this section, we present a brief list of layout aesthetics derived from the
literature and common sense, together with comments.! This list is intended to
be representative rather than exhaustive, as a huge number of reasonable graph

layout aesthetics are possible.

* Do not place vertices too close together. (e.g., [DH89]) If vertices are
placed so that they occlude other vertices, it will be difficult or impossible
to see the structure of the graph. Placing them too close makes the layout
harder to read. What will be considered “too close” may depend on the size
and shape of the vertex’s representation and the total number of vertices in

the graph.

1We provide here a few references to the literature, but virtually every source mentions vari-
ations on a number of these aesthetics.

Do not place vertices too far apart. This keeps the edges short (see

below) and also keeps disconnected parts of the graph together.

Make the edges short. (e.g., [DH89]) A layout which has many long
edges will usunally be difficult to read because there will tend to be much
edge-crossing in the layout. Also, keeping edges short tends to force clique
vertices to be placed near each other. The importance of this aesthetic
depends somewhat upon whether straight or curved edges are used, as some

edge-crossing may be avoided in the latter case.

Do not make the edges too short. Similar to the first aesthetic above,
except that it does not directly affect the distance between vertex pairs not

connected by an edge.

Make edge lengths uniform. (e.g., [FR91]) This tends not to work so

well in practice, as it usually conflicts with other aesthetics.

Minimize edge crossings. (e.g., [FR91]) Edge crossings make the layout
hard to read. Though this aesthetic is seen as important, overemphasizing

it with respect to other aesthetics can lead to unattractive layouts.

Do not place vertices too close to edges. (e.g., [DH89]) In particular,
allowing vertices to be placed on nonincident edges may produce a visually

ambiguous layout.

Place vertices within the tableau. (e.g., [FR91]) The tableau is the

designated layout area.

Try to place vertices near the center of the tableau.

Distribute the vertices evenly on the tableau. (e.g., [FR91])

Minimize the width of the placement. This is useful when the placement
is expanding too far along one axis, as sometimes happens with tree and DAG

layouts,

Place parent vertices to the left of their children. This produces a

left-rooted tree, for example.

Place vertices that are on the same level of a tree on the same
vertical (giving them the same z-coordinate). (e.g., [WS79]) This is

a feature of most standard tree layout algorithms.

Place left child to the left of parent and right child to the right.

(e.g., [WST79]) This is useful when an ordered binary tree is to be placed.
Center parent over children. (e.g., [WST79])

A tree and its mirror image should produce placements that are re-
flections of one another. (e.g., [RT81]) This is a nice symmetry property,

but it is not clear how important it is in practice.

10

¢ Reflect inherent symmetry. (e.g. [FR91]) This is a more general version

of the above aesthetic.

¢ A subtree should be placed the same regardless of where it occurs
in the tree. (e.g., [RT81]) This is probably unimportant, or even confusing,

unless multiple isomorphic subtrees appear in a graph.

2.1.3 Advantages and Disadvantages of the Aesthetic Approach

There are several advantages to the layout aesthetic approach. If the aesthetics
are fairly simple, the user will be able to understand the workings of this layout
method. Furthermore, the user can exert significant control over the behavior
of the layout algorithm by adding and deleting aesthetics and adjusting the way
they are combined. Additionally, many existing graph layout algorithms can be
modeled using this approach.

One drawback of the method is that aesthetic functions need to be polynomially
computable, and preferably continuous, if they are to be of practical use in a search
for a desired layout. Another drawback is that using these functions to find good

layouts is computationally difficult. We turn now to this problem.

2.2 Layout as an Optimization Problem

In this section, we explore the ramifications of using numerical functions to

model layout aesthetics. We desire a layout method based on these aesthetic func-

11

tions that is both theoretically defensible and tractable in practice. We will look
at an overall approach, consider some significant details specific to our problem,

and then examine practical questions.

2.2.1 Multiobjective Optimization

Given a graph G' = (V, E), where V = {vy, v,, ..., vn}, we can describe a layout
of dimensionality D by a vector of vertex positions (P1,P2, .-, Pr), where each p;
(€ RP) is the position of v;. For notational convenience, we flatten the set of
vertex position vectors to X 3 x = (1,23, ..., 2,), where m = nD. We refer to a
particular position vector x as a layout state, or just layout for short.

Given a vector of aesthetic functions f = (fi, f,, ..., fi), each of which describes

desirable features of graph layout, our problem can be stated as?

min [f1(x), fa(x), ..., filx)]

xeX

Thus, we have a multivariate multiobjective optimization problem.
Unfortunately, several of the most obvious aesthetic functions (e.g., total num-

ber of edge crossings) are nonconvex.® Additionally, most aesthetics embody some

2For vector-valued variables yzeR" y<zifandonly if y; < z; foreach i = 1, ..., 1, with
y; < z; for at least one i,
3An aesthetic function f is conver iff

tf(x) + (1= O)f(y) > f(tx + (1 - t)y)

for all t € [0, 1].

Consider the edge-crossing minimization aesthetic. Suppose we move a vertex, which may be
an endpoint of several edges, along a line to a new position. As the vertex is being moved, the
total number of edge-crossings may vary up or down quite arbitrarily. Thus, the total number of
edge crossings is not a convex function of the vector of vertex coordinates.

12

notion of (Euclidean) distance or variance, so they are nonlinear as well, Therefore,
we must deal with a nonlinear nonconvex multivariate multiobjective optimization
problem.

The individual aesthetic functions cannot generally be simultaneously mini-
mized, because their minima do not coincide, so we will consider the set of noninfe-

rior solutions (also known as Pareto-optimal, efficient, or nondominated solutions).

Definition 1 A layout x* is noninferior if there exists no x (# x*) such that

f(x) < f(x*).
Since our problem is nonconvex, we will not generally be able to find (globally)
noninferior solutions, but we can find locally noninferior solutions.

Definition 2 A layout x* is locally noninferior if there erists @ § > 0 such that

def

X" is noninferior in N(x*,6), where N(x,6) = {y|y € R™, |x — y| < 6}.

Informally, a noninferior layout is one that cannot be improved (by adjusting
vertex positions) with respect to any of our aesthetics without simultaneously
making it worse with respect to another. Clearly the best (1.e., with respect to

our aesthetics) layouts are all locally noninferior, but how do we go about finding

them?

2.2.2 Utility Theory

In our model, we assume the existence of a model user who is to be the “con-

sumer” of our layout. We also assume that this user can consistently determine

13

the relative quality of two layouts (with respect to a given set of aesthetics). That
is, we are assuming a preference order = (“is preferred to”) on the set of possi-
ble layouts. We also assume that > is a weak order (i.e., transitive, reflexive, and
complete), which matches our intuition about how rational users compare layouts.*

If we further assume that the set of equivalence classes (indifference classes)
induced on X by ¥ is countable, we are guaranteed® the existence of a value

function v: X — R such that

X =y <= v(x) > v(y).

We cannot prove this countability assumption, of course, but we argue that it is
reasonable because the set of layouts a human user can perceive, or that can be
shown on a bitmap display, is finite (albeit enormous).

The solution to the question above, then, is to find a suitable value function

and use it to choose a layout from the noninferior set.

2.2.3 Composition of Aesthetics

In real situations, a number of aesthetics are used together and may conflict.
We seek a composite aesthetic value function that will combine the various aes-
thetic functions’ results into a single value. Chankong and Haimes [CH83] list

many possible compositions, but suggest choosing the simplest workable compo-

*We concede that there may be users whose layout preferences are not transitive. We have
no thoughts about how such users might be satisfied.
3See Theorem 3.1 in [CH83).

14

sition from the additive, multiplicative, and quasiadditive forms (additive being

simplest}). Guided by their criteria, we choose the additive form,

k
f(x) =3 wfi(x)

i=1
where all w;’s are positive constants.

Once we have determined a value function that corresponds to the user’s pref-
erence order, we have a computable method for comparing two layouts. Thus, we
can use this function to search for good layouts.

We could also use this value function to compare different layouts produced
by different algorithms, i.e., to decide which algorithm’s placements were better
according to the chosen aesthetics. This provides an objective way of evaluating
how well a layout algorithm conforms to the style specified by those aesthetics.

Intuitively, in order for additive composition to make sense, we agree to a
constant tradeofl between our various aesthetics. If we use f(x) = fi(x)+ fa(x) as
our value function, for example, then we are willing to trade a decline of one unit
in fi(x) for an improvement of one unit in f,(x) (and vice versa). We can extend
this argument for three or more component functions and for nonequal weights w,.

