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Abstract

We describe the SVP data model. The goal of SVP is to model both set and stream data, and to
model parallelism in bulk data processing.

SVP models collections, which include sets and streams as special cases. Collections are represented
as ordered tree structures, and divide-and-conquer mappings are easily defined on these structures. We
show that many useful database mappings (queries) have a divide-and-conquer format when specified
using collections, and that this specification exposes parallelism.

We formalize a class of divide-and-conquer mappings on collections called SVP-transducers. SVP-
transducers generalize aggregates, set mappings, stream transductions, and scan computations. At the
same time, they have a rigorous semantics based on continuity with respect to collection orderings, and
permit implicit specification of both independent and pipeline parallelism. We achieve these semantics
by extending Kahn’s networks of parallel processes to operate on collections instead of sequences, and in
so doing extract both independent and pipeline parallelism.

*This research supported by NSF grant IRI-8317907.
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1 Introduction

Achieving parallelism in bulk data processing is a relatively old problem, which has recently enjoyed a
resurgence of interest. This paper proposes a new approach to addressing the problem. Since many of the
issues involved are complex, we begin with first principles.

1.1 Parallel Programming

Parallel programming aims at exploiting high-performance multiprocessor systems. An important objective
is to be able to express the parallelism available in an application. There are essentially three ways to
accomplish this:

¢ automatically detect parallelism in programs written with a sequential language (e.g., Fortran, OPS5);

¢ augment an existing language with explicit parallel constructs that exploit the computational capabil-
ities of a parallel architecture (e.g., C* [32], Fortran90 [38]);

# create a new language in which parallelism can be expressed in an architecture-independent manner.

The first approach can be practical in the short-term, but is faced by many difficult problems. Among
these, development of a parallelizing compiler is a major challenge. Methods for automatic program restruc-
turing, and the parallelization of serial programs can produce good results for some programs (e.g., certain
scientific programs), but most of the time the resulting speed-up 1s quite limited. For instance, experiments
conducted with the OPS5 rule-based language revealed that in practice, the true speed-up achievable from
parallelism was less than tenfold [13]. A related serious problem with this approach is that, in the final
analysis, the serial programming paradigm does not encourage the use of parallel algorithms.

The second approach enables the programmer to express parallel constructs such as task creation and
inter-task synchronization, thereby providing leverage over parallelism. Although this approach can lead
to high-performance, it is generally too low-level and difficult for the programmer. Furthermore, the large
variety of parallel architectures result in distinct, architecture-specific extensions to the original language.!
In order to achieve efficient program execution, the programmer must first become acquainted with the
programming paradigm dictated by the architecture of the target machine.

The third approach can combine the advantages of the other two. It can ease the task of programming
while allowing the programmer to express non-sequential computation in a high-level way [28}. Once the
programmer has specified the algorithmic aspects of his program using high-level programming constructs,
antomatic or semi-automatic methods can be used to derive a mapping from the computational requirements
of the program to parallel hardware. The basis for this mapping is data partitioning (also called data-
parallelism), whereby program data can be divided into fragments on which either the same instructions
can be executed in parallel (with the SIMD computation model) or different instructions are executed in
parallel (with the MIMD computation model}. The regularity of the data structures available in the language
permits exploitation of different forms of parallelism, such as independent and pipeline parallelism [15].

In this paper, we follow the third approach, and propose a model for parallel database programming
where the primary sources for parallelism are parallel set and stream expressions. Parallel programming
environments that follow this approach have recently been proposed. For example, in Paragon [9], the
primary source for parallelism is parallel array expressions. Paragon is targeted to scientific programming
applications and offers the essential features of parallel Fortran languages. Qur model is targeted at database
applications, and bulk data processing.

1.2 Parallelism for Bulk Data Processing

There are various forms of parallelism. Figure 1 shows four simple kinds of parallelism graphically. A few
key ideas can be derived from studying this figure, and applying the parallelism structures there to problems
in bulk data processing:

1Linda [8] is a notable exception of ‘coordination language’' with simple, language-independent parallel constructs, which
can mate easily with many non-parallel languages.
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Figure 1: Types of Parallelism

s Division of problems is the essence of parallelism. Dividing into independent subproblems gives in-
dependent parallelism, while dividing into incremental computations gives pipeline parallelism. Set
mappings naturally expose to independent parallelism (a given instruction is independently applied
to each element of a set) while stream mappings expose to pipeline parallelism (some instructions are
successively applied to each element of a stream). Thus, sets and streams suggest a divide-and-conquer
format for specifying mappings which is implicitly also a format for specifying parallelism.

¢ Divide-and-conquer computations can be represented with series-parallel graphs. Series-parallel graphs
[24] are defined recursively as graphs having one input and one output that can be constructed using
two combination rules: series or parallel composition of the inputs and outputs. A typical series-parallel
graph is shown in Figure 2. It models a situation where 1 and 2 are performed in parallel before 3,
and 3 is performed before the parallel execution of 4, 5, and (6 followed by 7).

1 4

3 5 \.
O NS

Figure 2: A Series-Parallel Graph

These graphs use only the constructs in Figure 1. Dividing a problem is represented by fan-out nodes
in the graph, while conquering gathers results into a set (with independent parallelism), a stream
{with pipeline parallelism), and/or an aggregate (with fan-in parallelism). Thus, divide-and-conquer
solutions of problems often directly correspond to these four kinds of parallelism.

¢ Database applications provide excellent opportunities for parallel processing. The set-oriented nature
of the relational model makes exploitation of independent parallelism natural [34]. In fact, set oper-
ators such as the relational algebra operators can often be naturally expressed as divide-and-conquer
computations, as we will show in sections 2 and 4.

These ideas raise hope for a parallel bulk data processing system that rests upon divide-and-conquer
techniques. However, such a system must deal with several important technical issues to be viable.

A first problem is that the relational model offers no way to talk about order among data (e.g., sorted
relations, or ordered tuples). Relational languages are therefore inadequate for specifying ‘stream processing’,
in which ordered sequences of data are processed sequentially [23]. Pipeline parallelism is generally used,
transparently to the user, in lower-level languages implementing relational algebra (e.g., PLERA [5], or
PFAD [14]). However, higher-level relational interfaces do not permit streams to be exploited, preventing
specification of stream computations and also pipeline parallelism.

A second problem is that parallel data processing requires effective data restructuring capabilities. Typi-
cally, a relational query (select-project-join expression) is translated into a low-level form of relational algebra
with explicit (low-level) parallel constructs [5]. Data restructuring includes techniques like partitioning used
to spread the computation of relational algebra operators among parallel processors [4]. Partitioning is



typically defined during the physical database design and then exploited by a compiler. Most of the time,
a partitioned computation requires that processors exchange intermediate results in order to compute the
final result.

In our view, data restructuring must be expressible by the programmer within a parallel database lan-
guage. Specifying parallel computations over relations often requires specifying how data restructuring
(fan-out parallelism) will be done and how distributed results will be collected (fan-in parallelism). This
view is supported by recent results on data reduction for Datalog programs [37], in which rules are replaced
by their per-processor specializations. These specialized rules include appropriate hash functions that cap-
ture partitioning information. This approach is very interesting in that it incurs no communication costs
between processors. However, determining the appropriate hash functions to perform data reduction is still
an open problem, known to be undecidable in some cases. It seems unlikely that database systems will be
able to completely automate restructuring decisions.

Database models have been developed before that permit expression of both ordering among tuples and
data restructuring. For example, the FAD language has operators that express various forms of fan-out
and fan-in parallelism [10]. FAD is a strongly-typed set-oriented database language based on functional
programming and relational algebra. It provides a fixed set of higher-order functions to aggregate functions,
like the pump parametrized aggregate operator and the grouping operator. The pump operator applies
a unary function to each element of a set, producing an intermediate set which is then ‘reduced’ to a
single datum using a binary function that combines the intermediate set elements. Indeed, pump naturally
expresses a special case of fan-out and fan-in parallelism. At the same time, the group operator permits set
restructuring.

1.3 Goals of the Paper

Based on the observations above, our main goal is to develop a data model, called SVP, that supports both:
e ordered and unordered (stream and set} data representations;

¢ a formal semantics for divide-and-conquer computations on sets and streams to express independent
(set) and pipeline (stream) parallelism.

This model is intended to serve as a formal foundation for defining parallel database languages in which
parallelism is specified at a high-level.

