Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

BOUNDS FOR QUASI-LUMPABLE MARKOV CHAINS

G. Franceschinis February 1993
R. Muntz CSD-930003

Bounds for Quasi-lumpable Markov Chains

Giuliana Franceschinis Richard R. Muntz
Universita di Torino University of California at Los Angeles
Dipartimento di Informatica Computer Science Department
Abstract

In this paper a method is proposed to compute bounds on the performance of systems
that can be described by quasi-lumpable Markov chains (MC). The aim of the work is to
cope with the state-space explosion problem using a state aggregation approach. Informally,
a quasi-lumpable MC is one which can be made lumpable by relatively small perturbation to
the transition rates. The technique for the computation of bounds is based on the Courtois
and Semal’s method presented in [3, 2], and in particular it can be regarded as a special
application of the bounded aggregation method. A technique to improve the bounds is
discussed which can be applied whenever bounded aggregation is used. Two examples are
included, and the potential computational advantages of the method are discussed.

1 Introduction

The work presented in this paper is related to the lumpability approach to state space
reduction. It focuses on Markov chains that incorporate some structural regularity of the kind
required by lumpability methods, It can be regarded as a generalization of the lumpability
method since it applies to a larger set of models, and gives the exact values for the desired
performance figures when the model is actually lumpable, while it gives upper and lower
bounds on these figures when the model is not exactly lumpable. In the paper we define
the concept of a quasi-lumpable Markov chain and show that given a quasi-lurnpable Markov
chain, it can be altered in such a way that the new resulting MC is lumpable and is such
that Courtois and Semal’s steady state probability bounding methods |3, 2] can be applied
to the new lumped MC to obtain bounds on the performance measures of the original model.

In Section 2 the definition of quasi-lumpable MC is given, and some issues about the
extent of applicability of the method are discussed. The most important issue addressed
in this section is how to check if a given system has a quasi-lumpable underlying MC. We
claim that it is not reasonable to try to detect the quasi-lumpability property by inspecting
the MC itself, but rather by exploiting some high level property of the abstract model from
which the MC is derived. A discussion about the high level formalism of Stochastic Well
Formed Nets (SWN) and its relation with quasi-lumpability is included.

Section 3 is the core part of the paper and contains the theoretical details concerning the
MC alteration, lumping and solution phases. The method is also reinterpreted as a particular
application of Courtois and Semal’s Bounded Aggregation method [2]. In the same section
there follows a discussion on the computational advantages of the proposed method. The
possibility of deriving the lumped MC directly, without building the complete one first, would
make the method more effective. We will briefly discuss how this goal can be achieved when
some specific high level formalism is used to describe the model.

In Section 4 an original technique is described for further refinement of the computed
bounds. The technique is not tied to the specific type of models considered in this paper,
and can be always applied within the framework of bounded aggregation methods.

In Section 5 an application example is described and discussed. Finally in Section 6 we
summarize the results presented in this paper and discuss some possible directions for future

research.

2 Quasi-Lumpable Markov Chains

Definition 1 A Deterministic Time Markov Chain is said to be e-quasi-lumpable with re-
spect to a given state space partition A if its transition probability matriz P can be rewritten
as P = P~ 4 P | where P~ is the largest lower bound (componentwise) for P that satisfies
the following lumpability conditions [5]:

Va;,a; € A, Vs € a;: Z P[s, s = K, ;
a‘EaJ-
(K, is a constant value that depends only on i and 7), and no element in P¢ is greater
than € in value. A similar definition applies to CTMC, where the probability matriz P is
substituted with the infinitesimal generator Q.

The intention is that P® is a matrix with many more zero elements than P~ and with
relatively small non-zero elements. Henceforth we use the term “quasi-lumpable DTMC” for
a DTMC that is e-quasi-lumpable for some .

An example! of P, P~ and P¢ is given in Figure 1 (we assume that A, = X; +¢). The
state partition is the following:

A= {{1},{2,3},{4,5},{6}}

Quasi Lumpable MC and High Level Modeling Formalisms The motivation
for this work on quasi-lumpable MC came from the observation that there are systems that
happen to have a very regular state space due to their highly symmetric structure. Often
the regularity allows the exact lumping of the state space, while other times the lumping is

prevented by some “small” perturbation in the transition rates.

'The diagonal elements of P are such that the matrix is stochastic.

2

Some work exists that takes advantage of a high level description of the system, in which
the structural symmetries are evident, to automatically generate a lumped state space [7, 1].
In this section we will explain through an example that this approach can be extended to
the cases in which the state space has only a quasi-lumpable structure; we’ll specifically refer
to the high level formalism of Stochastic Well-formed Nets (SWN) [1]. SWN is a variation
of the Colored Petri Net formalism (4] with a special syntax for both color classes and arc
function description. The transition instances can either have an associated exponential
firing delay or be immediate, meaning that they fire in zero time. Graphically we represent
timed transitions as rectangular boxes and immediate transitions as bars.

Usually, a state space generated from a high level model of a system is lumpable when
the chosen state representation is so detailed that the behavior description incorporated in
the state space is redundant. In this case lumping is equivalent to choosing a more abstract
state representation in which many states that were distinct with respect to the more detailed
representation become undistinguishable.

A classical example for different possible state description detail levels is the following.
Consider the closed system depicted in Figure 2.(a) and assume that there are 5 customers
in the system. Customers cycle between two service centers. The first one is a single server
machine (the associated delay is an exponentially distributed random variable with param-
eter x1). The second is a multiple server machine with four servers. A customer chooses
randomly one of the four servers on each visit to the multiserver node. Let’s assume that the
choice is equiprobable for all queues. We also assume that the service time at each server is
exponential and does not depend on the customer identity. Of course the state description
chosen depends on the distribution of service times and on the scheduling policy of each
server, moreover it might also depend on what performance measure we need. In Figure
2.(b) a SWN representation of the system is depicted.

A quite natural representation for the state of this system (suggested by the queueing
network model) is a five element vector whose i*? element represents the number of clients in
the 1*» queue. Let us call this state representation, £1. However, as long as the service rates
of the four servers that work in parallel (1 — $4) are the same {e.g., A), 2 more abstract
representation R2 for the state can be used, namely {no, ngo, g1, . . ., ngs) where ng is the
number of customers in the first queue, and ng;, j = 0,...,5, is the number of queues of
length j in the second stage of four servers. Hence, the state (1,1,2,1,0,0,0) of type R2

1 2 3 4 5 3] 1 2 3 4 5 6 1 2 3|4 5|68
1 [] 2 Az 1 o[2X; Az 1
2 * Al Az 2 L] A]_ Al 2 €
P=13 [] 2 =13 . 2 +] 3
4 . Az 4 . Ay 4 €
5 L] AL 5 L] Al 5
6 | u . 6 | pu . -]

Figure 1: An example of P, P~, P*.

—* S1

> S2
> 30

EE—— 54

Lines = Linesl U LinesZ2

Lines 1 = [81,82)
Lines2 = (53,54}

(b)
LineO Choice Linel
GServl{x)) = if {(x € Linesl) then ?Ll else A’Z
Gservd) = p
1
8(Make choice(x)) = T

Figure 2: A Multiple Server System Model.

comprises several (more detailed) states of type R1, for example (1,2,1,1,0) and (1,1,0,1,2).

In case the four servers in parallel don’t have the same speed, for example two of them
have a given speed A; while the other two have speed A; > Ay, then the first description is still
too detailed while the second is too abstract. The appropriate state representation (called
R3) in this case is (no,nq}, ..., ngi, ng?, ..., ng?) where ng is still the number of customers
in the first queue while nqj is the number of queues of length j among the servers with speed
A

Observe that if the detailed state description R1 is used, then the structure? of the state
transition graph for the system where §1 — 54 have the same speed is equal to that of
the system where two servers have speed); and the other two have speed A;. However if
the four parallel servers do not have exactly the same service time then the aggregation can
only be partial because some of the state transitions cannot be merged due to their different

associated rates. If the difference in the service time of the two groups of servers is relatively

*Two state transition graphs have the same structure iff there is & bijection ¥ between the two set of states &,
and 83, and the set of non-negative state transitions 7; = {(s,5')} of 5 and Tz = {(g,¢")} of S; are such that

T2 ={{g;¢) : a=v)ANd =(s)A(s,5') € T1}.

small, then we will call the system quasi-lumpable, So quasi-lumpability is a property that
can be observed in systems where a regularity in the state space structure is only partially
reflected in the transition rates. Very often in this situation the modeler might decide to
introduce an approximation and force the transition rates to become equal, thus forcing the
model to become lumpable, using some kind of weighted average for the modified transition
rates. This approach however may produce misleading results. The method proposed in the
next section is safer from this point of view since it gives bounds rather than an approximation
of uncertain error.