The problem that can arise is that the component aesthetic functions may be
of different orders with respect to our unit of value (e.g., quadratic, cubic, trigono-
metric, exponential, step functions, etc.). As a result the tradeoff discussed above
is usually not entirely “fair” and cannot really be made fair by any adjustment of

the constant weights w;. Care needs to be taken to choose aesthetic functions of

15

comparable strength so that none is washed out by the others. (Currently, we rely
on intuition and experimentation.)

In order to make use of the weighted sum, we need to have a means of choosing
weights. Currently, we let the user choose the weights to produce layouts that
match his preferences. One promising alternative is a method called the surrogate
worth tradeoff method ([HHT74]). This method offers a means by which weights
could be chosen by pairwise comparison of layouts drawn from a set of sample

layouts.

2.3 Practical Solutions

There are a number of different methods for solving nonlinear, nonconvex op-
timization problems of this nature. An important early example of solving lay-
out problems by optimization was Sutherland’s SKETCHPAD system ([Sut63]).
SKETCHPAD optimized via relaxation, but unfortunately that method is of lim-
ited use for nonconvex problems. Instead, we have examined simulated annealing

and force-directed placement.

2.3.1 Simulated Annealing

We first tried solving the layout optimization problem using simulated an-

nealing (SA) ([Dav87, Gre89, KGV82]) with Lam’s cooling schedule ([Lam88)).

Davidson and Harel ([DH89]) also use SA to tackle the layout problem.

16

Figure 2.1 shows a 3-D layout of a call graph laid out using simulated annealing
and rendered with a raytracer.® In addition to showing the structure of the call
graph, the figure gives a visual representation of timing data produced with the
gprof profiling utility. The vertex/vertex repulsion, edge length minimization, and
parent left aesthetics are used to draw the call graph as a DAG. A special semantic
aesthetic is used to pull vertices representing CPU-intensive functions forward
while pushing others back. The amount of time spent in each functi0n<c0ntrols the
size and placement of the corresponding vertex, with CPU-intensive functions being
represented by larger vertices placed nearer to the viewer. The three-dimensional
placement is a little difficult to see when shown in a single 2-D projection, but the
main CPU-intensive call path can be clearly seen in the foreground.

Although simulated annealing does work and does produce good solutions, it
is prohibitively slow. The small graph in Figure 2.1 took several hours to lay
out using simulated annealing. According to the estimated time equation given
in [DH89], their SA-based approach would take 89 days to lay out the graph in
Figure 4.68 (p. 83), versus our 15 minutes.

The primary reason for this is that simulated annealing does not exploit all
of the information known about the structure of the aesthetic layout problem. It
is a zero-order optimization method, meaning that it uses only aesthetic function

values, ignoring aesthetic function gradients. Exact gradients of layout aesthetics

8The actual graph, composed of gray vertices and white edges, is in the center, a cast (black)
shadow is in the lower right, and a faint reflection appears in the center near the lower edge.

17

Figure 2.1: A 3-D call graph layout

18

are not always available, but frequently a pseudo-gradient, a heuristic estimate of

the direction of a better solution, can be constructed.

2.3.2 Force-directed Placement and AGLO

Currently, we are using a variant of the force-directed placement (fdp) al-
gorithm described in [QB79] and applied to graph layout in [FR91]. This algo-
rithm is a simple first-order optimization method. In particular, aesthetic gradient
functions” are used to decide which direction to go in each step. Our version
of the algorithm, which we call Aesthetic Graph Layout, is given in Figure 2.2.
(Figure 2.3 shows the fdp algorithm, for comparison.)

Both algorithms use a simple geometric cooling schedule identical to that used
in the basic simulated annealing algorithm—better cooling schedules should be
possible (see Section 5.2).

Our algorithm differs from the version of fdp described in [FR91] in several
ways. First, we use a weighted sum of a collection of aesthetic functions to guide
our layout, whereas fdp uses a simple sum of two specific aesthetic functions
(vertex/vertex repulsion and edge length minimization).

Secondly, we do temperature clipping of the movement vectors in a way we

believe is theoretically superior to that of fdp, which uses the temperature to limit

“In the rest of the thesis we will refer to both aesthetic gradient functions (which indicate the
direction to move to get to a better state) and aesthetic (value) functions (which indicate the
quality of the current state) simply as aesthetic functions, since for our purposes they convey the
same information (i.e., the answer to the question “What is good?”).

19

. For the current state x, compute the gradient vector A;(x) for each

individual aesthetic 3.

Calculate the weighted sum of the individual gradient vectors.
A(X) — Zw,’Ai(X)

Shorten the sum (movement) vector, if necessary, so that its length is
less than the current temperature £.

"(x) ﬂ - min X
&) | B min(ia o

Add the resulting sum vector to the current state, producing the new
state.
x' e x + A'(x)

Calculate the new ¢.
t «— cool(t)

Repeat until the desired number of iterations has been completed.

Figure 2.2: The AGLO algorithm

2!

3.

Shorten both gradient vectors (fdp uses only two aesthetics), if nec-
essary, so that the length of each is less than the current temperature

L.
AI(X)

| A4 (x)
AQ(X)
|Az(x)]

Al -~ |] min(A ()] 1)

2400 = [222 | - min(40300

Calculate the sum vector.

A'(x) — Al (x) + A)(x)

Figure 2.3: The fdp algorithm, for comparison

20

the distance moved by each vertex individually. In our algorithm, all position infor-
mation is represented as one large m-dimensional state vector,® and temperature
1s used to clip the length of that vector.

To make the difference concrete, suppose we are doing a 2-D layout of a two-
vertex graph, and our aesthetics determine that the two vertices should be moved
a distance of 1 and 2 at an iteration where the temperature is 0.5. If we used fdp’s
clipping method, we would move each vertex 0.5, while AGLO will calculate the

move as

A'((1,0,2,0)) = %l-minﬂA(x)Lﬂ
_ [@o,2,0] .
= _——|(1,0,2,0)|] min(|(1,0,2,0)|,0.5)

. r(1,0,2,0)
- Ve

~ (0.224,0,0.447,0),

moving the vertices 0.224 and 0.447, respectively.®

In theoretical terms, our method always moves in the direction of steepest
descent (as specified by our aesthetic functions), whereas fdp will move along a
vector that may differ by an arbitrary amount from this steepest-descent vector.
This inefficiency notwithstanding, fdp does always proceed in a downhill direction,

which seems to be sufficient to keep it from floundering,.

8Recall that m = nD, the produci of the number of vertices in the graph and the dimension-
ality of the layout space.

?We picked movement in the positive z-direction for both vertices, but the reader can verify
that the result is the same regardless of the direction chosen.

21

Note carefully that though both algorithms proceed in a downhill direction at
each step, it is not the case that they actually find a state that is downhill from
the previous state. They take a step of a determined length in that direction
without concern for whether the new state is an improvement; the new state may
actually be worse than the previous one. This “sloppiness” gives both algorithms a
simulated annealing quality--they choose downhill steps most of the time, but they
will sometimes go uphill, the latter more often when the temperature is higher.
Because of the similarity of these algorithms and simulated annealing, it seems
plausible that much of the existing research on speeding up annealing may also be
applicable to fdp and AGLO as well (see Section 5.2).

We also address a point that [FR91] does not mention. If all of the vertices
in a graph achieve collinear positions during the layout process, they will become
“stuck” on that line, even though the aesthetics indicate that motion off the line
in any direction would be an improvement. Qur solution is to jitter the vertices
slightly by moving a randomly chosen vertex a minuscule distance in an arbitrary
direction at each step. Assuming that one of the basic repulsion aesthetics is being
used, this will cause the vertex in question to shoot off of the line, destroying the
undesired metastable state and allowing useful search to resume.

Finally, and perhaps most significantly, our method is based on a stronger the-
oretical foundation. Fruchterman and Reingold cast their aesthetics as “forces”

and fdp as essentially a many-body particle simulation of these forces, but they

22

provide little rationale for why this simulation might be expected to find aesthet-
ically pleasing graph layouts. The AGLO algorithm, in contrast, is based on a

multiobjective optimization problem derived from first principles (see Section 2.2).

