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Abstract

In this paper, we present an efficient multilayer general area router, named V4R, for MCM and
dense PCB designs. One unique feature of the V4R router is that it uses no more than four vias to
route every net and yet produces high quality routing solutions. Another unique feature of the
V4R router is it combines global routing and detailed routing in one step and produces high qual-
ity detailed routing solutions directly from the given netlist and module placement. Several com-
binatorial optimization techniques, including efficient algorithms for computing a maximum
weighted k-cofamily in a partially ordered set and 2 maximum weighted non-crossing maiching
in a bipartite graph, are used to solve the combined problem efficiently. As a result, the V4R
router is independent of net ordering, runs much faster, and uses far less memory compared to
other multilayer general area routers. We tested our router on several examples, including three
industrial MCM designs from MCC. Compared with the 3D maze router, on average the V4R
router uses 44% fewer vias, 2% less wirclength, and runs 26 times faster. Compared with the
SLICE router, on average the V4R router uses 9% fewer vias, 4% less wirelength, and runs 3.5
times faster. The V4R also uses fewer routing layers compared to the 3D maze router and the
SLICE router.

1. Introduction

As VLSI fabrication technology advances, interconnection and packaging technology has
become a bottleneck in system performance [PrPC89, Ba90, He90]. The multichip module
(MCM) technology has been developed recently to increase the packing density and eliminate a
level of interconnection by assembling and connecting bare chips on a common substrate. The
substrate consists of multiple routing layers used for chip-to-chip interconnections. Without the
individual packaging for the chips, the bare chips can be placed much closer on the MCM sub-
strate, which leads to a significant increase in packing density and reduction in interconnection
lengths.

Because of the high packing density in MCM designs, the MCM routing problem is more
difficult than the conventional IC or PCB routing problems. First, MCMs may have far more
interconnection layers than ICs. For example, the multi-chip module developed for the 1BM
3081 mainframe has 33 layers of molybdenum conductors (including 1 bonding layer, 5 distribu-
tion layers, 16 interconnection layers, 8 voltage reference layers, and 3 power distribution
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layers[B1Ba82, BI83]). Fuijitsu's latest supercomputer, the VP-2000, uses a ceramic substrate
with over 50 interconnection layers[HaYY90). Moreover, unlike routing in ICs where the routing
region can be naturally decomposed into channels and switchboxes, there is no natural routing
hierarchy in MCM routing. The MCM routing problem is an immense three-dimensional gen-
eral area routing problem where routing can be carried out almost everywhere in the entire mul-
tilayer substrate. Finally, the line spacing is much smaller and the routing result is much denser
in MCM routing as compared to those of conventional PCB routing. Thus, traditional PCB rout-

ing tools are often inadequate in dealing with MCM designs’.

Few methods are available for multilayer MCM routing. A commonly used method for mul-
tilayer MCM designs is the three-dimensional (3D) maze routing [HaYY90, Mi%1]. Although
this method is conceptually simple to implement, it suffers from several problems. First, the
quality of the maze routing solution is very sensitive to the ordering of the nets being routed, yet
there is no effective algorithm for determining a good net ordering in general, Moreover, since
each net is routed independently, global optimization is difficult and the final routing solution
often uses a large number of vias. Finally, 3D maze routing requires long computational time
and large memory space since it needs to store the entire routing grid and search in it. For exam-
ple, one industrial MCM example that we obtained from MCC has a 45-micron routing piich and
a routing arca of 1524 x 1524 mm?, which results in a routing grid of 3386 x 3386 (=
11,464,996 grid points) for a single layer and our routing solution consists of 4 layers. It is cer-
tainly not a trivial task for a 3D maze router to store such a routing grid and search in it
efficiently.

Another method for multilayer MCM routing is to divide the routing layers into several x—y
layer pairs. Nets are first assigned to x—y layer pairs and then two-layer routing is carried out for
each x-y layer pair (the x-layer runs horizontal wires and the y-layer runs vertical wires)
[HoSV90]. Although this approach is efficient in general, it faces a few problems. First we have
to pre-determine the number of the routing layers before we can carry out layer assignment, but
there is no accurate estimation for the number of routing layers required. Moreover, detailed
routing information, such as constraints on via and segment locations, are not considered during
the layer assignment stage, which may lead to poor detailed routing results.

Recently, a multilayer MCM router named SLICE was developed by Khoo and Cong
[KhC092]. It computes a routing sclution on a layer-by-layer basis and carties out planar routing
in cach layer. On average it uses 29% fewer vias and runs four times faster than the 3D maze
router. However, since planar routing can complete only a limited number of nets, a two-layer
maze router was used at each layer to complete as many remaining nets as possible. The use of
maze router again slows down the computation and introduces extra vias.

! Besides the problem of efficient utilization of routing resource, there are also several performance issues involved in MCM rout-
ing. For example, for high-performance designs, the wires need to be modeled as lossy transmission lines, where signal refiection and
cross-talk need to be taken into consideration.



Several efficient routers have been proposed for silicon-on-silicon based MCM technology
[PrPC89, DaKJ90, DaDS91, DaKS91]. Since the number of routing layers is usually small (2
layers for signal routing in most cases) in this technology, many techniques for IC routing, such
as hierarchical routing and rubber-band routing, can be applied to yield good solutions. However,
it is not clear how to generalize these techniques to multilayer general area routing.

In this paper, we present an efficient multilayer general area router, named V4R, for MCM and
dense PCB designs. One unique feature of the V4R router is that it uses no more than four vias to
route every two-terminal net’ and yet produces very satisfactory routing solutions. Marek-
Sadowska [Mag4] showed a theoretical results that each two-terminal net can be routed using at
most one via in a two-layer topological routing solution (this result was later generalized to mul-
tilayer topological routing by Rim, Kashiwabara, and Nakajima [RiKN89] and by Cong and Liu
[CoLi90]). Although her result is interesting in theory, the resulting topological solution using
one-via routing usually uses long wires and introduces congestion when mapped to a physical
routing solution. Therefore, the method in{Ma84] is usually not applied directly in practice. To
our knowledge, the V4R router is the first practical multilayer general area router that guarantees
to use no more than a fixed number of vias for every net yet produces high quality physical rout-
ing solutions. Bounding the number of vias per net is not only helpful for via minimization but
also very important for precise delay estimation at the higher level of MCM designs. For high-
performance MCMs, vias not only increase the manufacture cost but also degrade the system per-
formance since they form impedance discontinuities and cause reflections when the interconnec-
tions have to be modeled as transmission lines[Ba%0).