The SVP data model has the following features:

¢ SVP values either are collections (a generalization of sets and streams), or are tuples of SVP values.
Collections are represented as ordered binary tree structures. Intuitively, lists can represent streams,
balanced trees can represent sets, and ordered binary trees can represent either.

¢ SVP allows restricted divide-and-conquer mappings on SVP values. In this paper these mappings are
specified with recursive functional equations. They generalize other specification techniques, including
restricted higher-order mappings like the reduction operator in APL [16] and the pump operator in
FAD [10], automata [29, 30], and series-parallel computation graphs [24].

e Parallelism in the dividing and conquering is specified using both the structure of the data, and
the structure of the divide-and-conquer mapping: dividing-parallelism is specified by the data, and
conquering-parallelism is specified by the mapping. Partitioning can always be used to modify data
structure, and thus aflect dividing-parallelism.

Objectives of the model include elegance, expressiveness, and efficiency {computational efficiency in practice
is captured by the model). We have been inspired by the work of Kahn [17], who stresses the importance of:

. a principle that has been so often fruitful in Computer Science and that is central to Scott’s
theory of computation: a good concept is one that is closed

1. under arbitrary composition

2. under recursion.



This principle is certainly in effect here.

The paper is organized as follows. Section 2 investigates the relationships between set and stream process-
ing, and demonstrates with examples how divide-and-conquer mappings are important for data processing.
Section 3 presents the SVP model and defines SVP values, types, and mappings. Section 4 then gives ex-
amples of SVP-mappings for expressing relational algebra operators, as well as restructuring, partitioning
and grouping operators. In Section 5, we continue with a longer case study that illustrates the potential of
SVP for real applications that are difficult to manage with today’s RDBMS. Section 6 investigates formal
properties of the SVP model. Section 7 then shows how SVP can be used as a foundation for defining a
parallel database programming language. We make the case with a language that uses an imperative style.
Finally, Section 8 summarizes the contributions of the SVP model, and Section 9 points out several promising
directions for future work,

2 Set and Stream Processing

Let us clarify first what set processing and stream processing are, and then study how they might be
integrated in a parallel processing model.

2.1 Sets and Streams

For the purposes of this paper, we will rely on similar formulations of sets and streams. Given a finite or
countably infinite set of values D, we will write 2P to denote the sets on D, and write D* to denote the
streams on D). These sets and streams technically can be either finite or countably infinite.

Sets use the following notation:
1. {} is a set (the empty set);
{z} is a set, for any value x;

Finite sets are written with set braces, as with: {1,2,3},

The union 5; U S; is a set, if Sy and S; are sets. (In this paper, the symbol ‘U’ always denotes a
disjoint set union when describing the contents of a set. However, the U operator for forming a set
requires only that its operands be sets.)

5. The cardinality | S| of any set S is the number of values in the set.
Streams analogously use the following notation:

1. []is a stream (the empty stream);

2. [z] is a stream, for any value z;

3. Finite streams are written with square braces, as with: [1,2, 3].

4. The concatenation S; e Sq is a stream, if §1 and S5 are streams. (We use the symbol ‘e’ for stream
concatenation (‘eppend’) in this paper.)

5. The length | S| of any stream S is the number of values in the stream.

As usual, set union is associative and commutative, where stream concatenation is only associative.

Although streams are formalized here like strings, with a concatenation operator, they are accessible like
lists. Specifically, every nonempty stream S satisfies

S = (h-T)

where h is the head of S, and T is the tail of S. Here h will be & value, and T will be a stream. The
constructor symbal ©’* (‘cons’) can be viewed as an operator that combines a value and a stream into a
stream. The single-element stream [z] is actually a shorthand for (¢ - []), and {1,2,3] is a shorthand for
(1-2-3-[]). All finite streams are terminated explicitly with [].



One more bit of notation will be useful. We use parentheses to set off tuples (fixed-length sequences,
vectors). Thus

(a,1,8)
denotes a 3-tuple (tuple with 3 elements).

2.2 Set and Stream Mappings

Consider the following mappings, using the formalization of sets and streams given above. We would like to
be able to formalize these mappings in our model.

The equations
count({}) = 0
count({x}) =1
count(Sy U S3) = count(S1) + count(S)

define a set mapping (in this case an aggregate) recursively. This definition reflects parallelism that can be
obtained by computing cardinalities of subsets independently. For example, in the computation

count({a, b, c}) count({a,b}) + count({c})
count({a}) + couni({b}) + couni({c})
1+1+1

3

we have ultimately three independent parallel threads that are ‘fanned-in’ to an aggregate.

Consider now the stream mapping

diffs([])
diffs(z - []) (]
diffs(z -y - 5) (y—z) - diffs(y - 5)

This yields a stream of the differences between adjacent elements in the input stream. For example:

diffs(98-99-97-97-99-96-[])
= +1-diffs(99-97-97-99-96-[])
= 41 —2-diffs(97-97-99-96-[])
= 41-—2- 0 diffs(97-99-96-[])
= +1-—-2-0-+2 diffs(99-96-[])
= +1--2-0-42. —3-diffs(96-[])
= 41--2-0-4+2--3-[].
This mapping implements a kind of ‘automaton’, or ‘transducer’, that scans the stream of values and trans-

lates it to a stream of pairwise differences. These transducer mappings are important in analyzing streams,
but are (at best) quite challenging to implement with a set-oriented model.

[]

I

2.3 Composition of Set and Stream Mappings

Functional mappings can be composed naturally. We consider a simple example that illustrates how com-
position of set and stream mappings allows us to answer arbitrary queries by composing a few elementary
mappings.

Example: Areas of Convex Polygons

We are given a convex polygon as a stream of points in (2, y)-coordinate form that trace out the boundary
of the polygon, and the problem 1s to compute the total area of the polygon.

This problem can be solved by triangulating the polygon, i.e., cutting the polygon into triangles, and
computing the total area of the triangles. Specifically we can transform the stream of points of the polygon

[(xlsyl)’ (xz,yz), (mn,yn)],



into a set of triangles (triples of points)

{ ((Tl,yl),(1‘2,!}2),(23,9'3)), ((2:1,3]1),(1:3, ya)v(z4ly4))v e ((zlvyl)!(xﬂ—lryﬂ-l),(zﬂsyn)) }a

and then compute the sum of the areas of the triangles.

(5,6)
(6,3)

(0,0)
(4,—1)

Figure 3: Triangulation of a Convex Polygon

For example the polygon given by the stream of points

[(01 0)1 (1a 4)a (5a 6)7 (6! 3)1 (4’ _1)]
corresponds to the set of triangles
{ ((0,0),(1,4),(5,6)), ((0,0),(5,6),(6,3)), ((0,0),(6,3),(4,-1)) }
2

having respective areas

{7.0,10.5,9.0 }

and a total area of 26.5. See Figure 3. This is expressible as

polygon [(010):(1’4)!(5’6)1(6s3)!(4:_1)]

total_area = sum( areas( triangles( polygon )))
where we define triangles with

triangles([])
triangles(py - [])
triangles(po - p1 - (]}
triangles(po - p1-pa - S)

1)
{}

{(po,p1,p2)} U triangles(py - p2 - S).

and the aggregate functions needed are:

sum({}) = 0

sum({z}) = =z

sum(Sy U S2) = sum(S) + sum(S,).
areas({}) {}

{area(po, p1,p2)}
areas(S1) U areas(Sz).

areas({(POa Pl,Pz)})
areas(Sy U 52)

(LI |

2The Heron formula for the area of a triangle whose sides are known to have respective lengths a, b, ¢, is given by
\/s(s —a){s — b)(s — ¢} where we define s = {a + b + ¢} /2.




area(po,p1,p2) = +/s(s—a)(s—b)(s —¢)

where:

a = distance(po,p1)

b = distance(p;,p2)

¢ = distance(pa, po)

s = (a+b+ C)/2
distance((x1,41), (22, 32)) = \/(171 —z2)t 4+ (y1 — 1)?.

To show our approach here is flexible, let us change the problem now so that we are given a set of
polygons, instead of a single polygon, and we wish to find the total area of all polygons. The program above
will still solve this extended problem, if we simply modify it with the following assertions:

total_area = sum( areas( triangles*( polygons ) ) )
triangles*({}) = {}

triangles* ({P}) = triangles(P)

triangles*(S1 U Sy) = triangles*(S1) U triangles®(Ss).

In terms of execution, this simply allows the computation of triangles to be carried out independently in
parallel across the members of a set.