2.3.3 Other Methods

There are a number of other numerical optimization algorithms that can find
solutions for unconstrained nonconvex nonlinear problems such as ours.!® Of these,
the conjugate-gradient class of algorithms looks the most promising as these algo-
rithms do not require the maintenance of large matrices that most other order-1
algorithms do, nor do they depend on the availability of second derivatives.

We have not yet explored the conjugate-gradient method, but we foresee two
potential pitfalls. First, this method assumes the existence of both the objective
function and its gradient (our aesthetic value functions and aesthetic gradient
functions). It is not clear that we will be able to find differentiable forms for all
of our aesthetic value functions and using our “pseudo-gradients” may introduce
error and reduce the quality of the results.

The other problem is that the goal of conjugate-gradient optimization is to
rapidly find a local minimum near the starting state. It always proceeds downhill
and never chooses a new state that is inferior to the current one. When it finds
a local minimum, it stops. Thus, the algorithm lacks the annealing quality of the

other algorithms we have discussed—it never makes uphill moves to keep from

19Gee [GMWS81] for a good practical overview.

23

getting stuck in a local minimum of poor quality. However, it may be possible to
modify the algorithm to sometimes move uphill, or simply to restart each time it

finds a local minimum.

24

CHAPTER 3

Implementation

gloss—n. A deceptively good appearance.

3.1 The aglo Library

We have implemented a library, aglo, that performs the Aesthetic Graph Lay-
out algorithm. The current version does layout of trees, DAGs, and general graphs
and includes seven fundamental aesthetics. The library, written in C, is designed
to be linked to a client program that needs to do graph layout (see Figure 3.1). A
simple interface is provided so that client programmers can easily implement and
use their own aesthetics in addition to, or instead of, the fundamental aesthetics
provided with the library. Vector math routines are also provided by aglo, fur-
ther easing the implementation of new aesthetics. (Figure 3.2 shows the actual

implementation of the node/node' repulsion aesthetic described in Section 3.2.1.)

The library is capable of layout either two or three dimensions,? but not all

aesthetics make sense in all cases. In particular, several of the fundamental aes-

1We also refer to graph vertices as “nodes” here, as that is the term used in the aglo library.
2The library can actually do layout in any number of dimensions.

25

aao Ebr;ry

aglo engine

client program |

| aesthetic

I aesthetic

T = = — — —

aesthetic

aesthetic

Figure 3.1: Organization of an aglo application

O 0~ O 0 b W

[T A WY
N = O

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

/* aesthetic ’node repulsion’ - makes nodes spread apart */
#include <aesth.h>
declare_aesth{node_repulsion);

define_setup(node_repulsion)
{

return;

}

define_aesth(node_repulsion)
{

unsigned i, j;

for (i=1;i<graph->vertices;i++)
for (j=0;j<i;j++)
{
aglo_point delta;
aglo_real mag?2;
aglo_point force_delta;

aglo_point_sub(delta, state[i], state[j]l);
aglo_point_mag2(&mag2, delta);
mag2 = fmax(mag2, 1le-8); /* avoid div by 0 */

aglo_point_scalar_mult(force_delta, 1/mag2, delta);

aglo_point_add(gradient[i], gradient[i], force_delta);
aglo_point_sub{gradient[j], gradient[j], force_delta);

}

Figure 3.2: Code for the node/node repulsion aesthetic

27

thetics are defined only in the two-dimensional case. This is the case that we have
explored.

To aid in experimenting with and debugging aesthetics, aglo has a monitoring
feature that, if enabled, will show the progress of the layout. The intermediate
layouts are shown on an X Windows display using the freely available gnuplot
plotting tool. Depending on the arguments used, the monitoring display will be
updated either after a fixed number of iterations of the layout algorithm or after a
fixed time has elapsed (two seconds by default). The latter option is particularly
useful for watching a layout without substantially slowing its computation.

A sample client, gloss, is provided that will read a graph from its standard
input, do a layout according to the command-line parameters supplied, using the
aglo library, and print the resulting layout on its standard output. Figure 3.3
shows the usage message for gloss. The gloss client is particularly useful for
experimenting with new aesthetics and combinations of aesthetics.

Figure 3.4 shows the first part of a gloss input file. Vertices are numbered
consecutively, beginning with 1. Each line describes an edge in the graph.® The
first number specifies the edge head and the second the edge tail if the graph is

considered to be directed, but it is up to each aesthetic to make this distinction.*

3Singleton vertices can be entered by including each alone on a line. The current aesthetics
were not designed for disconnected graphs, so no singleton vertices are shown in any of our
figures. Disconnected graphs could be laid out using appropriately designed aesthetics, or their
connected subgraphs could be laid out separately using the provided aesthetics.

40Of those included with aglo, only the “parent left placement” (Section 3.2.6) and “level
variance minimization” (Section 3.2.7) aesthetics do so.

28

usage:

W 0N, W N

W= 00N b WwN

e
= O

(s
K

-it <iterations> (1000)

-bt <beginning temperature> (100.000000)

-et <ending temperature> (0.001000)

-m [turn monitor on]

-mr <monitor update rate (seconds)> (2)

-8 [sleep until “C at end]

-knr <node repulsion aesthetic>

-kmel <minimize edge length aesthetic>

-kcp <centripetal (repulsion from centroid) aesthetic>
-kner <node/edge repulsion aesthetic>

-kmel <minimize edge intersections aesthetic>
-kmei2 <minimize edge intersections v2 aesthetic>
-kpl <place parent to left of children aesthetic>
-kmlv <minimize intralevel variance aesthetic>

Figure 3.3: gloss usage message

Figure 3.4: Sample gloss input file

29

Time=7 Temp=0.001

Figure 3.5: Sample monitor display

Figure 3.5 shows a sample monitor screen from a gloss run on the input file in
Figure 3.4. In addition to the current layout state, the screen indicates the current
elapsed time (in seconds) and temperature.

When gloss has finished, it prints out the coordinates of the endpoints of each
edge in the graph. The coordinates are normalized so that the placement will fit

exactly within the unit square with corners (0,0) and (1,1). (The aspect ratio

30

of the placement is not altered.) The aglo library provides the input and output

routines used by gloss.

3.2 Fundamental Aesthetics

In this section, we will describe each of the fundamental aesthetics currently
provided with the aglo library. The first two aesthetics are essentially the same

as those given in [FR91].

3.2.1 Node/Node Repulsion

This aesthetic causes each node to repel all of the rest. The magnitude of the
repulsion vector is 1/d, where d is the magnitude of the delta vector (i.e., the vector
from a node to the repelled node). Since all pairs of vertices are considered, the

time complexity of this aesthetic is ©(|V|?).

3.2.2 Edge Length Minimization

This aesthetic causes each edge to be shortened, i.e., it causes the endpoints of
an edge to attract each other. The magnitude of the attraction vector is d?, the

magnitude of the delta vector. All edges are considered, so the time complexity of

this aesthetic is O(|E£|).

31

3.2.3 Node/Edge Repulsion

This aesthetic causes each node to repel all edges (and vice versa).® The mag-
nitude of the repulsion vector is 1/d, where d is the magnitude of the delta vector,
which in this case is the vector from the node to the closest point on the edge.

Note that there are actually two cases here: either the point on the edge closest
to the node is one of the endpoints or not. If not, the delta vector is normal to the
8

edge. If it is, we basically have node/node repulsion again.

Since each node/edge pair is considered, the time complexity of this aesthetic

is O(|V]|£]).

3.2.4 Edge Intersection Minimization

The purpose of this aesthetic is to minimize the number of edge intersections in
a layout. This aesthetic presents a special difficulty: given two intersecting edges,
the best gradient to an improved layout is nonobvious. We think that this problem
is due to this aesthetic being nonconvex (see Section 2.2.1).

After some experimentation, we have arrived at a version that seems to work
pretty well in practice: if two edges intersect, we cause their midpoints to repel
each other, as in node/node repulsion, except that the magnitude of the repulsion
vector is 1 instead of 1/d.

(We provide a second, stronger version that uses d as the magnitude of the

>This aesthetic makes sense in 3-D, but the version in the library handles only the 2-D case.
In our current implementation, we apply no force in this latter case, assuming that co-
application of the node/node repulsion aesthetic will make this redundant.

32

repulsion vector, but is otherwise identical. Neither version clearly dominates the
other in terms of layout results, so we include both.)

Since all edge pairs are considered, the time complexity of this aesthetic is
O(|E[*).

