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GLOSSARY

Alpha Gimbal A one-degree-of-freedom joint connecting an extraneous body to
the central body of the Space Station Freedom model.

Class A set of patterns clustered with some common properties. Also called
Pattern Class.

Dynamic System A system whose current output value depends not only on the
current inputs but also on their earlier values.

Feature A variable or characteristic of patterns utilized by a classifier to separate
patterns into classes.

Feature Space A linear space constructed by the feature vectors.
Feature Vector A vector representation of feature components.

Functional Region An open region in a function space to encapsulate functions
in the function space.

Function Space A linear space where the domain and range of a given function
are represented.

Input The external stimulus to a system.

Lift Coeflicient An important parameter associated with the combined aerody-
namic force on an aircraft normal to the aircraft velocity vector.

Model A description that characterizes the properties of a real world system. A
model may come in a linguistic or mathematical expression. It is referred to
be a mathematical model in this dissertation.

Model Class A set of model with some common properties. It is interchangeable
with Pattern Class in the dissertation.

Model Set A collection of models.
Model Structure A parametric model with undetermined parameters.
Output The observable signal generated by a system.

Parameter Space A linear space defined by the coeflicients of a model structure
in order to represent a parametric model set.

xi



Pattern A conceptual representation of an object in ordinary pattern recognition
applications. In this dissertation, a pattern is referred to a mathematical
model characterizing a real world system or subsystems in a complex system
being modeled.

Pattern Class A set of patterns clustered with some common features.

Pattern Vector A physical representation of a pattern in a form suitable for
machine processing.

Pattern Vector Space A linear space constructed by the pattern vectors.

System An object that is affected by external excitations and produces observable
signals.

System Response The output of a system or model for a given input.
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ABSTRACT OF THE DISSERTATION

System Identification Using Neural Networks
by

Han-Sen Dai
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1992

Professor Walter J. Karplus, Chair

The research described in this dissertation is devoted to the development of
new and improved methods for the modeling and simulation of physical dynamic
systems. The focus 1s the characterization in identification of the nonlinear param-
eters that appear in the governing differential equations. In the approach presented
here, parameter characterization is treated as a pattern recognition problem. Noisy
data obtained from observation of the dynamic system constitute the input to the
pattern recognition system which includes a feature extractor and a pattern clas-
sifier.

The probable candidate functions for the unknown parameters are designated
as “patterns.” Computer simulations are conducted over a variety of candidate
mathematical models of the system with selected functions for the parameters.
A function space encompassing all possible patterns is automatically partitioned

into pattern classes in a top down dichotomous manner, which performs partitions

xvl



based on the variation of the simulated system responses and introduces coherent,
property within any pattern class. An adaptive artificial neural network serves as
a pattern classifier. The actual system response is classified with the model class
of the most similar system response. The identified model class contains a model
set that is a most likely representative of the system.

The proposed methodology is applied to characterize the important compo-
nents of real world systems, in particular, the Space Station Freedom and high
performance aircraft. The results are encouraging, showing a high percentage of
correct classifications in a noisy enviromment. When optimization search tech-
niques are conducted to search for the best model, the identified model class which
is a reduced function space provides useful information for choosing an appropriate

starting model.
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CHAPTER 1

Introduction

System identification deals with the problem of constructing a mathematical
model of a physical dynamic system based on the observation of system inputs and
outputs. The significance of this problem can be addressed in several application
areas: simulation, control, and prediction. All of the applications need accurate
mathematical models in order to obtain desired results and performance. In simu-
lation applications, accurate models are necessary to achieve high fidelities of the
real world systems. Simulations also help scientists and engineers to understand
the system being analyzed in a great deal because some experiments on the system
are very difficult to conduct in the real world, but easy to implement by simula-
tions. If the model is not accurate enough to demonstrate the characteristics under
study, simulation results just lead to an incorrect conclusion. In control applica-
tions, mathematical models provide tools to analyze a system to be controlled and
to design control strategies for the system.

Models can be obtained from physical reasoning or by analyzing observed data
from the system. Often both approaches are required to build a model for a
complex physical system. Physical reasoning, also known as deduction or synthesis
approach, is out of the scope of the dissertation. On constructing a mathematical
model, an appropriate mathematical structure which presents a set of models by
varying unknown parameters should be obtained first, and then the best values of
the unknown parameters of this mathematical structure are estimated. These are

the two major steps of system identification, namely system characterization and



parameter estimation, respectively.

This study emphasizes the problem of system characterization. This problem
is often attacked by using a priori knowledge or engineering insight. The approach
employed in this study is based on the pattern recognition technique. Computer
simulations are conducted over a set of candidate models. The simulated system
responses are organized into clusters which correspond to pattern classes and are
associated with their models. When the actual system response is presented, the
real world system is classified with the model class which associates the most
similar system response.

Recent advances in the field of massively parallel artificial neural networks have
made it possible to achieve human-like problem solving performance, especially in
pattern recognition. It is plausible to consider the application of the new pattern
classifiers and associative memory based on neural network models in the system

characterization problem.

1.1 Objectives

Conventional system identification approaches are based on optimization tech-
niques to minimize a criterion function which specifies the goodness of fit between
the model and the true system [Bek70]. These approaches begin with a start-
ing model and iteratively refine the model until a local minimum of the criterion
function is reached. For example, the nonlinear gradient decent search is a well
known and widely used technique in system identification. However, the optimiza-
tion techniques may take many iterations and fail in several situations such as
low quality observations, incorrect model structure, or bad initial values of un-
determined coefficients. Instead of obtaining a global minimum, these techniques

may end up with a local minimum which makes the identification result of no use.



This research investigates a complement to conventional approaches. The results
obtained from the proposed methodology can provide useful information for the
optimization approaches with a better starting model in order to reduce search
steps as well as to avoid local minima hopefully.

The main objectives of the research are:

1. Development of a methodology using neural networks for nonlinear system

characterization, including:

(a) Formulation of the characterization of dynamic systems as a pattern

recognition problem.

(b) Design and implementation of a feature extractor and a pattern classifier

using neural networks.

(c) Evaluation of the reliability of classification results.

2. Application of the methodology to two real systems:

(a) Identification of the nonlinear characteristics of the damping torques at

the Alpha gimbals of the Space Station Freedom model.

(b) Characterization of the nonlinear lift coefficient of the high performance

aircraft like the F-15.

1.2 Methodology

In this research, system characterization is formulated as a pattern recognition
problem. First, a pattern designation technique is employed to generate patterns
and pattern classes corresponding to candidate mathematical models and model
sets, which are likely representatives of the real world system. This includes ap-

proximation of unknown nonlinear functions of the system, construction of a pa-



rameter space representing candidate models, and partition of the parameter space
into pattern classes.

Secondly, a feature extractor and a pattern classifier are implemented with
neural networks in order to enhance classification performance and to achieve the
capability of rapid recognition.

Finally, performance evaluation is carried out to provide the confidence infor-
mation for characterization results. This includes the estimations of misclassifica-

tion rates and the effect of noise on classification.

1.3 Organization of Dissertation

The dissertation is divided into three parts: background, methodology, and
applications. Part [ contains Chapter 2 and Chapter 3 which give brief background
on the system identification problem and neural networks as well as their relation
to this work. Part II, from Chapter 4 to 7, describes the proposed methodology for
system characterization with neural networks. Part III presents the applications
of the methodology to three case studies, including Chapter 8 to 10.

Chapter 2 describes the concepts and notions of the system identification prob-
lem. This is followed with a discussion of the conventional optimization approach
and the patterﬁ recognition approach to attacking this problem. Then a problem
statement is presented to be the scope of this work.

Chapter 3 deals with neural network problem solving models. First, the con-
cepts and the attractive features of neural networks are described. Second, a brief
history of neural network is given. Furthermore, various models of neural net-
works are discussed. Finally, the neural network models for pattern recognition
applications and their taxonomy afe presented.

Chapter 4 discusses the definition of a pattern in the system identification prob-



lem domain. The construction of a parameter space for representing the candidate
models is given. Pattern class designation is performed automatically via a top
down dichotomy algorithm to partition the parameter space into pattern classes.

Chapter 5 presents the Fisher’s discriminant functions as the feature extrac-
tion scheme. Frequency domain analysis and exponential components analysis
techniques are discussed for extracting nonlinear features.

Chapter 6 introduces an adaptive pattern classifier with neural network imple-
mentation. Besides, the performance of this classifier is investigated and discussed.

Chapter 7 is devoted to the estimation of classification performance. A region
growing technique is also presented to make the classification result more reliable
and useful.

Chapter 8 reports on the application of the proposed methodology to character-
ize a torsional spring at an articulated joint of a simple two bar system. Plausible
results are presented. Particular attention is focused on a comparison of identifi-
cation results of an optimization approach and the proposed methodology.

Chapter 9 describes the application to identify the characteristics of the damp-
ing torques at the Alpha gimbals of the Space Station Freedom model.

Chapter 10 presents the application to characterize the lift coefficient of the
F-15 aircraft and the 3/8-scale F-15 airplane model.

Chapter 11 concludes this work and recommends future research.
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Background



CHAPTER 2

Problem Formulation

2.1 Introduction

This chapter opens with a general description of the system identification prob-
lem followed by a discussion of its four subproblems. Then the optimization
approach and pattern recognition approach are described. Finally, the problem

statement of this study 1s given.

2.2 System Identification

A system is a physical process that is affected by external stimuli and generates
observable signals. The external stimuli are called inputs or excitations to the
system. The observable signals produced by the system are called outputs or
responses. A system is said to be dynamic if its current output depends on the
current inputs and their earlier values. Therefore, dynamic systems have memories
about their earlier status or possess system “states.”

System identification is concerneci with the problem of building mathematical
models of real world dynamic systems based on the observations of inputs and
outputs of the systems. Conceptually, a system is a function which maps inputs
to outputs, and an identification method deals with a mapping from the space of
observations to a space of models. This is an inverse problem. Its solution may
not be unique.

A model of a system is a description that characterizes its properties in order



to fulfill a certain purpose. Models may come in various shapes (e.g., descriptive or
linguistic models). Some models involve mathematical formalizations, while others
do not. For applications in the engineering field, it is necessary to use models that
describe the systems in terms of mathematical expressions. We shall refer to such
models as mathematical models. The accuracy of a model would certainly depend
on its purpose. For instance, models for aerospace applications need to be very

precise.

Definition 2.1 A model set M* is a collection of models, where the search for a

suitable model is conducted over.
To put this definition in mathematical notation we have
M = (Moo € A) (2.1)

Although the models are enumerated with an index o covering an index set A,
a model set of interest is often uncountable. Since we need to perform a search
over the model set for the best model, one approach is to parameterize the set and

conduct the search over the parameter set.

Definition 2.2 A model structure M is a mapping from an open subset © of R?
to a model set M*.

That is
M:038 — M(8) e M, (2.2)

where 8 is the parameter and © defines the parameter space. Thus the model
structure parameterizes the model set with a parameter set ©. Also M(6) denotes
the particular model corresponding to 6.

Consider a system with an input signal w(f) and an output signal y(t). The

observed signal z(t)} is the output signal disturbed by a measurement noise £(%).



The system is said to be causal if the output at a certain time depends on the
input up to that time only. Causality is a condition necessary for identifying the
system from the input and output observations. If this is a dynamic system, a set
of auxiliary variables z(¢) 1s used to represent the internal states of the dynamic
system. Figure 2.1 shows a model structure for the system with a parameter set

0.

z(t)

£
=
=
-
~—
-2
~—

— {=(%); ©}

Figure 2.1: A model structure,

In general, the construction of a model from observed data involves four steps:
1. experiment design,

2. system characterization,

3. parameter estimation, and

4. model validation.

The first step is to design the identification experiment so that the observations be-
come suitably informative. The design inputs should be able to excite the unknown
components of the dynamic system being modeled and must be operationally exe-
cutable in the real world. Secondly, system characterization determines the math-
ematical structure which characterizes the system. That is to select M and ©.
This step is often accomplished via a priori knowledge and engineering insight. Pa-

rameters of the selected mathematical structure are estimated in the third step. In



general, optimization search techniques are conducted over @ to identify a param-
eter 8 for the best model. Once a model is identified, it remains to test whether
the model is good enough in the final step. The whole identification procedure
is performed iteratively. In other words, the identified model can be revised or
refined by repeating the procedure if it is rejected in the model validation step.

Depending on the a priori knowledge of the system under consideration, the
identification problems can be classified into three types: white box, gray box, and
black box. A problem is said to be a “white box” if the mathematical structure
describing the system is explicitly known. System characterization is well defined
in this case. For instance, an electrical circuit may belong to this category. On the
other hand, a system with little or no a priori knowledge about its mathematical
model is considered as “black box” type. Social and political systems are examples
of this type. Between these two extreme types, there are systems for which the
general form of the mathematical structure is known, but an explicit one is not
known. These systems are referred to as “gray box” type, such as air pollution
and aircraft control. The problems of interest in identification are usually the gray
box type.

There are two types of parameterized model sets corresponding to the black

box and gray box problems:

1. Black box model structure: The basic idea is to obtain flexible model sets
without looking into the system internal structure. This type of model struc-

tures does not provide any insight into the system components.

2. Mechanistic model structure: This approach constructs model structures by
the deduction of the “law of nature.” This type of model structures comes

with adjustable parameters which provide physical interpretations.
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2.3 Related Work

Parameter estimation has been well described in the literature [AE71, Bek?70,
Lju87], but relative little work has been done on system characterization [Kar72,
AK82, SK86, SH74, Sim75]. This is because a model structure for parameter
estimation is usually given by experienced experts with engineering insight into
the real world system. Given a model structure, the parameter estimation problem
is often performed via optimization techniques [Bek70, PFTV88]. Although the
system characterization problem is difficult to formalize into algorithms and to
automate, the pattern recognition approach has been successfully applied to attack

this problem [SH74, SK86, Sim75].

2.3.1 Optimization Approach

The conventional parameter estimation approach consists of three steps:
1. Select a model structure that is likely to represent the real world system.

2. Define a criterion function which measures the goodness of fit of the model

responses to the real world system responses.

3. Specify a computational procedure for adjusting the parameters of the se-

lected model in order to minimize the criterion function.

Figure 2.2 shows a general configuration of parameter estimation procedure.
Unless the parameters are linear in the criterion function, the computational
procedure to minimize the criterion function is usually carried out by iterative op-
timization techniques, which require good initial guesses of the parameter values
for convergence to the correct solution and which may take many iterations to con-

verge. Its performance also strongly depends on the assumption of the underlying
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Figure 2.2: A general configuration of parameter estimation procedure.

model structure. If the model structure is not good enough, the solution obtained
is of little use. Furthermore, low quality of observations can prevent convergence

of the optimization procedure.

2.3.2 Pattern Recognition Approach

Karplus [Kar72] first proposed an approach for identification and simulation
of systems using the pattern recognition technique. Saridis and Hofstadter [SH74]
applied this technique to characterize nonlinear systems by the correlation and
autocovariance between system inputs and outputs. Simundich {Sim75] accom-
plished system characterization of parabolic distributed parameter systems via
this approach. Shibata and Karplus {SK86] carried out the identification of water
pollution source using spectruin analysis as features for pattern recognition. The
pollution source was specified by a time function and a space function. The time
function was first identified by the pattern recognition approach utilizing the co-

herence function of power spectra. Secondly, the least squares method was applied

12



to determine the space function.

The pattern recognition (PR) approach for characterization includes four steps:

1. pattern designation: A variety of candidate models are designated to be

patterns which are clustered into classes.

2. feature extraction: Feature vectors are extracted from system responses to
represent the unique properties of the real world system and the candidate

models.

3. pattern classification: A pattern classifier is trained to classify the feature

vector of the real world system into one of the classes of the candidate models.

4. performance evaluation: The performance of the pattern recognition system

in modeling is evaluated. And the model obtained is validated.

2.4 Problem Statement

On constructing a model for a real world system, deduction rules and a priori
knowledge help to derive the model up to some extent. The remaining unknown
part of the model has to be determined from the observations of system’s input and
output data. This research deals with the mechanistic model structures containing
some unknown parameters which may be functions of system states and inputs.
Suppose that there exists very limited prior knowledge about the behavior of these
parameters or unknown functions. The effort of this research attempts to identify
the general shapes of the curves or surfaces of these unknown functions from the
observed data of the real world system in a noisy environment. Besides, these data
may be sampled both in time and space.

As a matter of fact, the general shape of a curve or surface corresponds to a

functionel region in the space constructed by the unknown function and its domain
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space. For instance, if the domain and range of the unknown function f(z) are
‘both one dimensional space, a functional region that characterizes the curve shape
of f(z) may be a band in the two dimensional space constructed by f(z) and z.
Figure 2.3 shows a true function of the real world system classified with one of
three candidate functional regions.

In this research, the proposed methodology is based on the principle of the
pattern recognition approach. Instead of fitting a model to the detail of every
observed data point, the PR approach utilizes the characteristics of candidate
models and the system to be modeled. The features of the system are extracted

from the observed data for pattern matching. There are three problems involved:
1. designation of these possible general shapes for pattern classes.

2. design and implementation of the feature extractor that extracts the invariant

features of each pattern class.
3. design and implementation of a classification scheme.

Once a functional region of the unknown function is identified, a better math-
ematical structure close to the identified shape can be constructed for further
refinement to locate the true function. More appropriate initial values of unde-
termined parameters of the new mathematical structure are also imposed in the

functional region because it restricts the ranges of the parameters.

2.5 Why is Pattern Recognition Approach Important to System Iden-

tification Problem?

The optimization approach for parameter estimation needs a mathematical
form of f(z)} which defines a parameter space for searching the numerical values

of the parameters. Figure 2.4(a) presents a scenario of an optimization search
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Figure 2.3: A function and its identified functional region.

conducted over the parameter space. Due to the aforementioned reasoms, the
optimization search falls short.

On the other hand, the PR approach classifies the observations of the real world
system with one of the predetermined model classes that characterize the function
f(z). Having determined the region which f(z) falls, we have narrowed the possi-
ble range of f(x) instead of locating the exact solution of the unknown function in a
vast space. Figure 2.4(b) shows that the partitioned parameter space with regions
corresponding to classes and a parameter space reduction process using the PR
approach. A better starting point which is close to the solution is now available.
In addition, a more precise mathematical structure can be constructed through
the reduced parameter space. Thus, the result derived from the PR approach can
provide more information for the optimization approach in selecting an appropr-

ate mathematical structure and initial values of parameters, especially when low
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quality observations are presented or the system is deficient in prior knowledge.

Starting point
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Figure 2.4: (a) An optimization search fails to locate the true solution. {b) The
PR approach identifies a reduced parameter space which contains the true solution.
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CHAPTER 3

Neural Networks

3.1 Introduction

Artificial neural networks have become very attractive computational tools.
It is an area of intensive activity and growing interest in practical applications
because of the new network architectures and training algorithms, analog VLSI
and optical implementations, and the belief that massive parallelism is essential to
achieve human-like performance. In the beginning of this chapter, the attractive
features of neural network computational model are described. Second, we present
the motivation of this prosperous research area. Third, a brief history of neural

networks is given. Various models are also discussed.

3.2 Definition and Attributes

Artificial neural networks were originally employed in developing mathemati-
cal models of biological neurons. The synapses are characterized by connection
weights in the artificial neural network models, while the frequency modulation
of nerve impulses is modeled by an amplitude modulation of nonlinear activation
functions. Recently, it was realized that human-like performance in speech and
image recognition requires enormous amounts of computation. Neural networks
provide a technique for obtaining the required computation using a large number
of simple processing units operating in massively parallel.

Because of various neural network models, it is not necessary to give a unified
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definition. However, the attributes of neural networks may justify their definition.