In the literature a number of works exist dealing with the automatic construction of a
lumped MC from a high level description of the model. Some of these methods could be
extended using the bounding method proposed in this paper; for example such extension
is possible for the formalism of Stochastic Well-Formed Nets with the associated Symbolic
Reachability Graph lumping method.

The Symbolic Reachability Graph (SRG) approach for SWNs relies on the possibility to
automatically discover and exploit possible symmetries in the state transition graph (reach-
ability graph): indeed from the SWN representation of the above system the SRG gen-
eration algorithm automatically chooses the correct level of state description detail. This
is done by defining the color class of servers {Lines), with one color for each of the four
parallel servers in the second stage. The clients flowing in the system are represented by
tokens in the places. The indistinguishable tokens in place LineQ represent customers in
the first server. The tokens in place Linel represent customers in the four parallel servers
and take the color that corresponds to the queue that they join. The natural detailed
state description for a state in this net is given by the distribution of tokens (with asso-
ciated color) in the places. So for example the state {1,2,1,1,0) would be represented as
Line0(1) Linel(2 < §1>,1 < §2>,1 < §3 >). Clearly this state representation is equiv-
alent to the detailed one, previously defined for the queueing description®. The evolution of
the net among states is performed by transition firing. Transitions are associated with events
in the system. So Serv(is associated with the completion of a service by the first server.
Transitions choice and Servl are “parametric”; the parameter (z) must be instantiated to
a value from Lines before the transition fires. The event associated with choice(St) is the
choice of joining the queue of server §i, i = 1,...,4 after exiting SO (this event is supposed
to take no time). The event associated with Serv1(S;) is the completion of a service by S;.

A peculiar aspect of SWNs is that the following equivalence relation among markings is
always true, independently of the model:

M~ M'if 3s, st. s(M) = M

where s is a set of permutations within the color classes. For example the two states
Line0(l) Linel(2 < §1 >,1 < §2 >,1 < §3 >) and Line0(1) Linel(l < S1 >,1 <
853 >,2 < 84 >) are equivalent since there exists a permutation s on the objects of class

3Place Choice can be ignored in the state description because tokens spend no time in it since transition
Make_choice takes no time to fire; the place simply represents the choice point where a neutral token decides
which server color to take before entering place Linel.

Lines, namely the permutation that exchanges S2 with § 4, that applied to the first marking
returns the second one. The equivalence class to which the two above markings belong, could
be described as the set of markings that have one client in service at the first single server
station, and four clients in the multiserver station, three of them are being served, while the
fourth is queued to one of the three busy servers. The equivalence classes induced by this
relation are the state aggregates to be used in the lumping process. The justification for
this automatic state grouping is due to the fact that ob jects in the same class (the servers
class Lines in our examples) will surely behave homogeneously due to the definition of SWN
dynamics. Color classes can be partitioned into subclasses when it is necessary to specify
different behavior of similar objects (for example Lines is partitioned in Lines; and Lines,
to distinguish between fast and slow servers). When this happens, the permutations used to
define the equivalence relation are restricted to permute objects within the same subclass,

In our example with different speed servers, the servers class must be partitioned into two
subclasses to distinguish between the faster and slower servers. This is enough to properly
restrict the extent of automatic state aggregation. However, it might be useful to distinguish
the case in which a partition into subclasses is used only to specify different transition rates
and identical token flow from the case in which the partition into subclasses is used to
specify differences in the token flow. In fact in the former case the underlying MC has a
quasi-lumpable structure.

The bounding method also applies to systems were the departure/arrival rates are state
dependent and are a smooth function of the system population. In this case an aggregate is
naturally defined as a set of states whose associated population is within a given range.

When a reward process is associated with the CTMC, then the reward function definition
should also be taken into account when checking lumpability (see [6]). A sufficient (though
strong) condition is that the reward function gives the same value for every state in an

aggregate. We'll see how this condition can be relaxed in our framework of bounding.

3 Bounds for Quasi-lumpable Markov Chains

In this section we first summarize the Courtois and Semal’s results that we are going to use;
then we show how a quasi-lumpable MC can be transformed into a lumpable one and how
Courtois and Semal’s methods can be applied to it.

3.1 The Courtois and Semal Bounding Methods

In this section we summarize Courtois and Semal’s results [2, 3] that are relevant to our
discussion. The results reported here are specific to stochastic matrices, and are thus less
general than those presented in [2, 3|; the reader can refer to the original papers for the more
general theorems and their proofs (which are for non-negative matrices).

Let P be a stochastic matrix, and let P~ and P* be a lower and upper bound (compo-
nentwise) for P respectively. We assume that P, P~ and P are all irreducible.

Lemma 1 [2]

o (I - P-) is non-singular

s (I-P)1l>0

e (J-P)leT>y
where e T denotes a properly dimensioned column of ones.
Theorem 1 (2] Let P be a stochastic matriz, and let P~ be a lower bound for P. We
assume that both P and P~ are irreducible. The steady state probability = of P belongs
to the polyhedron whose vertices are the rows {z;} of the matriz Z with indices in the set
J=A{5¢€1,...,n, st. A : B> P i}

where
Z=QYI-pP)!

and (is a diagonal normalization matriz defined as follows:
Q = diag((I- P~) e T)

Hence there ezists a vector § s.t.

s felT=1
e B;=0,5¢J
e =82
and
Vi, 77 <m < nxf
where
= mam{minkeJ(Z)k.;; 1- Z maxkel(z)k,.‘i}
J#
and

7f‘-+ = m’in{maa:kej(Z)k,;; 1- Z minkEJ(Z)k,j}
i
The following theorem gives an alternative way for obtaining bounds without computing

inverses.

Theorem 2 (2] Given a lower bound P~ for P, the k'* row of matriz Z is the steady state
probability vector of the matriz obtained by incrementing the k™™ column of P~ in order to

make it stochastic.

Thus if we have only a lower bound P~ of the transition probability matrix of a given
DTMC (let’s assume that the chain has n states), we can still compute bounds for its steady
state probability vector 7. This is done by computing the solution of n DTMCs; the transition
probability matrix P; of the i*» DTMC is obtained from the substochastic matrix P~ by
increasing the elements of column 7 enough to make P; stochastic. Let 7* be the steady state
probability vector solution of the :** DTMC. The lower (upper) bound on the steady state
probability of state k is computed as min; w;; {maz; w,‘;).

7

The next theorem is analogous to Theorem 1 when an upper bound P* of P is available
instead of a lower bound. However this result is slightly weaker because the inverse is not
guaranteed to exist; furthermore, even when it does exist some additional constraints have
to be tested in order to derive bounds from it (i.e., there is no result similar to Lemma 1 in
this case).

Theorem 3 [2] Let P be a stochastic maitriz, and let Pt be an upper bound for P. We
assume that both P and Pt are irreducible. If the following inverse matriz

(I- Py

erists and satisfies
(I-PH)'eT<o? e(I-PH)l<o

then there ezists a vector 3 s.t.
e fe T =1
o 1 =pQ"(I-pH)?

where Q-1 is a diagonal normalization matriz.

In [2, 3] two applications of the above theorems are presented.

1. Computation of bounds on conditional steady state probability of a subset of states & in
a DTMC when the transition probability among the states in the subset is known while
only partial or no information is available about the transition probability between
states in § and states in 8. Of course the amount of information available affects the
accuracy of bounds.

The less accurate and at the same time less computationally expensive way of ob-
taining these bounds is to applying Theorem 1 using the submatrix Ps g of transition
probabilities among states in & as P~.