In three dimensions, edge intersection per se is not a useful concept, so our
version only handles the 2-D case. For the 3-D case, we would probably want to

generalize this aesthetic to do some form of edge/edge repulsion.

3.2.5 Centripetal Repulsion

‘The purpose of this aesthetic is to repel all vertices from the centroid” of the
layout. The position of the centroid is calculated, and each node is repelled from
this point as in node/node repulsion. The magnitude of the repulsion vector is
1/d, where d is the magnitude of the delta vector (i.e., the vector from the node to

the centroid). Since each node is considered, the time complexity of this aesthetic

is O([V]).

3.2.6 Parent Left Placement

These last two aesthetics are for tree- and DAG-style layout. Unlike the previ-
ous aesthetics, these two treat edges as directed by distinguishing between parents
and children.

The purpose of this aesthetic is to cause the parent (or parents, in a DAG) of

"The centroid vector X is the average of all vertex position vectors x;.

33

a node to be placed to its left. (A buffer space is used so that the parent is not
placed directly beside the child.) If the parent is not already positioned to the left
of the buffer space, the parent and child repel each other along the delta vector,
which is parallel to the z-axis. The magnitude of the repulsion vector is d?, where
d is the magnitude of the delta vector. Since each edge is considered, the time

complexity of this aesthetic is ©(|E|).

3.2.7 Level Variance Minimization

The purpose of this aesthetic is to place all vertices on the same level of the
graph near the same z-position. Each node is attracted to the average z-coordinate
of all the vertices on the same level. The magnitude of the attraction vector is d?,
where d is the magnitude of the delta vector. Since each node is considered, the

time complexity of this aesthetic is @(|V]).

3.3 Limitations

The current implementation of the aglo library disallows self-edges and mul-
tiple edges between a given pair of vertices (including directed 2-cycles). The
aesthetics are designed for wholly connected graphs—since there are no aesthetics
to hold disconnected subgraphs together, they will tend to fly far apart during
layout, producing an unattractive result.

Currently the input graph has a hard limit of 500 vertices, but this limit may

34

be trivially increased changing a constant and recompiling aglo.

3.4 Potential Speedups

Aside from tuning the current library code, there are a couple of avenues that

we expect would speed up the aglo layout procedure.

3.4.1 Adaptive Cooling

The current implementation handles cooling quite naively: a beginning and
ending temperature and an iteration count are specified a priori, and simple ge-
ometric cooling is done based on these parameters. The default values used by
gloss are conservative so as to perform well on most inputs, but layout can be
done at least an order of magnitude faster with a good choice of parameters.® To
search for better parameters, first lower the beginning temperature, then raise the
ending temperature, and finally decrease the iteration count, in each case stopping
just before layout quality is compromised.

Probably the easiest improvement would be to add a test to check for a “frozen”
state. If the layout has stopped changing in any substantial way through a small
number of iterations, we can guess that a local minimum has heen reached and
nothing will be gained by further computation.

The choice of the overall cooling schedule is a much harder problem. The

8For example, a layout of the graph in Figure 4.5 (of similar quality) can be done in under three
seconds using the cocling parameters -bt 12 -et 0.05 -it 80, as opposed to approximately
30 seconds using the default cooling parameters.

35

analogous problem for the simulated annealing algorithm has been studied (e.g.,
[Lam88]), but it is not obvious that results from this work can be applied to our

problem.

3.4.2 Distal-Force Optimization

Our placement algorithm bears a computational resemblance to the many-body
simulation problem. One significant algorithmic device for the many-body problem
involves approximating the forces applied to a node by “distant” vertices as a single
force. This optimization is described in [Gre88] and, under the best circumstances,
will produce an O(|V|) speedup of the algorithm.

This optimization is used by [FR91] in their implementation. They are aided
by the fact that they use only two aesthetics, and these aesthetics are quite similar
to the forces used in the many-body problem.

It seems plausible that we could also make use of this optimization, but we will
have a harder time of it, because we have a larger collection of aesthetics and we
would like users of the aglo library to be able to extend this collection with ease.

Furthermore, some aesthetics may not be similar to many-body forces and, thus,

may not fit the optimization framework.

3.4.3 Other Order-1 Nonlinear Optimization Algorithms

Although the aesthetics we are using are not necessarily true analytic deriva-

tives (gradients), it is plausible that we may successfully apply other known order-1

36

nonlinear optimization algorithms to our aesthetic layout problem. The conjugate-
gradient method (described in [GMWS81]) in particular looks promising. (see Sec-

tion 2.3.3.)

37

CHAPTER 4

Results

aglossia—n. [<Gk: want of eloquence]

In this chapter, we demonstrate aglo on several dozen input graphs. Many of
the graphs are drawn from previous graph layout papers (including [FR91], {[DH89],
[KK88], [KK89], and [Ead84]). Depending on the aesthetics and weights chosen,
we can produce layouts of tree, DAG, or general graph form.

All of the layouts shown were produced with gloss, using the aglo library,
unless the caption indicates that they are proposed placements. The source of each
graph, including the original figure number, is indicated as appropriate.

All layouts were produced using the default choices for iteration count (1000
iterations) and beginning and ending temperatures, unless noted. These choices
will produce good layouts most of the time, though an order-of-magnitude im-
provement in layout time can often be produced if the parameters are tuned.

The caption of each figure indicates the total CPU time (in seconds) taken to
produce the layout on a Sun SPARCstation ELC.! All code was compiled using

version 2.2.2 of the GNU C compiler (gee) with the -02 option.

1Specifically, the reported time is the sum of user and system CPU time, to the nearest tenth
of a second, as reported by /bin/time.

38

Figure 4.1: Figure 1 from Davidson and Harel (2.8s)

We begin with an extended example, then show examples of the layout of
general graphs, DAGs, trees, and large-scale graphs, and conclude with a discussion

of these results.

4.1 An Extended Example

In this example, we see how the style of a layout can be modified by changing
the aesthetics and their weights. In figure 4.1, the graph given in Figure 1 of

Davidson and Harel ([DH89]} is laid out using the command:?

gloss -knr 1 -kmel 1 -bt 25

2We are tuning the layout in this case by adjusting the starting temperature (-bt 25).

39

argument aesthetic

-knr node/node repulsion

-kmel edge length minimization

-kcp centripetal repulsion

-kner node/edge repulsion

-kmei edge intersection minimization
-kmei2 | edge intersection minimization (v.2)
-kpl parent left

~kmlv level variance minimization

Table 4.1: gloss aesthetic arguments

(Interpretation of gloss aesthetic parameters is summarized in Table 4.1.) This
style is used by Fruchterman and Reingold ([FR91]}) for all of their two-dimensional
layouts, and the resulting layout is similar to theirs.

But now suppose we wish the layout style to be more like that of [DH89]. They
render this graph differently—similar to Figure 4.5. What do we do?

The idea is to ask what is wrong with the present layout. What undesired
aesthetic quality is present? Then we experiment with the set of existing aesthetics
or invent and implement new ones.

In this case, looking at Figure 4.1, an obvious problem is that there are edge
crossings where we wish there were none. Specifically, the outer “point” vertices
could have been placed inside instead. In order to remedy this problem, we try

this command:

gloss ~knr 1 -kmel 1 -kmei 1 -bt 25

producing the layout in Figure 4.2.

40

Figure 4.2: Figure 1 from Davidson and Harel, variant 2 (13.4s)

This solves the problem, since the “point” vertices are no longer sticking out,
but now we have a new problem: these “point” vertices have been placed on or very
near nonincident edges, obscuring edges in the graph and making it aesthetically
displeasing. In this case, the problem is quite obvious: we want to be sure that
vertices are not placed too close to nonincident edges. The node/edge repulsion

aesthetic does just that with

gloss -knr 1 -kmel 1 -kmei 1 -kner 1 -bt 25

giving us Figure 4.3.
Some of the “point” vertices are inside, where we want them, and others have

been placed outside. In fact, if we run aglo several times with these same parame-

41

Figure 4.3: Iigure 1 from Davidson and Harel, variant 3 (29.3s)

ters, we will get different inside/outside pattern; this is an unstable configuration.
We will increase the weight of edge crossing minimization in the hopes that this

will push the layout into the stable configuration we desire:

gloss -knr 1 -kmel 1 -kmei 10 -kner 1 -bt 25

giving us Figure 4.4, the layout we were seeking.
We get a virtually identical layout by replacing the node/node repulsion aes-

thetic with the centripetal aesthetic thus:

gloss -kcp 1 ~kmel 1 -kmei 10 -kner 1 -bt 25

leading to Figure 4.5.