These attractive attributes are listed as follows:

e Simple processing unit: Each processing unit (neuron or node) simply com-
putes the weighted sum of its inputs and then applies a nonlinear activation
function to generate its output. Figure 3.1 (a) shows a single processing unit
and its computational function. In general, there are three types of nonlin-
ear activation functions, namely hard limiter, threshold logic, and sigmoid,

as shown in Figure 3.1 (b).

INPUT

Fo

HARD LIMITER THRESHOLD LOGIC SIGMOID

(b)
Figure 3.1: (a) A simple processing unit, where y = f(X 5, wiz; — 8). (b) Three
types of nonlinearities.

e High connectivity: Similar to biological nervous systems, neural network

models attempt to achieve good performance via dense interconnections of

numerous simple processing units.

o Massively parallel The network with large number of processing units oper-

ates in massively parallel.

o Fault tolerance: In contrast to conventional computers, the ﬁlalfunction of
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several processing units or connection links might not affect the system per-

formance too much.

3.3 Motivations of the Neural Network Research

There are several motivations for this research area:

e Biological understanding: Neural networks may provide models for studying
biological nervous systems. The work combining laboratory experiments and
network models can verify the assumptions of network theory and improve
models. Although network models used today are very simple in compari-
son to bioclogical systems, the eagerness to understand brain function always

motivates this research area.

o Mind understanding: Neural network models have already had an important
influence on cognitive science. A new class of theories of mind is emerging
because of the network models which provide a new approach to psychological

modeling.

e Problem solving: For cognitive applications, the practical systems are of es-
sential interest, such as speech and image recognition, vision, and sensory
motor control. Neural network models have been studied in hope of sup-
porting an efficient architecture and achieving human-like performance in
these fields that are far beyond the performance of the current best artificial
systems. In addition, other applications, such as optimization, control, and

prediction, also stimulate this research area.
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3.4 History and Background

3.4.1 A Brief History of Neural Networks

In 1943, McCulloch and Pitts [MP43] invented the threshold logic model which
was the first effective mathematical formalization of the operation of a neuron. In
1949, Hebb [Heb49] introduced the famous Hebbian Learning Rule which specifies
a self-organizing model of the synapses. Nowadays most of the learning rules are
adaptations of this early principle.

Rosenblatt [Ros58, Ros62] proposed a learning machine with Hebbian learning
rule called the percepiron. He also proved the remarkable Perceptron Convergence
Theorem about the perceptron learning rule {Ros62]. The invention of the percep-
tron was a major advance toward a formal model of a neural network. Meanwhile,
Widrow and Hoff [WH60] introduced an adaptive pattern classification machine
called adaline. An “adaline” was a threshold logic unit with variable connection
strengths. The connection strengths were adjusted based on the error between
what the output was supposed to be and what the adaline computed. The search
over this error surface was in a sense of gradient descent to minimize the total
error. The best known supervised learning algorithm today, “back propagation”
[RMS86], is a generalization of the simple Widrow-Hoft rule.

In 1969, Minsky and Papert [MP69] published a book “Perceptrons” which
shocked the foundations of this field and discouraged research for many years.
However, this book proved some formal results about perceptrons and exposed the
inherent problems of perceptrons.

During the dark age of this research field, several researchers still immersed

themselves 1n hard work. Later, their efforts did flourish, such as

e Kohonen’s self organizing feature maps and Learning Vector Quantizer (LVQ)
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[Koh84],

Carpenter and Grossberg’s Adaptive Resonance Theory (ART) [CG86],

e Fukushima’s Neocognitron [FMI83],

the Hopfield net [Hop82, Hop84],

the multilayer perceptron and the back propagation learning algorithm

[RMS86], and

Sejnowski and Rosenberg’s NETtalk [SR86], etc.

The breakthrough of [RM86] was to modify the design of the perceptron in order
to solve the learning problem in multilayer networks. The solution was to replace
the threshold activation function of the perceptron by a smooth sigmoid function.
Since the sigmoid function is continuous and differentiable, it is possible to derive
a gradient descent learning algorithm. NETtalk is an application of multilayer
perceptron to speech. The impressive demonstration of NETtalk shows the promise

of neural networks.

3.4.2 The Perceptron

Minsky and Papert [MP69] gave the definition of perceptrons as follows: A4
perceptron is a device capable of computing all predicates which are linear in some
given set O of partial predicates.”

In this definition, @ is a collection {¢} of predicates with values 0 or 1. Let
{a} be a set of number indexed by & and # be some number for a threshold.

Mathematically, the perceptron computes

P({c},,0) = { L i 2 fog > 6 | (3.1)

0 otherwise
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There are various types of perceptrons given in the book “Perceptrons” [MP69].
The most common perceptron seen today is the one shown in Figure 3.1 (a). In
this case, ay corresponds to a connection weight w; and @ is the input.

The learning rule operates repeatedly by adjusting {a} and testing the percep-
tron to improve the performance. It turns out that the perceptron can learn some
functions, but the range of functions realizable by single layer perceptrons is so

limited. The exclusive-or (XOR) problem is a famous example.

3.4.3 The Multilayer Perceptron

Perceptrons can be organized into layers with a number of perceptrons in each
layer. In the layered network, the outputs of one layer are the inputs to the
subsequent layer. With these cascade perceptron layers, the perceptron learning
rule does not apply to the multilayer structure because of the special nonlinearity of
the threshold logic unit. This learning problem had made the multilayer perceptron
impractical to apply for many years.

In the early 1980’s, a breakthrough was made by replacing the threshold logic
unit with a smooth sigmoid function. As the sigmoid function is differentiable,
this modification led to a gradient descent learning rule called Generalized Delta
Learning Rule (back propagation algorithm) [RM86]. Back propagation is a su-
pervised learning algorithm which need a “teacher.” It applies a gradient search
technique to minimize the mean square error between the desired and the actual
network output by adjusting the connection weights. The error terms are prop-
agated back from the nodes in the output layer to nodes in lower layers, so the
connection weights can be adjusted iteratively and sequentially in the layered error
propagation order.

Theoretically, a two-layer perceptron is sufficient to construct convex decision
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regions of pattern classes. With a three-layer structure, the decision region of a
pattern class can be arbitrary as long as there are enough internal perceptrons
[Lip87]. The XOR problem is easily solved. However, the major problem with the
generalized delta learning rule is that the learning is not only very slow, but the

gradient descent search method tends to get stuck at local minima.

3.4.4 The Hopfield Net

The Hopfield net [Hop82, Hop84] consists of a fully interconnected network of
many simple processing units operating in a massively parallel fashion. The pro-
cessing units, or nodes, which are connected by links with variable weights, are
able to compute a linear summation of scalar input values along with a nonlinear
activation. The node is characterized by an internal threshold 6 and by nonlin-
ear activation functions of the types presented in Figure 3.1. In the following
discussion, we only deal with the hard limiter activation function.

A Hopfield net with n nodes can be specified by an n X n connection matrix
W and a threshold vector §. We have W = {w;;] and § = [8:, 6., ...,GH]T, where
w;; 1s the connection weight from node j to node ¢, and §; is the threshold of node
. Each node is capable of outputting one of two values: either +1 (on) or —1
(off}). The state of the system as a whole at time ¢ is described by a state vector

V(t) = [v1(2), ..., va(?)]7. The operation of node 7 is defined as:

vilt +1) = sign(ui(t)) = { o 28 2! (3.2)

where u;{t) = 7., wijv;(t) — 6;. Every node computes this operation in parallel
until the network converges.
Hopfield have demonstrated that the Hopfield net can be used as a content

addressable memory. Suppose we want to store m exemplars V1, V2, ..., V™. Let
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V = [VHV?]...]V™], an n x m matrix. The outer-product algorithm defines the

connection matrix as

W=Vl —m-I (3.3)

where I is an n X n identity matrix. Thus, the matrix W is symmetric with zero
diagonal elements. The basic idea is to construct the correlations between nodes.
The larger absolute magnitude of w;;, the stronger the correlation is between node
¢ and node 7. In this case, g is set equal to zero. When presented with a partial
or noisy version of one of the stored exemplars, the network converges to that
exemplar. However, the exemplars need to be nearly orthogonal to each other in
order to be stable states of the network.

In the application of pattern recognition, neural networks based on the Hopfield
net have been shown being able to perform classification of vowels and consonants
extracted from spoken words [Gol86], lines in images [GS86], and digital character
fonts [LGM87]. In addition, the Hopfield net has been successfully applied to
optimization problems, such as the traveling salesperson problem [HT85], the A/D
converter problem [TH86], the linear programming problem [TH86|, and the matrix
mverse problem.

The Hopfield net serves as a content addressable memory which retrieves one
of the stored exemplars by giving a partial or noisy version of a stored exemplar
as input. Essentially, a content addressable memory is a pattern classifier which
classifies a pattern with the exemplar of the selected class instead of an index to
the class. Lippmann et al. [LGM87] identified two necessary conditions for the

Hopfield net to be used as a pattern classifier:
1. The exemplars of classes should be the stable states.

2. After convergence, a mechanism should be provided to determine which of
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stored exemplars the current stable state of the net is closest to.

3.4.5 The Hamming Net

Lippmann et al. [LGM87] presented a Hamming net, which is a two-layer neural
network and performs minimum Hamming distance classification. The Hamming
distance is the number of different bits between two binary patterns in the cor-
responding bit positions. The first layer is made up of a feedforward perceptron
network to calculate the likelihoods of the input to the stored exemplars. The
second layer, called maznet, is a laterally interconnected network that performs
the winner-take-all function and determines which of its inputs is the maximum.

As its name implies, the Hamming net operates on binary patterns and calcu-
lates the likelihoods based on the Hamming distance. Instead of calculating the
Hamming distance directly, the likelihoods of an input pattern to the stored ex-
emplars is measured by N minus the Hamming distance, where N is the number
of bits of the pattern vector. N minus the Hamming distance to the j-th exemplar
can be obtained from a weighted sum of the elements of the input vector. That is,

_ N
N - N,{amm,.ng =cj+ Zw.-ja:,', (3.4)
i=1
where w;; = 2—{-, ¢j = % In this equation z is a bipolar input vector and z? denotes
the j-th exemplar. Thus the first layer of the Hamming net 1s constructed by the
connection weight w;;’s and threshold —¢;’s.

The maxnet is a fully connected network consisting of k threshold logic nodes,
where k is the number of classes. Each node feeds its output back to its input
for excitatory, while it inhibits all other nodes via the lateral interconnections.

Mathematically, the maxnet iteratively operates the following function to find the

25



maximum

k
vi(t + 1) = f(Q_ Tiyv;(2)),

=1

where the connection weight

r_l1 i=j
7| —w (w< ) otherwise

The threshold logic function f(-) is defined as follows:

yu ifu>0

ﬂ”={o ifu<0

(3.5)

(3.6)

(3.7)

The initial values v;(0), ¢ = 1,2,--- k, are the likelihoods obtained directly from

the outputs of the first layer. That is the outputs of the first layer perceptron

network are fed to the maxnet at time zero and then removed. Figure 3.2 shows

the topology of a Hamming net.

Xz X3 X

Figure 3.2: A Hamming net.

maxnet selects
the maximum

After convergence, the outputs stop changing and only the output of the node

corresponding to the maximum input is positive. Therefore, the input pattern is
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classified with the class indicated by the output node with a positive value. The
proof of convergence of the maxnet was shown in [LGM87}. The basic idea of the
proof is that the inhibition to the node with the maximum value is always less
than the inhibition to all other nodes. It is also shown that the Hamming net
outperforms the Hopfield net for pattern recognition applications in both ways of

misclassification rate and number of interconnections.

3.5 Neural Networks for Pattern Recognition

A taxonomy of neural networks for pattern recognition is divided into learning
and programming training schemes. Since the knowledge of a neural network is
stored in its connection weights, the training schemes deal with the selections
of the connection weights to accomplish the objective of the neural network. We
define the learning process to be that the connection weights are adjusted gradually
by presenting the training examples repeatedly. By programming, we mean that
the connection weights can be directly programmed from the training examples.

There are also two subdivisions of the training schemes: supervised and unsu-
peruvised learning. Networks trained with supervision are provided with information
that specifies the correct class for new input patterns during training. The Hopfield
net and the Hamming net which can be programmed by the training set belong to
the category of networks with the programming and supervised training scheme.

The multilayer perceptron is also trained with supervision, but its connection
weights are adjusted via a learning process. Basically, it is trained to emulate the
membership function in classification.

Networks trained without supervision, such as Kohonen’s feature map and
Grossberg’s ART, do not need the information concerning the correct class dur-

ing training. This type of networks can be used as vector quantizer or cluster
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Table 3.1: A taxonomy of neural network for pattern recognition.

L I supervised [ unsupervised |
learning multilayer perceptron Grossberg’s ART
LvVQ Kohonen’s feature maps
programming Hopfield net -
Hamming net

formation.

Networks trained via a learning process present the capabilities of self organiza-
tion and adaptation, while the networks with programmed connection weights do
not have adaptability. On the other hand, the learning process is computationally
intensive and not well understood. This type of networks becomes unreliable when
the inputs are beyond the range of their training examples. Table 3.1 shows the
taxonomy of neural network based on training algorithms,

In this study, we develop neural networks based on the programming and learn-
ing training schemes to accomplish the pattern recognition task. A neural network
classifier is initially constructed with an architecture similar to the Hamming net

and then tuned by a learning algorithm to improve its performance.
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Part 11

Methodology
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CHAPTER 4

Pattern Designation

4.1 What is a Pattern?

The first step in any PR system is to define classes of patterns to be recognized.
In many PR applications, patterns are formed by the nature of problems. For
instance, a pattern may be a handprinted character or signals of a spoken word in
image or speech recognition problems, respectively. Nevertheless, some patterns
may be designated artificially in other applications. For example, the traffic at a
street intersection can be defined as a pattern. The control of traffic lights may
depend on the detection of certain traffic patterns in order to manage the traffic
throughput. A pattern class is a set of patterns with certain identical or similar
properties. These properties intend to characterize the objectives of applications.

Semantically, a “pattern” is the conceptual representation of an object in a PR
application. On the other hand, a “pattern vector” is the physical representation
of an objective for machine processing. A pattern of a handprinted character “8”
may be labeled as “8”; while its pattern vector may be a bitmap or a binary vector
to represent this specific handprinted character in a form suitable for machine
processing. The distinction between the two terminologies is not so critical. As
a matter of fact, they are interchangeable in this dissertation unless explicitly
addressed elsewhere.

In the context of system identification problem domain, a pattern is considered
as a candidate mathematical model modeling a real world system or a subsys-

temn in the case of complex systems. The behavior of a pattern is represented
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by the system response of its corresponding model. Its pattern vector is actually
the system response unless some preprocessing is performed on the raw data for
transformation or noise reduction. Therefore a pattern and a mathematical model
are conceptually equivalent in this context. The space constructed by the pattern
vector is referred to be the “pattern vector space” or “system response space.”
Hoﬁever, a “parameter space” defined by the parametric model set is the concep-
tual representation of patterns. Given an input function and initial conditions, the
model structure maps a model in the parameter space into a system response in

the system response space.

4.2 What is Pattern Designation?

Pattern designation is intended to define a mathematical model as a pattern
and to cluster patterns into classes. The criterion of grouping patterns into classes
could be natural when patterns with similar system responses are grouped together,
or artificial when patterns with the same mathematical form are grouped together.
The criterion also strongly depends on the objective of characterizing a real world
system and the available feature extraction techniques. If the feature extractor
cannot extract the invariant properties of the patterns in the same class, there
is no way to classify a given pattern. Similarly, it ma,kés no sense if the pattern
classes cannot achieve the objective of characterizing the system.

To express the concept formally, let us define the parameter space P to be the
space of the representation of various mathematical models that possibly model

the system. Thus, for any pattern p, modeling the system, we have

pEP (4.1)
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A pattern class is a set of patterns with a certain property, that is,
P, ={p | p € P, and p possesses property i}. (4.2)

The property of class ¢ can be defined to be the same mathematical form or similar
system responses depending on the objectives of applications. Once the criterion
of grouping classes is determined, the pattern classes are designated to be Py, P,,

-++, and Py such that

The designation is under the same input function and initial conditions for all

patterns in P. In addition, an extra class is defined to be
P =PnN (Ulep,‘) (4.4)

The class Pyy; is a residue class used when observations of the system cannot be
classified into any of the k predefined classes. Suppose that a pattern p, is the best
model in P for modeling the real world system and p, € P;. The observation should
be classified as class ¢ for a correct classification. Consequently, the parameter
space P can be reduced to P; for the optimization approach in order to obtain
a better initial structure instead of P or for the PR approach to continue on a
smaller parameter space.

Moreover, the classes can be designated to be @Qq, @2, ---, and @y if the sys-
tem can be observed under a new input function or different initial conditions.
This different set of classes could provide more information in reducing the size
of parameter space. If the second observation is classified as class @, the new

parameter space can then be further reduced to

Pnew = R in Qj (4.5)
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For effective parameter space reduction and efficient classification, the classes
should be made as disjoint as possible. Therefore, constructing the parameter
space P and partitioning P into classes are the main issues in pattern designation.
In section 4.3 and 4.4, domain discretization and partitioning parameter space

scheme are proposed to achieve these tasks.

4.3 Domain Discretization

This research deals with mechanistic models rather than black box models
because the former ones provide more insight into the system components. Based
on deduction rules and a priori knowledge, a mechanistic mode! structure is derived
for the system being modeled. Parameters of the mechanistic model structure
may be functions of the system inputs and states. Some of the parameters may
be unknown and must be determined from the observed data of the system. The
objective of this research is to characterize these unknown parameters in order to
build a complete mathematical model.

Suppose that the function f(#) is an unknown parameter associated with this
model structure, where 8 denotes system inputs or state variables. It is necessary
to establish a parametric form of this unknown function in order to identify its
best approximation. A polynomial form of @ or some other mathematical form
with undefined coefficients could represent this unknown function. Once these
undefined coefficients are obtained, f(6) is completely determined to some extent
of appro:;imation. So these coefficients construct a parameter space representing
f(@). Any particular function to represent f(#) is designated to be a pattern. In
fact, there are too many ways to specify the unknown function approximately.
Also, different representations may coincide with the same function surface or

curve. Different functions in the (8, f(#)) space may intersect or overlap each
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other, where the (8, f(f)) space is defined to be a k dimensional space constructed
by 6 and f(8) with £ = m+n (m and n denoting the dimensionality of § and f(8)},
respectively). In this case, it is difficult to partition the (8, f()) space into disjoint
regions for designating pattern classes. Therefore, a unified, effective, and efficient
representation of the unknown function is needed. The parameter space should
provide a representation of pattern classes such that classes can be partitioned
disjointly.

Besides, what is of interest in this study is to portray a general shape of the
surface or curve of the unknown function f(#) when a set of system responses is
presented. The general shape of the surface or curve of the unknown function, also
termed functional region, characterizes this function and also bounds the range of
it for further investigation. So the possible functions to represent f(8) that have
similar shape in the (6, f(8)) space and also cause the models to generate similar
responses should be grouped into the same class so as to utilize pattern recognition
techniques for parameter characterization. Nevertheless, the argument is based on

an assumption imposed in the study.

Assumption 4.1 The models with similar parameters are likely to generate simi-
lar responses under the same input function and initial conditions. In other words,
the system responses wary smoothly with smoothly varying parameters and do not

behave chaotically.

This assumption also implies that the systemn responses are bounded. This is al-
ways true for physical systems because of energy conservation. It is not necessary
to consider the unstable models. The functions with similar shapes can be con-
sidered as neighbors. Of special importance here is to define a parameter space
such that neighboring functions in the (8, f(#)) space are also neighbors in their

representation space with a one to one mapping relation. In this case, the coher-
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ence property exists within any pattern class in both the parameter space and the
system response space. The model classes in the parameter space and the decision
regions in the response space are thus tightly associated.