Finally, assume we are given a set of surfaces, where surfaces are (identifier, set of polygons)-pairs, and
we wish to find the corresponding set of (identifier, total area)-pairs. We can accomplish this by defining

surface_area({}) {}
surface_erea({(Id, S)}) {( Id, sum(areas(triangles*(S))) )}
surface_area(S; U S») = surface.area(S1) U surface_area(Ss).

Parallelism is reflected directly in terms of data dependence. To find all (identifier,area)-pairs, we can:
1. convert all surfaces to sets of triangles in parallel;
2. compute areas of all triangles in parallel;
3. sum all the areas belonging to each surface in parallel.

The examples here hopefully make two points: First, a model based on composing mappings on sets and
streams is sufficient to develop expressive database systems — significantly more expressive than standard
DBMS. Although the example problems above are not easy to solve with standard DBMS, the structures
involved (sets of streams, etc.) are easy to understand, and the queries are easy to state, and easy to state
mathematically.

Second, the structure of the data (sets and streams) directly reflects parallelism in the data processing
required. Both pipeline and independent parallelism are crucial in data processing, and these kinds of
parallelism can be made evident by the stream or set structure of the data.

2.4 Perspective: Divide-and-Conquer Mappings

Qur goal is to develop a formal data model that will support all of the mappings shown earlier. The challenge
cornes in developing a model that encourages optimization and extraction of parallelism and supports at least
the set and stream mappings shown earlier.

The mappings above are all ‘divide-and-conquer’ mappings, of three kinds:

1. Aggregates
Aggregates can be described as functions of sets with the format

J{h = i
f({=}) = h(z)
f(S1 U 82} = [f(51) 0 f(S2)



where @ is an associative, commutative operator whose identity is id, and h is a function that yields
values of the type taken by 4.

2. Set Mappings
Set mappings have the divide-and-conquer form

f({h = {}
f({=}) = h(z)
f(51 U 8) = f(S1) U f(S2)

where h is a set-valued function.

3. Stream Transducers
Stream mappings like diffs and triangles are naturally characterized as ‘antomata’ that incrementally
translate their input. We will call this kind of mapping a trensducer.

In general form, we define a stream transducer f in terms of two function parameters, § and h, and an
iterative control structure F':

£(S) = F(go,5)
F(q,[] = h(g,[])
F(g,2-S5) = h(g,z)e F(6(g,),5).

Here intuitively there is a set of ‘states’, go is the ‘initial state’, § is a ‘state transition function’ that

maps a (state,input)-pair to a new state, and h(g,z) is the output stream produced in state g with
input . So, in particular, h(q, []) is the output stream produced in state ¢ when no input remains.
Thus F maps a (state,stream)-pair into a stream.

We call f a stream transducer because its definition directly mirrors the definition of a finite state
transducer — a finite automaton that produces ocutput given its current input symbol and current
state.

An obvious question facing us now is:

What is a useful generalization of aggregales, sef mappings, and stream transducers,
that can be applied successfully in parallel data processing?

The SVP mode] described next offers one answer to this question.

3 The SVP Model

The goals of SVP require a model in which collections (both stream collections and (multi-)set collections)
can be expressed, and mappings on these collections can be defined. For simplicity, and without loss of
generality, we limit ourselves to a value-based model — i.e., objects are not handled by the model currently.

3.1 SVP Values

SVP models two kinds of values: atomic values, and constructed values. Constructed values represent com-
plex structures, or nested values, and can be either tuples or collections. Tuples are typically heterogeneous
structures with a small number of elements, while collections are typically homogeneous structures with a
large number of elements.

Values are recursively defined as follows:
e Any atom is a SVP value.

o Any finite tuple (v, ..., v,) of SVP values v3,...,v, is a SVP value. A tuple with one atom is called
a l-tuple, a tuple with two atoms is called a 2-tuple, etc.

o Any collection is a SVP value,

10



In SVP, collections are recursively defined as follows:
o (} is the empty collection.
» (v} is a unit collection if v is a SVP value.

® 51 ¢ 59 is a collection if S and S, are nonempty SVP collections. Collections are forbidden to properly
contain the empty collection.

This definition allows SVP collections to model many structures of interest, including:

* sels
The SVP-collection ({1} ¢ (2)) ¢ ({3} © (4)) represents the set {1,2,3,4} as a balanced binary tree.

e sireams

The SVP-collection (1} o ({2) o ({3} © {{4} ©[]))) represents the stream [1,2,3,4] as a linear list-like
structure.

e sequences
A sequence is a right-linear tree, such as the SVP-collection (1) o ({2) ¢ ({3) o (4})). A sequence is a
non-[]-terminated stream. In many situations the stream terminator [] is not significant, and can be
omitted.

* groups
The SVP-collection {(0, {(a} ¢{e})) ¢ {(2, {c} ¢ {g))} o ((3, (d))} is a collection of three tuples, where each
tuple represents a group — a pair possessing an atomic value and a set.

3.2 SVP Types

Database systems concentrate on homogeneous collections of data. SVP does also, resting on a simple
polymorphic type system that defines the following value types:

» atom
e tuple(Ty, ..., T,) is a constructed value type, if each T} is a value type.
¢ collection(T’) is a homogeneous collection type, if T is a value type.

Thus the following are homogeneous collection types: collection(atom), collection(collection(atom)},
collection(tuple(atom,collection{atom))), etc.

3.3 SVP Mappings

Data models typically specify how all permissible mappings can be constructed. We take a different approach.
SVP imposes few restrictions on atomic value mappings — essentially any properly typed, semantically
well-defined mapping on atomic values is permitted. However, SVP requires all collection mappings to be
SVP-transducers. This class of mappings is powerful, and suited to bulk data processing on homogeneous
collections. At the same time SVP-transducers are restrictive enough to permit optimization and extraction
of parallelism.

3.3.1 Basic SVP Mappings
SVP explicitly provides the following basic mappings:

& Constructors (end constructor-like operators)

— tupling ((--1)) .
H z1,...,z, are values of types Ty,..., Ty, then (&1, ..., 2y) is of type tuple(T,...,T,).

11



— collection (o)

If St and S; are of type collection(T’), S, ¢ S; is also. In the normal situation where both 51
and Sy are proper nonempty collections, it is natural to think of o as a constructor. However,
when either of §; or S; is empty, the requirement stated above that no subcollection be the empty
collection is enforced by making ¢ be an operafor that yields a collection.? Specifically,

(oS = Sof) = S

o Deconstructors
SVP provides the following type-membership predicates for SVP values v:

- atom{v) — whether v is an atomic value.

f

tuple{v) — whether v is a tuple.

collection(v) — whether v is a collection.

— emptycollection(v) — whether v is (}.

unitcollection(v) -— whether v is (2} for some z.
Furthermore, the following functions are provided:

— unitcollectionvalue(.S) - value z of a unit collection S = (z).

— arity(¢) — number n of elements in a tuple {.

— t[i] — tuple subscripting. If ¢ is a tuple (z1,...,zs) of type tuple(Ti,...,T}), and i is an integer
between 1 and n, then ¢[i] vields z;, of type T;.

Note only tuple deconstructors are allowed to appear in user-defined mappings. General deconstructors
are not provided for collections. The only construct for iterating over collections is the SVP-iransducer.

SVP collections can be regarded as an abstract data type, whose only defined operations are the collection
constructor, the collection primitives listed just above, and $VP-transducers introduced next.

3.3.2 SVP-Transducers

SVP-transducers are capable of implementing all the example mappings shown earlier. SVP-transducers
specify mappings of collections as:

1. the restructuring of the input collection;
2. the mapping of the elements in the restructured collection;
3. the collecting of the resulting mapped input elements into an output.

Definition A mapping f on SVP collections is an SVP-transducer if it can be written in the following
divide-and-conquer form:

f(5) = F(Qu,p(5))
F(Q, () = ids
F(Q, (2)) = h(Q,z)

F(Q,85108) = F(Q, p(S1)) 0 F(8Q,51), p(Sz2)).

3Why does SVP make this dual treatment of ¢ as both a tree constructor and a tree-yielding operator? Briefly, SVP
requires () to behave like the empty set {} or like the empty string A — and unlike the stream terminator []. In reasoning
about collections, {} defines a special case, but not the base case of an induction; unit collections {x} define the base case.