Figure 4.4: Figure 1 from Davidson and Harel, variant 4 (29.1s)

Figure 4.5: Figure 1 from Davidson and Harel, variant 5 (27.3s)

43

Though we can gain more control by using more aesthetics, these examples also
demonstrate that we pay a penalty in added computation time for that control.
It is interesting to see that the centripetal aesthetic can sometimes work as a
substitute for node repulsion, since the former is O(|N|) faster than the latter in
our implementation.

Thus, by choosing different aesthetics and varying their weights, we can exert
control over the style of layout. This example demonstrates malleability, compe-

tence, and speed of the AGLO algorithm.

44

4.2 A Graph Layout Gallery

We now present a large collection of aglo layouts. Many of the graphs are
drawn from other papers for the sake of comparison; others are included to show
off the abilities of aglo. This collection of examples, taken as a whole, shows off

the generality and uniformity of the AGLO approach.

4.2.1 General Graphs

In this section, we show how aglo handles general, undirected graphs. Many
of the graphs are examples that appear in [FR91] and [DH89], the existing work
most similar to ours. We use these graphs to compare and contrast aglo with
the methods proposed in those papers and argue that the AGLO algorithm is in
general superior to those methods.

Unless otherwise mentioned, all figures in this section were created with the

command:
gloss -knr 1 -kmel 1

which is essentially the style of [FR91].

Figures 4.6 through 4.11 show the layout of several simple, symmetric graphs.
We observe that our placements are similar to those produced in [FR91] and
[KK89]. Figure 4.6 has an unnecessary edge crossing that we can eliminate by

including the edge crossing minimization aesthetic, as in Figure 4.7.

Figure 4.12 is drawn as in [DH89] and [FR91] using the command

45

Figure 4.6: Figure 6(a) from Kamada and Kawai (0.5s)

Figure 4.7: Figure 6(a) from Kamada and Kawai, better (0.8s)

46

Figure 4.8: Figure 4 from Kamada and Kawai (0.3s)

Figure 4.9: Figure 3 from Kamada and Kawai (0.3s)

47

Figure 4.10: K33 (0.4s)

Figure 4.11: Figure 6(c¢) from Kamada and Kawai (0.9s)

48

gloss -knr 1 -kmel 1 -kcp 1

The centripetal aesthetic helps assure that all of the “point” vertices remain at
the outside. We can also draw this graph with the “point” vertices inside, as in

Figure 4.5, using
gloss ~knr 1 -kmel 1 -kmei 1

to give Figure 4.13. In this figure, we see a drawback of our current implementation
of the edge crossing minimization aesthetic. The proximity of the midpoints of the
two center crossing edges causes these two edges to be pushed out of their natural
position, with the result that the center square is somewhat skewed. It may be
helpful to remove this aesthetic during final cooling, but an aesthetic that lacked
this fault would be better.

The graph in Figure 4.14 is very similar to Figure 27 of [FR91]. Disappointingly,
we were unable to adjust our current aesthetics to produce the planar layout of
this graph shown in Figure 20 of [DH89]. It would be useful to study this further
to see if we can discover whether different aesthetics are needed or whether this
might indicate a limitation of our method.

Figure 4.15 is an icosahedron that has been modified by removing one node
and its incident edges. [FR91] includes two layouts of this graph, one of which is
essentially the same as this figure. The other looks a little like Figure 4.16, but
our version 1s better because we have only four edge crossings rather than eight

and maintain a much better separation between vertices and nonincident edges.

49

Figure 4.12: Figure 16 from Davidson and Harel (2.2s)

Figure 4.13: Figure 16 from Davidson and Harel, variant (6.9s)

and Harel (8.9s)

Figure 4.14: Figure 20 from Davidson

nd Reingold (1.1s)

Figure 4.15: Figure 28 from Fruchterman a

ol

Figure 4.16: Figure 28 from Fruchterman and Reingold, another version (6.4s)

We produced this latter variant by adding the node/edge repulsion aesthetic.
It is not entirely clear how [FR91] produce their variations. Presumably, they are
either altering cooling parameters, or the variations are a result of the instability
of the algorithm (with respect to starting state, etc.) While our method also
sometimes suffers from instability, we believe that our ability to control the style
of the variations produced is an improvement over their method.

Figure 4.17 shows an icosahedron. We produce the improved layout in Fig-
ure 4.18 by replacing node repulsion with centripetal repulsion. Strangely, [FR91]
produce the latter version rather than the former. [DH89] are able to produce a
planar, symmetric layout of the icosahedron.

In Figures 4.19 through 4.28, we show more simple graphs included in [FRO1].

Our layouts are very similar to theirs, which are in turn quite similar to the original

52

Figure 4.17: Figure 29 from Fruchterman and Reingold (1.3s)

Figure 4.18: Figure 29 from Fruchterman and Reingold, better (0.7s)

Figure 4.19: Figure 7(c) from Kamada and Kawai (0.8s)

sources.
In Figure 4.27, we are able to produce a planar version of Figure 4.26, which
[FR91] do not do, by including the edge crossing minimization aesthetic.
Figure 4.29 shows a pentagonal prism, much as [FR91] render it. They fail to
produce a planar version, while [DH89] succeed with a somewhat skewed version.

Our planar version (Figure 4.30), generated with the command:

gloss -kcp 1 -kmel 1 -kmei 10 -kner 1

is clearer and more aesthetically attractive.

Our version of the twin cubes graph is given in Figure 4.31. Though this graph
is planar, [FR91] and [DHR9] are unable to planarize it, and we fail as well.

Our first version of the 24-node mesh (Figure 4.32) is essentially the same as

that of [FR91]. By adding more aesthetics,

gloss -knr 1 -kmel 1 -kmei2 10 -kner 1 -kcp 1 -it 2000

54

Figure 4.20: Figure 7(a) from Kamada and Kawai (0.4s)

Figure 4.21: Figure 7(d) from Kamada and Kawai (1.2s)

33

Figure 4.22: Figure 2(b) from Eades (0.7s)

y

b

Figure 4.23: Figure 5(¢) from Eades (0.3s)

26

Figure 4.24: Figure 5(b) from Eades (0.8s)

Figure 4.25: Figure 5(a) from Eades (4.4s)

Figure 4.26: Figure 6(c) from Eades (0.5s)

37

Figure 4.27: Figure 6(c) from Eades, planar (2.0s)

Figure 4.28: Figure 47 from Fruchterman and Reingold (0.6s)

a8

Figure 4.29: Figure 49 from Fruchterman and Reingold (0.9s)

Figure 4.30: Figure 49 from Fruchterman and Reingold, planar (4.5s)

59

Figure 4.31: Figure 11 from Davidson and Harel (1.2s)

we produce the planar layout in Figure 4.33, which is very close to that of [DHS89).
The planar and nonplanar versions are arguably approximately equivalent in clar-
ity.

Three versions of a dodecahedron are shown in Figures 4.34 through 4.36. (Fig-
ures 4.35 and 4.36 both use the node/edge repulsion and edge crossing minimization
aesthetics, but the latter uses the stronger edge crossing aesthetic mentioned in
Section 3.2.4.) [FR91] produce drawings like Figures 4.34 and 4.36, while those of
[DH89] are like the layouts in Figures 4.34 and 4.35. Neither successfully planarizes
the dodecahedron, nor do we.

We show a series of complete graphs in Figures 4.37 through 4.47. Figure 4.42,

produced with the command:

gloss -kcp 1 -kmel 1 -kmei2 10 -kner 1

60

Figure 4.32: Figure 2 from Davidson and Harel (4.0s)

Figure 4.33: Figure 2 from Davidson and Harel, planar (60.1s)

61

Figure 4.34: Figure 57 from Fruchterman and Reingold, version 1 (2.8s)

Figure 4.35: Figure 57 from Fruchterman and Reingold, version 2 (20.0s)

Figure 4.36: Figure 57 from Fruchterman and Reingold, version 3 (19.8s)

is a variant of I'igure 4.41 that has fewer edge crossings. [DH89] also produce both
versions.

The larger graphs can generally be rendered either with or without a central
vertex (cf. Figures 4.46 and 4.47). We can control this with the use of the cen-
tripetal aesthetic.