Two schemes are proposed to approximate the unknown function and define a

parameter space:
1. piecewise linear functions and
2. piecewise smooth polynomials.

First of all, the continuous domain of ¢ is discretized into discrete elements. The
value of f(f) at each discrete point in the (#) space becomes a variable in the
function approximation, where the (#) space denotes the m dimensional space
constructed by 8, and m is the dimensionality of 8. In the piecewise linear function
scheme, the function within each discrete element is approximated by a straight
line or a hyperplane. In the other scheme, the function is approximated by a
polynomial expression passing through the assigned values of f(8) at all discrete
points.

The number of discrete points in the (#) space is the dimensionality of the
parameter space. There is a tradeoff between the accuracy of the unknown function
approximation and the dimensionality of the new parameter space. In general, the
more discrete points, the better the approximation it is. The surface or curve of
a function f(6) in the (4, f(8)) space is then mapped to a point in the parameter
space. Different functions in the (8, f(8)) space do not overlap or intersect in the
parameter space. Disjoint regions can be effectively defined.

Example 4.1: Suppose that f(z) is an unknown function and the interval of
interest in the domain of f(x) is [z, z3]. Figure 4.1(a) shows a possible curve of

f(z). Figure 4.1(b) shows an example of the approximation of f(x) by piecewise
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linear functions. The parameter space is a four dimensional space constructed by
f(zo), f(z1), f(z2), and f(z3). The positions of the discrete points, zg, 71, z2, and
z3, can be determined according to the variability of f(z). That is, more discrete
points are needed to approximate f(z) in the domain with larger variation of f(z).
If there exists no prior knowledge about the variability of f(z), the domain can
be divided into equal space. An approximated f(z) is mapped to a point with

coordinates f(zo), f(z1), f(z2), f(x3) in the parameter space.

fi=) fix)
[ 1] 1 ] x | 1 | ] x
Xo X1 Xz X3 Xp Xy X3 X3
(@) (®)

Figure 4.1: (a) A possible curve of the unknown function f(x). (b) A piecewise
linear approximate.
In the piecewise smooth polynomial scheme, f(z) can be approximated by the
polynomials
F(z) = a+ bz + c2® + dz°. (4.6)
This polynomial satisfies f(a:;) — f(zi) = 0, for ¢ = 0, 1, 2, 3. Notice that the
parameter space is the same as the one in the piecewise linear function scheme.
The reason for selecting f(zo), f(z1), f(z2), and f(z3) as the parameter space
instead of a, b, ¢, and d is to ensure that functions in the neighborhood in the
(z, f(z)) space are also in the neighborhood in the parameter space defined by the

vectors (f(zo), (1), f(z2), f(z3))- \ s

Once the domain is discretized, the order of the polynomials or the number of
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line segments (or hyperplane pieces) is determined in both schemes. This is similar
to determining the mathematical structure in conventional system identification
approaches. However, the objective of this study is to discriminate the general
shape of the unknown functions rather than to identify the mumerical values of
unknown coefficients under the predetermined mathematical structure. In other
words, the observation is classified with a region in the parameter space, not a
point in the parameter space. Besides, this mathematical structure in either poly-
nomials or piecewise linear functions is only an approximation of the unknown
function. After a general shape for the unknown function is obtained, a more
accurate approximation function can be constructed for the optimization or PR

approach.

4.4 Partitioning Parameter Space

The partitioning of the parameter space deals with the separation of patterns
into classes. This task greatly affects feature extraction and classification methods
because of the rule used to separate patterns. A pattern class contains patterns
whose corresponding models generate similar system responses to ensue the coher-
ence property. This is the main purpose of partitioning parameter space as well as
a direction in designing a feature extractor and a pattern classifier. The algorthm
proposed to attack this problem is termed top down dichotomy. This algorithm
divides the parameter space into disjoint contiguous regions according to the vari-
ation of various simulated system responses that are generated by various patterns
sampled from the parameter space. Hence patterns of the same class have system
respoﬁses varying within a certain threshold. In other words, there exists a certain
degree of similarity among the patterns in one class. This property presents the

coherence of a pattern class, and is useful for constructing the feature extractor
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and classifier.

4.4.1 Algorithm 4.1: Top down dichotomy

Input: A mechanistic model structure with some unknown functions and a
parameter space representing these unknown functions.

Output: A set of disjoint regions of the parameter space as well as a between-
class covariance matrix and a within-class covariance matrix of the simulated sys-

tem responses of the sample patterns.

1. Start with the whole parameter space as one region and an initial number of

sample patterns in this region s; = 0, where s; denotes the current number

of sample patterns in this region.

2. For a region in the parameter space, randomly select s — s, patterns with
uniform distribution, where s is a predetermined number of total sample

patterns in a region.

3. Run computer simulations of these s — s; patterns, and combine with the
existing simulation results of s; patterns to get s sets of simulated system

responses.

4. Calculate the variation of all these s response vectors whose variance could

be used as a metric for measuring the variation.
5. Repeat step 2 to step 4 for all regions in the parameter space.

6. If there exists a region with variation exceeding a certain threshold, this
region is split into two. Otherwise, calculate the covariance matrices and

stop.
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7. Calculate sy, the current number of sample patterns, in these two new re-

gions. Go to step 2 and handle each region independently and recursively.

In this algorithm, the parameter s is chosen such that all s patterns in a region
are able to characterize the variation property of this region. Assumption 4.1
guarantees the algorithm to stop. If the system response is not bounded, the
algorithm will not stop and will keep partitioning the parameter space where the

system response is unstable.

4.4.2 Discussion and Analysis of Algorithm 4.1

In step 2, the first problem encountered is “how many sample patterns in a
region would be enough to portray the variation of this region?” There exists no
theoretical proof on the number of sample patterns required. Under this situation,
the number of sample patterns becomes a tradeoff between the accuracy of the
variation and the amount of computation required for simulating all sample pat-
terns. The other problem is the method of sampling. Although the patterns are
sampled randomly from the parameter space, these patterns are not distributed
uniformly when the number of sample patterns, s, is not large enough. Their ca-
pability to characterize a region becomes weak if they are not evenly distributed
in this region. Thus, one of the sampling techniques employed in this study is
stratified random sampling [Coc77], which means the region is equally divided into
s subregions, and one pattern is randomly sampled from each subregion. In addi-
tion, systematic sampling technique [Coc77] is also used because it is deterministic
and easy to analyze. These two sampling schemes spread samples more evenly over
a sampling space. More analysis details are discussed in section 4.5.

In step 4, the variation can be defined in terms of the variance of sample

patterns’ system responses in this region or the longest distance from any system
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response to the mean response vector. The variance can be defined as the scatter
or covariance matrix of the system responses. For simplicity, the trace of the
covariance matrix is used as the scalar measure of variation. Both metric schemes,
the variance or the longest distance, are based on the concept of Euclidean distance.
Hence, the results of partitioning via both schemes are similar if not identical.

In step 6, the major concern is the dimension in the parameter space where
the partition takes place. The dimensions in the parameter space are the variables
representing the unknown parameter and constructing the parameter space. This
dimension should be the one for which the corresponding variable’s variation causes
the largest variation in system responses. Based on this idea, every dimension is
assumed to be a candidate and is presumably split at the middle to obtain two
subregions. The distance between the mean response vectors of the two subregions
is calculated. Then the dimension with the longest distance is actually split. A
theoretical proof on the selection of the splitting dimension is given in Appendix A.

The threshold used in step 6 is adjustable. Basically, it is adjusted from a larger
to a smaller value if the number of regions obtained after the algorithm terminates
is not large enough.

Because of the partitioning property, the sensitivity of the system responses to
the parameters is embedded in the partitioned regions. The parameter space, with
more sensitive system responses to parameters, is eventually divided into a smaller
region; while a larger region means that the system responses are less sensitive to
the variation of the parameters.

In step 5, every region can be processed independently and in parallel. Even the
procedures in one region, such as step 2 and 3, can be processed in parallel for all
sample patterns. Data communications are required only to compute the variation

of system responses and to determine the splitting dimension of the parameter
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space. This algorithm is, therefore, well suited for parallel implementation.

4.5 Sample Size Determination

Sampling techniques are employed to study the characteristics of a continuous
function z(z) over a domain space @, especially, when an analytical closed form
for z(x) does not exist. Another reason for using sampling techniques is to utilize
digital computers to evaluate z(z). Because the elements of the continuous domain
are uncountable and a complete count is impossible, discretization and sampling is
always necessary. Estimating the mean or variance of z(z) is often the purpose of
sampling. In this study, variance estimation is the major concern as mentioned in
Algorithm 4.1, where the parameter space is the domain space ¢ and the system
response of a model structure with the parameter z is the function z(z).

There are two important issues concerning sampling techniques. One is the
sampling error. The other is the cost of sampling, which includes computation
and data collection etc. The tradeoff is between cost and accuracy. The larger the
sample size, the greater is the cost of evaluating the sample points and collecting
data. The objective here is to study sample size determination in order to attain
a specified precision while minimizing the cost.

Three sampling schemes are discussed below. An approach to analyzing the
sampling performance is given so as to determine the best sample size under the

same sampling scheme.

4.5.1 Sampling Schemes

The simplest type of sampling is simple random sampling. In this case, each
sample point is selected with a uniform distribution over the whole sample space,

and the selection is independent of the other sample points. When the sample size is
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small, this sampling process usually dose not cover the entire space uniformly. The
sampling performance becomes poor. Thus, this sampling scheme is not employed
in this study.

The second type of sampling is stratified random sampling. The space Q is
partitioned into disjoint subspaces of @1, @3, ..., @ with sample sizes N;, Ny,
..., Ny, respectively. These subspaces are called strata. A simple random sampling
is then taken in each stratum. This scheme ensures that the sample points are
spread more evenly over the space ().

The third type of sampling is systematic sampling. A lattice network 1s su-
perimposed on the space @. Points sampled inside each lattice form a regular
geometric configuration and all the lattices have the same sampling configuration.
This scheme can be viewed as a stratified sampling with an equal size of strata
except those on the border; and a regular sampling configuration is conducted in
each stratum. If z(z) is a periodic function in its domain space, the regular sam-
pling configuration of systematic sampling may coincide with the period of z(x)

and fails to capture the properties of the function.

4.5.2 The Efficiency of Sampling

Since we are interested in estimating the mean or variance of z(z), let us define

the true mean of z(z) in the space @ as

d
5= !Q_fg)_f, (4.7)
Jodz
the estimated mean of n sample points as
. 13
By = — 2 #(=:), (4.8)
i=1
the true variance as
2
o doelm) — 7 )

fQ da: ’
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and the estimated variance of n sample points as
2, =Ly ) — 2m)? (4.10)
oy = ;Z;(z(x,) — Zm)5 .
where the integral f, denotes the integration of x over the space @ and z(z;) is

the value of z sampled at z;. Also, denote

112 [ e (4.11)

as the size of Q. For instance, ||@]|| is the length, area, or volume of Q if Q is a
one, two, or three dimensional space, respectively.
It is obvious that a good sampling scheme should use a small sample size while

leading to a low sampling error of mean estimation, Z(,y—Z2. In general, the variance
El(3) — 2] (4.12)

is used as a measurement to characterize the sampling performance [Mat80]. Once
the required precision of estimations is specified, the sampling performance can be

used to determine the sample size. Let us assume that

1. A larger sample size results in a more accurate estimation as long as the
sample points are evenly distributed over the function domain. The assump-
tion is good only if the function is bounded inside the space Q. The idea of
increasing the sample size until achieving the desired accuracy is based on

this assumption.

2. The “border effect” is negligible. In the case of a systematic sampling scheme,
every lattice unit or stratum is assumed to be of equal size. This means that
the lattice units along the border are of the same size as those lattice inside

the space, and have the same sampling effects as well.
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4.5.3 Estimating the Sampling Error of Systematic Sampling in One

Dimension Space

Consider a sampling scheme in which only one point is sampled from each
lattice. That is, the domain space is divided into n equal subspaces, ¢}, Q-, ...,
Qn, where ||Q41]| = [|Q2]l = -+ = ||@x]| = [|AQ]|. And the sample point z; is at
the center of @;. Hence, n is the number of sample points and ||AQ|| is the size of
lattice unit in the systematic sampling scheme.

The analysis of sampling errors is based on the Taylor expansion of z(z). Sam-
pling errors can be obtained analytically in terms of the second derivative of z(x)
and the size of the lattice unit. However, the analytical closed form of z(z) is
generally not available. The estimations of sampling errors are then carried out

using two sampling results.

4.5.3.1 Sampling Error of Mean Estimations

Because of the deterministic sampling scheme, the sampling error, 2,y — 2, can

be used to characterize the sampling performance of mean estimations.
. 1
Zny = Z b4 (.T,)
= A
e A 2 laals

= “Q” Z [AQ|=(z (4.13)

3

Thus, the sampling error yields

TS 8@t — [, (e)de) = ror > (414)

where €; = ||AQ]|2(z:) — fy, 2(x)dz
Let Qi = [a;, bi] in the one dimension case and then z; = (e; + b;j /2. By Taylor
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expansion at ¥ = a;, the function has the form

z(z) = z(a;) + (z — @)z (ai) + (:v—_zlm)—z-z"(a.-) + (= 3;1 i) (@) +---. (4.15)

Taking integration on the both sides of the above equation in the interval [a,, b;],

we have
/ " Az)de = (b — a;)2(as) + (—”‘—‘Efi‘-‘—)iz'(a.-) + @—;-!Eiﬁz"(a,-) bl (416)
Also,
o) = 2o+ BSH
= 2(a )+(b ;“")z'(a.-)+(”‘;“")zz"(ae)/zww. (4.17)
Then
18Qz(e:) = (b — a)zfa) + BTy + BBl 4 (g
Therefore,
o= (b @@ + il — @)
—%z"(a.-) +O(1AQI, (419

where r;(b; — a;)*2""(£;) is a residual term with a constant r; and & € [a, bi].

Equation (4.14) becomes

" _laelr,
”Q”Z o2 (a) + 0(1AQ)

< g1 S G Hh(e) + O 2QI)
- ”Asz”z 2hin(®) + OIAQIR), (20

where z7; () is the minimum of 2”(z) for all z € Q. By a similar argument, the

sampling error is bounded from below by

_lael? .

@) + OLI2QI), IR
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where 2/ __(z) is the maximum of z"(x) for all z € Q.

Finally, we can obtain the error of the mean estimation of n sample points

- o e = 52k + olael®), (.22)

by mean value theorem provided that z”(z) is continuous in @ and £ € Q.
However, the function z(z) is usually unknown, as well as its second derivative,
2"(z). In order to estimate the sampling error, another systematic sampling with

2n sample points is conducted and the corresponding sampling error is

1aQl? LQ

&{2n) = - ") + Ol %), (4.23)

for some ¢ € Q. Incorporating the sampling error term, we have
2(,1) =z+ E(Tl) (4.24)
and
5(2,.,) = % + €{2n}, (4.25)

where 2,y and 2(;,y are the mean estimations of n and 2n sample points, respec-
tively. Assume that the second derivative of z(z) does not change much in the
sampling interval, that is, 2/(a;) = z"(aiz), where a;; = (a; + b;)/2 for halving the
sampling interval. Thus, we have 2”(§) ~ z”(() and the estimation of sampling

error with 2n sample points is
— 1. .
6(2n) =4 5(2(,,) — Z(gn)) (4.26)

4.5.3.2 Sampling Error of Variance Estimations

To estimate the sampling error of variance, let us examine 0:2(,,) — o?. By

Equations (4.9) and (4.10), we have

ol (4.27)
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and

n

Hay = S22 (@) = 2y (4.28)
So
P =t = 1o [z: 18@lls*e:) ~ [, zﬂ(x)dx] S - (629)
Let g(z) = z*(x) and we can obtain
- A 2 1
"—zﬂ [Z |AQIZ*(zi) — fQ zz(m)dm} = —“—%”g (M) +0(|AQIP)  (4.30)
i=1
for some 5 € Q. Also from Equation (4.24),
By—2 = (Z+en) -2
= 2¢(n)z + (e(n))® (4.31)

Hence, the sampling error of the variance estimation of n sample points is approx-
imately four times as large as that of 2n sample points. Thus, we can estimate the

sampling error of variance estimation as

———

1 - .
€2 (2n) = 5(0'2(") — 02(2,,)). (4.32)

Using Equations (4.26) and (4.32), we can determine the sample size to achieve
the desired accuracy of estimations. This technique doubles the sample size and
estimates the sampling error to see if it is smaller than a tolerable error.

A similar analysis can be applied to estimate the sampling error in a higher
dimensional space Q. For example, suppose that @ C R?, and h and k are the
discrete intervals of the lattice unit in the dimensions = and y, respectively. Then

the sampling error of mean estimation is

i ,
— (B2 (6,0) + 220, (6,0)) + O(R® + 1%k + bk + £9), (4.33)
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for some (£,%) € Q. The sampling error of n sample points can be estimated as

———

e(n) A 2(2(,,) — 2(2,,)) (4.34)

from the doubled sample size of 2rn by reducing k and k by a factor of V2 or

— 4 . .
e(n) 2 5(2:(,,) - 2(4n)) (4.35)

from the quadrupled sample size of 4n which doubles the sample size in each

dimension. Moreover, we can find that

e{n) = 2¢(2n) =~ 4e(4n). (4.36)
when @ is a two dimensional space.
4.5.4 Estimating the Sampling Error of Stratified Random Sampling

with One Sample Point Per Stratum

Assume that every stratum is of equal size in the following discussion.

4.5.4.1 Sampling Error of Mean Estimations

First, we show that the expected value of mean estimation is equal to the true

nean.

Theorem 4.1 The mean estimation via a stratified random sampling with one

sample point per stratum is unbiased.

Proof: Consider whether the mean sampling error E[3(,y — 2] = 0 or not. Let us

examine the expectation of Z,) in Equation (4.13).

ElZ(m] Z IAQNEl2(z:)]

uczn
o1 Lael [ gyt

i=1
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B nczn /a.

= Zz (4.37)

because z; has a uniform distribution in the interval [a;, b;].
It follows that the mean estimation is unbiased. o
Hence we need to employ the variance E[(%(,y — Z)°] to evaluate the sampling

performance. By the above theorem, we have
E[(3m — 2)'] = El&y] — 2E[3(m]z + 7*
= E[&, -2 (4.38)
Recall that 3y = ~ Y0, z(2:). E[#,)] becomes
IS () - (5 +(eo)]

S M Jo, (zi)dz: Jo, (z;)dz;
i N N N (7 ) 39

because z; and z; are independent with respect to @; and Q;. Since Z can be

calculated from n disjoint subspaces, we get

o (2:;1 Ja, z(m)d:c)2

Il
_ fo, 2(z)dz [g; z(z)dx
- e T (440)

i=1 j=1

Subtracting Equation (4.40) from Equation (4.39), E[(%(y — Z)?] yields

1 2": Jo. 2 (2)dz _l_z“: Jo, 2(z)dz [p, 2(z)dzx

752",_1 ledl =r& laQl Al
1 n
N m; 2_;53—1

— ? 3 o2, | (4.41)
i=1
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where the subscript ¢ indexes the statistics of the subspace @;. It is easy to see
that
2 .
. \2 o fn=1
Blew-21={ 5 Hnile (1.4
If the subspace Q; is equally divided into two subspace @;; and Q;; and the

sample size is doubled from n to 2n, we can obtain the following relation
2_ 1, 5 2 1 _ — 2
oi = 5(0i +oi) + 1 (Z — ). (4.43)
Thus, the sampling performance given 2n sample points is

E{(%(20) — 2)"]

1
= Z’“ﬁ' (‘7:'21+0='22)

= o 22[0 z,1 7))

= _E[(z(n) - 2 81’1,2 Z( Zi — Z,g

f=1

< EE[(EM - 2)3). (4.44)

In other words, doubling the sample size improves the sampling performance more
than twice.