In the usual case of nonempty arguments, the tree constructor and tree-yielding operator are identical, so there is no confusion:
5] ¢ S yields the ordered binary tree with left subtree S; and right subtree S;. In the other case, one argument is empty.
Avoiding occurrences of the empty collection within a collection simplifies programming enormously: large collections cannot
turn out to be empty, finding the first nonempty element in a collection becomes trivial, subtleties about the semantics of
occurrences of {}'s within a collection are neatly avoided, etc. Consequently, SVP makes it impossible to construct such a
collection.

12



Here Qg is an arbitrary fixed value, p is either the identity mapping or an SVP-transducer, and h, #, and §
are arbitrary SVP-mappings of two arguments. We have written # as an infix operator.

We also permit f, F', and A to take additional arguments not shown explicitly here; in particular f can
be a function of other parameters besides the collection S (including other collection parameters). Also, the
¢ argument can be omitted if it is not used by & or é.

The mapping p(.5) typically petforms data restructuring on the collection S. Common values for p(S)
include just 5 (the identity mapping, with no restructuring), and the operator partition(P,5), in which P is
a predicate defining a splitting of S into two parts S ¢ S3, the first for which P yields the value true, and
the latter the value false (assuming both are nonempty). Restructuring operators will be investigated later,

The operator  must be of type 7' x T'— T, for some SVP type T' which must be declared. For example,
the o collector here is restricted to work on operands of type collection, and produce a collection. This
type also restricts the values produced by the h function. For example, when 6 is ‘o’, h must produce a
collection.

When & is a complete binary operator with identity ids, we call 8 a collector. The table below gives
examples of collectors. Properties of collectors (Associativity, Commutativity, /dempotency) can be exploited
to obtain greater parallelism; parallel evaluation of associative collector expressions is sometimes called
parallel prefix computation [19].

#  Result Type ide  Properties
< collection H —
of'  collection [} —
* collection {} A
+ atom 0 A,C
* atom 1 AC
max atom —oo  A,C1I
min atom +oo A,CIT
Here o is the collection-forming operator, of is its reversal (so zoFy = yoz), and * is the append

operator for collections. Thus {) is the identity for %, and when S and 7 are nonempty S«7 is the
collection consisting of S but with the rightmost leaf {z) of S replaced by (z)oT.
In the general SVP-transducer, # is permitted to be an arbitrary operator, and idg an arbitrary value.
For example, two standard combinators
zfsty = =«
zsndy = y

are useful and will be employed later in this paper. However, we shall mainly deal in the rest of the paper
with transducers in which 8 is a collector.

The important restriction this form imposes is that the computation over the collection be performed by
a divide-and-conquer traversal. Basically, SVP-transducers provide a (‘large’) control structure that directs
a function on values (‘small’ data manipulation) to be applied as needed. This control structure can be
viewed as a generalized scan over a collection, together with gathering of scan results, where both the scan
and the final gathering may be performed using parallel techniques.

3.3.3 Definition of SVP Mappings

Further mappings can be built using the basic mappings and SVP-transducers defined above. However,
SVP-mappings are restricted in the following ways:

» All mappings arguments are typed, and all mappings must be well-typed. In particular, constructors
and deconstructors can be applied only to operands of the appropriate type.

» The only operators that can be applied directly to collections are constructors, the primitives collection,
emptycollection, unitcollection, unitcollectionvalue, and SVP-transducers.

¢ An SVP-mapping can invoke at most a bounded number of SVP-transducers.
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A concern here is that SVP-mappings can appear as parameters of SVP-transducers, sc in particular SVP-
transducers can be parameters to SVP-transducers. If an SVP-mapping used as a parameter performs
SVP-transductions within a loop, recursion, or other iteration, transducers can be used {for example) to
implement arbitrary iterative deconstructors, or even Turing machines. General query optimization of this
sort of program is not feasible, and the semantics of transducers becomes considerably more complex. The
third restriction limits SVP-mappings to produce only bounded networks of transductions on collections.
Later we will see that a rigorous semantics can be given to networks of ‘continuous’ transductions.

3.4 Some Simple Examples

Most of the examples given earlier require only trivial changes of notation to be written as SVP transducers.
1. The set mapping [ defined by

areas({})
areas({t})

areas(S; U Sz)

{1

area(t)
areas(Sy1) U areas(S;)

T |

immediately becomes the SVP transducer

areas({})

areas({t})
areas(Sy ¢ Sp)

0

area(t)
areas{5)) o areas(S:).

inn

2. The diffs transducer shown earlier

diffs([]) = ]
diffs(z-[)) = []
diffs(z-y-S) = ((y—z)- diffs(y-5))

can be implemented as an SVP transducer as follows, assuming that the input collection is a sequence
(a right-linear tree):

diffs(S)
diffs1(Q, {)) ()

diffs1(@, {(z)) = if @ = () then {} else (zx — unitcollectionvalue(Q))
diffs1(Q, Sy 0 S2) = diffs1(Q,S1) o diffs(S1, Sa).

diffs1((}, S)

This transducer does not handle streams terminated with []. Such sireams can be accomodated merely
by modifying the if expression to yield {} or {[]} when z = {].

3. The diffs transducer requires its input to be a sequence. We can define sequence transducer that
transforms an arbitrary collection to a sequence.

sequence(S) = sequencel(first_rest(S))
sequencel({}) = {)
sequencel({z}) = (x}

sequencel(S) ¢ 5;) sequencel (first_rest(S;)) o sequencel (first_rest(S2))

This works by repeatedly partitioning a collection S into a collection H ¢ T, where H is the unit
collection giving the first of 5, and T is the rest of 5. The first-rest partitioning can be defined as
follows:

first_rest(5) first(S) o rest(5)

first({)) =

first({x}) = {x)

first{S; ¢ S3) = first(S)).
rest(S) = restl(true, 5)

rest1(initial, {})
rest1(initial, (x))
restl{initial, S1 © S3)

{
if initial then () else (x)
rest1(initial, S1) o restl(false, S5).
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This is not the most efficient way to flatten a tree, but it illustrates various features of SVP. Note
that first uses as f the operator fst that yields its left argument (i.e., z fst y = z), and we have simply
omitted it and the right argument in the third equation for first. This operator is not a collector. The
definition of rest uses a boolean state variable initial, indicating that the first element has been already
extracted. The & function here is constant, always taking the value true.

A more compact definition of sequence can be obtained by recursive appending of sequences:

sequence({)) = {
sequence({z)) = (z)
sequence(S) © S2) = sequence(S]) + sequence(Ss).

Here ‘*’ is the collection ‘append’ operator.

3.5 Properties of the SVP Model

The SVP model was designed to address the goals given at the outset. This section has provided a variety
of examples using SVP that will help motivate its being the way it is. To help clarify, however, below are
some perceptions about the model that helped shape its current form.

1. The definition of SVP transducers is a generalization of earlier definitions of set mappings, aggregates,
and stream transducers. Furthermore, it is a modest generalization, covering essentials only. On the
other hand, it is a relatively complete generalization with a formal parallel semantics.

2. SVP collections are ordered binary trees because this is sufficient to let them represent sets and streams,
physical data organization (such as sort order and grouping), how recursive problem division should
work, and also lets them be used as an index (search) structure if that is desired.

Supporting partitioning and sorting is essential for real operation. Many DB transductions work only
on sorted inputs. Join algorithms rely heavily on partitioning. Restructuring is a key member of any
ensemble of operators on collections.

The actual topology of the tree is important in that it determines parallel problem division (and
conquering). We can use the tree structure to guide how processes are spawned. Spawning stops on
subtrees of a certain granularity. Linear trees can spawn many small processes; also they take more
time to spawn processes. Balanced trees spawn parallel processes more effectively.

SVP collections can be searched. When the leaves of an collection tree are in sort order and the
tree is balanced, we can search it in O(log n) time in much the same way that we can search B-trees,
although the constant factor is larger. (Adding internal node keys to SVP collections would make them
indistinguishable from indices, but that is an extension we will not pursue in this paper.)

3. When # is an associative operator, the expression
r1 6228 --- 0 2,

gives the same result regardless of the way it is parenthesized, i.e., regardless of the topology of the
expression tree. The result is affected only by the ordering of the x;. Thus essociative operators are
naturally stream mappings. Furthermore, when # is associative and commutative, the result is the
same regardless of the ordering of the z;. Thus associetive, commutalive eperators are naturally sel
mappings.