Another unique feature of the V4R router is that it combines global routing and detailed rout-
ing in one step and produces high quality detailed routing solutions directly from the given netlist
and module placement. Several combinatorial optimization techniques, including computing a
maximum weighted &-cofamily in a partially ordered set and a maximum weighted non-crossing
matching in a bipartite graph, help us to solve the combined problem efficiently. As a result, the
V4R router is independent of net ordering, runs much faster, and uses far less memory. We tested
our router on several examples, including three industrial MCM designs from MCC, Compared
with the 3D maze router, on average the V4R router uses 44% fewer vias, 2% less wirelength,
and runs 26 times faster. Compared with the SLICE router, on average the V4R router uses 9%
fewer vias, 2% less wirelength, and runs 3.5 times faster. The V4R router also uses fewer routing
layers as compared to the 3D maze router and the SLICE router.

The remainder of this paper is organized as follows. Section 2 formulates the multilayer MCM
routing problem. In Section 3, we first give an overview of our algorithm and then describe each
step of the algorithm in detail. Experimentat results and comparative study are presented in Sec-
tion 4.

* The majority of the nets in MCM designs are two-terminal nets. For example, in the MCM example of 37 VHSIC gate-arrays
that we obtained from MCC, 94% of the nets are two terminals nets. A k-terminal net can be decomposed into k — 1 two-terminal nets
50 that it can be routed using at most 4(k — 1} vias by the V4R router.
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2. Problem Formulation

The MCM routing problem consists of a set of modules, a set of nets, and a multilayer routing
substrate. Modules (dies) are mounted on the top of the substrate by wire bonding, tape-
automated bonding (TAB), or flip-chip bonding with solder bump connections. The substrate
consists of multiple signal routing layers, with (possible) obstacles in some routing layers, such
as power/ground connections and thermal conducting vias. The I/O terminals (pads) of the
modules are connected to the substrate either directly or through routing to the external pads that
surround the individual modules for engineering changes [Ba90]. The pads are brought to the
first signal routing layer either directly through distribution vias or through one or more redistri-
bution layers. The redistribution layers are required when the pad spacing does not maich the
line spacing on the signal routing layers. The pin redistribution problem is not studied in this
paper, and the reader may refer to [ChS8a91] for the solutions to the pin redistribution problem.
The goal of our MCM router is to complete the connections for the 1/O terminals in each net
using the signal routing layers in the substrate.

The signal routing layers in the substrate are numbered from top to bottom. We assume that
there is a Manhattan routing grid superimposed on each routing layer where the spacing between
grid lines is determined by the routing pitch for the given technology. Two wires in adjacent sig-
nal routing layers can be connected by a via. Vias may be stacked on top of each other to connect
wires in non-adjacent layers. Stacked vias can be formed in several ways, e.g., by filling the
etched via with nickel in the AT&T AVP process or by plating copper posts as in the MCC pro-
cess [Sh911. Figure 1 shows a cross section of a sample four layer MCM routing substrate.

The output of the routing problem is a set of routing segments and vias that connect all the
nets. The quality of the routing can be measured by the total wirelength, the number of vias, the
number of wire bends (jogs) and the number of layers required to complete the routing. Long
wire paths increase propagation time and should be avoided. Vias and wire bends degrades the
signal’s fidelity by introducing impedance discontinuity in signal paths thus should also be
minimized. Each additional routing layer increases the manufacturing cost and thus the number
of layers should also be minimized.

Now we introduce a few terminologies. In each routing layer, a horizontal grid line is referred
10 as a horizontal track and a vertical grid line is referred to as a vertical track. The terminals on
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Figure 1: Cross section of a multilayer (4 layer) routing region
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the same horizontal track form a row, and the terminals on the same vertical track form a column.
For a terminal p, let x(p) and y (p) denote the x and y coordinates (in terms of grid point coordi-
nates) of p respectively, and let row(p) and col(p) denote the row number and the column
number of p respectively. Two adjacent rows form a horizontal channel, and two adjacent
columns form a vertical channel. (See Fig. 2.) The channel formed between between the i-th and
{i+1)-th rows (columns) is named the i-th horizontal (vertical) channel.? The capacity of a hor-
izontal (vertical) channel is the number of horizontal (vertical) tracks in the channel. Clearly,
there is no terminal inside a horizontal or a vertical channel.

3. Description of the algorithm

In this section, we present the algorithm used in the V4R router that guarantees to use no more
than four vias for each net. We first give an overview of the entire algorithm, and then we
describe each siep of the algorithm in detail.

3.1. Overview of the algorithm

Our algorithm first decomposes each k-terminal net into & — 1 two-terminal nets based on
Prim’s minimum spanning tree algorithm. Although the spanning tree topology is used for the
initial multi-terminal net decomposition, there are several operations in our algorithm which
allow us to introduce Steiner points during the physical routing process so that the final routing
solution for each net is a Steiner tree instead of a spanning tree. In the remainder of this section,
we assume that each net is a two-terminal net. For each net i, let p; denote its left terminal (i.e.,

* Since the terminals are usually not distributed uniformly in the top layer, the widths of horizontal or vertical channels in each
layer may vary significantly. In some MCM technology, several redistribution layers under the top layer are provided for redistribut-
ing terminals uniformly before actual routing. After terminal redistribution, the horizontal or vertical charmel widths do not vary
much. The experimental results in Section 5 are based on the designs without terminal redistribution. We expect that even beuer
results will be achieve if the terminal redistribution technique is applied {at the expense of having extra layers for terminal redistribu-
tion).
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the one with the smaller column number) and g; denote its right terminal.