Applying the same technique, it is easy to show that the variance of mean
estimations is equal to one R of the true variance of the function z if the stmple

random sampling scheme is taken over (). That is,

0.2

Bl(3m - 2] = =, (4.45)

where n is the number of sample points. As n gets larger, the distribution of 2,
approaches a normal distribution with mean z and variance gﬂi
Suppose that the space @ is equally divided into n subspaces and stratified

random sampling is conducted. We can find that

2_—Za+ LOSELREY O (ade)

1—1
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Plugging in Equation (4.41), we get
2 n
A 7 (C T LAY VR o S
0}y = Bllem = 2 = — — ~(=2_ & ). (4.47)

By Cauchy inequality, ;

%22‘2 > (% ; z-.-) = 3%, (4.48)
Therefore, the second term on the right hand side of Equation (4.47) is positive.
Equations (4.45) and (4.47) illustrate that stratified random sampling obtains bet-

ter sampling performance than simple random sampling, given the same number

of sample points. By Chebyshev’s inequality, the probability

2
Okmy o —¢

= (4.49)

P{|£"(n) — §| > k} <

where ¢ = 1 "% | 2 — z%. Given a bound probability @ and an interval k, we can

solve the number of sample points
n=—-:. (4.50)

Using the biased estimation of variance (see Equation (4.55}), the number of sample

points is

o

%}i’} (4.51)
in order to obtain the desired sampling performance. Thus we can obtain the
probability less than o that the true mean Z is outside the interval {2y — &, Zn) +¥]
given n sample points for the stratified random sampling scheme. This result can be
generalized to vector function z provided that the operator |- | calculates Euclidean

distance, and variances are also based on the Euclidean distances among vectors.

In the multidimensional space, |(,y — Z| = k defines a hypersphere with radius .
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4.5.4.2 Sampling Error of Variance Estimations

In the following, let us examine the mean sampling error of the variance esti-

mation of n sample points

E[Otz(n) - 0'2]

= zHz)dz
= B e -l - (g )
i 22%(z)dz
= %Zl El2*(z:)] — fiﬂé—”)—— — (E[2,] — 2%). (4.52)

Because z; is uniformly distributed in @;, we can derive

fQi Zz(Ig)d.’E,'

E[2*(z))] = o (4.53)
and
13 ()] = fo 2(z)dx

Thus, the expectation of sampling errors of the variance estimations becomes

E [t;z(n) — 0%

= —-—> ol (4.55)

It is obvious that 022(,1) is a biased estimation of 2. Again, we can obtain the two

extreme sampling situations

2 fn=1

fn s oo (456)

- -0
Elo%m — o*] = { 0

Similarly, the expected sampling error of the variance estimation reduces in a factor
greater than two when the sample size is doubled.

From Equations (4.41) and (4.55), it follows that

n

Bl(e(n))!] = = 3 0? (4.57)

2
n =1
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and
Blegt{n)] = = i 3 (4.58)

Since the analytical form of z(z) is in general unknown, the sampling errors which

depend on ¢? can only be obtained by estimation. The double-sample size tech-
nique is again employed to estimate the sampling errors. Assume that zy =~ Z

for some sample size n. In this case, we have

E[(&(n))*] = 2E[(e(2n))*] (4.59)
and

E[é,: (n)] = 2E[€a.2 (Zn)] (4.60)

By doubling sample size, the expectations of sampling errors are

E[(e(2n))!] & E[2},y — 3(om)) (4.61)

Ele,2(2n)] = E[0%(my — 0% 2n)]- (4.62)

4.6 Summary

Pattern designation involves the formulation of parameter characterization as
a pattern recognition problem and leads to the designation of distinct nonlinear
mathematical models to be patterns. A parameter space is defined to represent the
candidate models by piecewise linear functions or piecewise smooth polynomials,
which approximate the unknown functions. This parameter space is partitioned
into pattern classes using a top down dichotomy algorithm based on the variation
of simulated system responses of the candidate models. An analysis of sample size
determination for this algorithm is proposed. The primary idea is to double the

sample size and estimate the sampling error from the current estimation and the
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previous estimation. Thus an approximate sample size can be determined for a

desired accuracy.
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CHAPTER 5

Feature Extraction

5.1 Introduction

Features are the variables that are measured and utilized by a classifier to
separate patterns into classes. The basic requirements of the features selected are

[CheT3]:
1. they are invariant to the patterns in the same class,
2. they properly abstract the properties of a pattern,
3. they can be obtained from patterns.

The task of determining these variables from patterns is called feature eztrac-
tion. This is the most important step in designing an efficient PR system. In
general, features must be able to enhance the similarity of patterns within one
class and at the same time enhance the difference of patterns between classes.
The minimization of the probability or cost of misclassification are also criteria in
selecting features.

Because of the importance that features can provide significant differences from
one class to another, this subject has received much attention. Vigorous efforts
were exerted in this field in late 1960’s and early 1970’s. Many important theories
were derived and experiences were gained. But, no significant break through has
been reported in both statistical pﬁttern recognition and syntactic pattern recog-

nition. In a survey paper, Levine [Lev69] commented that no general theory exists
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for feature extraction. It turns out that feature extraction is very much ad hoc and
problem oriented. For example, in order to identify the exponential decay of an
underdamped sinusoidal signal, the peak point of every signal cycle is the best fea-
ture. This is because the system is well understood. In other words, the more prior
knowledge about the problem, the easier the task. This kind of features depends
heavily on human expertise. However, engineers and scientists sometimes cannot
express clearly the features of applications in a formal language or mathematical
expressions. Some feature extraction schemes are beyond the computational power
of current computer technology or cannot be formulated as suitable algorithms to

utilize computers. All of this make this task even tougher.

5.2 Objective

Although there exists no unified formulation of the feature extraction problem,
the experience and theories obtained two decades ago are none-the-less valuable to

this work. We can define the objective of feature extraction as general guidelines:

e To enhance the clustering within any one class,
e To increase the separation between classes,

e To reduce dimensionality of data.

In the present research we employ principal component analysis techniques as the
general idea to extract the primitive features which fulfill the above objectives.
The quest for primitive features has been always a most demanding challenge in
diverse areas of science inquiry. In the early years, chemists tried to find the
primitive elements composing materials. In the context of pattern recognition, the
primitive features of a pattern would also play an important role. In the following,

feature extraction techniques based on principal component analysis are discussed
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because principal component analysis provides a statistical approach to analyze

the primitive features.

5.3 Karhunen-Loé&ve Expansion

One of the best known and most useful feature extraction techniques is the
discrete Karhunen-Loeve (K-L) expansion. The K-L expansion is a kind of prin-
cipal component analysis. Basically, it is a linear transformation based on the
eigenvectors of the covariance matrix of samples.

Let X be an n-dimensional random vector, or a system response vector in the
context of the system identification problem domain. There exists an orthonormal

expansion of the random vector X in the form

X =) y® =0Y (5.1)
=1
where ® is an n X n matrix
@ = (@ ), (5:2)
Y=y vya)7, (5.3)

y; is the coefficient of ®; in the expansion, and T is a transpose operator. The re-
quirement of the orthonormal expansion is that the columns of ¢ are orthonormal.
That is,
3,79, = { ! (:f =J) (5.4)
Consider the autocovariance matrix of X
Ex = B[(X - Mx)(X — Mx)"] (5.5)
= E[(?Y — My )(2Y - My )7}
= EBl2(Y - My)(Y - My)Te"]

= 3%y 07
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It has been shown that the autocovariance matrix Ty must be a diagonal matrix
A in order to minimize the mean square error of the expansion when fewer then n

basis vectors are used [Fuk72]. That is,

2x® = AD. {5.6)
where
M 0 - 0
0 A - O
A= s e s (5.7)
o -+ 0 A

The matrix & consists of n linearly independent column vectors, which are
the eigenvectors of the autocovariance matrix of X. In other words, X can be

expanded in the eigenvectors and Y is a linear transformation of X in the form
Y =o7X (5.8)

The components of ¥ are considered to be the features of the observed vector X.

There are several attractive properties of the discrete K-L expansion.
1. The eigenvalues can be ordered in the following manner
M2 > > A 20 (5.9)

The magnitude of an eigenvalue is the variance of X in the direction of
its associated eigenvector and also represents the effectiveness of the feature
component. Therefore, the reduction of the dimensionality of the features can
begin by the deletion of the feature with the smallest eigenvalue. Usually, the
criterion for selecting feature components is based on how much information

is to be preserved after the orthonormal transformation. That is,

min :'H—IA > p. (5.10)
t=]1 "
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where p is a preselected threshold to retain the amount of information during
the transformation. Then m components of Y are selected with the m largest
eigenvalues to be the features of X. In this case, the dimensionality is reduced

from n to m.
2. The Euclidean distance is preserved in the orthonormal transformation,
IYi2 =Ty = XTedTX = XTX = || X|%. (5.11)
Also, the structure of the data is preserved.
3. The orthonormal transformation diagonalizes the covariance matrix.

From the above discussion, it is easy to see that the discrete K-L expansion
only considers the distribution of all samples in the training set, and does not take
into account the discrimination between classes. It is necessary to consider the the

between-class covariance to improve this technique.

5.4 Fisher’s Discriminant Method

In his original article [Fis36}, Fisher suggested a method of developing canonical
variates based on the between-class and within-class covariance matrices.
Let us define the within-class scatter matriz of samples to be
k
Sw =2, Pw)E[(X — Mi)(X — M) |wi] (5.12)
i=1
where k indicates the number of classes and M; is the mean vector of class 7. The
term w; represents the event that X is in class . And the between-class scatter
matriz is defined to be
k

Sp =Y Plw)(M; — Mo)(M; — My)T ' (5.13)

=1
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where M, is the mean vector of all samples.
The feature extraction process is intended to find an m xn linear transformation
matrix A such that only m (m < n) feature components Y = (y1,¥2," - Um )| are

selected in order to reduce dimensionality, that is,
Y =AX (5.14)

Also of greatest importance is the enhancement of the similarities within any one
class and the differences between classes. In other words, the transformation should
be able to make a smaller within-class scatter matrix and a larger between-class
scatter matrix. Thus the criterion can be formulated to maximize the divergent

metric subject to the transformation matrix A:
J = tr(Z, 7 8. (5.15)
The term X, and ¥} denoting the scatter matrices of ¥ are
Ty = AS,AT (5.16)

and
Ty = AS AT, (5.17)
In order to maximize J, let us consider

8J _ 25AT(AS,AT) — 25, AT(ASAT)

7 = =0 5.18
QA (AS,AT)? (5.18)

To satisfy the above equation, we can get
S AT — A8, AT = 0. (5.19)

Thus J is maximized when the rows of matrix A are constructed by the first m

eigenvectors of matrix S,,~' Sy [Fuk72]. That is,

AT = ((I)l@z bl (pm) (5.20)
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where S, 1S,®; = \;®; for i =1,2,---,n and A; are ordered as
Al Z A 20 2 A (5.21)

Appendix B presents a technique to solve the eigensystem of matrix Sw 1 5.
Since the distribution of the random vector, X, is unknown, the scatter matrices
(also covariance matrices) can be estimated from system response vectors of the
sampled patterns in the pattern designation step. Using a standard eigenvector
system software package, the feature extraction matrix A can be obtained without
difficulty, though it is computationally intensive for high dimensional response
vectors. Equation 5.10 describes the criterion for selecting feature components.
Suppose that only m feature components are selected out of n components to
form a feature vector. The feature extraction matrix thus becomes an m X n
matrix, which can be implemented by a single-layer neural network with linear

perceptrons, as shown in Figure 5.1. In summary, the procedure of constructing a

yl Y2 ¥3 ym

xl Xz x3 xn

Figure 5.1: A neural network implementation with perceptrons of the feature
extractor.

feature extractor is:

1. Estimate the sample scatter (covariance) matrices.

1 L i Y ri AT
So = 7% DX - M) (X — M) (5.22)

=1 j=1
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1 k N" ~ ~ A - T
= e —(M; — i — 5.23
S0 = o 3 7 Ut — M) s — ) (5.23)
where N = 325 | N;, and
- 13
1 5=1
and
. 1 kN
My = SE N ZEX; (5.25)
=1 47 =1 3=1

are the sample mean response vector of class ¢ and the sample mean response

vector of all sample patterns, respectively. In addition, X ; denotes the jth

sample response vector in class z, N; 1s the number of samples in class ¢ and

k is the number of classes in the parameter space.

2. Calculate the eigenvectors and eigenvalues of the matrix S,15,, normalize

the eigenvectors, and sort the eigenvalues in a descending order.
3. Select the first m eigenvectors to construct the transformation matrix A.

4, The feature vector of an observation X is obtained by ¥ = AX or by stan-
dardizing with respect to Mp to yield Y = A(X — My).

The major properties of this feature extraction scheme are listed:
1. Learning techniques are not used in feature extraction.
2. Little prior knowledge of the problem domain is needed.
3. The computer software package for extracting features is well developed.
4. The underlying mathematical framework is well established.

5. The method is simple and general, but limited to linear transformation. In

order to obtain optimal features, patterns are assumed to have a Gaussian
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distribution within any one class and identical variance for all classes [Lac75,

Fuk90]. In practical applications, these assumptions are often not true.

6. It is very sensitive to noise, discussed in section 5.5.

5.5 An Improvement on the Fisher’s Discriminant Method

From Equation (B.7) in Appendix B, the linear transformation of the Fisher’s
discriminant method scales the system response space by a factor of le along the
direction of the corresponding eigenvector ®; of the within class covariance matrix
for all eigenvectors. In fact, the square root of eigenvalue, Vi, is the deviation
of the within class scattering along the ®; direction. A small eigenvalue means
that system responses within any one class are similar along the corresponding
eigenvector direction. However, small noise which is not correlated to the within
class distribution gets magnified significantly under this transformation. Thus the
Fisher’s discriminant method performs very poorly with very small noise.

A noise term is introduced to the within class covariance in order to reduce the
noise sensitivity of the Fisher’s discriminant method. The within class covariance

used in computing the eigensystem is then replaced by
Sw + Sn, (5.26)

where S, is the autocovariance matrix of noise. The selection of S,, depends on the
applications and can be determined from the typical Signal to Noise Ratio (SNR)
of the applications and a priori knowledge of noise. If the noise is assumed to be

independently identically Gaussian distributed with zero mean and independent
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of the system response, the autocovariance of noise becomes a diagonal matrix

g 0 G
0 % .- 0

Sn = . . . . (527)
0o - 0 o?

where o is the standard deviation of the Gaussian noise. Since the noise is assumed
to be unbiased, the between class covariance matrix remains unchanged with its

autocovariance of noise equal to zero.

There are three implications on the noise term S, associated with the within

class covariance matrix:

1. Computational stability: S, enlarges the eigenvalues of the within class co-
variance matrix and stabilizes the computation of inverting the noisy within
class covariance matrix. Equation (B.7) also shows the need of the noise

term for A~7 if very small eigenvalues exist for S,,.

2. Training with noise: S, can be considered as the additive random noise to the
system responses. The feature extractor is thus constructed with a training

set presented in a noisy environment.

3. Robustness to noise: S, reduces the sensitivity of the Fisher’s discriminant
method to noise. If a priori knowledge about noise is available, S, is certainly

necessary.

5.6 Some Other Analytical Techniques

Since the Fisher’s discriminant method is limited to linear transformations,
nonlinear analytical techniques may be required to extract nonlinear features and
to realize a preprocessor. However, these techniques could be very ad hoc and

require prior knowledge as well as human expertise. Thus trial and error becomes
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inevitable in the ad hoc approach, especially, when little prior knowledge is avail-
able on the applications, and feature extraction performance is unknown in ad-
vance. Different analytical techniques are just worth investigating. Two analytical

techniques worthy of comment are:
1. frequency domain analysis,
2. exponential components analysis.

The most valuable tool in frequency domain analysis is the Fourier transform
which has long been a well known principal analytical technique and extensively ap-
plied in signal processing, image processing, and theoretical analysis. Fourier series
is a useful representation of signals in the frequency domain, especially for periodic
signals. Tt was not until the invention of Fast Fourier Transform (FFT) [Bri74] that
discrete Fourier transforms could be practically utilized on digital computers and
were widely applied. The coherence function of power spectra provides a measure
of the match between two patterns in the frequency domain [OET78, SK86].

The analysis of exponential component data is frequently encountered in such
diverse areas as biology, physics, electrical engineering, and even economics. The
amplitudes and decays of the multiple exponential components are thus very
promising features for the analysis. Smith et al. [SCS76] and Provencher [Pro76]
provide analytical techniques based on the Gardner Transform and utilizing the
Discrete Fourier Transform in order to accomplish numerical computation. In a
simple case, the multicomponent exponential decays can be expressed as

n
z(t) =D aie™ ™, (5.28)
i=1
These methods compute a spectrum of exponential decays and try to extract the

information carried by the parameters n, a;, and ;. However, these methods are

65



1. computationally intensive,
2. of low resolution, and

3. very sensitive to noise as well as rounding errors.

5.7 Summary

In this study, the feature extraction scheme employs the Fisher’s discriminant
method that maximizes the scattering between pattern classes while minimizing
the scattering within any one pattern class. This method also reduces the di-
mensionality of the pattern vectors. But it is restricted to linear transformation.
In addition, ad hoc approaches may serve to extract nonlinear features. More-
over, the frequency domain and exponential component analysis techniques might
serve as preprocessing tools for the Fisher’s discriminant method, depending on

the application.
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CHAPTER 6

Classification

6.1 Introduction

Classification, which assigns an object to one of several predetermined classes,
is fundamental to scientific inquiry and very important in many areas of science and
technology. It is considered to be a decision making process which uses either a set
of predetermined rules or rules extracted from a training set. The mechanism that
performs the classification task is called a classifier. Mathematically, a classifier is
a membership function.

Neural network classifiers possess the capability of learning and adaptation
which makes a major difference to the conventional classifiers. This chapter begins
with a brief description of conventional classifiers. Then a new adaptive neural
network classifier is addressed. Also, a two dimensional classification problem is

presented to demonstrate the performance of the neural network classifier.

6.2 Conventional Classifiers

There are two principal approaches to the pattern recognition field: statistical
pattern recognition and syntactic pattern recognition. The classifiers employed in
these two approaches are substantially different. The statistical approach uses a
training set to estimate the mathematical model characterizing the patterns, while

the syntactic approach uses language grammar provided by experts.
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6.2.1 The Classifiers of Statistical Pattern Recognition

In statistical pattern recognition, classification may be accomplished with clas-
sifiers with parametric techniques or with classifiers with nonparametric tech-
niques.

A parametric technique requires knowledge of the structure of the underlying
probability distribution of the patterns. Otherwise, a strong assumption must be
made about the distribution. A nonparametric technique, on the other hand, does
not require knowledge of the distribution. Some of the nonparametric techniques
only attempt to estimate the distribution. The nonparametric techniques are im-
portant because the knowledge is usually not available a priori or the assumption
of underlying probability distribution is not justified. In pattern recognition ap-
plications, this information is generally not obtainable. Therefore the parametric
classification scheme is of little use.

Some popular nonparametric classification schemes are [DH73):

1. linear classifiers: The discriminant function is a weighted sum of the feature

components. The decision boundary is a hyperplane.

2. nonlinear classifiers: The discriminant function is a nonlinear combination

of the feature components. The quadratic classifier is an example.

3. piecewise classifiers: For the multiclass problem, the decision boundary must
have a piecewise structure. In general, the piecewise function is linear or

quadratic.