Both [DH89] and [FR91] attempt to produce a symmetric layout for the Hey-
wood graph, but are unable to do so, producing graphs that are fairly similar to
our Figure 4.48. Using our centripetal aesthetic, we are able to produce the layout
in 4.49, using only 0.7 seconds of CPU time! This placement differs from the ideal
suggested by [DH89] (Figure 4.50), which we were unable to achieve. The ideal

has fewer edge crossings, but our layout is just as readable, possibly more so.

63

Figure 4.37: K, (0.1s)

Figure 4.38: K3 (0.1s)

64

Figure 4.39: K, (0.2s)

Figure 4.40: K5 (0.3s)

Figure 4.41: Ky (0.5s)

Figure 4.42: K, variant (2.9s)

66

NV e\
" « v“\ll
m,.gmﬁ\;.
SENNTA]
RS 4‘.’4‘
S NN

-~

\ K/N\LA77
o7

Figure 4.48: Figure 18 from Davidson and Harel (1.5s)

69

Figure 4.49: Figure 18 from Davidson and Harel, better (0.7s)

Figure 4.50: Figure 18 from Davidson and Harel, their proposed ideal

70

Figure 4.51: Figure 48 from Fruchterman and Reingold {2.0s)

Figures 4.51 through 4.53 are all renderings of the four-dimensional hypercube,
Figure 4.51 is fairly close to the version in Figure 48 of [FR91], though ours achieves
better separation between vertices and nonincident edges via the node/edge repul-
sion aesthetic. Adding the centripetal aesthetic gives Figure 4.52, which is better
than the first version because it shows the symmetry of the hypercube. Using only
the basic two aesthetics, we obtain Figure 4.53. Although this layout is neither
symmetric nor particularly attractive in an “artistic” sense, it has an interesting
feature that the other two versions lack: if one looks carefully, it is possible to see
two coaxial tubes (each being a twin cube, as in Figure 4.31). This “mnemonic”
makes the structure of the hypercube easier to visualize and think about, albeit

hiding some of its symmetry.

71

4.2.2 Directed Acyclic Graphs

In this section, we show how directed acyclic graphs (DAGs) can be rendered
using aglo. The same algorithm used to do layout of general graphs in the previous
section is applied here to DAGs, showing the generality of our method.

Though arrowheads are not shown in these figures, all edges are directed and
run from left to right. Except as mentioned, all figures in this section were produced

by the command

gloss -knr 1 -kmel 1 -kner 1 -kpl 1 -kmlv 100

The placements in Figures 4.54 through 4.56 seem reasonable. They appear
somewhat amorphous, lacking the “graph paper” look of discrete algorithms, such
as that in [RT81]. (It is not wholly clear that this is a disadvantage.) Figure 4.55

includes a light dose of the edge crossing minimization aesthetic to ensure planarity.

73

Figure 4.54: A small DAG (2.9s)

Figure 4.55: A small, symmetric DAG (3.4s)

Figure 4.56: A small, nonplanar DAG (1.2s)

74

4.2.3 Trees

In this section, we explore tree drawing with aglo, further demonstrating the
generality of the AGLO algorithm. (Again, arrowheads are not shown in these
figures, but all edges are directed.)

We begin with a small binary tree (Figure 4.57). This layout utilizes both tree
aesthetics (parent left and level variance minimization) as well as edge crossing
minimization, node/edge repulsion, and the basic two (node repulsion and edge
length minimization).

Figure 4.58 shows a binary tree that the current aglo aesthetics handle poorly.

Since order of siblings is unspecified, layout is arbitrary in this respect, but we

Figure 4.57: A small binary tree (3.9s)

75

Figure 4.58: A binary tree conundrum (26.1s)

would really much rather see a symmetric display in this case.

Figures 4.59 and 4.60 show complete binary trees of height two and four, re-
spectively, drawn as general graphs. Figure 4.61 is the latter graph drawn as a
tree. The levels of the tree have a slight curve, but the layout as a whole is quite

adequate.

Figures 4.62 through 4.65 are simple trees that appear in {FR91]. Our versions

differ only slightly.

76

Figure 4.59: Figure 40 from Fruchterman and Reingold (0.4s)

Figure 4.60: Figure 14(a) from Davidson and Harel (6.1s)

Figure 4.61: Figure 14(a) from Davidson and Harel, as a tree (28.0s)

P

Figure 4.62: Figure 4(a) from Eades (2.4s)

Figure 4.63: Figure 14(b) from Davidson and Harel (2.9s)

Figure 4.64: Figure 7(b) from Kamada and Kawai (0.6s)

79

Figure 4.65: Figure 4(b) from Eades (1.9s)

30

4.2.4 Large-scale Examples

In this section, we apply aglo to several large graphs. The results are mixed,
though much better than we expected, and show the competence of the AGLO
algorithm on larger examples.

One real-world application of graph layout is the visualization of call graphs.
In Figure 4.66, we render the call graph of a large module (around 90 vertices and
460 edges) as a general graph.® The resulting layout does show some gross features
of the call graph, such as node clusters and outliers, but the layout could be better.

There is really too much information for full comprehension in any case.

3The data for Figure 4.66 courtesy of Twin Sun, Inc.

Figure 4.66: A large call graph (55.8s)

81

Figure 4.67: A large call graph, variant (57.8s)

The same call graph is rendered with the parent left aesthetic in Figure 4.67.
This shows the direction of the calls better, of course, but it is inferior to the
previous version.

In Figure 4.68, we have a large regular mesh that describes the surface of an
ellipsoid.* The resulting layout is quite attractive considering the size of the mesh
(around 400 vertices and 800 edges). As the figure shows, this is really too much
information for a single visual—we can see the overall structure of the graph, but
we would be hard pressed to notice a missing edge (Figure 4.69).

Figure 4.70 shows a toroidal mesh of a similar size. Again, the layout produced

is surprisingly attractive, albeit somewhat overwhelming.

4Thanks to Junio Hamano of Twin Sun, Inc., who created the data for Figures 4.68 and 4.70.

Figure 4.69: Ellipsoid mesh, minus one edge (917.7s)

83

Figure 4.70: Toroidal mesh {909.5s)

Figure 4.71 is a nice layout of a 200-node Mdbius strip mesh. Just for fun,

Figure 4.72 shows a 400-node Klein bottle.?

4.2.5 Summary

Tables 4.2 and 4.3 sumnmarize execution times for the figures in this chapter,

and give the exact commands used to produced them.

>To construct a Klein bottle, take two Mbius strips and glue their edges together (each strip
has only one edge). Now “inflate” the resulting “tube”. Notice how difficult this is. (A Klein
baottle is not realizable in three-dimensional space and with only one side and no interior, would
not be inflatable in any case.)

84

Figure 4.72: Klein bottle mesh (908.5s)

85

Fig. | Pg. | V| E | Time Command

4.1 39119 | 45 2.8 | -knr 1 -kmel 1 -bt 25

4.2 41119 | 45 13.4 | -knr 1 -kmel 1 -kmei 1 -bt 25

4.3 42 119 | 45| 29.3 | -knr 1 -kmel 1 -kmei 1 -kner 1 -bt 25
1.4 43 19|45t 29.1 | -knr 1 -kmel 1 -kmei 10 -kner 1 -bt 25
4.5 43 119 | 45 27.3 | -kep 1 -kmel 1 -kmei 10 -kner 1 -bt 25
4.6 46| 8| 8 0.5 | -knr 1 -kmel 1