2. Computation of bounds on the steady state probability vector of a large system by
decomposition into smaller subsystems: this is called the bounded aggregation method.
This method consists of two steps:

¢ computation of bounds on the conditional state probabilities within each aggregate
using the method just explained;

¢ computation of bounds on the probability of being in each aggregate. This part is
divided into two steps: (1) derivation of a lower bound P~ for the inter-aggregate
probability matrix P using the results of previous step; (2) application of Theorem
1 to P~ to compute bounds on the aggregates probability vector.

Observe that if we knew the vector of conditional probabilities 7% of the states in
aggregate S, then we could easily compute the transition probability Ps s+ between
aggregates S and 8’ as ¥, y.,e5.40es 7S P, ». Since we know only bounds on 7¥,VS§,
we are able to compute only a bound P~ for P.

These techniques can be used to compute bounds not only on the steady state probability
vector, but also on any kind of a performance metric defined in terms of a reward function
T from the set of states to IR. Let 7; denote the reward associated with state j, and Let «*
denote the steady state probability vector obtained by solving the DTMC characterized by
the matrix P; obtained from P~ by increasing its i** column such as to make it stochastic.

The mean accumulated reward R is defined as
R = 1r'rT = Z Ty
T

and can be rewritten as
R = E (E ﬁj'rrf)r.- = E ﬁj E ?I"j?',‘.
i 3 k] 1

The term ¥, wfr,- is equal to the mean accumulated reward R; = 79rT computed from P- ;

and

R=7 B,

so that min; R; and maz;R; are a lower and an upper bound for R respectively.

3.2 The proposed method
Transforming a Quasi-Lumpable MC into a lumpable MC The definition of

a quasi-lumpable MC contains the first hint on how to proceed in transforming the quasi-
lumpable chain into a lumpable one: with reference to matrix P in Figure 1, if the values
of € were small enough we could be tempted to just use P~ + diag(Pte T) instead of P and
obtain an approximate result from the lumped version of this new matrix.

Even if this method leads to a good approximation in some cases, in general it is difficult
to forecast the actual influence of the approximation on the result both from a quantitative
point of view (how far is the approximation from the actual result?) and a qualitative point
of view (is the approximation an upper or a lower bound with respect to the correct result?).

Instead of just “forgetting” about the elements in P¢, we could imagine redirecting these
“disturbing” transition probabilities (or rates) to a new extra state s. By doing this we end
up with a new stochastic matrix P, that has one more state than P~. The new matrix is
depicted in Figure 3; vectors x and y7 are defined as follows:

o yTzP‘eTz(P—P_)eT

T is a column vector of 1s, of appropriate dimension; yT is a column vector

where e
whose elements are the row sums of P¢ (hence the interpretation of element 7 of vector
yT as the global probability of going from state ¢ to state s due to a redirection of

probability);

® X is a row vector of the same dimension as a row of P~; right now we do not define its

contents but we do impose the constraint xe 7 = 1.

Figure 3: Modified matrix P,.

We claim that there exists an assignment of values to the elements of x such that the
steady state probability of MC P is equal to the conditional probability of the first n states?
of chain P,. In other words, if we redistribute “properly” the transition probabilities from the
extra state to the states that have had a decrement in the incoming transition probabilities,
we end up with the same conditional probability distribution as in the original model.

Theorem 4 Let P be the transition probability matriz of an ergodic DTMC with n states.
Let P~ be a lower bound (componentwise) for P, i.e., P~ < P. Let yT = (P-P)eT and
finally let P, be the stochastic matriz of Figure 5.

There ezists a vector x such that the conditional steady state probabilities for the first n
states of P, is equal to the steady state probabilities of DTMC P.

Proof: The equations for the computation of the steady state probabilities in the derived
chain characterized by the state transition matrix P, are

{ (x',a)P, = (7', a) (1)

(r',a)e T =1

Let’s assume that 7 is the vector satisfying the equations

*P=mx
reT =1
ie., 7 is the steady state probability vector of the original problem.
The first equation in system (1) can be rewritten as the system

*'P~ +ax =7’
{ 'yl = q
Substituting #/y¥ for a in the first equation we get
TP 4 n'yTx =7’ (2)
We prove the existence of vector x by showing that

_ w(P-P7)
X= R P-P)eT (3)

4

n is the number of states in the original chain P.

10

satisfies the requirements stated in the theorem i.e., when x is defined as in (3), 7' = ex
(where c is the normalization factor ¢ = 7'e T).

Substituting the proposed expression for x in equation (2) we get:

1 p— ,Tﬂ‘(P--P_)_,
TP 4wy ﬁ(P—P‘)eT_W
Now let’s verify that er is a solution for this equation:
- r_"(P-P7) _
crP™ + ey W(PmP—)eT_M
by substituting y7 with its definition we get:
n(P—-P7)

erP~ 4+ cx(P—-P e T T

A(P-—P)e? °©

after some simplifications the equation is transformed into
TP =x

which holds true by hypothesis®. Hence when x is defined as in (3), (er,1—cre T) is indeed
a solution for the derived system (1). O

At this point we can use Courtois and Semal’s technique to compute bounds on the con-
ditional probabilities of a subset of states in a system when only the transition probabilities
among the states in the subset are known [3]. In this case the subset of states in the system
represented by P, is the set of original states, and the rest of the system is the extra state.
Since the bounds can be computed without knowledge of the transition probabilities from
the rest of the system to the selected subset of states there is no problem in not knowing the
values of the elements of x. However if something is known about x then better bounds can
be computed. Some information about x can be easily derived from P¢, namely any column
7 of P¢ with all zero elements, corresponds to a zero element in x. Theorem 1 takes into
account this factor by defining the set J of Z rows that contribute to the computation of
bounds.

So far, the lumpability property of P~ has not been exploited. Observe that the MC P,
in general does not satisfy the lumpability conditions with respect to a given 4.

For example matrix P, depicted below and derived from matrix P of Figure 1 is not

Ilumpable.
1 2 3 4 5 6|s
1 [] 2)\1)\2
2 . Al Al €
P, - 3 L] 2A1
4 L Al €
5 L4 Al
6 | u .
5 X 0

®Constant ¢ can be found using the normalization equation c+a = 1; furthermore the solution 2’ = ¢ is unique

since if P is irreducible, so is P;.

11

But now let’s modify the column y7 so that the lumpability conditions are satisfied. This
can be done by increasing some of the elements of y7 and decreasing the matrix diagonal
elements by the same quantity®.

1 2 3 4 5 6| »

1| e | 20 Az al a2 a3 | a4 | »

2 . AL AL ¢ al o | 22 4+ Ag

3 " —c 25 € a2 o | 2 €
13’ = 4 L] 4\]_ € ?' = al L] A]_ €

5 s—e| A | € ad m .

6 (p . s F 0

8 x 0

The modified matrix P, is lumpable (P, is the lumped chain) and the conditional probabilities
of the aggregate states are still bounds for the sum of the probabilities in the aggregates
computed on the original model. This statement is true because in the above proof we didn’t
make any assumption about P~ and P€ other than P~ < P. In the sequel, n' is used to
denote the number of aggregate states (i.e., n' = |A]) and § is used to denote the first n’
states of P,. Courtois and Semal’s method can now be applied to the new lumped model as
well.

Bounds on accumulated reward Often the performance indices of interest are not
the steady state probabilities, but rather the accumulated reward given a reward function
r from the set of states to JR. When the bounding method proposed has to be applied, it
may be the case that aggregated states do not have the same associated reward. Of course if
every state in aggregate ai had the same reward r,;, then the aggregate reward would be r;,
otherwise the computation of the exact reward associated with the aggregate would require
the knowledge of the conditional probability distribution 7% of the states in the aggregate:
Fas = Z r;‘ir,.
s€ai

In this case the method described in Section 3.1 for the computation of bounds on the
mean accumulated reward needs some minor adjustment. For each aggregate ai we have to
compute the minimum and maximum reward rate:

Toi = MiNycaiTs

+

le’ == ma:ﬂ.eai'r‘

then instead of computing R; we compute R} using for each aggregate the maximum reward
and R using for each aggregate the minimum reward. The lower and upper bounds for R
are then derived as min,—fﬁ; and ma.a:,-R;" respectively. Notice that this is the best we can
do if we don’t have any information about the conditional probability of the states in each
aggregate, but this approach could result in loose bounds.

®Observe that the diagonal element could become negative by subtracting €. To overcome this problem we can
scale the diagonal of the matrix by performing the following transformation preserving the steady state probability
result r
PoaP+(1-a)l

where 0 < a < 1.