4. minimum distance classifiers: For each class, there is one representative pro-
totype pattern. The testing pattern is compared with all the prototype

patterns to determine which one it is closest to.
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5. nearest neighbor: Basically, this kind of classifier is similar to minimum
distance classifiers except that the testing pattern is compared with a set of
sample patterns of known classification. There may be more than one sample

pattern in each class.

6. k-nearest neighbor: This scheme determines the k nearest prototype patterns
to the testing pattern, and uses the majority of equal classification as the

classification of the testing pattern.

6.2.2 The Classifiers of Syntactic Pattern Recognition

The syntactic pattern recognition [Fu82] approach is based on the utilization of
concepts from formal language theory. It employs syntactic grammars to describe
the structure and interrelationships between the primitive components of a pattern.
The extraction of the primitive components from a pattern requires a priori knowl-
edge. No general training algorithms have yet been discovered. Some approaches
of identifying the primitive components rely on statistical pattern recognition tech-
niques. In general, context free grammar is used in the syntactic approaches, and

the classifier of a syntactic system is a push down automata.

6.3 Neural Network Classifiers

In this study, we propose an adaptive neural network as the pattern classifier.
This neural network classifier is based on the architecture of the Hamming net
and capable of adapting to higher classification performance. Because of the lack
of prior knowledge about the system responses and the difficulty of describing
the output signals of a system in a formal language, syntactic approach is not

employed.
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6.3.1 The Neural Network Classifier Based on the Hamming Net

The classifier for the Fisher’s feature extraction scheme described in section 5.4
can be designed in the sense of Euclidean distance to find the nearest exemplar

representing a pattern class. That is,
min{(Y — AM)T(Y — AM,)} (6.1)

where Y is the feature vector obtained from the output of the feature extractor, A
is the transformation matrix, and M; which is the mean pattern vector of pattern
class i is designated to be an exemplar. In fact, this is a minimum distance classifier

with the mean pattern vectors as exemplars. This expression is equivalent to

AM;

max{(¥ ~ T)TAM.-}. (6.2)

This classifier can be implemented with an artificial neural network of architecture
similar to the Hamming net [Lip87] except that this classifier deals with real valued
vectors instead of binary vectors. A two-layer neural network is constructed in such
a way that the first layer calculates the similarities of the feature vector Y to all the
stored feature exemplar AM/s, and the second layer selects the maximum. Thus,
the feature vector Y is classified with the pattern class of the most similar feature
exemplar.
Figure 6.1 shows a neural network implementation of the classifier. The per-
ceptron of the first layer computes the following function:
m
ui = > wizy; — (AM)TAM;/2 (6.3)
i=1
where m is the number of feature components, and u; is the similarity or likelihood

of Y to AM,. In this equation, the connection weight is defined to be
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similarities

¥y Yy ¥, Ym

Figure 6.1: A neural network classifier.

where ®; is the j-th row of matrix A.

The second layer is a maxnet which performs the winner-take-all operation,
described in section 3.4.5. Its input is fed from the output of the first layer prior to
time zero and then removed. After convergence, the node with a positive output
value indicates the class which the feature vector Y is classified with.

The decision boundary constructed from the minimum distance property of the
exemplars is actually a Voronoi diagram [Sed90] of these exemplars. The Fisher’s
discriminants utilizing a minimum distance classifier perform optimal classifica-
tion if every class is Gaussian distributed and has identical variance [Lac75]. In

applications, these conditions generally do not exist. Hence, two problems arise:

1. The exemplar of every class is not necessarily the mean pattern vector be-
cause the sizes of the class regions in the pattern space are not identical. In
addition, patterns of a class may scatter asymmetrically with respect to their

mean. The assignment of exemplars becomes an important issue.

2. The shape of the region of a class may be concave. Thus, one exemplar for
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each class may not be enough to cover the nonconvex region.

6.3.2 Modified LVQ

An adaptive nearest neighbor classifier with multiple exemplars per class is
proposed to cope with these two problems. A learning technique is employed to
adapt the exemplars using the training set. This classifier is a modification of
Kohonen’s LVQ [Koh84].

In a pattern recognition system, the inputs to a classifier are feature vectors.
But for the sake of notational consistency, patterns are directly used as the inputs
to the classifier in the remaining discussions of this chapter.

Based upon the nearest neighbor classification, the learning rule of LVQ is as

follows:

1. Punishing: if a training pattern X is misclassified with the exemplar M), the

exemplar is pushed away from X.

Mi(t+1) «— M(t) — n(X — My(t)). (6.5)

2. Rewarding: if X is classified with M, correctly, the exemplar is pulled toward
X. .
M(t + 1) — M%) + 9(X — M(2)). (6.6)

In the above two equations, t is the learning time in a discrete form. And 0 <7 < 1
is the learning rate which decreases monotonically with time. The convergence of
this algorithm is guaranteed as n goes to zero.

After the learning process of LVQ converges, the exemplars of a class get dis-
tributed approximately with a distribution of the training patterns of this class

[Koh84]. Every exemplar of a class dominates a region with its size approximately
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inversely proportional to the training pattern density of this class. In other words,
the number of training patterns classified with an exemplar using nearest neighbor
classification scheme is about the same for all exemplars of a class. Let us define
the utilization of an exemplar as:

Number of patterns in class k classified with M;

U(M) = (6.7)

Total number of patterns in class k ’

where the exemplar M; is one of the representative patterns of class k. If the
training patterns are sampled uniformly from the pattern space, every exemplar
of a class is of equal importance and similar utilization.

However, LVQ cannot define the correct decision boundary clearly. It always
misclassifies patterns near the decision boundary because the exemplars are re-
pelled by the training patterns of other classes according to the punishing rule and
attracted inwards to the region of their representing classes by the rewarding rule.
Each exemplar is located deeply inside its class region and not able to define the
decision boundary accurately. Hence, a Modified LVQ, or MLV{Q), is proposed to

remedy the boundary problem, while maintaining the utilization of exemplars.

The learning rule of the MLV(Q is:

1. For correct classification of a training pattern X with exemplar M,, the

learning process only takes place in the early several training epochs and

M,(t+1) — M,(t) + n(X — M,(t)). (6.8)

2. If X is misclassified with M, and the nearest exemplar of the correct class

to X is M,,

(a) punish M,
Mift +1) — M(®) (X — Mi(t)) (6.9)

and
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(b) reward M,
M,(t +1) «— M,(t) + n(X — M,(¢)). (6.10)

Here, one training epoch is defined to be the application of the learning rule by go-
ing through every training pattern once. Step 1 of the learning rule distributes the
exemplars inside the regions of their classes so that they have similar utilization.
After spreading the exemplars over their corresponding regions, only misclassifi-
cation is taken to perform the learning process and step 1 is skipped from then
on. The time to terminate learning from correct classifications can be recognized
from the misclassification difference between two consecutive training epochs. In
experiments, this task is usually done within 10 training epochs. This number
depends on the number of exemplars, the initial values of the exemplars, the size
of the training set, and the learning rate n. For a larger number of exemplars, more
training epochs may be required to settle down the competition among exemplars.
Step 2 of the learning rule then refines the decision boundary by punishing the ex-
emplar of the wrong class and rewarding the exemplar of the correct class whenever
misclassification occurs.

The remaining problems are how to assign the initial values of the exemplars
and how many exemplars of a class suffice. In order to speed up the learning
process of step 1 of the MLVQ) learning rule, the initial values of the exemplars
of any class are set to be the mean vector of this class with small additive noise.
If the region of the class is convex, the exemplars are already inside this region.
Otherwise, these exemplars are none-the-less very close this region.

The number of exemplars of a class is determined in an iteratively incremen-
tal manner. After the learning rule converges, if misclassification occurs in some
classes, more exemplars are added for these classes and the learning process is re-

peated. However, if the misclassification rate cannot be reduced after adding more
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exemplars, region overlaps between different classes are inherent in the problem.
In summary, the algorithm for constructing an adaptive neural network classi-

fier is:

Algorithm: Training of the MLVQ Classifier
1. Select the initial number of exemplars for each class.

2. Set the initial values of the exemplars to be the mean vectors of their repre-

senting classes with small additive noise.
3. Choose the initial learning rate 5.

4. For all training patterns, apply the MLVQ learning rule to adapt the exem-

plars.
5. If all training patterns are classified correctly, stop.

6. If any misclassification occurs and 7 is greater than zero, decrease n and go

to step 4.

7. If  has been reduced to zero, assign more exemplars to where the misclassi-

fications take place in the pattern space and go to step 3.
8. If the misclassification rate cannot be improved after executing step 7, stop.

In step 7, the new exemplars can be assigned to locations where the misclas-
sifications take place, or the method mentioned in step 2 can be used. After the
algorithm stops, each exemplar is assigned to one perceptron whose connection
weights are the vector components of this exemplar. The neural network imple-

mentation of the MLVQ classifier is shown in Figure 6.1.
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6.4 Example

In the following, the MLVQ is applied to a two dimensional classification prob-
lem. A training set of 5000 patterns and a testing set of 5000 patterns are sampled
randomly from the pattern space. Figure 6.2 shows the decision boundary of three
classes and the initial locations of 21 exemplars using MLVQ. Figure 6.3 shows the
final locations of these exemplars with almost perfect classification for both the
training set and the testing set. These exemplars are then used to construct the

classifier for the classification problem.

15 %

10

Figure 6.2: Three pattern classes and the initial locations of exemplars for the
three classes using MLVQ.

In the experiment, step 1 of the MLVQ learning rule stopped learning after
10 training epochs. The initial  was set to be 0.05 and linearly reduced to 0
at training epochs 400. The learning process was terminated after 400 training
epochs if a perfect classification of the training set was not obtained.

The effectiveness of training is depicted in Figure 6.4 where the number of
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Figure 6.3: The final locations of the exemplars using MLVQ.

misclassification is plotted against the training epochs and the number of exemplars
per class using the MLVQ and LVQ. It is easy to see that MLVQ outperforms LVQ
both in learning speed and in misclassification rate. LVQ does not obtain perfect
classification during training and seems to be learning saturated after 50 training
epochs even with a large number of exemplars.

Table 6.1 presents the misclassification rates of the testing set for different
methods with various number of exemplars per class. ADSM [GS91] stands for the
adaptive decision surface mapping whose learning rule is identical to the step 2 of
the learning rule of MLVQ. MLVQI indicates the method of MLVQ with infensive
learning scheme, described below. The results show that MLVQ produce a better
performmance than ADSM and both of them outperform LVQ.

The order of presenting the training patterns affects the learning result. Let us
define intensive learning as a learning process by presenting training patterns of
the same class consecutively together and random learning by randomly presenting

training patterns regardless of their class. In general, intensive learning performs
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Figure 6.4: The number of misclassifications in the training history using LVQ
and MLVQ with 3, 5, and 15 exemplars per class.
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Table 6.1: Misclassification rates (%) on the testing set using different methods.

number of exemplars | MLVQ | MLVQI | ADSM | LVQ
per class
1 29.34 39.34 27.96 | 24.78
2 9.02 28.74 10.20 | 14.40
3 2.26 3.24 6.48 6.84
4 1.58 6.02 1.60 6.26
5 1.34 2.20 1.60 5.02
6 0.52 0.54 0.70 3.80
7 0.36 0.52 1.10 2.70
8 0.70 0.22 3.12 3.42
9 (.64 0.28 1.48 3.50
10 0.10 0.24 0.60 3.18
15 0.02 0.30 0.62 3.52
20 0.14 0.12 0.38 2.22
25 0.26 0.08 0.58 2.22

slightly better than random learning in terms of learning speed, especially in the
early learning stage, as can be seen in Figure 6.5. However, when the number of
exemplars is not large enough, intensive learning leads to an overshooting behavior
of learning.

Since the initial exemplars of ADSM are randomly drawn from the training set,
performance degenerates if the initial exemplars are not spread evenly over the class
regions. Figure 6.6 depicts the initial locations of 30 exemplars with slightly biased
distribution. In this case, ADSM only obtains a 2% misclassification rate. Also,
some exemplars are not utilized and some never learn anything from the training
set, as can be seen in Figure 6.7. It is necessary to redistribute these exemplars.
Thus, step 1 of MLVQ learning rule helps improving the utilization of exemplars

and gives better initial exemplars for ADSM.
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Figure 6.5: Intensive learning vs random learning.
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Figure 6.7: The final locations of the exemplars using ADSM.
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6.5 Discussion

There are two issues regarding the improvement of the classifier that require

further discussion:
1. training with noise,

2. null class classification.

6.5.1 Training with Noise

Training with noise is concerned with presenting the training patterns with
additive random noise to the classifier during training stage. There are several

reasons for training with noise:

1. The training patterns are only a small fraction of total patterns. Patterns
in the neighborhood of a training pattern are probably in the same class as
this training pattern. Using the original training set with additive noise thus
increases the number of possible training patterns. The selection of its noise
amplitude depends on the sparseness of the training patterns in the pattern

space.

2. In the real world, patterns are usually measured in a noisy environment. It
is practical to train the classifier with noise because the classifier eventually
takes the noisy patterns as inputs in the recognition stage. However, the

prior information on the random noise is not available.

3. If there are gaps between class regions in the pattern space, noise could
expand the territories of pattern classes and improve the classification per-

formance.
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On the other hand, noise could also blur the decision boundary, confuse the
classifier, and increase the training time.

The two dimensional classification problem is again used as an example to
demonstrate the effectiveness of noise on the learning results when sparse training
patterns are presented. The training patterns are sampled at the integer grid
points (z,7) except those points on the boundary of two classes, where : and ;7 are
integer and in the range [0,19]. The testing set with 5000 testing patterns is the
same as the one used in the previous example.

The noisy version of a training pattern (z,7) is assumed to be located on a
circle with this training pattern as its origin and a given radius » which is defined

to be the noise amplitude. Thus the noisy pattern is (z[r], j[r]) with
i[r] = ¢+ rcos(8), (6.11)

jlr] = 7 + rsin(8), (6.12)

where § € [0,27] is a uniformly distributed random variable. Two cases dealing
with how the noisy patterns are incorporated with the original training patterns
during training stage are investigated. In case I, the noisy patterns are generated
before hand and associated with the original training patterns as a training set.
Once the noisy patterns are generated, they are fixed and repeatedly used to train
the classifier. The number of noisy patterns that should be included for every
original training pattern is also a parameter of interest under study. In case II,
only one noisy pattern for every original training pattern is incorporated with the
original training patterns to train the classifier. But, in each training epoch, new
noisy patterns are generated.

Figure 6.8 depicts the misclassification rates against different noise amplitudes

using MLVQ with seven exemplars per class and eight additional noisy patterns
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for each training pattern in case I. Since noise is random, each data point of the
misclassification rate in the plot is an average of four simulation results. Start-
ing with small noise, the classification performance is improved gradually when
noise amplitude gets larger. The best classification performance can be achieved
if the noise amplitude is approximately 0.5. Beyond that point, the performance
degenerates dramatically as the noise amplitude increases. It is obvious that the
overlaps between noisy class regions occur when noise amplitude is greater than

0.5,

Misclassification

rate (%)

(=T - B O ¥ 1 Y - )

0 .2 4 .6 .8 1
Noise amplitude

Figure 6.8: Misclassification rates (%) of MLV(Q) against noise levels under train-
ing with noise scheme.

Figure 6.8 also shows that case II is more effective in using noisy patterns than
case I. Case II requires not only less memory space to store the whole training
set, but also less training time. In addition, case II outperforms case I in terms of
the misclassification rates. Since new noisy patterns are required in each training
epoch, the case II approach is certainly better than case I if it is easy to generate
a noisy pattern from an original pattern.

For case I, the misclassification rates plotted against the number of noisy pat-

terns for each original training pattern with noise amplitude 0.5 and seven exem-
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Figure 6.9: Misclassification rates (%) against the number of noisy patterns per
original training pattern used in training with noise scheme.,

plars per class are depicted in Figure 6.9. Even with an appropriate noise am-
plitude, the performance is not improved lirearly with the number of additional
noisy patterns though the training time and memory space required increase lin-
early with the number of noisy patterns. In the two dimensional pattern space,
no obvious performance improvement can be obtained when the number of noisy

patterns for every original training pattern is greater than 6.

6.5.2 Null Class Classification

For a pattern located outside the pattern space of an application, this pattern
should not be classified with any of the designated pattern classes. It is necessary
to designate a null class for those outsiders.

The perceptron implementation of Equation (6.2) does not provide any bound
to exclude outsiders. For instance, if ¥ = bAM; and b is a positive scalar, the
similarity function of Equation (6.3) cannot be bounded from above. Moreover,
for any feature vectors orthogonal to AM;, there is no information to distinguish
the distances from these feature vectors to AM; by the similarity function.

Since the training set does not include the outsiders, every exernplar requires a
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similarity or distance bound in order to detect the outsiders. The first order compu-
tation with the perceptron implementation is obvious not suitable for applications
requiring null class classification. Nevertheless, the second order computation of
Equation (6.1) provides more information on setting bounds to exclude the out-
siders. It is for sure that the lower bound of the Euclidean distance to an exemplar
is zero. In this case, the pattern is identical to the exemplar. The upper bound can
be obtained using the training set. Every exemplar has its own Euclidean distance
bound to detect the outsiders. Given a pattern, if all exemplars identify it as an

outsider, this pattern is classified into the null class.

6.6 Conclusions

MLVQ uses both misclassification and correct classification of training patterns
to adapt the exemplars during the early learning stage. When the training out-
come is about to get saturated, only misclassification is taken into consideration
in correcting the decision boundary. In this manner, MLVQ not only defines an
accurate decision boundary, but also maintains similar utilization of exemplars
for the purpose of fault tolerant implementation. The results show that MLVQ
1s better than ADSM and LVQ in terms of misclassification rates. In this study,
the MLVQ classifier is applied to the pattern recognition system for nonlinear
parameter characterization.

The issue on training with noise is also discussed. When the training patterns
are sampled sparsely in the pattern space, small noise associated with the training
patterns helps to improve the classification performance. It is found that present-
ing new noisy patterns in each training epoch is a good approach to reducing the
required memory space and training time in comparison to presenting fixed noisy

patterns. The noise amplitude for improving performance depends on the sparse-
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ness of the training patterns and the gaps between class regions in the pattern

space.
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CHAPTER 7

Performance Evaluation

Performance evaluation not only provides an indication of the confidence level
of the classification result, but also evaluates the problem solving process from
pattern designation, to feature extraction, to pattern classification. When a pat-
tern is classified, it is very important to know how reliable the classification result
is. Similarly, the performance of the pattern recognition approach is evaluated in
order to remedy any drawback and imperfection. The quality of both tasks is a
measurement based on the estimation of classification performance. If the classifi-
cation result under evaluation is not satisfactory, every step of the problem solving
process should be analyzed judiciously to reexamine its correlation to the problem
nature. For instance, some ad hoc approaches may be applied to nonlinear feature
extraction in order to improve the performance. The correct classification rate pro-
vides a measure of confidence in the realization of the mathematical descriptors of

the unknown parameters.

7.1 Testing Set Generation

Because the patterns in the pattern vector space are often uncountable or
impossible to enumerate exhaustively, a subset of all patterns called the “testing
set” is required to estimate the classification performance. The testing set which

consists of patterns and their class identities may include:

1. the training set: This set can only evaluate the effectiveness of training the

classifier. It would underestimate the misclassification rate of the patterns
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in the whole pattern vector space. However, if the training set is sampled
uniformly from the pattern vector space and is large enough, the estimation

of classification performance can be generalized to the whole space.

2. patterns with the same function approzimation as that of the training set but
generated randomly: This kind of testing set is often used if patterns are easy

to generate and store.

3. patterns with a different function approzimation to that of the training sei:
This testing set is to generalize the estimation result to the problem that is

not limited to certain parameterized models.

4. the above three sets corrupted by different levels of noise: This is to estimate

the effect of noise on the classifications.