4.7 46| 8| 8 0.8 | -knr 1 -kmel 1 -kmei 1

4.8 471 6 T 0.3 | -knr 1 -kmel 1

4.9 471 61 6 0.3 | -kor 1 -kmel 1

4.10 48 6 9 0.4 | -knr 1 -kmel 1

411} 48|10 | 18 0.9 | -knr 1 -kmel 1

412} 50| 16 | 30 2.2 | -knr 1 -kmel 1 -kep 1

413 | 50|16 | 30 6.9 | -knr 1 -kmel 1 -kmei 1

4,14 51 | 37 | 68 8.9 | -knr 1 -kmel 1

4151 51 |11 | 25 1.1 | -knr 1 -kmel 1

4.16 52 | 11 | 25 6.4 | -knr 1 -kmel 1 -kner 1

4.17 53 112 | 30 1.3 | -knr 1 -kmel 1

418 53|12 | 30 0.7 | -kep 1 -kmel 1

4,191 54 | 10 | 13 0.8 | -knr 1 -kmel 1

420 5| 7| 8 0.4 | -knr 1 -kmel 1

421 55|12 | 14 1.2 | -knr 1 -kmel |

4322 56| 91|15 0.7 | -knr 1 -kmel 1

423 56| 6] 7 0.3 | -knr 1 -kmel 1

424 57110 | 11 0.8 | -knr 1 -kmel 1

425 572631 4.4 | -knr 1 -kme! 1

426 57| 71 9 0.5 | -knr 1 -kmel 1

4.27 | 58 719 2.0 | -knr 1 -kmel 1 -kmei 1 -kner 1

4.28 b8 8112 0.6 | -knr 1 -kmel 1

4.29 59 110 | 15 0.9 | -knr 1 -kmel 1

430 59|10 15 4.5 | -kep 1 -kmel 1 -kmei 10 -kner 1

431 601220 1.2 | -knr 1 -kmel 1

432 6124140 4.0 | -knr 1 -kmel 1

433 61|24 |40 | 60.1 | -knr 1 -kmel T -kmei2 10 -kner 1 -kep 1 -it 2000
4.34 | 62|20 30 2.8 | -knr 1 -kmel 1

435 6220130 20.0| -knr 1 -kmel 1 -kmei 1 -kner 1

436 631|201 30 19.8 | -knr 1 -kmel 1 -kmei2 1 -kner 1

Table 4.2: Summary of Chapter 4 figures

36

Fig. | Pg. | V | E | Time Command
4.37 | 64 2 1 0.1 | -knr 1 -kmel 1
438 1 64 3 3 0.1 { -knr 1 -kmel 1
4391 65 4 6 0.2 | -knr 1 -kmel 1
440 | 65 5| 10 0.3 | -knr 1 -kmel 1
4.41 | 66 6| 15 0.5 | -knr 1 -kmel 1
442 | 66 6 15 2.9 | -kep 1 -kmel 1 -kmei2 10 -kner 1
4.43 67 7 21 0.7 | -knr 1 -kmel 1
4.44 | 67 31 28 0.8 | -knr 1 -kmel 1
4.45 | 68 91 36 1.0 | -knr 1 -kmel 1
446 | 68| 101 45 1.3 | -knr 1 -kmel 1
4.47 | 69 10 | 45 0.9 | -kep 1 -kmel 1
448 | 69| 14| 21 1.5 | -knr t -kmel 1
449 70| 14| 21 0.7 | -kmel 1 -kep 1
451 | 71| 16| 32 2.0 | -knr 1 -kmel 1
452 72| 16| 32| 13.3 | -kor 1 -kmel 1 -kner 1
453 | 72| 16| 32| 13.1 | -kor 1 -kmet1 -kner 1 -kep 1
4,54 74 9 9 2.9 | -knr 1 -kmel 1 -kner 1 -kpl 1 -kmlv 100
455 | T4 8| 13 3.4 | -knr 1 -kmel 1 -kner 1 -kpl 1 -kmlv 100 -kmei 0.1
4.56 | T4 9 6 1.2 | -knr 1 -kmel 1 -kner 1 -kpl 1 -kmlv 100
4.57 5 11 10 3.9 | -knr 1 -kmel 1 -kner 1 -kpl 1 -kmlv 100 -kmei 1
4.58 | 76 31 30 26.1 | -knr 1 -kmel 1 -kner 10 -kp! 1 -kmlv 2 -kmei 10
4.59 | 77 7 6 0.4 | -knr 1 -kmel 1
4.60 77 31 30 6.1 | -knr 1 -kmel 1
461 78| 31| 30| 28.0 | -knr1 -kmel1 -kpl 1 -kmlv 2 -kmei 1000 -kner 1
462 | 78| 19| 18 2.4 | -knr 1 -kmel 1
4.63 79 21 20 2.9 1 -knr 1 -kmel 1
464 | 79 9 8 0.6 | -knr 1 -kmel 1
465 | 801 17| 16 1.9 | -knr 1 -kmel 1
466 | 81 ; 93 |461 { 558 | -knr 1 -kmel 1
467 | 821 934611} 57.8 | -knr 1 -kmel | -kpl 1
4.68 | 83 {402 | 820§ 917.8 | -knr 1 -kmel 1
469 | 83 402 | 819 : 917.7 | -knr 1 -kmel 1
4.70 | 84 | 400 | 800 | 909.5 | -knr 1 -kmel 1
4.71 | 85200 | 360 | 229.4 | -knr 1 -kmel 1
4.72 | 85400 | 800 { 908.5 | -knr 1 -kmel 1
Table 4.3: Summary of Chapter 4 figures (cont.)

87

4.3 Discussion and Comparison

In this section, we discuss the speed and robustness of AGLO and the quality
of the layouts generated and compare its performance to other layout algorithms

(primarily [FR91] and [DH89]).

4.3.1 Speed

Layout speed is very important if the layout is to be done interactively. Except
for our large-scale examples, all of the layouts in this chapter were performed in
a minute or less, most in substantially less. With a little bit of work tuning the
library, better understanding of the cooling schedule, and faster hardware, we are
quite confident that all of the times for these examples will drop into the interactive
range (five to ten seconds).

Pruchterman and Reingold indicate that all of their examples were drawn in
under ten seconds on a SPARCstation 1 using fdp. In the examples where we use
our two fdp-style aesthetics (node/node repulsion, or our centripetal repulsion,
together with edge length repulsion), we get similar times. The timing data is
not strictly comparable because we use a slightly faster machine (a SPARCstation
ELC) and our library does not incorporate the distal-force speedup they use (see
Section 3.4.2).

When we use more layout aesthetics, layout takes longer, but we can produce

different styles of aesthetics that fdp cannot generate at all.

88

Davidson and Harel give an equation to estimate the run time of their algo-
rithm, but no explicit times for their drawings. All but the smallest graphs take at
least several minutes to lay out, and the authors concede that their implementation
could not be considered to be of interactive speed. They suggest that the speed of
their algorithm could be significantly increased by rewriting parts of the code and
translating portions into assembler, but we feel certain that their method will not
be competitive with the aglo library until they make use of gradient information.

We believe that it is important to include some very ambitious test cases to
show how aglo would perform when stressed. At around 15 minutes, the layout
time of the 400-node ellipsoid in Figure 4.68 cannot be considered interactive, but
it is respectable, and it would be quite reasonable to use aglo to lay out such huge
graphs for typesetting purposes, for example.

QOur times for trees and DAGs are respectable, but definitely slower than special
purpose procedural algorithms like [RT81]. It may be possible to improve the
relative performance, but there will probably always be a performance penalty

associated with the substantially increased generality of our method.

4.3.2 Layout Quality

The layout quality of agle is similar to that of comparable layouts in [FR91]
and [DH89]. Our layouts of the former’s examples are quite similar to theirs, and

our layouts of the latter’s are of comparable quality.

89

We also do layout using aesthetics (such as our centripetal repulsion and “tree”
aesthetics) that neither of these methods uses; there is no basis for comparison in
this case. Our tree layouts still need some work because they are not yet quite as

good as those of traditional tree layout algorithms, such as [RT81].

4.3.3 Robustness

If a graph layout algorithm is to be used in real applications, it must be reason-
ably robust, meaning that it should by default produce reasonably good layouts of
whatever graphs it is given (i.e., without the user having to twiddle parameters).

An important robustness quality is stability. For our purposes, stability means

that

1. Layout quality is insensitive to the choice of the initial state (placement).

2. Layout quality is insensitive to minor rounding errors which may exist on

the machine on which the aglo library is run.

3. Layout quality varies in a gradual and continuous way as the layout weights
and parameters are changed. Small changes in weights should not produce

large changes in layout quality.

Neither [FR91] nor [D1I89] give the specific algorithm parameters used to pro-
duce each of their figures, so it is difficult to say how much adjustment was neces-
sary to generate them (i.e., to estimate the robustness of their methods). Stability

is not directly addressed in either paper.

90

The default behavior of the aglo library is fairly robust but varies some with
the aesthetics chosen and the complexity of the input graph. If inappropriate
aesthetics are chosen (e.g., applying “tree” aesthetics to a cyclic graph), the results
will be poor. For larger graphs and larger sets of aesthetics, starting temperature
and cooling time need to be increased beyond the default in order to ensure good
layout quality.