12

Interpretation in terms of Bounded Aggregation The previous method can be
interpreted in a different way, as a simplified version of the bounded aggregation technique
[2]. However, the former interpretation is useful for devising bound improvement methods
as we’ll see in the next section.

The bounded aggregation method consists of two steps:

1. computation of bounds on the conditional state probabilities within each aggregate.
2. computation of bounds on the probability of being in each aggregate.

The bounds obtained in the two steps are then combined to obtain bounds on the steady
state probability vector over the original set of states.

We are actually interested in computing only the probability vector of the aggregates
(second step) since our aim is to deal directly with the lumped process. The n’ x =’ upper-
leftmost submatrix P~ of the lumped matrix P, derived in the previous paragraph is a lower
bound for the correct inter-aggregates transition probability matrix P associated with P
given state partition \A; indeed the correct transition probability between aggregate I and
aggregate J is a convex combination of the rowsums in the submatrix P ; (where the weight
used for each row in the submatrix is the conditional probability of the corresponding state
in aggregate I). In our approach we are giving a weight of one to the minimum rowsum, thus
obtaining a lower bound with respect to the correct convex combination of the rowsums. In

our example, matrix F,3 g3 is

4 5
21| A
22

and the transition probability between a2 and a3 in P~ is min(2A1, A1 + A2) while the
corresponding value in P would be 2a); + (1 — a)(A; 4+ A;) for some 0 < a < 1.

Observe that an upper bound, P*, for the probability between two aggregates could be
computed as well by choosing the maximum among the rowsums in the submatrix (in the
example above maz(2X;1, A1 + A;) is an upper bound for the transition probability between
a2 and a3).

3.3 Application of the method to the multiserver example

The model of Figure 2 is a good candidate for the application of the method. In fact this is
a typical case in which the partition of the servers in two subclasses with equal speed within
each subclass leads to a quasi-lumpable MC structure. We assume that the rates A1 and A,
associated with the two classes of servers are A; = 1.00 and A, = 1.01.

In Appendix A the complete state transition matrix of the model in Figure 2 is depicted;
the states are grouped into guasi-lumpable sets. In Figure 6 the aggregated matrix (split into
two parts due to space constraints) and the vector y7 are shown . All we know about x is
that its 13** element must be zero (because the corresponding column is not modified to get
P~ from P). In Figure 4 the description of the states for the aggregated model is given.

13

The state description for the complete model is not given here: it is the intermediate detail

leve] representation R2 presented in Section 2. The reward rates for all aggregates used to

State # | Description (Clients in each server) || State # | Description (Clients in each server)
1 Servl: 5, Serv2: 0 10 Servl: 1. Serv2: 2 q of 2

2 Servl: 4, Serv2: 1 q of 1 11 Servi: 1, Serv2: 1qof 1& 1 qof 3
3 Servl: 3, Serv2: 2qofl 12 Servl: 1, Serv2: 1 qof 4

4 Servl: 3, Serv2: 1 q of 2 13 Servl: 0, Serv2: 3qof 1 & 1 gof 2
5 Servl: 2, Serv2: 3qofl 14 Servl: 0, Serv2: 1qof 1 & 2 qof2
6 Servl: 2, Serv2: 1qof1& 1qof2 | 15 Servl: 0, Serv2: 2qof1 & 1qof 3
7 Servl: 2, Serv2: 1qof 3 16 Servl: 0,Serv2: 1qof2& 1 qof 3
8 Servl: 1, Serv2: 4 g of 1 17 Servl: 0, Serv2: 1qof1& 1 qof4
9 Servl: 1, Serv2: 2qof 1 & 1 qof 2 || 18 Servl: 0, Serv2: 1 gof 5

Figure 4: States description

compute the mean queue length at the entrance of the multiple server (§1 — §4) and the

throughput” out of S0 are shown in Figure 5. Observe that in this example we were able to

compute an exact reward for each aggregate because all the aggregated states have the same

associated reward.

Solving the 17 (aggregated) models (each with only one element of x equal to 1 and the

others equal to 0) we obtain the following steady state probabilities, mean queue length, and

throughput bounds. The table also contains the correct values computed on the complete
model (that has 50 states).

7w is the service rate of S0.

State # 2 6|7 (8|9 1011|1213 |14|15(16|17]18
MQL 0 213 3|44 4|4|4|5]|5 5 5
Throughput | | p | p|p|p | plujp|e|lp e e 0 0

Figure 5: Reward rates

14

Lower bound | Exact value | Upper bound
Prob(State 1) 0.307430 0.321631 0.329239
Prob(State 2) 0.307430 0.320039 0.323022
Prob(State 3) 0.115106 0.119420 0.122238
Prob(State 4) 0.078126 0.079616 0.084354
Prob(State 5) 0.019179 0.019804 0.022648
Prob(State 6) 0.057889 0.059415 0.063442
Prob{State 7) 0.019131 0.019806 0.026669
Prob(State 8) 0.001198 0.001232 0.003351
Prob(State 9) 0.014373 0.014780 0.018140
Prob(State 10) 0.007139 0.007389 0.011374
Prob(State 11) 0.014219 0.014782 0.019938
Prob(State 12) 0.004703 0.004928 0.012848
Prob(State 13) 0.001194 0.001226 0.003879
Prob(State 14) 0.003562 0.003677 0.007472
Prob(State 15) 0.003544 0.003677 0.007506
Prob(State 16) 0.003527 0.003677 0.009229
Prob(State 17) 0.003506 0.003677 0.009698
Prob(State 18) 0.001164 0.001226 0.012440
Mean Queune Length | 1.250705 1.273430 1.385868
Throughput 0.967612 0.98284 0.983502

The spread of the bounds for the mean queue length and throughput is 11% and 1.6%
respectively.

The example model satisfies the constraints for the applicability of Theorem 3 that ex-
ploits the upper bound P*, so that we could use that theorem to obtain improved bounds. In
Section 4 we show a technique for bounds improvement that doesn’t require the computation
of the inverse and the verification of constraints to be applied.

The reader may object that good bounds for the throughput and mean queue length of
this specific example could be found by just observing that the (actually lumpable) model
obtained by setting the service time of all the servers in the multiple server to the minimum
among the service times in the original model, gives an upper bound for the throughput and
a lower bound for the queue length. If the maximum among the service times in the original
model is assigned to the servers, then we get a lower bound for the throughput and an upper
bound for the queue length. This can be proved by induction on the number of customers in
the system. Note however that it is not possible to compute bounds on the state probability
distribution in the same simple way. Another possible objection is that the model is a product
form queueing network, and efficient algorithms exist for the computation of exact results,
however if we changed the policy for choosing the queue to join in the multiserver to a load
dependent one (e.g., shortest-queue), product form solutions would not be applicable any
more, while our method still applies. This example was chosen on purpose for its simplicity,

in general it is not easy to prove that by lowering/increasing a rate in the system we get a

15

bound on a given performance index. In Section 5 a more complex example is presented in
which the presence of synchronization among the system components makes it difficult to

find any intuitive argument for simple bounds computation.

3.4 Discussion on the computational advantages of the method

In this section we’ll discuss the proposed method from the point of view of its convenience in
terms of computational complexity. The main advantage of the method is that it allows us
to deal with a smaller system than the one we start with, however there is a price we have
to pay to be able to work with the reduced model. In fact there are at least two kinds of

overhead we have to take into account in evaluating the method:
o derivation of the reduced matrix;
e computation of bounds.

Concerning the derivation of the reduced matrix, the ideal situation would be to derive the
lumped matrices P~ and Pt directly from the high level model without having to compute
(or at least to store) the large complete matrix. We’ll show how this can be done when the
high level formalism used is that of SWNs.

The computational complexity issue insteads, is related to the fact that the computation
of bounds requires the solution of n’ matrices of dimension n’ X n’ in the worst case. Later
in this section we'll discuss how much smaller the lumped matrix must be for the method to
be more efficient from the time complexity point of view, considering also the possibility of
solution parallelization. The space complexity issue is discussed as well.

3.4.1 Construction of the lumped matrix

The issue of automatic construction of the lumped matrix is closely related to that of the
detection of the symmetries on the state space that induce a partition into state aggre-
gates. The same problem has to be faced when exact lumping methods are used, indeed our
bounding methods can be considered as an extension of the existing exact lumping methods.