Each net is routed using up to five connected segments alternating between the vertical and
horizontal directions. We call a horizontal segment a A-segment and a vertical segment a v-
segment. There are two possible routing topologies depending on the direction of the segment
connected to the left terminal or to the right terminal as shown in Fig. 3. The type-i topology
begins with the left v-stub from the left terminal, followed by the left h-segment, the main v-
segment, the right h-segment, and ending at the right terminal with the right v-stub. The type-2
topology begins with the left h-stub, followed by the left v-segment, the main h-segment, the right
v-segment, and ending with the right h-stub. These two types of routing topologies are "orthogo-
nal" to each other. Since each net is routed with no more than five segments, it is clear that each
net uses at most four vias.

The reason to consider four-via routing is because it offers sufficient flexibility for connecting a
net. In order to connect terminal p located at (0,0) and terminal ¢ located at (m,n), assuming the
routing path is within the bounding box of p and ¢, one-via routing gives two possible routes (i.e.
the two L-shape routes), two-via routing gives (m + n) possible routes, three via-routing gives
2:m-n — (m + n) possible routes. Moreover, using no more than three vias allows only monotonic
routing paths. However, four-via routing gives roughly m-n(m + n) possible routes, which are
usually sufficient in practice. Furthermore, four-via routing allows non-monotonic routing paths.

The V4R router routes two adjacent layers at a time, the odd-number layer is for v-segments
and the even-number layer is for h-segments. When routing in the current layer pair, the V4R
router maintains a list, named L,,,,, which consists of the nets to be routed in the next layer pair.
For each layer pair, it processes column by column starting from the left-hand side. At each
column ¢, the V4R router executes the following four steps:

(1) Horizontal track assignment of the right terminals: For each right terminal ¢; whose left
terminal p; is in column ¢, we try to connect g; to an appropriate horizontal track ¢; which is
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Fig. 4 Overview of the algorithm: the four steps when processing a column c.

free between col (p;) and col (g;), using the right v-stub in column col(q;). The nets that are
successfully assigned to feasible tracks are designated as type-1 nets and they will be routed
with the type-1 topology. The remaining nets are designated as type-2 nets and they will be
routed with the type-2 topology. For example, Fig. 4(a) shows the track assignment for the
right terminals ¢ and g5, which implies that nets 1 and 3 will be routed using the type-1
topology. For a type-1 net i, its right h-segment will be routed in track ¢;. For a type-2 net
J» its right h-stub will be routed in row row (g;).

Horizontal track assignment of the left terminals: There are two phases in this step that
process the type-1 and type-2 left terminals independently. In Phase 1, we try to connect
each type-1 left terminal p; in the current column ¢ to an appropriate horizontal track ¢
using the left v-stub in column ¢. The left h-segment of a type-1 net i will be routed in track
1. For example, Fig. 4(b) shows the track assignment of the type-1 lefi terminals p and p3.
In Phase 2, we (ry to assign a horizontal track for the main h-segment for type-2 left termi-
nals. Note that the main h-segment can be connected to the left terminal only after its left
h-stub and left v-segment are routed. Fig. 4(b) shows the track assignment for the type-2
terminal p,. In both phases, if a terminal p; cannot be assigned a track, then we rip up all
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the routed segments of net i and add i to the list L,,,, to be propagated to the next layer pair.

A net is gctive if its left and right terminals have been assigned the appropriate horizontal tracks
yet its routing has not been completed. Clearly, for a type-1 active net, the main v-segment needs
10 be routed to complete the routing. For a type-2 active net, the left v-segment followed by the
right v-segment need to be routed to complete the routing. A v-segment of net i is pending if it
satisfies any one of the following three conditions: (1) It is the main v-segment of a type-1 active
net; (2) It is an unrouted left v-segment of a type-2 active net; (3) It is an unrouted right v-
segment of a type-2 active net, its left v-segment has been routed, and the row row(q;) is free
between col(g;) and column ¢. The next two steps to be carried out at column ¢ are:

(3) Routing in the vertical channel: Select a maximum subset of the pending v-segments and
route them in the ¢-th vertical channel CH. Clearly, the density of the selected v-segments
should not exceed the capacity of CH,.. In Fig. 4(c), the nets 1, 2, 3 and 4 are all active nets
but only the main v-segments of nets 1 and 3 and the left v-segment of net 2 are the pending
v-segments and all of them are routed in CH_.

(4) Extending to the next column: We extend the left h-segments of the remaining active nets
to column ¢ + 1. If the h-segment of an active net i is blocked, we rip up all the routed seg-
ments of net § and add { into the list L,,,,. For example, In Fig. 4(d) the h-segments of nets 2
and 4 are extended to column ¢ + 1.

After these four steps, we move to column ¢ + 1. After we have processed all the columns in
the current layer pair, we move to the next layer pair and route the nets in L,,,,. The scanning
direction is reversed between the layer pairs to better utilize the routing resources.

It is clear that our algorithm gencrates detailed routing solutions directly without going through
the conventional global routing step. The success of our algorithm depends on the efficient imple-
mentation of the above four steps which are carried out at every column. We have developed
very efficient algorithms for the four steps based on several combinatorial optimization tech-
nigqucs. The first step is reduced to the problem of finding a maximum weighted bipartite match-
ing, which can be solved in O (n?) time (where n, is the number of left terminals in column c).
Phase 1 of the second step is reduced to the problem of finding a maximum non-crossing match-
ing in a bipartite graph, which can be solved optimally in O (h.logh,) time (where A is the
number of unoccupied horizontal tracks at current column ¢). Phase 2 of the second step is again
reduced to a maximum weighted bipartite matching, which can be solved in O (n’?) time (where
', is the number of type-2 left terminals in column ¢). The third step is reduced to the problem
of finding a maximum weighted k-cofamily in a partially ordered set, which can be solved
optimally in (k.m?) time (where k, in the capacity of the vertical channel CH, and m, is the
number of active nets that cross column ¢). The forth step can be carried out easily. In the
remainder of this section, we shall discuss the four steps in detail.



3.2. Horizontal Track Assignment of the Right Terminals

Assume that ¢ is the current column being processed. There are two phases in this step. In the
first phase, we determine the terminals for type-1 nets and assign horizontal tracks to them at the
same time. In the second phase, we determine the terminals for the type-2 nets.