The stability of AGLO is excellent with respect to items 1 and 2 above, and
quite good with respect to the third. (Not surprisingly, the algorithm does become
unstable when cooling is done too quickly.)

In this chapter, we have presented and discussed numerous examples of the
AGLO algorithm in use. Now we consider the conclusions to be drawn from this

work.

91

CHAPTER 5

Conclusion

Panglossian—adj. Given to extreme optimism.

5.1 So What?

Existing methods are fast and produce reasonably good-looking layouts, so why

should anyone be interested in our work?

¢ Our method has a stronger theoretical foundation. We present an optimiza-
tion model based on utility theory that explains how graph layout aesthetics
may be derived and combined to produce a quantitative evaluation of graph
layouts. Furthermore, our theory suggests an objective way of evaluating the

layouts produced by different algorithms.

o Our method is more general and uniform. By choosing different combinations
of aesthetic functions, we can handle different kinds of graphs and do layout

in many different styles, all within a single framework.

¢ Our method is more malleable. [t provides a means for trading off between

conflicting aesthetics and allows the user to control the style of layout.

92

o Our method is fast, at least an order of magnitude faster than [DH89], which

is the only previous algorithm with the flexibility of AGLO.

In a nutshell, our approach combines the power and flexibility of [DH89] with
the relative speed of [FR91] and provides robustness and a better theoretical foun-
dation for these methods. In addition, we have developed several new layout
aesthetics to support new layout styles. Using these aesthetics, we are able to

produce pleasing displays for graphs where these other methods flounder.

5.2 Future Directions

There are several avenues of attack for improving the capability, robustness,

and speed of the aglo library:

e Better cooling schedule: Cooling in aglo is currently quite naive (see Sec-
tion 3.4.1). Rather than iterating for a fixed count, we should stop early
when a solution is discovered. It would also be interesting to see if some of
the advanced cooling schedules used in simulated annealing could be adapted

for our purposes.

o Better optimization methods: This includes both improvements to the cur-
rent algorithm, as discussed in Section 3.4.2, and altogether different algo-

rithms, as discussed in Section 2.3.3.

93

o Better aesthetics: The aglo library includes a basic set of aesthetics, but
it is the intention of the author that many different aesthetics supporting
different layout styles, as well as more efficient versions of current aesthetics,

be discovered and implemented.

o Betler understanding of aesthelic composition: Some of the issues involved
in the composition of aesthetic functions were discussed in section 2.2.3, but
more work i1s needed. Problems in this area can cause unintuitive layout

results.

o Better handling of larger graphs: Performance of aglo drops off for larger
input graphs. It is possible that a divide-and-conquer approach could speed

things up without unduly compromising layout quality.!

Up to this point, we have considered layout aesthetics to be a subjective judge-
ment of a user or a collection of users, but there is some reason to think that some
of these aesthetics are actually a result of the structure and function of the hu-
man visual system (and thus not entirely subjective). For example, Marr [Mar82]
posits some low-level pattern-matching capabilities as part of the visual system,
which suggests that certain layout aesthetics may be desirable because they in-
crease the efliciency of the visual communication channel. One could imagine that
in the future, when the mechanisms of vision are clearer, one could supplement

user-supplied preference information with layout aesthetics specifically designed to

1"This suggestion due to Paul Eggert.

94

improve the movement of information through that visual channel.

95

[Bra88]

[CES9]

[CHS3]

[CHSS]

[Dav87]

[DHS9)

[Ead84]

[ET89]

[FRO1]

[GMWSI]

[GNVSS]

Bibliography

Franz J. Brandenburg. Nice drawings of graphs are computationally
hard. In P. Gorny and M. J. Tauber, editors, Visualization in Human-
Computer Interaction, pages 1-15. Springer-Verlag, May 1988.

Mike Coleman and Paul Eggert. Language-independent software visu-
alization tools. Unpublished, November 1989.

Vira Chankong and Yacov Y. Haimes. Multiobjective Decision Making.
Elsevier Science Publishing, New York, 1983.

G. M. Crippen and T. F. Havel. Distance Geometry and Molecular
Conformation. Research Studies Press, 1988.

Lawrence Davis, editor. Genetic Algorithms and Simulated Annealing.
Research Notes in Artificial Intelligence. Morgan Kaufman, 1987,

R. Davidson and D. Harel. Drawing graphs nicely using simulated
annealing. Technical Report CS89-13, Department of Applied Math-

ematics and Computer Science, Weizmann Institute of Science, July
1989.

Peter Eades. A heuristic for graph drawing. Congressus Numerantium,
42:149-160, 1984.

Peter Eades and Roberto Tamassia. Algorithms for drawing graphs: An
annotated bibliography. Technical Report CS-89-09, Brown University
DCS, 1989.

Thomas M. J. Fruchterman and Edward M. Reingold. Graph draw-
ing by force-directed placement. Software-Practice and Erperience,
21(11):1129-1164, November 1991.

Philip E. Gill, Walter Murray, and Margaret H. Wright. Practical Op-

timization. Academic Press, 198].

E. R. Gansner, S. C. North, and K. P. Vo. DAG—A program that draws
directed graphs. Software-Practice and Ezperience, 18(11):1047-1062,
November 1988.

96

[Gre88]

[Gre89]

[HH74]

[KGV82

[KK8S]

[KKS9]

[Lam88|

[Mac86)

[Mar82]
[PFTV89]

[QB79]

[Rob87]

[RT81]

[Sor88]

Leslie Greengard. The Rapid Fvaluation of Potential Fields in Particle
Systems. MIT Press, 1988.

Daniel R. Greening. A taxonomy of parallel simulated annealing tech-
niques. Technical Report CS5D-890050, UCLA CSD, August 1989.

Y. Y. Haimes and W. A. Hall. Multiobjectives in water resources sys-

temns analysis: The surrogate worth trade-off method. Water Resources
Research, 10:614-624, 1974.

S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi. Optimization by
simulated annealing. Research Report RC 9355, IBM T. J. Watson
Research Center, Yorktown Heights, NY, April 1982.

Tomihisa Kamada and Satoru Kawai. Automatic display of network
structures for human understanding. Technical Report 88-007, De-
partment of Information Science, University of Tokyo, February 1988.

Tomihisa Kamada and Satoru Kawai. An algorithm for drawing general
undirected graphs. Information Processing Letters, 31.7-15, April 1989.

J. Lam. An efficient simulated annealing schedule. Technical Report
8818, Department of Electrical Engineering, Yale University, 1988.

Jock Mackinlay. Automating the design of graphical presentations of
relational information. ACM Transactions on Graphics, 5(2):110-141,
April 1986.

D. Marr. Vision. W. H. Freeman, 1982.

William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T.
Vetterling. Numerical Recipes in Pascal: The Art of Scientific Com-
puting. Cambridge University Press, 1989.

Neil R. Quinn, Jr. and Melvin A. Breuer. A forced directed compo-
nent placement procedure for printed circuit boards. [EEE Trans. on
Clircuits and Systems, CAS-26(6):377-388, June 1979.

Gabriel Robins. The ISI grapher: A portable tool for displaying graphs
pictorially. Research Report ISI/RS-87-196, USC/ISI, September 1987.

Edward M. Reingold and John S. Tilford. Tidier drawings of trees.
IEEE Trans. on Software Engineering, SE-7(2):223-228, March 1981.

Gregory B. Sorkin. Combinatorial optimization, simulated annealing,
and fractals. Research Report RC 13674, IBM T. J. Watson Research
Center, Yorktown Heights, NY, 1988.

97

[Sut63]

[Trig8]

[Vau80)

[WST9]

[Zel82]

Ivan Sutherland. SKETCHPAD: A man-machine graphical communi-
cation system. IFIPS Proceedings of the Spring Joint Computer Con-
ference, 1963.

Howard Trickey. Drag: A graph drawing system. In Proc. of the Inter-
national Conf. on Electronic Publishing, Document Manipulaiion, and
Typography, pages 171-182, 1988.

Jean G. Vaucher. Pretty-printing of trees. Software-Practice and Fz-
pertence, 10:553-561, 1980.

Charles Wetherell and Alfred Shannon. Tidy drawings of trees. IEFFE
Transactions on Software Engineering, SE-5(5):514-520, September
1979.

Milan Zeleny. Multiple Criteria Decision Making. McGraw-Hill, 1982.

98