Observe that usually symmetries are present in the state space whenever the modeled
system has a symmetric structure. For example a system composed of a number of similar
objects that behave homogeneously usually has a symmetric state space. Although this
observation is rather intuitive, in general is not that obvious how to define the equivalence
relation among states that allow to group them into equivalence classes (i.e., into aggregates).

In 1] it has been shown that when a system is described using the modeling formalism
of Stochastic Well-Formed Colored Petri Nets (SWNs), most of the symmetries of the state
space can be automatically discovered and exploited. A Symbolic Reachability Graph (SRG)
construction algorithm has been defined that directly builds the lumped state space and
corresponding CTMC. From the lumped CTMC it is possible to derive both high-level and
detailed performance indices. We now show that same approach can be extended to our
bounding method, that is the upper and lower bound aggregated matrices P~ and P+ can be
automatically built using a modified version of the SRG algorithm. The bounding matrices

16

can be computed at different accuracy levels; as usual higher accuracy can be achieved with

higher computational cost.

Automatic construction of a lumped matrix from a SWN model In Section
2 we introduced the concept of color classes and subclasses in SWN. The color classes are
used to define sets of “similar” objects and the partition of a class into subclasses is used
to identify subsets of objects in a class that share the same behavior. As already pointed
out, it is possible to distinguish between two possible situations: (1) the objects in different
subclasses have different gualifative behavior, i.e., they cannot play the same “role” in the
system because they have different possible evolutions, (2) the objects in different subclasses
have the same gqualitative behavior, but the event sequences happen with different rates
depending on which subclass the object belongs to.

For example, in the model of Figure 7?7 the colored tokens representing customers in the
“multiserver” station follow the same route through transition end_serv2, independently of
their color, however, the firing rate of the transition depends on the token color.

Hence, given a SWN model of the system under study, a first analysis is needed to detect
all the subclasses in each class with similar “qualitative” behavior. This permits automatic
determination of the candidate quasi-lumpable state aggregates. Then two approaches are
possible, (1) apply the Symbolic Reachability Graph generation algorithm to the system as it
is specified and use the information about aggregate states to compute the lumped matrices
P~ and P+ in a second step; (2) apply the SRG generation algorithm to a modified system
with some of the homogeneously behaving subclasses merged in such a way that P~ and P+
are directly derived.

The two algorithms that follow are respectively the subclasses merge algorithm and the
modified model construction algorithm, where the modified model is the one from which the
aggregate matrices P~ and Pt can be directly derived.

Subclasses merge algorithm For each basic color class, the following static classes

merge procedure has to be performed:

old_static; = (set of static subclasses in the original C;)
new_static; =0
while old_static; # @ do
{ remove a subclass sc form old_static;)
lse = s¢
sc list = emptylist
append(sc, sc_list)
for each sc’ € old_static; do
if semilumpable(se, sc') then
lse = lscU s/
{ remove sc’ form old_static;}
append(sc’, sclist)

17

end if
end for
old_sc list[lac] = sc list
{ add static subclass lsc to new_statie;)

end while

A set of static subclasses old_static; is the input for this procedure. The output is a new
set new_static;, of static subclasses. The cardinality of the new set is less than or equal to
that of the old set. For each new static subclass lsc, a list old_sc_list[lsc] of the old static
subclasses that have been merged into lsc is maintained. Function semilumpable(sc, sc’)
returns ¢rue iff for all transitions that have € in their color domain definition, no predicates
of type d(Xf) = sc, d(Xf) = sc/, d(Xf) = d(XF) or their negation are used either in the
transition predicate or in the function predicates labeling the arcs connected to the transition
(i.e., neither the transition enabling conditions nor the transition state change can depend on
the fact that some element in the transition color instance belong or not to sc or s¢’}. Observe
that more complex but less restrictive conditions may be defined: we might for example allow

the presence of predicate d(X,-j) = sc provided that it is in or with d(Xf) = sc.

Aggregate model computation algorithm The aggregate matrices P~ and P+
are computed by applying the usual SRG generation algorithm to a modified model. The
modified model has the same structure as the original one, while it differs from it in the
static subclasses definition and, as a consequence, in the transition firing rates.

In a SWN, the transition firing rate of a generic transition t is defined as a function 6,
from tuples of static color classes to reals.

For example transition compute in Figure 7 takes a token with its two component color
from its input place: the first component represents a processor and the second represents
a job. If the jobs class J is divided into two subclasses of short jobs J, and long jobs J;
and the processors are divided into two subclasses of fast processors Py and slow processors
P,, then a possible definition for the tramsition rate could be: &({< P,,J, >)) = 0.3,
0e({< Py, Ja >)) =1, 0.({< P,, Jy >)) = 0.15, 8:({< P§, J; >)) = 0.5.

When a transition instance #(z) is fired, its rate A(¢(z)) is computed as follows: (1) derive
from z the tuple d of corresponding static subclasses (each dynamic subclass is associated with
exactly one static subclass, see [1]; (2) A(t(2)) = m 8;(d) where m is a factor that depends on
the cardinality of both the subclasses in 2z and in d. The reason for the multiplicative factor
is that a symbolic firing instance is an aggregation of m regular firing instances all with the
same rate 8;(d). In our example a possible symbolic instance for transition Compute could
be Compute(Z}, Z3) with |Z}] = 2,2} € P,, and | 23| = 1, Z% € J; meaning that there are
2 (= |Z}]|) slow processors each of which is processing 1 (= |Z3|) long job. This symbolic
instance stands for 2 “ordinary” instances that are grouped in the lumping process.

In the following we show how to derive the modified model to compute the aggregate

matrices given a specific aggregation of the static subclasses. We denote D;; the new static

18

subclasses and {Df’j} the set of the original subclasses that are aggregated into D, ;.
The rates of the resulting new transitions, in general, will depend on the cardinality of
the dynamic subclasses in the instantiation.
Let ¢(2) be the transition instance for which a rate has to be computed. Let d be the
associated static subclasses tuple. Let d’ be the subtuple of d composed of aggregate static
subclasses and z' the corresponding subtuple of z.
For each element di = D;; in d’, compute the set Z; of possible partitions of dynamic
subclass z; into one or more new dynamic subclasses, each associated with a different static
subclass D} ; of D; ; (see Figure 8).
The cartesian product of the Zjs leads to a set of sums of original transition instances. From
each sum a rate can be computed that correspond to a value for a rowsum in the aggregate
transition represented by ¢(z). The minimum and maximum in this set of rates gives the
value for the corresponding transition rate in the aggregate matrices.
In the example of Figure 7 assume that |P,| = |Pf| = 2 and |J,| = 2,|J}] = 1, and
suppose we want to merge slow and fast processors into a unique class P and short and long
jobs into a unique class J. Hence the symbolic transition instance Compute(Z}, Z%) with
|ZL| = 2,Z} € P and |Z3%| = 2, 2% € J incorporates the following 6 possible instances with
respect to the old classes partition.
o Compute(Z}*, Z3®) + Compute(Z}*, Z1) with |Z}?| = 2 and Z}* € P,, |Z3°| = 1 and
Z¥ e 1., 123 = 1 and Z3® € Jj; corresponding rate 0.9

o Compute(Z}, 23°) + Compute(Z}, Z%b) with |Z}| = 2 and Z}* € Py, |Z3%] = 1 and
Z1% € J,,12%| = 1 and Z¥* € Jj; corresponding rate 3

s Compute(Z}, Z}®) with |Z}?| = 2 and Z}* € P,, |Z}*| = 2 and Z}° € J,; correspond-
ing rate 1.2

o Compute(Z}*, Z1%) with [Z}*| = 2 and Z}* € Py, |Z}*) = 1 and Z}* € J,; correspond-
ing rate 4

o Compute(Z}*, Z1*) + Compute(ZL*, Z1?) + Compute(Z}, Z23%) + Compute(Z}, Z1b
with [Z}*| = 1 and Z}* € P,, {ZF| = 1 and Z}* € Py, |Z%°| = 1 and Z}° € J,,
|Z¥¥| = 1 and Z3® € Ji; corresponding rate 3.3

o Compute(Z}*,Z3%) + Compute(23, Z3%) with |Z}*] = 1 and Z}* € P,, |ZPP| = 1 and
Z¥ € Py, |Z¥°| = 2 and Z¥ € J,; corresponding rate 2.6

There is a computationally less expensive but not always accurate method for computing
lower /upper bounds for the elements of P~ and P*. Given a transition ¢ and a tuple d of
aggregate static subclasses, compute the cartesian product D of the sets of original subclasses
in the component aggregate subclasses. Associate with d the min(maz)ycpbi(d’). In this
way the computed P~ and Pt are bounds for P, but they can be very inaccurate in some
cases. In the previous example this simplified method would have predicted correctly the

maximum rate (= 4), while the minimum (= 0.6) would have been less than the the correct
one (0.9).