3.2.1. Phasel

Let Q.= {q1, g2, * " g ) be the set of the corresponding right terminals of the left terminals
in column ¢. A horizontal track is feasible for g; if (i) it is an unoccupied track and is free
between column ¢ and column col(g;) (excluding columns c and col(g;)), or (i) it is occupied by
a left or right terminal of net i. The objective of this step is to connect each g; to an appropriate
feasible track #; using the right v-stub so that ¢; is reserved for the right h-segment of net(g;). We
build a bipartite graph RG, in which g, q2, - 4a, are the nodes on the right-hand side and the
union of the feasible horizontal tracks of g;'s are on the left-hand side. There is an edge (g;, tj) if
track ¢; is feasible for ¢; and we can connect g; to track ¢; using a right v-stub in column co! (g;)
without crossing other terminals. For example, Fig. 5(a) shows the right terminals in Q. and Fig.
5(b) shows the corresponding bipartite graph RG..

Moreover, if ¢; and g; are in the same column (say, y(¢;) < ¥(g;)) and there is no other termi-

nals between ¢; and g;, we only allow g; to be adjacent to tracks below -;j-(y(q,-) +y(g;)) and g;

to be adjacent to tracks above %(y(q;)+ y{(g;)) in RG,. (For example, in Fig. 5(b), edges

(g2, t3) and (g4, t2) are not in RG, although ¢ is feasible for g, and ¢, is feasible for g4.) With
this modification of RG,, it is not difficult to show that any matching in RG, comesponds to a
valid track assignment of the right terminals in Q.. The nets whose right terminals are

Colugrm ¢ feasible tracks for g3

ql

qé

Feasible tracks for g4 feasible wracks for g2

(a) (b}

Fig. 5 Construction of the bipartite graph RG..
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successfully matched in the matching are qualified as type-1 nets, and they will be routed with the
type-1 topology.
3.2.2, Phase 2

For the nets whose terminals are not matched in Phase 1, they become the candidates of type-2
nets. These nets will be routed with the type-2 topology.

To optimize the track assignment in Phase 1, we assign an integer weight to each edge (g;, ;)
in RG,. Intuitively, if the horizontal track ¢; is in the vertical interval formed by y (p;) and y(g:)
(called the preferred interval of g;), the edge (q;, #;) has a large weight (since assigning g; to ¢; in
this case minimizes the wirelength). The weight of (g;, #;) decreases as {; moves away from the
preferred interval. Hence, our objective in this phase is to find a maximum weighted matching in
RG..

It is well known that the maximum weighted matching problem in a bipartite graph can be
reduced to the minimum cost maximum flow problem in a network which has a cubic time
optimal solution (the reader may refer to [FoFu62, Ta83] for the details of the reduction). This
result leads to an O ((#, + n,.)’) time algorithm for computing a maximum weighted matching in
RG,, where i, is the number of the nodes on the left-hand side in RG, (i.e., the total number of
feasible tracks of all the terminals in Q,) and n, is the number of nodes on the right-hand side in
RG, (i.e., the number of right terminals in @, which equals to the number of left terminals in
column ¢). Usually, /', is much larger than n,, and a straightforward application of the minimum
cost maximum flow algorithm could be inefficient. We show that the bipartite graph RG, can be
simplified as follows. For each node g; in RG, if there are more than n, edges incident 10 g;, we
first sort these edges according to the decreasing order of their weights. Then, we keep the first
n, edges (i.e. the edges with large weights) and remove the remaining edges from the graph RG,.
The simplified graph is named RG’.. Then, we have the following result:

Lemma 1 A maximum weighted matching in the simplified graph RG’, is also a maximum
weighted matching in RG.,.

Proof For each edge (¢;, ¢;) in the maximum weighted matching M of RG,, it must be the case
that (z, g;) is one of the n. highest weighted edges connected 10 g;. Otherwise we can always
replace (1, ¢,) by a "free” edges from the n. highest weighted edges from g; which is not incident
to any matched left-hand node. Therefore, M is also a maximum weighted matching in RG';. O

Theorem 1 The horizontal track assignment of the right terminals can be carried out optimally
inQ (nE) time, where #, is the number of left terminals in column c.

Proof The optimal track assignment for the right terminals is reduced to finding the minimum
cost maximum flow in the simplified bipartite graph RG’,. Using the algorithm in [Ta83, pp.
110), this can be solved in O (| M| m10g.mmyn) time where n and m are the number nodes and
edges in RG’, respectively and | M| is the size of the maximum matching. Since the number of
edges in RG’, is at most n.n. (n. number of edges for each of the . right-hand nodes), the
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optimal track assignment can be solved in O (ng) time. O

This theorem shows that a maximum weighted matching in RG’; can be computed in O(ng)
time, independent of the total number of feasible tracks /#’,. We observed a considerable speed-
up when Lemma 1 was applied by the V4R router so that it computes a maximum weighted
matching in RG’, instead of in RG,.

3.3. Horizontal Track Assignment for the Left Terminals

In this step, we assign the horizontal tracks independently for type-1 and type-2 terminals in
Phase 1 and Phase 2, respectively.

3.3.1. Phase 1

Let P, ={py pa ' pa ] bethe type-1 left terminals in the current column c¢ sorted according
to the increasing order of their row numbers. A horizontal track is unoccupied if it is not used by
any left h-segment of an active net nor is it reserved for any h-segment of an active net. The
objective of this step is to connect each type-1 left terminal in P, to an appropriate unoccupied
horizontal track vusing a left v-stub in column c.