4. The definition of SVP transducers leads to a very nice theory, based on the idea of structure preserva-
tion. Divide-and-conquer techniques work only when the data can be divided in a way that represents
some underlying ‘structure’. SVP collections allow us to model various kinds of structure important in
data processing, including sort ordering and physical data partitioning. It is possible to generalize the
classic work of Kahn for continuous functions on sequences [17] to work for continuous functions on
collections. The basic idea is that prefix-continuous functions on sequences?® are exactly those functions

4Prefix-continucus functions on sequences are functions that are monotone with respect to the sequence prefix ordering, so
giving the function more sequence input cannot result in the function’s producing less sequence output, and also cannot delay
indefinitely before producing an output. Fixed-point results for continuous functions lead to a rigorous semantics for networks
of SVP-transducers, even for cyclic networks.
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4

that yield pipeline parallelism. Thus ‘stream-continuity’ gives pipeline parallelism, and ‘set-continuity’
gives independent parallelism.

5. SVP is a model. It is not intended as a full database system and query language, but rather the sketch

of a larger, full-featured system. It permits many practical extensions, including n-ary frees (not just
binary) for representing collections that permit n-ary problem division, trees with labeled internal nodes
that permit direct representation of indices, and if-then-else constructs that permit early termination
of a scan over a collection. Earlier versions of the SVP model permitted these extensions explicitly,
but the result was a more complicated model. Also, these extensions tend to encourage transducers
that are more ‘automata-like’, with less parallelism. The current model is simple, and encourages a
transducer style with more parallelism.

The Algebra of SVP-Transducers

SVP transducers can be formulated as an algebra, somewhat like the relational algebra, but in which the
operators are parameterized by functions. To demonstrate the power of this algebra and of SVP, we show
how it can express important data processing primitives.

4.1 Three Basic Transducers

SVP offers essentially three functionals:

e collect

Aggregates over collections are implementable with collect:

collect(d, id, {}) id
collect{d, id, (z}) z
collect(@, id, 5y © S5y) = collect(8, id, S;) ¢ collect(8, id, S3).

e transduce
General transductions on collections can be performed with transduce:

transduce(k, §, @, {}) =
transduce(h, 8, @, {2)) = h(Q,z)
transduce(h, &, @, 51 0 S2) = transduce(k, &, @, S)) o transduce(h, & 8(Q,S51), S2).

e restructure
Tree restructuring repeatedly applies a function to all levels of a tree. It is defined by:

restructure(p, S) = restructurel(p, p(S))

restructurel(p, (}) = {}

restructurel(p, (z}) = (z)

restructurel(p, S; ¢ S2) = restructurel(p, p(S1)) o restructurel(p, p(S2))

Most SVP transducers are definable in terms of collect, transduce, and restructure. Note that whenever

8(@, §) = §(Q, restructure(p, S)) for all @ and S, the SVP transducer f defined by the recursion

f(S) = F(Qo,p(9))
F(Q, () = idy
F(Q, (z}) = h(Q,z)
F(Q,51052) = F(Q, p(S1)) 0 F6(Q,51), p(52)).
is equivalent to
F(S) = collect(d, id, transduce(h, &', Qo, restructure(p, S)}).

In the following sections we show that many useful operators, including all relational algebra operators

can be implemented as SVP transducers, and in fact they are implementable with these three operators.
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4.2 Restructuring, Partitioning and Grouping

Often it is useful to transform of one structure to another. Reorganization can be done both with restruc-
turing and collecting in a variety of surprising ways. Good examples were given earlier when we defined
sequence, a transducer that converts its argument to a sequence. Notice that

sequence(S) = restructure( first_rest, S)

where first_rest is the transducer that partitions its collection into its first and remaining elements. Also we
essentially showed that

sequence(S) = collect( *, {}, S)

— i.e., collections can be flattened by recursive appending.

The restructure functional is useful for top-dewn reorganization of collections. For example, if p splits a
tree into two trees of equal cardinality, then restructure(p, S) produces a balanced version of S. Also, if p
partitions a tree into two subtrees by comparing with a median-estimate key value, then restructure(p, S)
sorts a tree S by that key.

We can also restructure any collection into a balanced collection (balanced tree), by repeated splitting
into halves of equal size:

balance(S) = restructure(split, S)

split(S) = partition_tree( halves(1, count(S), sequence(S)) )
halves(i, n, () = (0, M

halves(i, n, {z)) = if i <n/2 then ((z}, (}) else ({}, (z))

halves(i,n, S; © 83} = halves(i,n,S;) combine_partitions halves(i + 1, n,55).

Here we need several operators on partitions:

partition_tree((51,52)) = S;¢ 5
(P1, P2) combinepartitions (Q1,Q2) = (Pio@i, P2oQa).
Note combine_partitions is a binary operator with identity ({}, (}), and is thus a collector.

Collecting is useful for boflom-up restructuring of collections. Partitioning mappings can also be developed
with collecting. The mapping

partition(P,5) = partition_tree( collect( combine_partitions, ({}, (}}, partitionify(P, 5)))

performs partitioning by using collect to split a collection S into two subcollections {Sy, S2) according to a
predicate, and using partition_tree to recombine these into a collection. Here we need the definition:

partitionify( P, {}) {)
partitionify( P, (x}) = if P(z) then ({z}, {}) else ({), (z}).
partitionify(P, 51 ¢ 83} = partitionify(P, 51) ¢ partltionlfy(P Sg)

As another useful example, the ‘mirror image’ of a collection can be obtained by collecting with the

reflection operator of:
mirror(§) = collect(oF, (), S)
and for example mirrer( (1) ¢ ({2) ¢ {3}}) ) = ({3) ¢(2}) = (1).

Grouping can also be expressed as collecting. The grouping operation takes a set 5 and a characteristic
function h (say a hash function or a key function) as input, and produces as output a set of 2-tuples (k, 5}),
1 € i € p, where k is the value obtained by applying h to any member of the set S;, and such that § is
partitioned into the S; subsets.

Indeed, there are various possible algorithms for grouping that range from sequential ones to truly parallel
ones. The interesting point is that SVP-mappings capture the specification of parallelism in these algorithms.

The algorithm proceeds in two main steps. First, for each member z in the input collection, a tuple (h(z), {z})
is built. This is done in parallel for all members & in the input set:
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group(h, S) gather(hashify(k, 5))

hashify(k, (})
hashify(h, {z})
hashify{h, 5; o Sa}

0
((h(x). (x})}
hashify(h, S1) o hashify(h, S2).

Note that the input collection S is converted into a collection of pairs by hashify. The second step
proceeds successively with each element in the collection and inserts it into the current output. Initially, the
output is empty.

gather(S)

gatherl(@, (1)

gatherl(Q, {z})
gatherl(Q, S1 ¢ S3)

gatherl({),sequence(S))

0
insert(Q2, {z))
gatherl( insert(Q, S1), S2).

This transducer uses as & the operator snd that yields its second argument; that is, zsndy = y. This
operator is not a collector, since it has no right identity.

We now provide a parallel insert: z is considered for insertion into each current ‘bucket’ in parallel. At
most one insertion can be successful. In the other cases, an empty set is returned. We can implement this
with parallel fan-in by defining an associative, commutative operator

(b1, 51) combine_groups (b2,52) = (b1 Vba, S10857)

where V is Boolean or, with identity element (false, {}). We use the boolean value to represent success of
insertion within a subset:

insert(Sy, {})
insert(Sg, (b))
insert(Sp, 51 ¢ S2)

0
So o {b) if insertl(}, Sp) = (false, Sp)
Si if insert1(b, 5p) = (true, 5)
insert( insert(Sp, S1), Sa )

It

insert1(Q, (}) = (false, () . P
insert1((k, (z}), {(¥', 5))) { E:‘;lsi,, ((((k’r:g_g()))()x)))) ;the:wise
insertl{Q, 51 ¢ 52) = insertl{(},S1) combine_groups insertl(Q,Sz).

An example will illustrate the operation of insertl:

insert1( (2,{c)), ((0,(a}o(e})}o{(2,{(9)) )
= insertl( (2, {c}}, {(0, (a) (e )))) combine_groups insertl( (2, {c}), {(2,{g)}})
(false, {(0, (a)o{e})}) combine_groups (true, {(2,{g)<{c})))
= (true, ((0,{a)o(e)}) o {(2,{g)o(e)) ).