7.2 Estimating the Confidence Level of Classification

After performing classification on the testing set, a classification result matrix
R = [rij] can be obtained, where r;; is the number of patterns in class ¢ classified
with class j. Assume that a cost function A(p,) for any pattern p, is available.
The cost of a pattern is counted when it is assigned to a correct class. Thus the

overall correct classification rate is

k
ic1 2 {palpa€Ci & purCi} MPa) (7.1)

E{PalpaEC} /\(pﬂ)

where k 1s the number of pattern classes, C is the testing set, and p, — C; denotes
that p, is classified with class ¢. If all patterns are equally costly, the overall correct

classification rate becomes
k
2=y Tid

—_—. 7.
Y Ciea (7:2)
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Of special interest here is to estimate the reliability of a classification result.
Let us define the measure of the quality to be the probability that a pattern belongs

to class ¢ when it is classified with class ¢; that is the probability
Plps € Cilpa — Ci], (7.3)

Applying Bayes rule to replace the a posteriori probability by the a priori proba-

bilities and conditional probabilities, we get

P[pa — C,‘|pa € C;]P{pa € Ci]
Y1 Plpa v Cilpa € C5]Plpa € Cj]

P[pa € C,-|p,, — C,] = (74)

If the a priori probability P[p, € Ci] is not available, it can be estimated by

k
i=1

k k
Simt 21 Tis

T“j

(7.5)

by assuming that the testing set is sampled uniformly from the pattern vector

space. Also P[p, — Ci|ps € Cj] is estimated by

rj£

. (7.6)
f:l T‘j,‘
Therefore the a posteriori probability of Equation (7.4) yields
Tii
o (17)
=1 rJ‘

which provides a measure of confidence on the classification result that the pattern

pq is classified with class :. In addition,

Tij
Plp, € Cilps — Cy] = Zk—Jn (7.8)
{=1"¢7

7.3 Class Region Growing

Since the regions in the pattern vector space are contiguous and. the territories

of pattern classes are disjoint and exhaustive, two adjacent pattern classes are
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separated by a decision boundary in the pattern vector space. Small noise level
can cause misclassification of patterns close to the decision boundary. Figure 7.1
shows a scenario of the fuzzy decision area and the mapping from the parameter
space to the pattern vector space.

Parameter Space

Ciass Class Decision boundary defined
by the classifier

i J
/? Fuzzy area caused
__________ by noise

Noise

...........

Input i Model

N
-

Patiern Vector Space

Figure 7.1: The mapping from the parameter space to the pattern vector space.

The fuzzy decision area is caused by noise, nonlinear mapping, and imperfect
feature extraction and classifier training. Consider only the effect of noise because
the later two effects exist inherently in an application and the problem solving
approach. A pattern p, belongs to class i, while being classified with class 7,
because of the factors mentioned above. In order to make the classification result
useful, the parameter space of class 7 should contain the pattern p,. It becomes
necessary to extend the parameter space of class j into that of class 2z, vice versa
(see Figure 7.2). There exists an overlap region along the border of class 7+ and
class j in the parameter space. Patterns inside this region can be classified with
either classes. The identified parameter space still contains the pattern p,. An
optimization search or further refinement partition on this identified parameter
space can be conducted to locate the best model for a real world system.

The procedure for growing class regions is:
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Pattern  p,

Figure 7.2: The parameter space overlap between class ¢ and class j.

1. Select a testing set with a predetermined level of additive noise.

2. Perform classification on the testing set and mark those patterns which are

in class i, but classified with class j.

3. Expand the territory of class j into that of class ¢ along their border in the
parameter space in order to include those marked patterns. In the system-
atic or stratified sampling schemes, a grid network is superimposed on the
parameter space. Territory expansion is based on the grid unit containing

one marked pattern.
4. Repeat step 2 and 3 for all pairs of adjacent pattern classes.

After the region growing process, a ratio of size of the overlapped regions to the size
of the whole parameter space can be calculated. If the ratio is close to one under
some noise level, it is meaningless to continue partitioning the parameter space
of any class region. Noise effect gets larger when the parameter space becomes
smaller. In this case the best model can only be identified within a subregion of

the parameter space which is actually an error bound of the best model.
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7.4 Class Region Merging

Nonlinear mapping from the parameter space to the pattern vector space may
cause class decision region overlap in the pattern vector space for two nonadjacent
pattern classes in the parameter space. The overlap ratios of either classes can be
estimated from the testing set. The union of these two classes as one class is the

best way to make the classification result useful.

7.5 Summary

The approach to analyze the overall classification performance and the relia-
bility of a pattern classification result is discussed. The classification performance
is estimated from a testing set. According to the top down dichotomy algorithm,
each pattern class has the same number of sample patterns and similar variation
in the response space. Thus the pattern vectors distribute fairly evenly in the
response space and are very suitable for estimating the classification performance.

The overall classification performance provides an indication of the efficiency
of the problem solving process from pattern designation, to feature extraction, to
pattern classification. If the classification result is not satisfactory, the problem
solving process should be analyzed to improve the performance.

The reliability of a pattern classification is the confidence level associated with
this classification result which provides a functional region for further search for
the actual function. In fact, a misclassification of a pattern near a boundary is
not especially harmful because the solution is still very close the identified region

though not inside this region.
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Part III

Applications
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CHAPTER 8

Case Study I: Characterization of a Nonlinear Torsional Spring

8.1 Introduction

This chapter reports on the application of the proposed methodology to iden-
tify the nonlinear characteristic of a torsional spring of a simple articulated joint
system. Simulation results are also presented. Both pattern recognition and op-
timization approaches were applied to the identification of this simple system, in

order to provide a basis for comparison.

8.2 'The Simple Articulated Joint System

8.2.1 The System

The system to be modeled is shown in Figure 8.1. Two rigid bars of negligible
mass are connected by a torsional spring at B. A point mass m is attached to
the second bar at C. By applying a torque to the first bar to generate an angular
velocity w(t), the angular deflection @ of the spring is measured in time.

The dynamic system can be expressed in the following equation.
mL*§ + mw?RL sin 6 + k(6)8 = —mL(L + Rcos8)w. (8.1)
For small angle of 8, this equation can be linearized:
m L% + (k(8) + mw?RL)8 = —mL(L + R)&. (8.2)
Since # is assumed to be small, Equation (8.2) will be used in the following dis-

cussions. Applying a driving torque to the first bar such that w(t) behaves in the
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Figure 8.1: The articulated joint system of two rigid bars connected by a torsional
spring.

Table 8.1: System parameters.

” variablel value | unit ||
Y n | rad./sec
T 30 second
L 2 ft
R 2 ft
m 1 slug
following equation
9t — Lsin(2E)) ift< T
w(t) :{ gt zeonlE) s (8.3)

and given some other system constants in Table 8.1, Figure 8.2 shows the simula-

tion result with linear spring k(8) = 29.61 and a plot of w(t).

8.2.2 The Objective

The objective is to formulate a model that characterizes the nonlinear behavior
of the spring, using the observed 6(t) as the raw data. For simplicity, we will study

the behavior of spring response force instead of the Hooke’s constant. Let us define

F(8) = k(8) - 6.
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Figure 8.2: (a) A simulation result of system response at k() = 29.61. (b) A
plot of w(t).
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Therefore the objective becomes the realization of the characteristics of the spring

torque as a function of the spring’s angular deflection.

8.2.3 Classification Results

Define the n X 1 column vector X to be the system response sampled from the
angular deflection 8 of the unknown spring. The experimental data were obtained
analytically by computer simulation. The data are sampled at a sampling period

of T/n from time t = T/n to time t = T. That 1s,
X = (21,22, ..., Tn)" = (8(T/n),0(2T/n),...,6(T))",

where superscript ¢ denotes the transpose operator; and n = 256 in this experiment.

The variables of the parameterized approximation of f(f) define the parame-
ter space of the model that possibly models the system. Applying the proposed
methodology, the computer simulations were performed for two cases representing
two different parameter approximations of the spring torque function. The first
case uses piecewise linear functions to approximate f(#). In the other case, a
bi-linear form of spring torque function defines the parameter space whose com-
ponents are the two slopes and the position of the nonlinear slope transition.
Although the driving torque to the first rigid bar is the true input to the system,
w(t) can still be treated as the input to Equation (8.2). Since w(t) is given and
fixed, this study is then to investigate the relation between parameter space and

response space Rx C R" constructed by X.

8.2.3.1 Casel

Assume that the spring torque'function f(8) can be approximated by a piece-

wise linear function. Since this function is symmetric with respecf to the origin,
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it is represented by three line segments in the first quadrant. In Figure 8.3, the
domain of f(#) is discretized at 6y, £8,, and +63. In the experiment, the values
of 8;, 8, and 5 are 0.02, 0.03, and 0.05 (radians), respectively. Thus the new

parameter space is a subset of R® constructed by the vector (f(81), f(62), f(63))-

f6) F0.05)
)
£0.03)
F0.02)
0 | | | - 2]
002 003 0.05
g, 6, 9,

Figure 8.3: The piecewise linear function approximates the spring torque func-
tion.

Let us further assume the possible operational range of each parameter compo-
nent to be that f(8;) € [0.5,0.6], f(8,) € [0.75,0.9], and f(fs) € [1.25,1.5] (1b-ft),
as illustrated in Figure 8.4(a). In other words, the spring torque function of inter-
est is bounded inside the shaded region between two slopes of 25 and 30. Then
Figure 8.4(b) gives the new parameter space.

After applying Algorithm 4.1 to partition the parameter space, seven regions
were obtained as shown in Figure 8.5, where the regions are labeled from 0 to 6. The
threshold of partition variations was set equal to 0.00015 in terms of the variance of
the squared Euclidean distances among system responses {(see Appendix A for the
definition of the scalar variance). A stratified sampling scheme was employed to
sample 64 patterns for every pattern class. This partitioned result demonstrates

that the system responses are more sensitive to the variation of f(fs) than to
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Figure 8.4: {a} The operational region of the spring torque function. (b) the new
parameter space.

those of f{#;) or f(8;2). Thus more partitions occur in the f(#3) dimension than
other dimensions. The binary tree in Figure 8.6 presents the partition process,
where the label under an internal node denotes the partitioned dimension of the
parameter space. In Figure 8.7, the functional regions corresponding to classes of

spring torque functions are presented.

(0.6,0.75,1.25)
(e

Figure 8.5: The partitioned parameter space, where the label on each cubic
corresponds to its class identity.

Classification was carried out by a neural network based on the Hamming net-

work model and trained by the MLVQ learning algorithm with three exemplars
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O : internal node (intermediate region) |:I : region (class).

Figure 8.6: The binary tree of the partition process.

Table 8.2: Different levels of Gaussian noise and their corresponding SNR.

standard deviation | 0.001 | 0.002 | 0.003 | 0.005
SNR 28.33 | 14.17 | 9.59 | 5.67
SNR (dB) 29.04 | 23.03 | 19.64 | 15.07

for each class. To examine the effect of noise on the classification performance,
Gaussian noise with zero mean and various variances was added to the system
responses of the patterns to be tested. This Gaussian noise is treated as measure-
ment disturbances. Table 8.2 contains the approximate signal to noise ratio (SNR)
corresponding to the Gaussian standard deviation which is set equal to the root

mean squared (RMS) amplitude of the noise, where

& RMS of signal
SNR = RMS of noise’

(8.4)

and

SNR(dB) £ 201log,, (SNR). (8.5)

Table 8.3 shows the percentage of misclassification for the training set in which
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Figure 8.7: The classes of the spring torque functions correspond to the regions
in the partitioned parameter space.
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Table 8.3: Classification results in terms of error rates (%) for the training set
and testing set contaminated by different levels of Gaussian noise.

Standard deviation || 0 | 0.001 | 0.002 | 0.003 | 0.005
of Gaussian Noise
Training set 0| 6.39 | 12.04 | 18.66 | 29.4
Testing set 6| 11 16.6 | 26.2 | 43.6

each class contains 64 training patterns. A testing set was also prepared in a
different functional approximation form from that of the training set. This testing
set contains 50 testing patterns of bi-linear functional approximation as depicted
in Figure 8.8. The constraints of these testing patterns are that the second slope
is greater than the first slope (o < ), and the slope transition occurs within a
certain interval (8, € [0.02,0.035]). It is worth noting that only 0.1% of the testing
patterns was classified with class 0 and class 5 in which o > §, even though these
patterns were corrupted by Gaussian noise with SNR = 14.17. The classification
result provides very useful information for constructing a better model structure
of f(#), because the case of @ > f can be eliminated and the whole parameter

space is further reduced.

e

1]

-

Figure 8.8: A bi-linear approximation of the spring torque function.
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The reasons that the testing set is more sensitive to noise can be explained as:

1. The model structure used in the testing set is different from the one used in

the training set.

2. The patterns generated for the testing set are not uniformly distributed in

the parameter space of the training patterns.

8.2.3.2 Case 2

The spring torque function is assumed to be bi-linear as depicted in Figure 8.8.
Thus the new parameter space is defined to be a subset of R® with components
(8o, @, 7), where v = 8 — « and a < 8. The ranges of these parameters are defined
as follows: #, € [0.02,0.035], @ € [25,27], and v € [0,4]. Applying Algorithm 4.1,
Figure 8.9 shows the partitioned parameter space with 6 regions, labeled from 0
to 5. The variation threshold for partitioning was set equal to 0.00017 in terms of
the maximal Euclidean distance of sampled patterns to the mean pattern vector
of the region. The systematic sampling scheme was used to sample patterns inside

the parameter space, with 64 patterns for each class.

(0.02,25,4)

Figure 8.9: The partitioned parameter space.

This partitioned result demonstrates that the system responses are less sensitive

to the variation of 8, when v € [0, 2]. In other words, when the difference between
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Table 8.4: Classification results in terms of error rates (%) for the training set
and testing set corrupted by different levels of Gaussian noise.

Standard deviation || 0 | 0.001 | 0.002 | 0.003 | 0.005
of Gaussian noise
Training set 02021 | 36.9 | 45.7 | 56.96
Testing set 8| 21.8 35 43.8 | 54.6

the two slopes, o and 8, is large (or v > 2), the effect of the variation of 6, on
the system responses becomes important. It is to be expected that the position of
nonlinear slope transition gets more crucial for a larger 7. Therefore a partition
occurs in the 8, dimension when v € [2,4]. The partitioned result thus shows the
relative sensitivity of the system responses to the parameters. Semsitive portions
in the parameter space are eventually divided into smaller class regions, such that
the patterns in one class vary within a certain threshold. Figure 8.9 presents a
reasonable sensitivity result via the top down dichotomy algorithm.

Table 8.4 presents the error rates of the classification for the training set and
testing set in the presence of Gaussian noise. A testing set with 50 patterns
was generated randomly in the same parameter space. In this case these testing
patterns have the same functional form as the training set. Both sets give very close
estimations of classification results. Hence the training set provides a plausible
estimation of the classification performance provided that the training patterns
are sampled uniformly from the parameter space. Although perfect classification
was obtained for the training set under noise free condition, noise greatly affects

the classification performance. The possible reasons for the poor results are listed:

1. Although the parameter space is divided into disjoint regions, the system
response space corresponding to different classes may contain overlap regions.

These overlaps degenerate the classification performance.
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2. The linear feature extractor is not effective enough.
3. The pattern classifier did not perform well.

4. Pattern classes are partitioned by hyperplanes as boundaries in the parameter
space. However, the nature structure of system responses does not possess
such precise and regular boundaries. The decision regions in the system

response space are highly irregular.

Since the classifier training was effective to obtain perfect classification on the
training set without noise, the first three reasons are ruled out. In comparison
to Case I, item 4 listed above seems to be the main reason of poor classification
performance. Hence, it is important to define an effective parameter space. It turns
out that the approximation by piecewise linear functions is an effective approach
to defining the parameter space.

The results presented in Case 1 are very plausible and demonstrate the appli-

cability of the methodology proposed in this study.

8.3 The Need for the Pattern Recognition Approach

In this section, we investigate the situations for which the optimization ap-
proach fails, while the PR approach provides useful information. The Downhill
Simplex Method (DSM) [PFTV88] was implemented as an optimization procedure
to estimate the parameters of the simple articulated joint. The DSM requires
only function evaluations, not derivatives. Equation (8.2) does not need to be
transformed into a difference equation. The function evaluation of the DSM is
performed by calculating the mean square error between the true system response
and the simulated system response of the model.

The basic idea of the DSM to search a minimum is
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1. construct a polyhedron with n 41 vertices in an n-dimensional vector space,
2. repeatedly flip the highest point downhill until a local minimum is reached,

3. shrink the size of the polyhedron as it descends into the basin of a valley.

8.3.1 Experiment Design

The true spring torque function is assumed to be a bi-linear function as shown
in Figure 8.8 with o = 26.9, 8 = 38.1, and 6, = 0.029. Notice that this function is
symmetric to the origin and the working area of this case is in the third quadrant.

The model structure of the spring torque function for the DSM was selected to
be a polynomial

F(6) = af + b9% + c8® for § <0 (8.6)

where @, b, and ¢ are the parameters to be identified by the DSM.

8.3.2 Simulation Results

The true system response is classified with a functional region by the PR ap-
proach shown in Figure 8.10 where the region is in between two dotted lines and
the true spring torque function is depicted in a solid line. This Figure only depicts
the spring torque function in the first quadrant. Even when noise is presented with
SNR = 5.67, the classification result is still correct.

Figure 8.11 presents the identification result of the spring torque function by
the DSM. In fact, the identified functions varies slightly with or without noise
added to the true system response. Obviously, this function does not fall inside the
functional region obtained via the PR approach. It lies inside another functional
region where its simulated systeﬁ response is indeed classified by the pattern

classifier, see Figure 8.12. It is easy to see that the best model obtained via the
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Figure 8.10: The true spring torque function (solid line) and the functional region
identified via the PR approach

optimization search approach using a third order polynomial approximation is not

acceptable.

8.3.3 Discussion

Actually, the true spring torque function for this case cannot be accurately
approximated by a low order polynomial. Thus, the DSM starts with an inappro-
priate model structure. On the other hand, a bi-linear function with 6, = 0.30 may
be selected as a starting model structure for the DSM after a functional region is
obtained via the PR approach. Even though 8y is different to the one for the true
function, the identified result is still better than the result obtained from a poly-
nomial model structure in terms of mean square errors between the true system
response and the simulated system response of the identified models. This demon-
strates that the PR approach can provide more information in selecting model

structure.
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Figure 8.11: The spring torque function obtained via the DSM (solid line) and
the functional region identified via the PR approach

In addition, the functional region can be used to cross-validate the spring torque
function obtained via the optimization approach, especially when noise is pre-
sented. The simulated system response of the identified model can also be used as
an input to the PR approach. The classification result is then compared with the

result of the observation from the true system.
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Figure 8.12: The spring torque function obtained via the DSM (solid line) and
the functional region with which it is classified via the PR approach
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CHAPTER 9

Space Station Freedom Model

9.1 Introduction

On-orbit parameter identification is indispensable for the development and ver-
ification of large, flexible multibody, controlled spacecraft because such spacecraft
are unstable in 1-g environment and cannot be satisfactorily tested before flight.

Omne of the most difficult tasks in the identification of nonlinear structural
parameters is to determine the most probable mathematical descriptors of the
nonlinearities in question. A nonlinear structural parameter may assume any of
a large number of candidate descriptors from which one must choose the most
likely candidate. The methodology proposed in the dissertation is applied below
to the realization of nonlinear structural parameters of the Phase I Space Station

Freedom (SSF) model.