Our algorithm again builds a bipartite graph LG, in which each node on the left-hand side
represents a lcft terminal p; in P. and cach node on the right-hand side represents unoccupied
horizontal track ¢;. There is an edge (p;, ¢;) in LG, if p; can be connected to track ¢; using a left
v-stub in column ¢ without crossing other terminal in the same column. For example, Fig. 6{a)
shows the left terminals and the unoccupied tracks at column ¢, and Fig. 6(b) shows the
corresponding bipartite graph. It is clear that a horizontal track assignment of the left terminals
corresponds to a matching in LG,. Moreover, since two v-stubs of two different nets cannot
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Fig. 6 Construction of the bipartite graph LG,.
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intersect, we require the matching to be non-crossing, i.e., there do not exist two edges (¢, #;,)
and (p;,, ¢;,) in the matching such that i, < i, but j; > j,. Furthermore, each edge (p;, {;) may
have a weight w (p;, ¢;) which indicates the preference of assigning track ¢; to p;. In general, p;
prefers an unoccupied track which is free between columns ¢ and col(g;) (or as close to column
col(g;) as possible). Therefore, 10 find a best track assignment of the left terminals in column c,
we want to compute a maximum weighted non-crossing maiching in the bipartite graph LG.. In
fact, we want to generalize the definition of a non-crossing matching as follows: if p; and p;, are
of the same net, then we allow both (p; , t;) and (p;,. ;) to be in a non-crossing matching, i.c., we
allow both p; and p;, to be connected to a common track ¢; if they are of the same net. (Note that
in this case, a Steiner point is introduced in the routing solution of the net.) Consequently, we
want 1o find a generalized maximum weighted non-crossing matching inLG,.

We applied the algorithm by Khoo and Cong presented in [KhCo92] which reduces the prob-
lem of computing a generalized maximum weighted non-crossing matching to the problem of
computing a maximum weighted chain in the x—y plane. According to their results, we have

Lemma 2 A generalized maximum weighted non-crossing matching in a bipartite graph can
be computed in O (mlogm) time, where m is the number of edges in the graph. O

In our case, m corresponds to the number of edges in LG,. Moreover, we can show that LG, is
not too dense.

Lemma 3 Let k, be the number of unoccupied horizontal tracks at column c, then the number
of edges in LG, is no more than 2A,.

Proof For each right-hand node ¢; in LG, representing an unoccupied horizontal track at
column ¢, there are at most two left-nodes p; and p; connected to y;, wherc p; and p; corresponds
1o the terminals at column ¢, which are immediately above or below ; respectively. Therefore,
the number of edges is at most 24,. (O

Combing Lemma 2 and Lemma 3, we have

Theorem 2 The horizontal track assignment of the left type-1 terminals in column ¢ can be car-
ried out optimally in O (h.logh,) time, where k. is the number of unoccupied horizontal tracks at
column ¢. 1

3.3.2. Phase 2

Let P’. = {p’1, p’2. -~ P'w.} be the type-2 lefi terminals in the current column ¢. For a termi-
nal g, let free col(q) be the leftmost column such that row(q) is free between columns
free_col(q) and col (g). Then, a feasible track for a left terminal p; is a free horizontal track that
does not have any terminal other than those in net i between column ¢ and free_col(g;) (exclud-
ing column ¢ but including free_col (g;)) where g; is the right terminal of p;. The objective of
this phase is to try to assign a feasible track for the main h-segments for each of the type-2 nets.
Qur algorithm builds a bipartite graph LG’, in which each node on the Jeft-hand side represents a
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type-2 left terminal p’; in P’ and each node on the right-hand side represents a feasible track for
some p’;. There is an edge (p;, t;) in LG, if t; is a feasible track for p’;. A weight is assigned to
to each edge depending on the length of the free feasible track. A longer free feasible track has a
higher weight since the routing in that track is less likely to be blocked. Hence, our objective in
this phase is to find a maximum weighted matching in LG’.. Using a result similar to Lemma 1,
we have,

Theorem 3 The horizontal track assignment of the type-2 left terminals can be carried out
optimally in O (n’2) time, where n’, is the number of type-2 lefi terminals in column c.

Proof The optimal track assignment for the type-2 left terminals is reduced to finding the max-
imum weighted matching in the bipartite graph LG”, where LG", is obtained by retaining the ",
highest weighted edges that are incident to each node representing a type-2 left terminal p; in
LG’.. Using the same arguments as in the proof of Theorem 1, we can show that the optimal
track assignment can be solved in O (n’2) time. O

If the left terminal of a net i is not assigned to any horizontal track at the end of this step, we
rip up the existing routing segments of net i, and add net i to the list L, to be routed in the next
layer pair.

3.4. Routing in a Vertical Channel

Let N, denote the set of active nets that cross the column c. A v-segment of net i € N_ is pend-
- ing if it satisfies any one of the following conditions: (1) It is the main v-segment of a type-1
active net; (2) It is an unrouted left v-segment of a type-2 active net; (3) It is the unrouted right
v-segment of a type-2 active net, and its left v-segment has been routed, and the row row(q;) is
free between col(g;) and column ¢. Moreover, in case (3), we require the endpoints of the pend-
ing right v-segment do not share common horizontal tracks with the endpoints of other pending
v-segments. (This prevents introducing any vertical constraint in channet CH..) The objective of
this step is to complete as many active nets in N, as possible by routing their pending v-segments
in the channel CH,. Note that a type-1 net is completed when its main v-segment is routed and a
type-2 net is completed when its right v-segment is routed. For each active net { in N, its pend-
ing v-segment corresponds to a vertical interval J;. Let U denote the set of all pending v-segments
at column c. It is not difficult to verify that no two endpoints of the pending v-segments share the

same horizontai track. Therefore there is no vertical constraint” when routing U in channel CH,.
Let d(S) denote the density of the interval set S. Then, we have the following result.

Lemma 4 A set of pending v-segments S can be completed in the channel CH, if and only if
d(S) < k, where k is the capacity of the channel CH..

Proof Since there is no vertical constraint among any two pending v-segments, the number of
tracks needed to route the v-segments in S is d(S) if we use the left-edge algorithm. Therefore,

“ The use of the conventional notion of vertical constraint [De6, YoKu82] is a litle confusing here since CH, is a vertical chan-
nel. In fact, a vertical constraint here refers o a constraint among the two horizontal segments in the same track that are to be connect-
ed to two vertical intervals in CH._.
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the v-segments in § can be completely routed if the channel capacity is at least 4(S). O

According to this lemma, to complete as many active nets as possible in CH,, we want to select
a maximum subset § of intervals from U/ subject to the constraint d(S) < k. In general, each inter-
val /; in U may have a positive weight w (/;) which indicates the priority of the net { 1o be com-
pleted in CH... In principle, if col (g;) is closer to column ¢, I; has a higher weight since we want
to complete the routing of the net i before we reach its right terminal. We can also assign higher
weights to the timing critical nets so that they have a higher chance of being completed in the
current layer pair. Therefore, the objective of the vertical channel routing step is to select a max-
imum weighted subset S of intervals from U subject to the constraint that d(S) <k.