19

Observe that even if the computation of the aggregate transition rates has a certain cost,
it could be performed once and for all in a way that the result is easily reusable for models

differing only in the actual parameter values.

3.4.2 Complexity of bounds computation

The main goal of the proposed method is to cope with the problem of state space explosion
by allowing some aggregation of the state space. However since the aggregate chain is only a
bound for the actual aggregate chain and since the computation of bounds of a chain given
its lower (and/or upper) bound transition probability matrix is more expensive than just
computing the steady state solution of a chain of the same dimension, in some cases the
method proposed could be computationally more expensive than the solution of the whole
model we started with.

Let’s consider the queueing network example we have been using throughout the paper.
The complete model has 50 states while the aggregate model has 18 states. If we assume
that the computation of the steady state solution of a MC of dimension n is O(n?) (we are
assuming that sparse matrix algorithms can be applied, if this is not the case, the worst
case complexity would be O(n?)) then the time required for solving the complete model is
proportional to 50% = 2500, while the time required for getting bounds from the aggregate
model is proportional to 17 * (182) = 5508. Apparently the bounding method for this
case is not computationally convenient, however the situation changes completely when the
dimension of the studied system grows. The size of this model was chosen small to be able
to show both the complete and aggregate transition matrices. Similar models with different
number of customers, servers in the multiple server station and static subclasses in the class
of servers, show how convenient the method can be as the size of the problem increases.
This is shown in the table of Figure 9 where the number of states in the lumped (column a)
and complete (column b) Markov chain and the corresponding estimated computational time
cost as function of the number of servers and customers are listed. Notice that the number
of states in the complete model refers to the case in which each queue in the multiserver has
a different speed.

In general the complexity for computing bounds is k(n’)? where k is the number of
aggregate columns modified in the original MC to make it lumpable, hence in the worst case
k = n'. In order for the method to be computationally convenient the ratio n/n’ must be
such that k(n')? < n?.

Finally observe that even when the ratio between the time complexity of exact solution
computation versus that of hounds computation is less than one, the computation of bounds
can still be convenient. In fact the computation of bounds on the lumped model can be easily
parallelized because it requires the solution of several smaller and completely independent
(lumped) models, thus resulting in a gain in time complexity. Breaking up the problem
into smaller ones may be also crucial from the space complexity point of view since the
whole model could not fit into the available main memory, preventing the solution if no

virtual memory is provided or causing a loss of performance due to frequent paging if virtual

20

memory is available.

4 Improving bounds

The bounds found with the method described above may have a different degree of tightness
depending on the sensitivity of the solution to the transitions replaced by lower bounds. In
this section a technique is presented that can be used to improve the bounds when those
obtained by directly applying the method presented in Section 3 are too loose. In the
previous section we mentioned that it is possible to derive an upper bound P+ for the
transition probabilities between aggregates; once we have this upper bound it is possible to
use Theorem 3 to compute another set of bounds that, combined with those obtained from the
lower bound P~, may lead to tighter bounds. The problem is that in this case the inverse
(I — P*)~! is not guaranteed to exist, and even if it does exist some further conditions
must be verified in order to be sure that the results obtained are indeed bounds. In the
next paragraph we will see how the upper bound on the aggregate transition probability
can be used in conjunction with the the steady state probability bounds x—,x % previously
computed to get better bounds on any Markov reward function (and hence also on the state
probabilities).

Exploiting information about the “probability redistribution” vector x The
following method is aimed at improving the bounds on the performance measures we are
interested in; we assume that each performance metric is defined by associating a reward
function r on states with the model. In particular a possible performance metric could be
the steady state probability of one specific state s;; in this case all the states are assigned a
null reward except s; which is assigned a reward r; = 1.

If the exact vector x of “redistribution"” probabilities was known and substituted into
matrix P,, then the mean cumulative reward (conditioned on being in the first n' states)
computed from P, would be the correct value we are looking for.

The behavior of the Markov chain described by P, is the following: the evolution starts
from one state in & and goes on until it reaches the extra state s, then the evolution starts
again from a state in & probabilistically chosen according to the probability distribution
defined by x until it reaches s again. The accumulated reward between two successive visits
to s depends on which state is chosen to start with when exiting s. Assume we have the list
831,832, .., 85y of states ordered in such a way that the accumulated reward before exiting
to s, given that we started in s;m,m = 1,..., 7/, is greater than or equal to the accumulated
reward before exiting to s, given that we started in sz, &k > m.

An upper bound on the mean cumulative reward can be computed from model P, by
substituting for x a modified vector x’ such that x;-m > Xjm (1< m < k<n')and x_f,—, < X
(k<1< n).

A lower bound on the mean cumulative reward can be computed if in model P, we
substitute for x a modified vector x’ such that x,, < x;m (1 < m < k < n') and Xy > xj
(k<l<n).

21

If we were able to estimate an upper bound for x this could thus be used to compute
better bounds on the desired performance figures. Recall that the correct x is defined as

follows:
(P -P")

x= r(P—Ple”
Hence the following vector x* is an upper bound for x:
7 (eT-P-eT)

where 1 and 7~ are upper and lower bounds on the steady state probability distribution
(e.g., that were computed in a first step using the method presented in the previous section)
and P* is an upper bound on the inter-aggregate transition probability matrix.

Applying the above method to the queueing network example we obtain for the vector x
the upper bound estimate in Figure 10.

The new (much improved) bounds computed for the mean queue length and throughput
using this method are:

Lower bound | Exact value | Upper bound | Spread %
Mean Queue Length | 1.250705 1.273430 1.295075 3.5%
Throughput 0.980303 0.98284 0.983502 0.3%

5 An Application Example

In this section we present a more complex example in which the presence of synchronization
constraints does not allow us to easily obtain bounds on the performance figures of interest
using some other method.

The modeled system consists of a parallel program organized according to a master-slave
computation paradigm. The program is mapped on a parallel architecture: we assume there
is a processor for each process, that the processors are homogeneous, and that due to the
type of the interconnection network the communication time between the master and the
slaves is not homogeneous (some slaves are “closer” to the master than others). This is the
case for the example of a master-slave program mapped onto a mesh architecture depicted in
Figure 11. The processors are represented by squares, while the processes are represented by
circles. In the figure both the physical channels (connecting the processors) and the logical
channels (connecting the processes) are depicted.

The master divides the problem to be solved into several subproblems, and as long as
there are free slaves it delivers the tasks to be executed to them. When no more free slaves
are available, the master waits for some slave to complete its current task. The master also
performs some computation in parallel with communicating, to process the results received
to prepare new data to be distributed.

We have modeled the master-slave system using the SWN formalism; in Figure 12 the
resulting model is depicted. We do not include the definition of SWNs here due to space
constraints, however since the SWN model of the program resembles a flow-chart, we can ex-

plain its semantics intuitively. The rectangles are called {ransitions and stand for statements

22

in a process code, the circles are called places, and may contain fokens. In this model the
presence of a token in one place indicates the program counter position for the corresponding
process, so that the next statement to be executed is represented by the transition pointed
by the arc exiting the marked place.