9.2 The Space Station Freedom Model

9.2.1 The System

Figure 9.1 presents the SSF model consisting of a central body and a starboard
and port bodies, all modeled as flexible bodies. Solar panels are attached to
the extraneous bodies which are connected to the central body by one degree-of-
freedom Alpha gimbals. The simulated maneuver depicted a transient rotation
of the solar arrays to achieve perpendicularity with respect to the sun line, while

maintaining the central body in a predetermined attitude control mode. The Alpha
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gimbals are thus critical components to the system. The identification of a model
for them is essential to the design of the gimbal control system.

Our on-orbit experimental data were obtained analytically by simulation. The
space station simulator was written at TRW in the FORTRAN 77 programming
language and ported to the Sun 4 computers of UCLA Computer Science Depart-

ment.

9.2.2 Objective

The objective of this effort 1s to realize the mathematical characteristics of the
disturbance damping torques at the Alpha gimbals as functions of the gimbals’

angular velocities.

9.2.3 Experiment Design

In the selected maneuver, the extraneous bodies are rotated 15 degrees relative
to the central body, whereupon the gimbal control system is suddenly shut off. The
free vibrations that ensue are monitored by angular accelerometers mounted to the
solar panels and sampled every 0.01 second for a period of 50 seconds. Figure 9.2
shows a typical system response in the time domain for the aforementioned Space

Station maneuver.

9.2.4 Experiment Data

The application of our methodology, to the realization of the disturbance damp-
ing torque at the Alpha gimbals, focused on the time domain response because of
its sensitivity to variations of this parameter. By contrast, we found that the
damping torque does not affect the frequency of the system response significantly

and, therefore, frequency domain analysis techniques are not particularly useful in
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1gure 9.1: The Space Station Freedom model
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Figure 9.2: A system acceleration response in the time domain.
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facilitating classification.

Our methodology utilizes the logarithm of the power density of the acceleration
decay signal averaged over time. The predominant flexible mode in the system
response has a frequency of 1.47 Hz (see Figure 9.2). The basic element of the
processed data is the squared sum of the system response over a time frame window
of 1.36 seconds, which constitutes a two-cycle period of the predominant mode.

The decay signal is given, then, as:
135
g(t) = > a(t +iAt) xa(t +1iAt), (9.1)
i=0
where At = 0.01 second and a(t) is angular acceleration of the system response
measured at time ¢. A moving average technique is applied to smooth the decay
signal, yielding:
1 N
s(t) = MINT1 ;EM r{t + iAt), for t > T + 0.25 second, (9.2)
where r(¢) = log(g(t)), M = N = 25 are empirical constants, and T' is the time
when the gimbal control system shuts off. The signal used in this application of

our methodology was sampled from s(t) at 256 points.

9.2.5 Classification Results

The disturbance damping torque of interest was assumed to be confined to the
shaded region shown in Figure 9.3. Figure 9.4 illustrates the classes of functional
regions obtained via the top down dichotomy algorithm.

The classification results were generated in a noisy environment, where various
Gaussian noise levels were added to the system response. Two types of noise were
examined. One was a Gaussian noise with a fixed standard deviation. The other
was a Gaussian noise with a standard deviation proportional to the amplitude of

the signal.
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Figure 9.3: The possible region of the unknown damping torque function.

Table 9.1: Classification results with noise of fixed standard deviations.

standard deviation 0 | 0.00005 | 0.0001 | 0.00015 | 0.0002
SNR oo | 30 15 10 7.5
percent of correct §| 100 100 92.19 | 79.69 | 62.75
classification
{ SNR 2 RMS of signal

RMS of noise

9.2,.5.1 Gaussian Noise with A Fixed Standard Deviation

Table 9.1 presents percentages of correct classification obtained in the presence
of Gaussian noise characterized by fixed standard deviations. The overall signal
to noise ratio (SNR) in the table was calculated from the standard deviation value
which is set equal to the root mean squared (RMS) amplitude of the noise. It
should be noticed that over 90 percent of correct classification was obtained in
the presence of noise with an overall SNR of 15. Figure 9.5 presents the temporal

responses of the SSF model with and without noise.
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Table 9.2: Classification results with noise proportional to signal’s amplitude

noise level 5 10 15 20

(%) of signal
percent of correct
classification 100 | 95.31 | 89.06 | 85.94
with MNL = 0.00005

percent of correct
classification 90.62 | 90.62 | 87.50 | 79.69
with MNL = 0.0001

9.2.5.2 Gaussian Noise Proportional to the Signal’s Amplitude

Table 9.2 contains classification results obtained in the presence of Gaussian
noise where the RMS amplitude of the noise is proportional to the signal’s ampli-
tude. As the signal decays (see Figure 9.2) the noise RMS amplitude is reduced
until a minimum threshold, defined as minimum noise level (MNL)}, is reached;
thereafter, the noise is maintained at the MNL, regardless of the signal’s ampli-
tude. As shown in Table 9.2, our realization methodology yields high percentages
of correct classification in the presence of noise levels as high as 20 percent of the
signal’s amplitude. Figure 9.6 shows the temporal system response with noise lev-
els of 10 and 20 percent of the signal’s amplitude and MNL standard deviation =

0.0001.

9.3 Conclusion

The proposed methodology was successfully applied to the characterization of
the damping torques at the Alpha gimbals of a realistic model of the SSF. The
results show a high percentage of correct classification in a noisy environment.
Two types of Gaussian noise, with fixed standard deviation and standard devia-

tion proportional to the signal’s amplitude, were added to the artificial data for
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Figure 9.6: A system response with 10% and 20% noise at MNL = 0.0001.
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examination. About 80% of correct classification was obtained in the presence of
20% Gaussian noise or noise with an over all SNR of 10. In fact, the typical SNR
in many engineering applications is around 15. The results are very encouraging,
showing a high level of confidence on classifications.

In the past two years, TRW Space & Technology Group has concentrated its
efforts in the realm of structural parameter identification on the Dynamic Program-
ming Filter (DPF), a member of a class of nonlinear filtering techniques based on
modern control theory [Sim88). One of the most difficult tasks in the identification
of nonlinear structural parameters is to determine the most probable mathemati-
cal descriptors of the nonlinearities in question. In reality, a nonlinear structural
parameter may assurne any of a large number of candidate descriptors from which
one must choose the most likely candidate. The identified results of the proposed
methodology, which characterizes the nonlinear structural parameters, are very
useful to the DPF. As shown in Figure 9.4, the identified functional region con-
fines the true damping torque function of the Alpha gimbal and characterizes its
nonlinearity with a very high reliability.

The PR system has explored a plausible functional region for the nonlinear
damping torque. The neural network classifier has learned and memorized the
typical system responses of different model classes. Any change of the character-
istic of the Alpha gimbals can be detected rapidly. This unique property of the
methodology presented in this dissertation is very important to cope with the crit-
ical system components whose functional characteristics may change due to the

heating and aging processes.
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CHAPTER 10

Aircraft System

10.1 Introduction

System identification plays an important role in the design and analysis of air-
craft stability and control. Identification results provide information for analyzing
aircraft stability, handling qualities, and control systems. Nowadays, high-fidelity
flight simulators are increasingly necessary in modern flight research and pilot
training. These simulators require accurate models based on adequate identifica-
tion results as well as complete stability and control data.

This chapter examines the application of the proposed parameter character-
ization technique to the probleﬁ of characterizing aircraft stability and control

derivatives from flight test data.

10.2 The Aircraft System

10.2.1 Aircraft Reference Coordinate Systems

Several coordinate systems are used in aerospace applications, including the
body-axis, vehicle-carried vertical, and the air flow systems.

Figure 10.1 shows the body-axis system whose origin is at the center of gravity.
The positive X axis points forward, the positive ¥ axis points to the right, and the
Z axis points down. The body axes are fixed at the center of gravity and, hence,
rotate and move with the aircraft. The body-axis angular rates are defined as the

projections of the angular velocity on the body axes. The roll rate p, pitch rate g,
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and yaw rate r are the angular velocities in the body X, Y, and Z directions. The

right-hand rule defines the sign conventions, illustrated in Figure 10.1.

Normal

acceleration Rudder

Pitch rate
- i +ﬂ @)

Yaw rate (r)

Roll rate(p)

Figure 10.1: The aircraft body-axis system and control surfaces.

The vehicle-carried vertical axis system also has its origin at the center of

gravity of the aircraft, depicted in Figure 10.2. The positive Xy axis points north,

Xv (North)
/ Yy (East)
Zy
(Down)

Figure 10.2: Vehicle-carried vertical axis system.

the positive Yy points east, and the positive Zy points down. The attitude of

the aircraft with respect to the earth is defined by three Euler angles ¢ (heading
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angle), # (pitch attitude), and ¢ (roll attitude) in terms of the orientation of the
aircraft body axes with respect to the vehicle-carried vertical axes. Figure 10.3
shows the rotations required to transform the vehicle-carried vertical axes to the
body-axes. The order of rotation, listed from Figures 10.3(a) to (c), is important.
The positive ¥ is a clockwise rotation about the Zy axis to define a new axis
system (X1, Y1, Z1), where Z; is identical to Zy. The pitch attitude 8 is a rotation
about the Y] axis into the axis system (X3, Y3, Z;). Finally, the roll attitude ¢ is
a rotation about the X, axis to arrive at the body axes (X,Y, Z).

The velocity of the aircraft relative to the air flow is defined to be the wind-
relative velocity whose vector components in the body-axes X, Y, Z are u, v, and

w, respectively. Hence the total wind-relative velocity 1s
V] = Vu? 4+ v? + w?. (10.1)

The angle of attack « and the angle of slideslip 3 are defined by

w
= tan~! = 0.
a = tan™ —, (10.2)
and
. 4 U
B = sin™! ”—V”— (10.3}

Figure 10.4 shows the flow angles and the relationship between the body and the

wind axes.

10.2.2 Control Surfaces

The positions of the control surface are the inputs to the aircraft stability and
control equations. The ailerons, elevator, and rudder are usually the basic aircraft
control surfaces as shown in Figure 10.1. All the surface positions are expressed

as the angular deflections measured normal to the hinge line. Positive deflection
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Figure 10.3: Rotation of axes through Euler angles.
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Figure 10.4: Flow angles and relationship of body and wind axes.

is trailing edge down or trailing edge left. Aileron deflection is defined to be the

left surface position minus the right surface position.

10.2.3 Equations of Motion

The derivation of the aircraft rigid-body equations of motion begins with New-
tonian mechanics. The basic equations to the rotating body-axis system are the

momentum and angular momentum equations:
d
F= a;(mV) +w x {mV) (10.4)

_ %(h) twxh (10.5)

where F is the external applied force, M the external applied moment about the
center of gravity, V' the velocity vector, w the angular velocity vector of the body-
axis system with respect to the inertial space, and h the angular momentum vector
about the center of gravity. By definition, the components of w are (p,q,r) in the
body-axis system.

The external applied forces include aerodynamic forces, gravity, and engine
thrust. The external applied moments consist mainly of aerodynamic moments

(including rolling, pitching, and yawing moments) and gyroscopic moment from
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the rotating machinery in the engine. We can derive the aerodynamic forces and
moments in terms of the dynamic pressure, the aircraft dimensions, and the nondi-
mensional coefficients. These coeflicients are functions of the aircraft states and
controls. In general, they are nonlinear. The parameters of the parameterized co-
efficients are called the stability and control derivatives. For example, the locally
linearized approximation of the lift coefficient Cy,, described below, can be express
as:

CrL = CLaa -+ CL56 + CLb, (10.6)

where § is a generic notation of controls and Ci,, Cr,, and Cy, are the stability
and control derivatives. Substituting the external applied forces and moments into
Equations (10.4) and (10.5), we can obtain the aircraft equations of motion. The
detail derivation of equations of motion can be found in most aircraft dynamics
texts, for example, [Etk82, DAKS3].

The lift is the component of the combined aerodynamic forces on an aircraft
perpendicular to the aircraft velocity vector and is directed upward. To most
aircraft, the lift sustains the weight of the aircraft so that the aircraft can fly.
The lift coefficient Cr defines the proportion of the lift to the dynamic pressure
and some aircraft reference area. Therefore it is an important coefficient to the
atrcraft stability and control. One application of this study is to characterize this

coefficient as a function of the angle of attack o.

10.3 F-15 Flight Simulator

The F-15 flight simulator was written in the FORTRAN programming language
by Eugene L. Duke et al. of Dryden Flight Research Facility, Edwards, California in
1977. This simulator was based on a linear aircraft model described in [DAKS8]. In

1990, Bob Tisdale installed part of the simulator on the Sun computer of Computer
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Science Department of UCLA. Some subroutines that control I/O interfaces and
govern lateral directional equations of motion were discarded in order to reduce its
size.

In Figure 10.5, the flow chart illustrates the major steps of the flight simulator.
The left part of this chart consists of the procedures performing the initialization of
the simulator. The right part conducts the simulation task. The simulator begins
with initialization of system state variables. It then inputs the aerodynamic data
which are, in fact, look-up tables as the implementation of the aircraft stability
and control derivatives. For example, the lift coeflicient is implemented as a three
dimensional table with three components of aircraft velocity in terms of Mach
number, elevator deflection, and angle of attack to index a table entry. The table
look-up task is carried out by a linear interpolation among adjacent table entries.
These aerodynamic data are different from one aircraft to another. Thus, the
tables were modified in order to generate the training set in this study. Step 3
initialize the control system variables.

The steps encapsulated by a dashed box from step 5 to step 10 is the procedure
MODELS which calculates the control system, equations of motion, observation
variables, and so on. The procedure MODELS is called in both the initialization
and simulation stages. Step 4 executes 100 times of MODELS. The number of

? Since the control

iterations, 100 here, is not so crucial and only means “many.
systemn performs feedback control consisting of many first order and second or-
der variables, the purpose of 100 iterations is to stabilize these control variables.
Step 5 calculates air data parameters such as Mach number which depends on the
height above the sea level. Step 6 computes feedback control variables, actuator

outputs, and control surface positions. Step 7 computes force and moment coeffi-

cients, like the lift coefficient Cy,, which require table look-up operations and linear
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Figure 10.5: The flow chart of the F-15 flight simulator.



interpolations. Step 8 calculates the effects of engines such as thrusts, torques, and
gyroscopic effects.

Step 11 performs the flight simulation, where the number of step N is specified
by the user. At each simulation time step, some observation variables are displayed
first. Then step 13 inputs the control parameters such as pilot stick positions
and engine thrust. It is followed by the procedure MODELS. Finally, step 15
integrates the differential equations using modified Euler method (or second order
Runge-Kutta method).

The training data corresponding to the responses of aircraft with different lift
coefficients were generated by the flight simulator with modified look-up tables for
the lift coefficient. Before utilizing the simulator, it is worth noticing that the in-
puts to the aircraft stability and control equations are the control surface positions
while the inputs to the simulator are the pilot maneuvers. Because of the feedback
control system, the control surface positions depend on the current status of the
aircraft, control system variables, and pilot maneuver. Hence, give the same pilot
maneuver, aircraft with different coefficients (actually different aircraft) generate
different responses. It turns out that these different responses result in different
control surface positions via the feedback control system. Even with the same pilot
maneuver, the inputs to the system equations with different coefficients that are
in fact different models are different. In order to characterize the coeflicients of
the aircraft model, it is required that the inputs or controls to the different models
should be identical. Thus the inputs to the flight simulator for generating training
data were modified to be the control surface positions; and the feedback control

system was bypassed.
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10.4 The Objective

The objective of this application is to characterize the lift coefficient Cp, of the
F-15 as a function of the angle of attack . In this study, only the longitudinal

motion is considered.

10.5 Experiment Design

The primary condition for experiment design is the safety of the aircraft. To
estimate stability and control derivatives is one of the major purposes of flight
test which may justify the design of flight test maneuvers. However, the design
of a flight test maneuver involves many complex factors including hardware limits
and pilot involvement. The maneuvers should be designed such that the pilot can
fly with the required precision. In addition, no single maneuver can explore the
complete flight envelope where the aircraft can safely fly. Hence the data obtained
from one flight test maneuver can hopefully be used to estimate stability and
control derivatives inside a small subset of the flight envelope. In this study, flight
maneuvers follow the data provided by NASA Dryden Flight Research Facility.

Qur presumed flight test data were obtained from the flight simulator with
additive Gaussian noise. In the selected maneuver, the elevator deflection begins
with —3.6 degrees followed by a doublet maneuver between —10 and 2 degrees (see
Figure 10.6(a)). The responses of normal acceleration and angle of attack without
noise are also depicted in time domain in Figures 10.6(b) and (c). These data are
sampled every 0.05 second for a period of 5 seconds.

The application of our methodology to the realization of the lift coefficient Cy,
of the F-15 focused on the response of normal acceleration because of its strong

correlation to this coefficient.
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Figure 10.6: (a) The maneuver of elevator. (b) The response of normal acceler-
ation. (c) The response of the angle of attack c.
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Notice that the response of « varies between 4 and 12 degrees where the lift
coeflicient is only realizable under this experiment.

The lift coefficient Cy, is at least a function of aircraft velocity M, (V in terms
of Mach number), elevator deflection 6., and angle of attack «. In the selected
maneuver, M, does not change much and can be considered as a constant effect
on Cr. In addition, Cr is assumed to be linearly dependent on &, as implemented
in the flight simulator. Therefore the nonlinear relation between Cp, and « is the
major concern of this study. The purpose of considering only this relation is to
reduce the dimensionality of parameters and not to make the problem complicated
at current stage. If we only consider a and 6. as the independent variables of
Cr, Cr, is a three dimensional surface. In this study, the shape of this surface in
a direction is unknown to be identified; while the shape in the é. direction just
follows the flight simulator.

Since the realizable region of Cy is within its domain of & € [4,12]} degrees and
b € [—10,2] degrees, Cr, is assumed to be a surface bounded between the upper
surface and the lower surface shown in Figure 10.7. The surface of any possible
lift coefficient is assumed to be inside the range of C; € [0.09,0.34] at (a, &) =
(4,—10), C € [0.185,0.435] at (a,6.) = (4,0), CL € [0.61,0.96] at (a,8,) =
(12,-10), and Cy, € [0.71,1.06] at (a,é.) = (12,0). Figure 10.9 illustrates one of
the 8 classes of functional regions obtained via the top down dichotomy algorithm
which utilized 64 sample patterns for each class with systematic sampling scheme.
This class contains the true lift coefficient that is actually the one implemented in

the flight simulator.
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Figure 10.7: A possible functional region of the lift coefficient which is a surface
between the upper surface and the lower surface.

10.6 Classification Results

The response of normal acceleration is the pattern vector of 100 components in
this application. By Fisher’s discriminant method, the pattern vector was trans-
formed into a feature vector of 7 components. An adaptive neural network classifier
with 3 exemplars per class was trained using 512 patterns (64 training patterns
per class) and achieved a perfect classification for this training set.

Table 10.1 contains the classification results obtained in the presence of Gauss-
ian noise whose standard deviation is set equal to its RMS amplitude. Every table
entry of a classification result is the median of five simulations. Figure 10.8 shows
the temporal responses of normal acceleration with and without noise. The noise-
free response which is obtained from the original flight simulator is considered to
be the system response observed from the true system without noise. 99% correct
classification rate was obtained for 500 noisy versions of this response contami-

nated by random Gaussian noise with 0.0414 standard deviation and 0 mean, In
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Table 10.1: Classification results for the training set with Gaussian noise.

standard deviation 0 |0.0276 | 0.0414 | 0.0552 | 0.0828
SNR o's) 30 20 15 10
percent of correct {| 100 | 96.68 | 91.60 | 89.45 | 85.74 °
classification

this case, the system response is classified with the class shown in Figure 10.9
whose functional region contains the true lift coefficient. This identified parameter

space can be further partitioned to conduct hierarchical classifications.

1.2 T 1 Y T

1.1 with noise — ]

1L A without noise —— _|
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7
.6
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Time (second)

Figure 10.8: The response of normal acceleration in time domain corrupted by
Gaussian noise with 0.0414 standard deviation and 0 mean.