We shall show that the problem of finding a maximum weighted interval subset § ¢ U with
d(S) <k is equivalent to the problem of finding a maximum weighted k-cofamily in a partially
ordered set. A partially ordered set (poset) P is a collection of elements p together with a binary
relation « defined on PxP which satisfies the following three conditions [Li77]:

(1) reflexive,i.c., xe-xforallx e P.
(2) antisymmetric,ie, X< y&ye—x=>x=y.
(3) transitive,ie, x—y&ye—z=>x¢ 2.

A binary relation satisfying these three conditions is called a partial ordering relation. We say
that x and y are related if x ¢~ y or y « x. An antichain in P is a subset of elements such that no
two elements are related. A chain in P is a subset of elements such that every two of them are
related. A k-family in P is a subset of elements that contains no chain of size k+1 [GrK176]. A -
cofamily in P is a subset of elements that contains no antichain of size £+1 [GrK176]. We can
have an integer weight w (p) associated with each element p in P. For a subset X of P, the weight
of X, denoted w(X), is defined to be the sum of the weights of the elements in X. A maximum
weighted k-family (k-cofamily) in P is a k-family (k-cofamily) whose weight is maximum. A fun-
damental result on poset is a theorem due to Dilworth[Di50]:

Theorem 4 (Dilworth, 1950) For a poset P, if the maximum size of antichains is m, then P
can be partitioned into m disjoint chains. [J

Now we shall define a partial ordering relation on the vertical interval set U. For two vertical
intervals I =(ay, b{) and I, = (a,, b,), we say that I, is below I, denoted as /| « I, if (i)
by <ajy,or(ii)a; <aj,and by < by, and I, and I, scgments are of the same net. Moreover, we
define / « / for any /. For example, in Fig. 7(a), I is below /4 (according to condition (i)), and
14 is below [, if 7; and 7,4 are of the same net (according to condition (ii)). Intuitively, if I; is
below {;, then I; and /; can be routed in the same vertical track. Allowing two intervals of the
same net 1o overlap is another way of introducing Steiner points.

Lemma 5 The below relation defined on U is a partial ordering relation.

Proof (i) For any interval [; = (a;, b;) in U, by definition we have I; « [;, thus the below rela-
tion is reflexive. (ii) Given that [ «1I, and I, « 1. If I} and [/, are of different net, then
by < aj and b, < a; which is physically impossible for two different intervals, thus /1 must be
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I,. If Iy and /, are of the same net, then a, < a, < a,, which is again impossible for two dif-
ferent intervals, thus 7, must be I,. Therefore, the below relation is antisymmetric. (iii) Given
that /; « /5 and I, « I3, there are four possibilities: (a) /, and [, are of different nets and /,
and 74 arc of different nets. Then by < a, and b, <as3. Since a; < b,, thus b; <a; and
{1 «15.(b) /| and I are of the same net, and /, is of a different net. Then b2 < g3 and b; < by,
thus &1 < a4, which implies /| « 4. (¢) 7, and /4 are of the same net and /7, is of a different net,
then a; < a3z and | <a,. Thus, by <a; and I| « [3. (d) 1,1, and I, are all of the same net.
Then a; <as, @, <as and by <b;, b, <b;. Therefore,a; < a3 and b, < b4. Since /, and I are
of the same net, we have /| « [3. Therefore, the below relation is transitive. From (i)-(iii), we
conclude that the below relation defined on U is a partial ordering relation. O

According to Lemma 5, the vertical interval set {J with the below relation forms a poset P (U).
For example, Fig. 7(a) shows a set U of vertical intervals. Fig. 7(b) shows the poset P (U) formed
by I/ under the below relation. (We use the Hasse diagram to represent P (I/) in which each node
represents an interval in I/ and each edge represents the below relation among a pair of intervals.
The edges imptlied by the transitivity are omitted.) It is not difficult to show that a set of the inter-
vals § ¢ U can be routed in a single vertical track if and only if S is a chain in P (U). Moreover,
we have the following result.

Lemma 6 A set of vertical intervals § ¢ U (with possibly non-distinct nets) satisfies the con-
straint d(S) < k if § is a k-cofamily in P(U).

Proof If S is a k-cofamily, according to Theorem 4 by Dilworth, it can be partitioned into &
disjoint chains. Since each chain has density 1, d(5) <. O

Lemma 7 If a set of vertical intervals § < U of distinct nets satisfies the constraint 4(§) £ &,
then § is a k-cofamily in P{{/).

11 {of the same net az 14)
2

| ]
I

14 (of the same net as I1)

(a) (b} O]

Fig. 7: (a) A set of vertical intervals I where /| and /4 are of the same net.
(b) The partially ordered set P (U) in which the dark edges show a 2-cofamily.
(c) A subset of intervals § with 4(5) £ 2 induced by the 2-cofamily.
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Proof If S is a set of distinct nets with d(S) < k, we can use the left-edge algorithm to route §
into < k tracks. Since any two intervals in the same track cannot be in an antichain, we conclude
that S has no antichain of size £ + 1 or larger. O3

Note that Lemma 7 may not be true if we have intervals of the same net in S. In a pathological
case, suppose we have two intervals of the same net, /| =(a;, b;) and [/, =(a,, b3), where
a; < ay and b, < b;. By the definition of the below relation, /4 is not below 7, because the con-
dition b; < b, does not hold. Therefore, [, and /, is not a 1-cofamily (i.e. chain) while
d(roman{l, I,}) = 1. However, case like this rarely happens in practice.