The model is composed of two subnets, the first (leftmost) one represents the master’s
behavior while the second (rightmost) one represent the common behavior of the slaves. The
distinction among the three slaves is obtained by using distinguishable tokens, i.e., tokens
in the slave behavior subnet are labeled with a slave identifier. The behavior model has
been simplified as much as possible to make the picture readable. The master is composed
of two parts that work in parallel: the computation part, consisting of a certain number of
iterations of two procedures (transitions inLoop, cmpMstA, cmpMstB), and the synchronous
communication part consisting of a certain number of iterations of send/receive operations
(transitions snd, rzl, rz2 plus the transitions representing actual communication, shared
with the slaves net: begRz , endRz , begSnd, endSnd). The slaves behavior can be described
as repeated iteration of three operations: receive (transitions begRz and endRz), compute
(transition compSL), send (transitions begSnd and endSnd). There is only one color class
needed: the slaves class 5. It has cardinality three and is divided into two static subclasses
51 of cardinality 2 and S2 of cardinality 1. Subclass S1 represents the slaves that are closer
to the master while subclass S2 represents the farther slave. As a conseguence the transitions
representing communication between the master and the slaves have a rate that depends on
the slave identity.

The detailed state representation for this model is a list of program counter values, one
for each process in the program. The MC representing this model behavior is quasi-lumpable
with respect to the aggregation of states induced by considering the slaves as undistinguish-
able. In other words we aggregate all the states that are equal up to a permutation of slaves
identities. For example we aggregate the state M, with slave 51 waiting to receive some data
from the master, S2 sending a result to the master and $3 performing a computation, and
state M, with slave 52 waiting to receive some data from the master, 53 sending a result
to the master and S1 performing a computation. Observe that although this aggregation
reflects a symmetry in the state space structure due to the homogeneous behavior of the
slaves, there is a perturbation in the transition rates, due to the fact that the communication
between S3 and the master takes longer than the communication between the other two
slaves and the master.

The quasi-lumpable model has 109 states and the number of aggregate states is 49.

The performance measures we have considered are three:

o throughput of the system, i.e. the number of completed computations in the time
unit (throughput of transition PAR representing the beginning of a new computation);
acronym used in the table: THRUPUT;

e mean number of slaves waiting to receive a task from the master (i.e., mean number of
tokens in place Slaves); acronym used in the table: MNSWRx;

e mean number of slaves waiting to send the result of their computation to the master

23

(mean number of tokens in place endempSL); acronym used in the table: MNSWSnd.

We have done three experiments changing the values of the difference between the rates

associated with the communication between master and slaves (represented by transitions

endRz and endSnd). We have fixed 0{endRz, 53) = 0.5 and (endSnd, S3) = 3.5 while the
rates for (endRz, 51— 2) and (endSnd, S1—2) that have been used in the three experiments
are the following:

1. 8(endRz, S1) = 0.51, 8(endSnd, S1) = 3.57
2. #(endRz,S1) = 0.525, 8(endSnd, S1) = 3.675
3. #(endRz,S1) = 0.55, §(endSnd, S1) = 3.85

Experiment # | Perf. Measure | Lower bound | Upper bound | Spread %
1 THRUPUT 0.012396 0.014595 18%
MNSWSnd 0.079165 0.137257 73%
MNSWRx 2.547911 2.726692 7%
2 THRUPUT 0.011936 0.016718 40%
MNSWSnd 0.056813 0.180464 218%
MNSWRx 2.436226 2.802309 15%
3 THRUPUT 0.011333 0.019553 73%
MNSWSnd 0.039295 0.257986 557%
MNSWRx 2.249367 2.861513 27%

The results shown in the table above are obtained from the direct method. We have
also applied the bounds improvement method: it resulted in tightened bounds in the first
experiment but it did not give any substantial improvement in experiments 2 and 3. As a
matter of fact, the first case is also the only one that is eligible for the application of Theorem
3 of Section 3.

Clearly there is a strict correlation between the difference P* — P~ and the spread in the
bounds. It might be worthwhile to assess a priori the sensitivity of the system on variations
on the transition probabilities that are positive in Pt — P~

In this example we have also observed that some further bounds refinement could be
obtained by the consideration of the high level model. If no contention for resources were
present in the slaves subnet, then we would know for sure that the throughput of slave S3
is lower than the throughput of slaves S1 and 52. Since the slaves compete to communicate
with the master, the throughput of both kind of slaves decreases with respect to the no
contention case; moreover the difference between the throughput of the slave §3 and the
other two slaves becomes smaller as the probability of contention increases. Qur conjecture
is that in the system we are studying, the throughput of slave 53 is less than or equal to
the throughput of the other two slaves. Assuming that the conjecture is true (and it is
indeed true for our experiment cases), we show how this information can be used to improve
the estimate of the lower bound matrix P~. Of course, the kind of property to be proved
about the high level model in order to obtain improved estimates of P~ and/or P7 and the

24

technique used to prove it depend heavily on the kind of high level formalism adopted and
in general cannot be automated.

Notice that in our example, every aggregate transition submatrix Py ; with different row-
sums, refers to a communication transition (let’s call this transition t.omm). Since only one
slave at a time can communicate, each quasi-lumpable communication transition aggregate
contains two kinds of ordinary transitions: one for the slave S3 and the other one for the
slaves S1 and 52. Thus a lower bound for Py ; is given by:

Prt(comm. by the slave in S2) (tcomm,S2) + Pr~(comm. by a slave in S1) 8(tcomm, S1)
with the constraint Pr*(comm. by the slave in §2) + Pr~(comm. by a slave in §1) = 1.
The probability p that place in REC contains a token representing slave §3 given that

inREC is not empty can be formulated as
throughput(endRz,52)
_ 8{endRz,52)
Pp= throughput{endRz,51) + throughput(endRx 52)
8(endRz,51) é{endRx,52)

An upper bound for this probability can be found by considering the throughput of
the slave in 52 to be equal to the throughput of both slaves in 51 (let’s call the common

throughput value 2):
¢
+_ HendRz,52

P

= 2t n t
8(endRz,51) ' 8{endR=z,S2)
and after a simplification
_ #(endRz, §1)
~ 2 8(endRz, S2) + 8(endRz,S1)
A similar argument applies to place inSnd.

b4

Thus a lower bound for the rate of an aggregate transition representing a communication
is obtained by weighing by p* the row-sum corresponding to a communication transition
involving the slave in §2, and weighing by 1 — p™ the remaining communication transitions
associated with the slaves in S1.

The results obtained by applying this technique to the model of experiment 3 are the

following:
Perf. Measure | Lower bound | Upper bound | Spread %
THRUPUT 0.012154 0.015649 29%
MNSWSnd 0.069087 0.161423 134%
MNSWRx 2.507557 2.773172 11%

The bounds are definitely tighter than those obtained in experiment three ignoring the model
semantics. This indicates that whenever some additional information about the system
behavior can be derived from the high level model, it should be exploited to get improved

bounds.

6 Conclusions

In this paper a new method for the computation of bounds on the steady state probability
of quasi-lumpable Markov chains is described. The contribution of the paper is twofold. In

25

the context of solutions of large Markov chains can be defined as an extension of lumpability
methods to quasi-lumpable models. In the paper we show how a quasi-lumpable MC can be
transformed into a lumpable one and how bounds on the desired performance indices can be
obtained from the lumped modified matrix using the Courtois and Semal results of [2, 3].

In the framework of analysis methods for Stochastic Well-Formed Nets [1], we have gen-
eralized the Symbolic Reachability Graph analysis technique: in the paper we have shown
that the modified lumped matrix needed to compute bounds can be directly computed from
the SWN description of a class of quasi-lumpable models.

A class of models that are good candidates for the application of the method is the one
representing systems that are composed of several homogeneously behaving objects (like the
slaves in the examples) that can only differ slightly in the timing of some operation (the
communication with the master in the example). The matrices P~ and Pt can be directly
computed for models in this class represented with the formalism of SWN.

Another class of models that can be analyzed with the proposed bounding method is
that representing systems were the departure/arrival rates are state dependent and are a
smooth function of the system population. Some experiments on models in this class are
being performed.

We have also devised a method to improve the bounds when both upper and lower bounds
(Pt and P~) for the aggregate transition probability matrix (P) are available. With respect
to Courtois and Semal’s results, this method could be used to obtain better bounds when
the inverse (I — P*)~! doesn't satisfy the constraints required to apply Theorem 3.

Finally we have applied the method to several example models. Future developments
of this work will be in the direction of (1) devising new techniques to further improve the
bounds possibly by using some information from the high level model and (2) studying the
application of the method to some interesting cases where particular kinds of aggregation
criteria apply.