Here true indicates that the insertion of (2, {¢}) resulted in the update of a group element.
The group transducer could have been expressed as a composition like

group(S) = collect(snd, {}, transduce(insert, insert, (), transduce(hash, _, ., S))})),

but this is incomprehensible. The great compactness of notation provided by functionals is often also
dangerously cryptic, so SVP encourages the use of the divide-and-conquer notation, which is comparatively
much easier to understand.
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4.3 Functional Query Languages

We can relate SVP transducers to the functionals commonly used in functional query languages. There has
been a good deal of work on functional languages in database systems — see for example the references of
[35).

The standard foldleft and map operators work on lists as follows:

map(f, []) []

map(fa ['rla Tt xﬂ]) [f(l?]_), B f(x")]

foldleft(d, id, {]) id

foldleft(d, id, [z1, -+, za]) = (- ((id 6 1) 0 23) --- 0 2p).

These are special cases of SVP transducers. For example, if S is a non-[]-terminated sequence:
foldleft(f, id, §) = if emptycollection(S) then id else id # collect(4, id, S).

When S is not such a sequence, we would first restructure it so that it is.

Recently Wadler has shown how a popular stream/list query construct (known as ‘list comprehensions’)
is equivalent to a slight extension of a monad system containing the operators unit, map, and join, where
Jjoin flattens a list of lists into a corresponding list {35]. The beautiful monad operators are also special
cases of SVP operators, but restricted to lists instead of trees. For example, unit(z) = (z}, and join is the
specialization of collect in which # is list concatenation. Where functional programming work is normally
concerned with lists, and database programming languages have been concerned with sets, SVP is concerned
with both.

4.4 Aggregation

The SVP-transducer apparently accomplishes most of what one could want from an aggregate. In FAD [10],
the parameterized aggregate operator pump(h,8,idy,S) i1s defined by

. _ idyg if §={}
pump(h,0,idy, 5) = { h(z)) 0 ... 6 h(zy) if S={21,...,2n}
where f is an associative, commutative binary operator, with identity idy. It is definable as an SVP trans-
ducer:
pump(h, 8, idg, {}) = idy
pump(h, 8, idg, {z)) = h(z)
pump(hk,8,ids, S1 ¢ S2) = pump(h,8,ide, 51) 0 pump(h,8,idy, Sa).

The listl operator in [7] is similar.
The APL reduction operator [16] allows non-associative, non-commutative operators. In particular, if 4
is a binary operator and S = (#;,%3,...,%,) is a vector (tuple), the APL reduction of S by # is

B/S = (( (.’E]_ é :L‘g) ] ) @ .’En).

This is an aggregation that reflects the ordering of the input. It can also be written as a SVP-transducer on
collections, provided the collections are in in left-linear form: ((--- (#; ¢ £3) ¢ ---) o z,). In this case the
transducer is obvious:

APLreduction(#, {}) = {
APLreduction(d, {z}) = =z
APLreduction(6, 5, ¢ S2) = APLreduction(4,5,) & APLreduction(f, S).
We can furthermore restructure any collection to left-linear form with the SVP-mapping
left_linear_sequence(S) =  mirror(sequence(mirror(S))).
Note APLreduction is actually more expressive than fold, in that the operand ¢ need not be an associative

operator.
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4.5 Joins

Join algorithms involve complex combinations of fan-out, combination, and fan-in operations on sets of tuples.
It may appear difficult to come up with a set of primitives that express different join algorithms effectively
and efficiently. Surprisingly, important n-ary operations like joins can be implemented with transducers! In
fact, interesting join algorithms can be developed,

Let us define a general join algorithm. One general specification for joins would be something like:
combine(R,S5) = { RESULT(r,s) | TEST(r,s) A TER A 5€ 5 }.

Most join algorithms use a simple definition for RESULT (e.g., tuple concatenation) and TEST (e.g., testing
equality of key values). The join partitions the cross product B x S into equivalence classes. The kind of
equivalence classes used are determined by the join algorithm, and can be used to introduce ‘groups’ over
which the join is to be done — for example grouping the tuples with equal key values.

With this in mind, we can produce a generalized join mapping, in which R has ‘groups’ R;, § has
‘corresponding groups’ S;, and the join is made over groups:

combine(R,S) = {RESULT(r,s) | TEST(r,s) A rinR; A sin S;
ARy =MAPL(P) A Pin R
A S; = MAP2(P,5) }.
Here P is a ‘part’ of R (such as a (key value, group)-pair), and R; and S; are the actual groups the join is
to be done over. MAP1 and MAP2 are arbitrary functions that convert groups to a suitable representation.

Groups give what is needed for joins to deal with multiple occurrences of join keys (or even of tuples); they
capture join equivalence classes.

This generalized join mapping could be implemented in pseudocode as follows:

combine(R,S) = T where
{

T =;
for Pin R [a part of R, typically a group]
{
R; = MAP1(P); [a suitable mapping of a group in R]
S; = MAP2(P,S}; [mapping of the corresponding group in 5]
for r in R; [a member of the R; group]
for s in S; [a member of the S; group]
if (TEST(r,s))

then T = T U RESULT(r,s)

}

This provides a ‘macro’-like control structure for joins with several function parameters: MAP1, MAP2,
TEST, RESULT.

This definition implements various join algorithms according to the structure chosen for R and &, and
the choice of parameters.

¢ If B and S are collections of tuples, MAP1 maps a tuple P in R to the collection R; = (P}, and MAP2
simply takes S; to be the entire collection S, then we obtain the nested loops algorithm.

¢ If R and § are groups (collections of collections) of elements with the same join key value, R; is the
group of R with join key ¢, 5; is the group of 5 with join key ¢, we obtain a general indexed join
algorithm. Specifically, if the groups are collections of elements with the same hash key value, then the
groups represent hash buckets, and we have the paraliel hash join algorithm. The algorithm is parallel
in that all groups can be joined in parallel.

o The parameterized set map operator filter(f,51, ..., Sn), in FAD [10] yields the value of k applied to
each tuple in the cross product of the sets Sy, ..., Sy (for m > 0):

filter(h,S1,...,8%) = {h(z1,..-,2m) | 21 € 51, ..., Tm € Sm }
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We can implement filter as a cascade of m — 1 ¢combines implementing nested loops joins, where the

final combine in the cascade applies k as its RESULT mapping.

The generalized join operator described above can be implemented with cascaded transductions:

combine(R, S)

combinel(S, {})
combinel(S, {P))
combinel(S, P, o Py)

combine2(S;, (})
combine2({S;, {r})
combine2(S;, Ri1 ¢ Ry2)

combine3{{r}, (})
combine3({r}, {s))
combine3({r), i1 ¢ Si2)

4.6 Merge Scans

¢

(1 I | T 1|

[

combinel(S, R)

{
czambine2(MAP2(P, S), MAP1(P))

combinel(S, P;) o combinel(S, Pp)

{
combine3({r}, 5;)
combine2(S;, Ri1) © combine2(S;, Riz)

{
if TEST(r,s) then RESULT(r,s) else {)

combine3{{r}, Si1) ¢ combine3({r), Siz).

Merge scans, and general n-way merges of multiple streams, naturally seem to require simultaneous recursion
on multiple arguments. Surprisingly, perhaps, they can be implemented as a single SVP recursion. Merging
of two streams with a single SVP-transducer is accomplished by using one of the streams as the initial state,
and incrementally consuming this state while simultaneously consuming the other stream.

Tor example, let us define an transducer for producing the set union of two sorted, []-terminated streams
{sequences). Since every sequence Sy ¢ Sy is actually {y) ¢ S, for some y, we use a shorthand notation to

define transducers for set union as follows:

sorted_union( R, {[]}) R
sorted_union(R, (v} ¢ §)

union_output(y, {[]})

T

{y)

union_output(y, R) ¢ sorted_union{union_state(y, R), S).

(W) it = ]
union_output(y, (x} o B) = { 8}) :f‘z _i_ g

| (z} o union_output(y, R) ifz <y.
union_state(y, {[]}) = D

(0 ==
union_state(y, {x} ¢ R) = ¢ gzg :g if; z g

| union_state(y, R) ifz <y.