According to Lemma 6, the problem of finding a maximum weighted subset of intervals § < U
with d(8) £k is reduced to finding a maximum weighted k-cofamily in P(U/). For example, the
dark edges in Fig. 7(b) shows a 2-cofamily in P (U) and Fig. 7(c) shows the corresponding inter-
val sct of density 2. The maximum weighted k-cofamily problem has been studied by Cong and
Liu [CoLi90, CoLi91] and by Sarrafzadeh and Lou [SaLo90]. The algorithm by Cong and Liu
[CoLi90, CoLi91] computes a maximum weighted k-cofamily in a poset in O ((n —k)nz) time, and
the algorithm by Sarrafzadeh and Lou [SaLo90] computes a maximum weighted k-cofamily in a
poset in O (kn?) time, where n is the number of elements in the poset. Both algorithms are based
on computing a minimum cost maximum flow in a network. The former is more efficient when &
is large (close to n), and later is more efficient when & is small. In our case, the number of tracks
in cach vertical channel is usually small, so we adopted the algorithm by Sarrafzadeh and Lou in
the V4R router. After we obtain a maximum weighted k-cofamily § in P(U), we can route the
main v-segments which correspond to the intervals in § in & vertical tracks in channel CH, and
connect each v-segment with the corresponding left and right h-segments of the same net.
According to Lemmas 4, 6 and 7, we have

Theorem 5 Routing in the vertical channel CH, can be carried out in O (k.-m?2) time, where k,
is the capacity of CH, and m, is the number of active nets that cross column c. Moreover, when
the pending v-segments are of distinct nets, the routing solution is optimal. 0

Note that if the main v-segment of a type-1 net is routed in CH,, the routing of the net is com-
pleted. Similarly, if the right v-segment of a type-2 net is routed in CH,, its routing is alsc com-
pleted.

3.5. Extending to the next column

After we have finished routing in the current vertical channel CH,., we extend the h-segments
of the remaining active nets to the next column ¢ + 1. If the h-segment of a net { is blocked by a
terminal at column ¢ + 1, then we rip up all the routed segments of net / and add i to the List Ly
to be propagated to the next layer.

After we have process all the columns in the current layer pair, if L,,,, is empty then all the
nets have been routed. Otherwise, we propagate the terminals of the nets in L,,,, to the next
layer-pair and repeat the routing process on the next layer-pair. The scanning direction for the
next layer pair is reversed from the current layer pair so that the routing resource is better utilized.
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(In our experiments, if we always scan from left to right, the left side of the routing substrate
appears 1o be more congested.)

3.6. Extensions to the basic algorithm

The algorithms described in the preceding sections are the basis of the V4R router. In this sec-
tion, we describe three extensions that improve the layer usage and via usage of the router.

The first extension is back channel routing of the vertical segments. A back channel is the free
vertical space left over from routing in the previous vertical channel. Tt can be used to route addi-
tional pending v-segments that are not routed in the current vertical channel due the channel’s
capacity constraint. In general, the use of back channels will lead to a slight increase in wire-
length and thus it is used only when the routing in the current layer-pair is very congested and
when it may help to reduce the number of required layets.

It is possible that the last routing layer pair consists of only a few nets. In this case, we may
relax the four-via constraint and re-route the next-to-last layer-pair to accommodate the few nets
in the last layer-pair. This mode of routing is called the multi-via routing where the h-segments
of the remaining active nets at a column can always be extended to the next column using one
additional v-segment. The location of the additional v-segment is found efficiently using a simple
line scan algorithm, Experimental results show that even with multi-via routing, very few nets
use more than 4 vias. In our test examples, the number of nets that used more than 4 vias is less
than 7 for any one example and no nets uses more than 6 vias.

The use of orthogonal direction wires between adjacent layers is imposed by our algorithms but
seldom by the technology. When the technology allows the use of orthogonal direction wires
within a single layer, considerable via reduction may be achieved by moving the v-segments from
a v-layer 10 a h-layer when they do not intersect with any other h-segment or v-segment.

4. Experimental Results

We have implemented the V4R router on Sun workstations using the C language. The V4R
router was tested on five examples shown in Table 1. The first three examples labeled testl, test2,
and test3 are random cxamples consisting of only two-terminal nets. The last three examples
labeled mccl, mec2-75 and mec2-45 are industrial MCM designs provided by MCC.® In particu-
lar, mec2 is a supercomputer with 37 VHSIC gate arrays, and mcc2-75 and mcc-45 are instances
of the same design with 75-micron and 45-micron routing pitch, respectively. The experiments
reported in this section were performed on a Sun SPARCstation II with 32MB of main memory.

The routing results obtained by the V4R router are shown in Table 2. The second column
shows the number of layers used by the V4R router. The third column shows the total number of
vias used by the V4R router for each example, which includes both the number of stacked vias
used for bringing the terminals to their proper routing layers and the number of vias used for net

¥ We have made these three examples as MCM routing benchmarks for the 4th ACM/SIGDA Physical Design Workshop. These
examples are available via anonymous ftp from mcnc.org or from the authors cong@cs.ucla.edu ot khoo@cs ucla.edu direcily.



-18-

Example number of | number of | number of size of pitch grid size
chips nets pins substrate (mm?2) | (um)

testl 4 500 1000 225x225 75 300 x 300
test2 9 956 1912 30x 30 75 400 x 400
test3 9 1254 2508 37.5x375 75 500 x 500
mccl 6 802 2495 45x 45 75 599 x 599
mece2-75 37 7118 14659 1524 x 152.4 75 2032 x 2032
mee2-45 37 7118 14659 152.4x 1524 45 3386 x 3386

Table 1 Test examples.

connection, The forth column shows the average number of vias used for net connection {(exclud-
ing the stacked vias used for bringing the terminals to their routing layers) per two-terminal net.
The sixth column shows the total wirelength for each of the routing solutions. We compute a
wirelength lower bound for each net { using the formula

LB (i} =max(HP (i), %MST(:’)) (1)

where HP (i) is the half perimeter of smallest bounding box containing all the terminals in net £,

and MST (i) is the wirelength of a minimum spanning tree ® connecting all the terminals in net i,
The wirelength lower bound of each routing example listed in the fifth column is the summation
of the wirelength lower bounds of all the nets in the design. The V4R router used at most 4%
more wirelength than this lower bound for all examples except for mccl, which means that the
wirclength usage of the V4R router is very close to optimal. (There are many multi-terminal nets
in mccl. Among its 802 nets, 107 of them are multi-terminal nets of size 4 or larger. In this
case, the lower bound computed by (1) is considerably smaller than the optimal wirelength. That
is why the wirelength for mcc1 by the V4R router is 15% away from the lower bound.)