References

[1] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. Stochastic well-formed
coloured nets and multiprocessor modelling applications. In K. Jensen and G. Rozenberg,
editors, High-Level Petri Nets. Theory and Application. Springer Verlag, 1991.

[2] P.J. Courtois and P. Semal. Bounds for positive eigenvectors of nonnegative matrices
and their approximations. Journal of the ACM, 31(4):804-825, Oct. 1984.

[3] P.J. Courtois and P. Semal. Computable bounds on conditional steady-state probabil-
ities in large markov chains and queueing models. IEEE Journal on Selected Areas in
Communication, SAC-4(6):926-937, Sept. 1986.

[4] K. Jensen. Coloured Petri nets. In W. Brawer, W. Reisig, and G. Rozenberg, editors,
Advances on Petri Nets ’86 - Part I, volume 254 of LNCS, pages 248-299. Springer
Verlag, Bad Honnef, West Germany, February 1987.

[5] J.G. Kemeni and J.L. Snell. Finite Markov Chains. Van Nostrand, Princeton, NJ, 1960.

26

[6] V. F. Nicola. Lumping in markov reward processes. In Proc. 1** International Conference
on Numerical Solution of Markov Chains. Marcel Dekker, Inc., January 1990.

[7] W. H. Sanders and J. F. Meyer. Reduced base model construction methods for stochastic
activity networks. In Proc. International Conference on Petri Neis and Performance
Models, pages 74—84, Kyoto,Japan, December 1989.

27

1 2 3 4 5 6 7 8 9
1 1.000
2 | 1.000 0.750 0.250
3 2.000 0.500 0.500
4 1.000 0.750 0.250
5 3.000 0.250 0.750
6 1.000 1.000 0.500
7 1.000
8 4.020
9 1.000 2.000
10 2.000
11 1.000 1.000
12 1.000
13 1.000 3.000
14 2.000
15 1.000
16
17
18
10 11 12 13 14 15 16 17 18 y
1 0
2 0.01
3 0.02
4 0.01
5 0.02
6 | 0.250 0.250 0.02
7 0.750 0.250 0.02
8 1.000 0.00
8 0.250 0.500 0.250 0.02
10 0.500 0.500 0.02
11 0.500 0.250 0.250 0.02
12 0.750 0.250 | 0.02
13 0.02
14 | 1.000 0.02
15 2.000 0.02
16 | 1.000 1.000 0.02
17 1.000 1.000 0.02
18 1.000 0.01

Figure 6: The aggregated matrix P and the corresponding vector y?.

28

Xp

In-Progress

<Xij,Xp>

Processors

Figure 7: A simple SWN transition example.

Compute

X3

Jobs

3
z; E-DLj

Figure 8: Possible partitions of z;'s with respect to the “merged” static subclass D; ;.

Serv. I # Aggr. States

I # Non Aggr. States

I (a) Bounds Comp. Time | {b) Exact Sol. Comp. Time

[(b)/(a)

5 customers

4 18 126 5832 15876 2.72

5 19 252 6859 63504 9.26

8 19 462 6859 213444 31.12
8 customers

4 53 495 148877 245025 1.64

5 60 1287 216000 1656369 7.6

[64 1716 262144 2944656 11.23
10 custorners

4 94 1001 830584 1002001 1.21

5 113 3003 1442897 5018009 6.25

8 125 BOOB 1953125 64128064 31.83

Figure 9: Comparing time complexity for the computation of bounds vs. exact solution.

28

State # 1 2 3 4 5 6 7 8 9

zt 0.350781 | 0.840613 | 0.609793 | 0.258352 | 0.07127 | 0.434729 | 0.08 62158 | 0.0042133 | 0.100793
State # 10 11 12 13 14 15 16 17 18

=t 0.0733268 | 0,160317 | 0.048524 | 0.000000 | 0.0162282 | 0.0163021 | 0.0400884 | 0.0421257 | 0.0135091

Figure 10: Upper bound for vector z.

Figure 11: A Parallel Program Model.

;' """"""" Master S§1Free) [lelaves™ ~~ 777 :
| " |
! [
' PAR 1
! 1
1 |exitLoop EndAL i
! |
! I
] :)
X inLeoop snd |
: inCmpa :
: cmpMstA :
! 1
] inCmpB |
|
| crpMstB | :
} | 1
[| }
! 1 Waitsnd | '
! sntGT | }
!)
I endCmpMst EndALLIX : "
! I
I
: I%"ldPAR ! !
i [
! 1
| 1

3 Timed transition
= Immediate transition

Figure 12: The SWN model of the Master-Slave Program.

30

Appendix

A Complete matrix for the multiserver example

31

2

3

10 13

0.500

0.500

1.600
1.010

0.250

0.500
0.500

0.250

0.250

0.250

2.000
1.010

1.000
2.020

0.500
0.250 0.250
0.500

0.500
0.250 0.250
0.500

o |~ O | N

1.600

1.010

0.250 0.560
0.500 0.250

— =
W o

1.010

2.000
2.020

1.000

[l =)
[2 YN S]

1.000

1.000
1.010

1.010

1.000
1.010

1.000
1.010

—
o

1.000

1.010

B
o

2,020 2.000

B NN
(= BN

1.000

1.010
1.000
1.010

1.010 1.000
2.000
2.020
1.010 1.000

N
e o =]

2.000
1.010 1.000
2.020

B b N =
w0 =~ W X

1.000
1.000
1.010
1.010

[T
L=]

W W
-1 on

ok W oW
LEL I C R~ LI]

[
[= TN - RN

W e
Qo W BN

N T N
O 1 o W

S]
o O

11

16

20

19

21

24 26

17

25

28

18

23

27 29

oo =1 O W N

0.250

0.250

—
w O

0.250
0.250

0.500

0.250

0.250 0.500

=
[LY LN (&

0.500
0.250

0.250

0.250
0.250
0.500

0.250

0.250
0.250

0.250

0.250

0.250

0.250
0.250

—
(= T

0.250

0.500

0.500 0.250

[yl
o

BN N N =
o o = O

B B
o o~

[T T - B]
O = w

1.000
1.010

1.000
1.016

w N
L=T V]

1.000

1.010

L7 L]
3 o

1.000
1.010

2.020

1.010

1.000
2.000

W W Ll
L L O N

2.000
1.010

1.000

1.010 1.000

2.020

1.010

1.000
1.010

1.000

W B W W
G = 00

1.000

1.010

1.000
1.010

1.010

1.000

2.020

2.000

1.010 1.000

e b b W
[+ I - I

1.000

1.600
1.010

1.010

1.000

1.010

1.000
1.0610

= W
o o~ o W

1.000

1.000

1.010
1.010

[+ 20 I+
D W

22

30

35 a7

32

38 43 45

34

38

41 46

W |~ B W N

= =
w o

= = = O
[B]

—_
(=T)

0.250

0.250

[\
o

0.500 0.500

B B B
s W = O

0.250

0.250
0.250

0.250

0.250

0.250
0.500
0.500
0.250 0.250

0.250

0.250

0.250
0.250

[I
G o -

0.500

0.250 0.250
0.500

B B B =
W =] W oo

0.500
0.250

0.250

0.250
0.250
0.500

[T
[U

L W
-] o

W 0 T
W D N

o W W
R = 0

R N X
00 B B =

Wb s W
0 = o W

1.000
1.010

1.000
1.010

oW
o W

1.000

1.010

31 42 44 48 33 40 47 49 39 50 y
1 0
2 0
3 0.01
4 0
6 0.01
7 0.02
5 0
8 0.01
10 0.01
13 0.02
9 0
12 06.01
14 0.01
15 0.02
11 0
16 0.01
20 0
19 0.01
21 0.01
24 0.02
26 0.02
17 | 0.500 0
25 0.250 0.250 0.01
28 0.500 0.02
18 | 0.250 0.250 0
23 0.250 0.250 0.01
27 0.250 0.250 0.01
29 0.250 0.250 0.02
22 0.2560 0.500 0.250 0
30 0.500 0.250 0.250 || 0.01
35 0.02
37 0.02
32 0.01
36 0.01
43 0.02
45 0.02
34 0.01
38 0.01
41 0.02
46 0.02
31 0
42 0.01
44 0.01
48 0.02
33 0
40 0.01
47 0.01
49 0.02
39 0
50 0.01