Although they do what is needed, union_state and union_output technically violate our restrictions on SVP-
mappings. Such mappings must be properly implemented as transducers that scan through the state stream
R, outputting the prefix of R of elements less than y, omitting the elements in R equal to y, and retaining
the suffix of R of elements greater than y. This is easily accomplished. For example, if we define

union_state_increment(y, z)

then we can write:

union_state(y, {[1})
union_state(y, (z))

union_state(y, @, ¢ @2)

in proper SVP form.

i

if z =[] then {[])
else if z > y then (z)
else if z = y then {z)
else [*z<y*/ ()

{0

union_state_increment(y, )
union_state(y, @1) © union_state(y, Q2)

21



5 Case Study: Bond Investment Analysis

In this section, we describe a realistic application that shows potential for a model like SVP.

In [25], Rozen and Shasha describe BondDB, a decision support system developed to support investment
banks in the buying and selling of bonds. The system was built using a relational DBMS (Qracle), storing
basic information on about 10,000 different bonds, daily bond quotes, and the status of bond portfolios.
BondDB was developed to help investors improve profitability and reduce risk of their portfolios, as well as
perform various kinds of forecasting about expected values of investments over a variety of possible future
scenarios. Investment strategies for bonds have become very complex, and decisions often require a great
deal of data analysis. A very readable and comprehensive introduction to the subject can be found in [11].

5.1 Bond Attributes

As an example of what one finds when considering various investments in the United States, the information
for a bond abstracted from Moody’s Public Utility Manual could look as follows:5

Issuer Southern California Gas
Type of bond Open Mortgage-Qutstg.
Coupon 83%

Face value $100.00

Moody’s Rating Al

Maturity Date November 1, 1996

Peyment frequency semiannual
Payment schedule  every May 1 and November 1:

91/05/01  $4.12
91/11/01  $4.13
92/05/01  $4.12
92/11/01  $4.13
93/05/01  $4.12
93/11/01  $4.13
94/05/01  $4.12
94/11/01  $4.13
95/05/01  $4.12
95/11/01  $4.13
96/05/01  $4.12
96/11/01 $104.13

Call schedule with thirty days’ notice:

90/11/01 to 91/10/31 $104.43
91/11/01 to 92/10/31 $103.32
92/11/01 to 93/10/31 $102.21
93/11/01 to 94/10/31 $101.11
94/11/01 to 95/10/31  $100.00
95/11/01 to 96/10/31  $100.00

Although there are various kinds of bonds (open mortgages, municipal general obligation bonds, treasury
notes, etc.}, most share the following attributes:

» Issuer — a corporation, local government, or (a department or agency within) the federal government;
¢ Face value — the value to be repaid investors when the bond matures;

e Coupon — the interest payment (in percent) that is issued to holders of the bond at fixed dates,
typically semiannually;

5The information about this bond differs slightly from the real values in order to simplify the presentation here.
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¢ Maturily date — the date on which the bond is ‘retired’ (terminated), and holders are paid the bond’s
face value;

¢ Ratings — risk classifications, such as offered by Moody’s or Standard & Poor’s;

* Payment frequency — number of times per year an interest payment is made, typically 2 (semiannual
payments);

¢ Payment schedule — the dates and amounts upon which interest payments are made over the lifetime
of the bond;

e Call schedule — the dates upon which the bond issues can call the bond, i.e., can redeem the bond
prior to its maturity date. The call schedule allows the issuer to cancel the bond if its coupon gets out
of line with current interest rates, or if the issuer wishes to retire the debt for some other reason.

Note that bonds are traded on stock exchanges, and their prices can vary from day to day. The price need
not match the face value.

Representing this information about bonds in a relational database is challenging because attributes like
the call schedule would most naturally be represented by a non-first-normal-form structure. Furthermore,
the call schedule records are ordered by time, requiring some kind of ordered representation. BondDB was
obliged to store the call schedule in a relation by itself, rather than replicate all the basic bond information.
However this solution is imperfect, as it forces queries about bonds to be split into several subqueries, and
does not support querying of the call schedule as a stream. These problems were viewed as a truly ‘ugly’
consequence of using relational systems [25].

These problems do not occur with SVP. The basic bond information can be represented as a collection
of SVP tuples, whose entries are mostly atomic values, with the exception of the payment schedule and call
schedule, which can be represented as streams. Being able to represent both sets and streams is important
in this application.

5.2 Bond Yield Analysis

In BondDB, some queries were too complex to express using SQL. Let us consider a simple example involving
bond yields. Bond yields give a measure of the ‘interest raie’ offered by a bond. A bond’s yield can differ
from its coupon because the bond price can vary.

The yield_to_maturity of a bond, given a purchase price and purchase date, iz the interest rate for which
compound interest on the purchase amount (at maturity), plus the purchase price itself, equals the future
value of the bond’s payments (at maturity and using the same interest rate). Let yield(P, C, R, m, n) denote
the yield of a bond with:

s purchase price P,

¢ annual coupon interest C (the bond’s coupon multiplied by its face value),

final redemption value (maturity face value, or call price) R,

yearly payment frequency m,

that is held for n years.5 Then yield_to_maturity is the special case in which we hold the bond until its
maturity date.

For example, suppose we buy Southern California Gas on 90/11/01 for P = $92.25 and hold the bond
for 6 years (to maturity). The yield obtained here ultimately turns out to be

yield(92.25,8.25,100.0,2,6) = 10.00%.

®This yield y = yield(P,C, R,m, n) is defined by the equation

man O
P = > 2+ 4+ Ras L)y
m m m
izl
— the interest rate for which price matches return. Typically values for y are found iteratively, or with tables; see [11]. We
have used a Newton’'s method solver here.
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If for example the price were P = $95, our yield would reduce to 9.36%; if P = $100, the yield drops to
8.25% (the coupon); and if P = $105, the yield falls helow the coupon to 7.21%.

Unfortunately, we are not guaranteed the bond will last to maturity: the issuer may call the bond. In
this case our yield will be determined by the date of the call and the call price, rather than the maturity
date. With the Southern California Gas bond, for example, if we buy at P = $105.00, the possibilities are:

call occurs after payment on 91/05/01:  yield( 105.00, 8.25, 104.43, 2, 0.5 ) = 6.77%
call cccurs after payment on 91/11/01:  yield( 105.00, 8.25, 103.32, 2, 1.0 ) = 6.28%
call occurs after payment on 92/05/01:  yield{ 105.00, 8.25, 103.32, 2, 1.5 ) = 6.83%
call occurs after payment on 92/11/01:  yield( 105.00, 8.25, 102.21, 2, 2.0 ) = 6.59%
call occurs after payment on 93/05/01:  yield( 105,00, 8,25, 102.21, 2, 2.5 ) = 6.86%
call occurs after payment on 93/11/01:  yield( 105.00, 8.25, 101.11, 2, 3.0 ) = 6.72%

yield( 105.00, 8.25, 101,11, 2, 3.5 ) = 6.90%
yield( 105.00, 8.25, 100.00, 2, 4.0 ) = 6.80%
yield( 105.00, 8.25, 100.00, 2, 4.5 ) = 6.94%
yield( 105.00, 8.25, 100.00, 2, 5.0 } = 7.04%
yield( 105.00, 8.25, 100.00, 2, 5.5 } = 7.13%
yield( 105.00, 8.25, 100.00, 2, 6.0 } = 7.21%

call occurs after payment on 94/05/01:
call occurs after payment on 94/11/01;
call occurs after payment on 93/05/01:
call occurs after payment on 95/11/01:
call occurs after payment on 96/05/01:
maturity after payment on 91/11/0%:

and the worst case yield turns out to be 6.28%, if the call occurs right after we receive our second payment
on 91/11/01. Recall that the yield_to_maturity in this case is 7.21%. In this example, the call would be
made on 91/11/01 with a call price of $103.32. (In fact the call need not always occur on a coupon payment
date, but we will ignore this complication for the moment.)