\ The possible
functional region

True lift coefficient

A functional region defined by
the top down dichotomy algerithm

s | - Angle of artack
0 4 ] 12 (degree)

Figure 10.9: The functional region containing the true lift coefficient.

Applying the top down dichotomy algorithm to partition the parameter space
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Table 10.2: Classification results for the training set of the second level partition
with various levels of Gaussian noise.

standard deviation || 0 | 0.0276 | 0.0414 | 0.0552 | 0.0828
SNR 00 30 20 15 10
percent of correct || 100 | 90.43 | 84.77 | 79.88 | 69.14
classification

of the class containing the true lift coefficient, 8 subspaces corresponding to 8 pat-
tern classes were obtained. The classification results for the training set of the
second level partition corrupted by different levels of Gaussian noise are shown in
Table 10.2. In the second level of hierarchical partition, the classification perfor-
mance is more sensitive to noise than that in the first level because the parameter

space is only 1/8 of the original parameter space.

10.7 Experiment Results on the SRV Flight Data

This section discusses the application of the proposed methodology to the real
flight data of the powerless 3/8-scale F-15 airplane model (denoted as SRV). The
SRV was designed to study recovery from stalls and spins. In the flight test, the
SRV was launched from a modified B-52 airplane at an altitude of approximately
15,000 meters at a Mach number of 0.65. After the launch, the pilot on the ground

flew the SRV remotely.

10.7.1 Flight Data

Figure 10.10 shows the responses and maneuver of the SRV in a time period of
5.6 seconds. These flight data are only a small segment of a flight test for about 5
minutes long when the SRV glided from about 15,000 meters to 5,000 meters above

sea level. In the selected flight data, the maneuvers on the ailerons and rudder are
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very small because only longitudinal motion is concerned here.

10.7.2 Objective

The objective is to utilize and modify the available F-15 simulator to charac-
terize some unknown parameters of the SRV. In this experiment, the lift coefficient

Cp, pitch moment coeflicient C,,;, and the drag coefficient Cp were investigated.

10.7.3 Experiment Design

As shown in Table 10.3, the aircraft dependent dimensions of the F-15 flight
simulator are modified to be those of the SRV in order to generate a training set for
the flight data of the SRV. The scaling factors for the length, area and volume are
3 = 0.375, (2)" = 0.140625 and ()’ = 0.052734, respectively. In following table,

the data are obtained from the F-15 flight simulator and the SRV flight data.

Table 10.3: The scaling relationships between the F-15 and the SRV.

I | F-15 | SRV | scaling factor |

surface area (ft”) 608 86 0.1414
span (ft) 42.8 | 16.05 0.375
chord (ft) 15.95 | 5.98 0.375
weight (Ib) 45000 | 2465 | 0.05478
moment of inertia IX | 28700 [ 275 0.009582
IY 165100 | 1808 0.01095
I1Z 187900 | 2134 0.01136
product of inertia IXZ || —520 | 2.5 —0.0048

In this experiment the same maneuvers and initial states of the SRV flight
were applied to the modified F-15 flight simulator with both engines shut off. In

generating the training set, it is assumed that Cp, C,,, and Cp of the SRV also
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Figure 10.10: (a) The maneuver of elevator. (b) The response of normal accel-
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have scaling relationships with respect to those parameters of the F-15. That is,

CL(SRV) =a CL(F__”,), (10.7)
C"‘(SRV) =b C’"(F—ls)’ (10.8)
CD(SRV) =c CD(F_M); (10.9)

where a, b, and ¢ are constants. This assumption is certainly not true. But this
gives an approach to define a rough functional regions for these parameters of the
SRV in terms of the parameters of the F-15, which are already available in the
F-15 flight simulator. More precisely, the objective here is to identify functional

regions for the unknown parameters in such a way that

CL(SRV) = qa CL(F_“)) Wlth a € [G], ag], (1010)
C’"(SRV) = b Cm(F—ls) Wlth b € [bl, bz], (1011)
Chispvy = € CDip_yyy With ¢ € [e1, e2], (10.12)

where a1, az, by, by, ¢1, and ¢, are constants to be determined.

10.7.4 Experiment Results

The initial plausible functional regions confining the unknown parameters are
assumed to be a € [0.4,1.5], b € [0.4,1.5], and c € {0.4,1.5]. Applying the top
down dichotomy algorithm and using the observation of « as the system response, 6
disjoint functional regions were obtained. The flight data of the SRV were classified
within the functional region of a € [0.95,1.5], b € [0.4,0.95], and ¢ € [0.4,1.5].

This identified functional region was then again partitioned into 9 disjoint func-
tional regions. And the flight data were classified within the functional region of
a € [1.225,1.5], b € [0.4,0.46875], and ¢ € [0.4,1.5] with an above 80% reliability

of correct classification in the presence of noise with SNR of 15 (see Table 10.4).
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Table 10.4: Percentage of correct classification results for the training set and the
SRV flight data of the second level partition with various levels of Gaussian noise.

standard deviation 0 | 0.1830.274 10.365 | 0.548
SNR 00 30 20 15 10

training set 100 | 91.84 | 86.11 | 82.29 | 73.78

SRV flight data 100 | 95 | 87.09 | 80.88 | 72.31

It is obvious that the system response of ¢ is very sensitive to the variation of
Com, while less sensitive to the variation of Cp. Table 10.4 presents the estimated
overall classification performance and the confidence levels of classification results

for the SRV flight data with various levels of Gaussian noise.

10.8 Discussion and Conclusions

The proposed methodology was successfully applied to the characterization
of the lift coefficient of the F-15 airplane. The classification results show an 80
percent correct classification in the presence of noise with an overall SNR of 15
though the experiment data were obtained analytically from the simulation with
additive Gaussian noise. A hierarchical classification technique was employed to
refine the identified functional region for the lift coefficient. Applying the region
growing technique mentioned in section 7.3, the reliability of classification results
should be improved to make the results more useful. In this case, the testing data
were obtained from the flight simulator, and the simulated lift coefficients were
already known. Therefore, the classification results can be validated to show a high
percentage of correctness, like the results obtained in Chapter 9. These results also
demonstrate the applicability and reliability of the proposed methodology.

This methodology was also applied to the flight data of the 3/8-scale F-15

airplane model to characterize its lift coefficient, pitch moment coefficient, and
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drag coefficient. The results obtained were the functional regions for the unknown

parameters in terms of those parameters of the F-15 flight simulator. That is,

CrLisavy € [1.225 - Cp iy 1), 1.5 Crip_,y ), (10.13)
Crgsvy €[04+ Crmipo_y),0.46875 - Congporsy s (10.14)
CD(SRV) e [0'4 ' CD(F_15)’ 1'5 ) CD(F—IB)]' (10.15)

The lift coefficient of the SRV is confined within the two surfaces defined in terms
of the lift coefficient of the F-15 flight simulator, so are the pitch moment coefficient
and the drag coefficient. This information can be used to construct more appropri-
ate model structures for these coefficients when applying optimization techniques.
Since the true answers for these coefficients of the SRV are not available, it is
difficult to verify the identified results. However, the results seem to be reasonable
based on the identified functional regions and the implications from previous case
studies.

In the experiment on the flight data of the SRV, only the longitudinal motion
was examined. Small perturbations of pilot inputs are presented in the lateral
motion of the selected section of the flight data. The lift, pitch moment, and
drag coefficients are assumed to affect the longitudinal motion greatly, and the
other aerodynamic coeflicients are assumed to be equal to those of the F-15 flight
simulator. The assumptions might not be good. Therefore the performance of the
identified results may be degenerated by the defective assumptions. The coupling
effect of all the aerodynamic coefficients on both longitudinal and lateral motions
requires further investigations. Currently, the proposed approach is limited to a low
dimensional parameter space and is not practical to consider too many parameters

at one time.
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CHAPTER 11

Conclusions

11.1 Summary

The problem of obtaining mathematical models of physical dynamic systems
from noisy observations is system identification, which is of great importance,
not only in the traditional engineering disciplines, but also in biological systems,
economic science, or social science. In this dissertation, a novel approach based on
pattern recognition techniques is proposed to attack this problem.

The pattern recognition techniques developed in this research are employed to
characterize the nonlinear parameters of the differential equations that govern the
dynamic system being modeled. A problem solving architecture including an off-
line training phase and an on-line identification phase is proposed. The training

phase consists of:
1. pattern designation,
2. feature selection,
3. classifier implementation, and
4. performance evaluation.
The identification phase includes:
1. feature extraction and

2. patiern classification
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11.1.1 Pattern Designation

Pattern designation formulates parameters characterization as a pattern recog-
nition problem. Two techniques (piecewise linear functions and piecewise smooth
polynomials) are proposed to approximate the unknown parameters of a real world
system. This functional approximation parameterizes the models for the unknown
parameters (or subsystems of a complex system) and also defines a parameter
space representing candidate models. Every candidate model is designated to be a
“pattern.” A top down dichotomy algorithm then partitions this parameter space
into disjoint regions such that models in any one region generate system responses
within a certain variation threshold. Every disjoint region in the parameter space
corresponds to a pattern class. This algorithm recursively partitions the parameter
space based on the variation of simulated system responses of models sampled in
the parameter space in order to maintain the coherence property of any pattern

class.

11.1.2 Feature Selection

The feature extraction scheme is a linear transformation which minimizes the
variation of features within any one class while maximizing the variation of fea-
tures between classes. This transformation fulfills the objectives to increase the
clustering within any one pattern class, to enhance the difference between pattern
classes, and to reduce the data dimensionality. The transformation matrix is com-
posed of the eigenvectors corresponding to the largest eigenvalues of the matrix
S-1S, where S, and S, are the estimated within-class and between-class covari-
ance matrices of the system responses, respectively. Features are selected from the
transformed system response using the transformation matrix. In addition, ed hoc

approaches, such as power spectra and exponential component analysis techniques,
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may serve to extract nonlinear features.

11.1.3 Classifier Implementation

An adaptive neural network classifier is trained to memorize exemplars of every
pattern class. Its learning algorithm is based on a modification of the Learning
Vector Quantizer (LVQ), which distributes exemplars into decision regions in such
a way that every exemplar dominates a region corresponding to its representing
pattern class. The modified learning algorithm developed in this dissertation de-
fines much more precise decision boundaries and outperforms LVQ. This neural
network can be implemented in an architecture similar to the Hamiming net to

utilize the massive parallelism.

11.1.4 Performance Evaluation

Finally, performance evaluation is conducted by estimating the misclassification
rates and the noise effect on classifications. The approach to analyze the overall
classification performance and the reliability of a pattern classification is devel-
oped. Since the top down dichotomy algorithm provides a fairly even distribution
of the sampled training patterns in the system response space, the classification
performance estimated from the training set is reliable.

The overall classification performance gives an indication of the efliciency of
the problem solving pfocedure from pattern designation, to feature selection, to
classifier implementation. The procedure can be repeated if the classification per-
formance is not satisfactory.

The identified result of a pattern classification is associated with a percentage
of correct classification which provides a measure of confidence in the realization of

the mathematical descriptors of the unknown nonlinear parameters. Both region
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growing and region merging techniques are proposed to improve the reliability of

classification results.

11.1.5 On-line Identification

In the identification phase, the actual system response is taken as an imput
to the pattern recognition system obtained in the training phase. The real world
system is classified with the model class of the most similar system response.
Since the pattern recognition system is massively parallel, system characterization
is accomplished instantaneously.

The pattern recognition system has learned the patterns in the plausible param-
eter space, and the neural network classifier has memorized the typical responses
of these patterns. In a real world, the characteristics of a system component may
change dramatically because of aging and heating processes. It is very effective
and efficient to utilize this pattern recognition system to classify the changing
characteristics rapidly.

The off-line training process may require highly substantial computations. But,
the algorithms developed in the research are well suited for massively parallel
implementation in both the neural network training and automatic pattern class
designation.

The methodology was successfully applied to the realization of the characteris-
tics of the critical components or parameters of two real world systems, the Space
Station Freedom and the 3/8-scale F-15 airplane model. The results are encour-
aging, showing a high percentage of correct classification in a noisy environment.
The identification results of the parameter characteristics are thus very reliable

and useful for further parameter estimation.
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11.2 Limitations

According to the sampling schemes employed in this dissertation, the number
of sample patterns becomes combinatorial explosive if the dimensionality of the
parameter space gets larger. The proposed approach becomes computationally
intractable and impractical in the off-line training phase. Currently, this approach

is thus not scalable and limited to a low dimensional parameter space.

11.3 Implications

There are several implications stemmed from the case studies described in

Chapters 8, 9, and 10:

1. The pattern recognition system has explored the plausible functional regions
for the unknown nonlinear parameters and is capable of detecting and iden-

tifying the changing characteristics of the parameters rapidly.

2. In the experiment on the SRV flight data, small perturbations of maneuvers
are required for the local linearity assumption of parameters when the op-
timization approaches are used. The approach proposed in this dissertation

deals with nonlinear parameters and is able to handle flight data with a larger

range of maneuvers.

11.4 Applications

Based on the limitations and implications discussed above, the proposed ap-

proach can be applied to systems with

e several critical nonlinear system parameters needed to be modeled and
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e the parameter characteristics vary in a wide range during system operations,

especially due to heating or aging processes.

11.5 Contributions

A methodology based on pattern recognition techniques has been developed to
identify functional regions for the unknown parameters of a physical system. These
functional regions confining the unknown parameters provide useful information
in selecting initial models for the parameters when the search for the best model is
conducted. The specific contributions of the research described in this dissertation

are summarized as follows:

1. Formulation of the system characterization problem to be a pattern recog-
nition problem and implementation of a pattern recognition system. To

construct the pattern recognition system, the following novel ideas are intro-

duced:

e A top down dichotomy algorithm, described in section 4.4, which auto-

mates the pattern class designation,

¢ An improvement on the Fisher’s discriminant method, described in sec-

tion 5.5, for making the feature extractor robust to noise,

¢ An adaptive learning rule, described in section 6.3.2, for constructing
the neural network classifier which performs better than conventional

classifiers, like the minimum distance classifier.

2. Establishment of a problem solving paradigm combining unsupervised and
supervised learning processes. Unsupervised learning automatically parti-

tions the problem domain based on the problem nature, while supervised
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learning promotes classification performance. Actually, the top down di-
chotomy algorithm is an unsupervised learning process, and the MLVQ learn-

ing rule is a supervised learning process.

This research intends to study a complement of conventional system identi-
fication approaches which often employ the optimization techniques and fail in
many situations. The approach developed here can provide useful information for
the optimization approaches with better starting models in order to reduce search
steps and to avoid local minima. The case studies demonstrate the applicability

of the proposed approach.

11.6 Suggestions for Future Research

A new and improved methodology is presented to characterize the nonlinear
parameters of a physical dynamic system. Its performance and limitations are
also discussed. The following areas may require further investigations in order to

improve the performance and applicability of this methodology.

11.6.1 Syntactic Pattern Recognition Approach

The pattern recognition method developed in this dissertation is a statistical
approach which extracts and classifies features of patterns based on the statisti-
cal significance of a training set. If engineering insight to the system responses
is available, a syntactic pattern recognition approach can be applied to the sys-
tem identification problem. In other words, some specific signals in the system
responses may associate with physical interpretations which characterize the sys-
tem. The primitive features of the system responses may still need statistical
approach to identify. However, syntactic grammars can be used to describe the

interrelationships between these primitive features. Thus, the pattern recognition
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system may come up with the combination of a neural network and an expert
system. The neural network detects the low level features; while the expert system

utilizes these features to infer and to characterize the system being modeled.

11.6.2 Reduction of the Sample Size

Although the algorithms developed in this dissertation are well suited for par-
allel implementation, the large sample size of sample patterns in the parameter
space requires substantial amount of computation. The only information utilized
by the top down dichotomy algorithm is the variation among the sample pattern
vectors. If other useful information can be extracted from these sample pattern
vectors, the sample size may be reduced to improve the efficiency. The useful infor-
mation includes higher order statistics and the relationships between neighboring

patterns.

11.6.3 Other Applications

The problem solving methodology which combines the unsupervised and super-
vised learning techniques can be applied to other applications, like control prob-
lems. Suppose that the objective is to design the control strategies for a complex
system whose mathematical model is not available. Also, the behavior of this
complex system is not well understood. The unsupervised learning technique or
the top down dichotomy algorithm can be employed to partition the state space of
this system; and then the supervised learning technique is applied to assign control

strategies for every partitioned subspace.

149



APPENDIX A

Splitting Dimension Analysis

This appendix is concerned with the selection of the splitting dimension of the
parameter space in the top down dichotomy algorithm. Let us consider the scatter
indication of pattern vector X;’s inside the current region C of the parameter space

5= (Xi— M) (X;— M) (A.1)
icC
and the variance indication

o= — (A.2)

I

where M is the mean pattern vector of all patterns in C and n is the number of
patterns in C. The scalar s is the trace of the scatter matrix of X;’s. According
to the top down dichotomy algorithm, o is a variation measurement of patterns
sampled from C.

If the splitting dimension is chosen to be dimension j, the scatter indications

of the two disjoint subregions C; and Cj after splitting are

si= > (Xi— M) (X — M}) (A.3)
iecy
and
sh= > (Xi — M))"(X: - M}) (A.4)
i€c]

where M} and M} are the mean pattern vectors of patterns in Cf and C’g , Tespec-
tively.

Because of systematic sampling or stratified sampling with equal size of strata,
the number of patterns in €] and Cj is both equal to 2. Thus M = %(MlJ + M.

'5-
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It can be derived from Equation (A.1)

s = Z(X;—M)T(X;—-M)-]- Z(X;—M)T(X;—M)

i€C] i€

= Z.[(Xf—Mf)T(Xe—Mf)—(Xs—Mf)T(Mé~Mf)+Z(M§—M1’)T(M§—Mf)]+
ieC]
E‘[(Xf_Mg)T(Xi_‘Mé’)—(-Xi_sz)T(Mi,_M§)+Z(M5_M‘§)T(Mi?_Mg)]
ieCy

= s{+sg+-Z—(Mf-—Mg)T(Mf—Mg). (A.5)

The term (M] — M§T(M] — M}) is actually the Euclidean distance between M
and sz .

Therefore, the selection of dimension j that fulfills
max{(M{ — M})7(M] ~ M3)} (A.6)
3

is equivalent to that of

min{s] + s3}. (A.T)
J

This shows the reason for the selection of splitting dimension in order to reduce

the scattering and to stop partitioning as early as possible.
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APPENDIX B

Generalized Eigenvalue Problem

The generalized eigenvalue problem is forrnulated as follows:
213,‘ = )\EQCI? (B.l)

When I, is nonsingular, Equation (B.1) is equivalent to the ordinary eigenvalue
problem

(27152 = Az (B.2)

Suppose that £; and X, are symmetric matrices and X, is positive definite. This
problem can be handled by the ordinary eigenvalue problem technique. First of
all, ¥, is diagonalized by a orthonormal transformation because of its symmetry

and positive definite properties. That is,
2, = $A9T = GG, (B.3)

where A is a diagonal matrix, G = dA%, and GT = Az®T. Then Equation (B.1)
yields
Tz = AGGTz. (B.4)
Multiplying G~ to the left of both sides and applying the property that G-TGT =
I, we can get
G156 TGz = MG x. (B.5)
Let © = G~'Z,G~T, then Equation (B.1) is transformed into the ordinary eigen-

value problem:

o=l (B.6)
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where v and X are respectively a pair of eigenvector and eigenvalue of matrix .
Since ¥, is symmetric, ¥ is also symmetric. The ordinary eigensystem technique,
such as Jacobi’s method [PFTV88], in solving the eigensystem of a symmetric

matrix can be applied to . Once the eigensystem of ¥ is solved,

=G Ty = dA 0. (B.7)
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