Table 3 shows the via usage (excluding the stacked vias used to bring the terminals to their
routing layers) by the V4R router. For example, 2460 nets or 23.42% of the total number of nets

E no.of | no.of | ave.vias wirelength run time
xample

layers vias per net lower bound V4R ratio | (hrimin)
testl 4 2250 2.5 102238 104128 | 1.02 0:01
test2 4 4493 2.7 265000 271067 | 1.02 0:01
test3 4 5855 27 426308 435466 | 1.02 0:03
mccl 4 6993 2.2 343767 394272 | 1.15 0:03
mcc2-75 6 36438 29 5362181 5559479 | 1.04 1:06
mce2-45 4 36473 29 8935372 9130705 | 1.02 1:37

Table 2 Routing solutions by the V4R router.

% Tiis well known that the wirelength of a minimum spanning tree is no more than 1.5 times that of 4 minimum Steiner tree in
Manhattan routing| Hw76].
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Number (percentage) of nets that use

Example

0 via 1 via 2 vias 3 vias 4 vias 5 vias 6 vias
lest] 8(1.57) 75(12.86) 161(21.64) 171(18.69) 85(8.50) 0 0
test2 10(1.03) 105(9.79) 274(20.36) 353(20.78) 209(10.95) | 5(0.26) | 1(0.05)
test3 13(1.03) | 159(11.15) 3672047 412(18.68) 298(11.91) | 4(0.16) | 1(0.04)
mecl 104(5.79) | 295(14.10) 695(24.94) 478(14.64) 119(3.52) 0 2(0.06)
mee2-75 24(0.32) 478(5.94) | 2460(23.42) | 2323(18.11) | 2256(14.96) t] 0
mcc2-45 32(0.42) 586(7.18) | 2016(19.81) | 2892(22.13) | 2014(13.35) 0 1(0.01)

Table 3 Via usage by the V4R router.

in mcel use 3 vias each to complete the routing. The examples test2, test3, mccl, mec2-45 uses
multi-via routing to eliminate very sparse routing layers. In all cases, the number of nets that use
more than 4 vias are no more than 6 (0.31%). Furthermore, no more than 6 vias are used for the
nets that are routed using multi-via routing.

Table 4 shows the comparison of the V4R router with a general 3D maze router and the SLICE
router for multilayer MCM designs [KhCo92]. The 3D maze router failed to produce a routing
solution for mcc2-75 and mcc2-75 because of its high memory requirement for large examples.
Compared with the 3D maze router, on average the V4R router used 44% fewer vias, 2% less
wirelength, ran 26 times faster, and used equal or fewer routing layers. Compared with the
SLICE router, on average the V4R router used 9% fewer vias, 2% less wirelength, ran 3.5 times
faster and used 1 to 2 fewer routing layers.

A very important advantage of the V4R router is that it does not store the routing grid during
the routing process. At any time, the V4R router needs to store only the assignment of the hor-
izontal tracks and the vertical segments of the active nets, which leads to very low memory
requirement. For a MCM substrate consisting of X layers of LxL routing planes, the memory
requirement of the V4R router is ©(L + »n), where n is the number of terminals in the given
design. However, the 3D maze router needs to store the entire routing grid, which requires
©(KL?) amount of memory. For large MCM designs, storing the entire routing grid is very
expensive or even prohibitive. For the example mcc2-45 (a supercomputer with 37 gate arrays),
to store the entire routing grid of size 4x3386x3386, the 3D maze router needs 172ZMB of
memory’. That is why the 3D maze router failed to route the example on our system. The
SLICE router uses much less memory than the 3D maze router. However, it also needs to store
part of the routing grid in order to perform restricted maze routing. The memory requirement of
SLICE is @(ocLz). where o is a control parameter (usually takes value between 0.05 and 0.15). If
we reduce the pitch spacing by a factor of A, the memory requirecment of both the 3D maze router
and the SLICE router increases by a factor of A2, while the memory requirement of the V4R
router increases by only a factor of A. Therefore, for the next generation of dense packaging tech-
nology, the advantage of the V4R router will become much more significant.

7 Assume that we use four bytes for each grid point to store the net number, routing cost, etc.
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number of number of total run time
Example layers vias wirelength (hr:min)

V4R | SLICE | maze | V4R | SLICE | maze V4R SLICE maze V4R | SLICE | maze

test1 4 5 4 2250 2013 | 2975 104128 109092 | 107908 | 0:01 0:02 0:08
test? 4 6 4 4493 52711 | 7127 271067 286723 | 273642 | 0:01 0:06 0:48
test3 4 6 4 5855 6892 | 9347 435466 459046 | 441552 | 0:03 0:12 1:40
meel 4 5 5 6993 6386 | 8794 394272 402258 | 397221 | 0:03 0:12 0:59
mec2-75 6 7 36438 | 47864 - 5559479 | 5902818 - 1:06 8:15

mec2-45 4 36473 - - 9130705 - - 1:37 -

Table 4 Comparison of the V4R router with the 3D maze router and the SLICE router.

5. Conclusions and Future Extensions

We have presented an efficient multilayer general area router, named V4R, for MCM and dense
PCB designs. The unique feature of the V4R router is that it uses no more than four vias to route
every net and yet produces high quality routing solutions. It demonstrates elegant applications of
several efficient combinatorial optimization techniques to the multilayer general area routing
problem. As a result, the V4R router is independent of net ordering, runs much faster, and has far
less memory requirement. Compared to the 3D maze router and the SLICE router, the V4R
router produced better quality routing solutions in much less computation time,

The cost functions in our graph based algorithms can be tuned to satisfy various performance
requirements. For instance, if routing beyond the preferred interval is penalized heavily for the
timing critical nets, then the resulting routing for these nets will have shorter wirelength and
smaller interconnection delay. Moreover, the vertical tracks within a vertical channel is freely
permutable because of the absence of vertical constraint. Therefore, they can be ordered in such a
way that the crosstalk between the vertical segments is minimized. Similarly, crosstalk minimiza-
tion can be taken into consideration when assigning the horizontal tracks of the left and right ter-
minals. The flexibility of incorporating these performance related features makes the V4R router
even more attractive for high performance MCM designs.
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