On the other hand, if we buy on 90/11/01 at P = $92.25, the following yields are possible:

call occurs after payment on 91/05/01:
call occurs after payment on 91/11/01:

yicld( 92.25, 8.25,
yield( 92.25, 8.25,

104.43, 2, 0.5

) = 35.35%
103.32,2,1.0 ) =

20.36%

call occurs after payment on 92/05/01:  yield{ 92.25, 8.25, 103.32, 2, 1.5 ) = 16.32%
call occurs after payment on 92/11/01:  yield{ 92.25, 8.25, 102.21, 2, 2.0 ) = 13.81%
call occurs after payment on 93/05/01:  yield( 92.25, 8.25, 102.21, 2, 2.5 ) = 12.75%
call occurs after payment on 93/11/01:  yield( 92.25, 8.25, 101.11, 2, 3.0 ) = 11.71%
call cccurs after payment on 94/05/01:  yseld( 92.25, 8.25, 101.11, 2, 3.5 } = 11.26%

call occurs
call occurs
call occurs
call occurs

after payment
after payment
after payment
after payment

on 94/11/01:
on 95/05/01:
on 95/11/01:
on 96/05/01:

yield( 92.25, 8.25,
yield( 92.25, 8.25,
yield( 92.25, 8.25,
yield( 92.25, 8.25,

100.00, 2, 4.0 ) = 10.68%
100.00, 2, 4.5 ) = 10.45%
100.00, 2, 5.0 ) = 10.27%
100,00, 2, 5.5 } = 10.12%

maturity after payment on 91/11/01: yield( 92.25, 8.25, 100.00, 2, 6.0 ) = 10.00%

The worst yield will be the minimum of the collection, which is 10.00%.

With this example in mind, let us define the yield_to_call of the bond precisely like yield_to_maturity,
but use the call price instead of the maturity face value, and the call date instead of the maturity date. We
need to consider all call dates after every interest payment. In the worst case, we will get the minimum of
the yield_to_maturity and the least yield_to_cali.

We can write definitions for yield_to_worst as follows then:

yield_to_worst(bond, price, date)
= min{( yield_to maturity(bond, price, date), wield_to_call(bond, price, date) ))

yield_to_maturity(bond, price, date)
= yteld(price, coupon_interesi(bond), face_value(bond), ipf(bond), years(maturity_date(bond) — date))

yield_to_call(bond, price, date)

= min  yield(price, coupon_interest(bond), cprice(pdate, bond), ip f(bond), years(pdate — date))

pdate>date
Here pdate ranges over the payment dates in peyment_schedule(bond), cprice(pdate, bond) is the call price
after the payment on pdate (determined by the call schedule), épf(bond) is the interest payment frequency
of the bond, years{date; — dateg) is the (possibly fractional) number of years between dateg and date,, and
ipf(bond) is the interest payment frequency (number per year) for bond.
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5.3 Realized Compound Yield and Beyond

Our definition for yield_to_worst computes minima of yields to the ends of different time intervals, ignoring
reinvestment of the coupon payments and the redemption value of the bond after it is redeemed. Basically,
both yield_to.maturity and yield_to_call assume that the reinvestment rate (the rate of interest during the
lifetime of the bond) is always equal to the yield. This is a not necessarily a realistic assumption, but it is
very commonly made.

A more accurate estimate of yield can be obtained by considering reinvestment under varicus scenarios
about future interest rates. Let us define the “future value’

FV(P,r,mn) = }:'(1-'}-%)"“ﬂ

of an amount P invested today at annual interest rate r and compounded m times per year for n years. Now
define

horizon_value(bond, horizon_dale)

= Z FV{amount, reinvestment_rate(date), ipf(bond), years(horizon_date — date)).
(date,amount) € payment_schedule(bond)

Finally, the realized compound yield of the bond is the interest rate y such that
horizon_value(bond, horizon_date) = FV(price,y,ipf(bond), years(horizon_date — date)).

It is a more realistic measure of yield than yield_to_worst.

Note horizon_value is an aggregate transducer that takes a reinvestment_rate, which could be either
a constant or a scenario (time series) of possible future rates. In the latter case, the query is not just a
simple sum, but requires ‘merging’ of streams: the interest rate scenario must be merged with the payment
schedule, to obtain a sequence of payments and rate changes ordered by dates.

Things can get much more complex. Investment managers may wish to select different horizon_dates,
and consider the various possible call scenarios for this date. Some very complex transducers can be produced
here, which compute horizon values over various simulated histories. They would be quite hard to express
in SQL.

Furthermore, several simplifying assumptions made throughout the discussion above may not apply.
For example, one can buy bonds in the middle of coupon periods, and not just on payment dates; and
calls can occur at any time, and not just on call dates. These modifications require the use of involved
‘interpolation’ formulas for accrued interest that follow industry conventions for the kind of bond in question.
This complication seems to defy expression with SQI,, as it requires fairly complex numeric computations
and ‘merging’ of streams of events again. However, it would be tractable with SVP.

5.4 Conclusions on Case Study

BondDB is a cutting-edge application of database technology. Current relational database systems were
found to be not quite up to the task, and produced ‘ugly’ partial solutions for some problems. SVP seems
to avoid some of the weaknesses of the relational model, as a result of the SVP model’s ability to represent
constructed values within tuples, and to express interesting mappings on these collections.

Beyond the examples shown here, BondDB performs many other functions, including temporal queries
such as computing moving averages and asking whether a bond is within 10% of its best price over the last
30 days. These again seem well-suited for SVP. For example, moving averages are naturally computed as
transducers. In general, the m-th moving average of a stream 5 is a stream whose i-th element is the average
of elements ¢, ({+1), ..., (i+m—1) in S. The following definition finds the m-th moving average of a stream
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by computing averages of ‘windows’ (substreams) of size m:

moving_average(m, 5) = windowAvgs(rn, (), sequence(.5))

windowAvgs(m, W, (})
windowAvgs(m, W, (z})
windowAvgs(m, W, S| ¢ 57)

{
if count(W) < m — 1 then (} else {average(window(m, W, (z))))
windowAvgs{m, W, 51) ¢ windowAvgs(m, window(m, W, 5;), S2).

window (m, W, (z})

all_but_first(n, {})
all_but_first(n, {x})
ail_but..first(n, S ¢ 52)

H

all_but_first({count(W) + 1 — m), W o {2))
0

if n > 0 then {) else (z}
all_but_first(n, Sy) o all_but_first(n — count($}), S»)

Generalizing, it seems that once database systems are required to answer queries about ‘scenarios’, we are
led to the situation where the database must perform limited kinds of simulation. Event-based simulation
seems to require stream processing capabilities.

Rozen and Shasha conclude that a database would have been closer to ‘ideal’ for supporting the BondDB
application if it had supported data abstraction and abstract data types, allowed programming constructs to
be stored in the database, and provided better locking and performance tuning capabilities. This experience
suggests important future extensions for SVP.

6 Theory of SVP-Transducers

Recall that SVP is intended as a data model that supports parallel processing of ‘collections’, which generalize
sets and streams. Our main goals in developing a theory for the model are that:

¢ the model should support independent parallelism on sets
o the model should support pipeline parallelism on streams

¢ the model should be fairly ‘complete’ in the sense that most (reasonable) collection functions can be
expressed

o the model should provide a rigorous semantics, to permit reasoning (both formal and informal) about
parallel computations.

In this section we study SVP-transducers and show how they address these goals.

Our approach is to develop a theory of structure-preserving mappings, which include order-preserving
(monotone) mappings as a special case. This theory clarifies the kinds of divide-and-conquer mappings
that SVP-transducers implement, and characterizes their properties. We then show how the classic results
of Kahn for networks of sequence transducers can be generalized for networks of SVP transducers, while
demonstrating that certain transducers offer either independent or pipeline parallelism.

6.1 Structure-Preserving Mappings

The divide-and-conquer mappings given earlier have regular, recursive definitions that directly reflect the
structure of their inputs. These mappings all produce a new output ‘view’ of their inputs, which presents
the input in a new way.

Basically, the mappings preserve some aspect of the original data, and are in this precise sense ‘ab-
stractions’ of the data. Since data processing amounts to abstraction of principle from the details of data,
these kinds of mappings are naturally important to us. Several general classes of these mappings are easily
identified:

¢ collection maps {collection structure-isomorphisms)

¢ homomorphisms (collection structure-preserving mappings)
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# continuous functions (collection order- and limit-preserving functions)
e monotone functions {collection order-preserving functions)

These classes are of increasing generality: so every collection map is a homomorphism, every homomorphism
is continuous with respect to the subcollection ordering, etc. The interesting thing is that all these classes,
which we define now, can be characterized structurally.

6.1.1 Homomorphisms and Collection Maps

Homomorphisms and collection maps are the simplest kind of structure-preserving mappings. Each element
of the input collection is mapped to one or more elements of the output collection.
A collection homomorphism f is a mapping in D® — D° such that there is a function hin D — D°

for which
Ht) = {)
f({=)) = h(z)
f(51052) = f(51) 0 f(52).

f is called a colleciion map if f is a collection homomorphism with the property that h(z) is a unit
collection for all # in D. Collection maps preserve the topological structure of collections. We make this
(initially possibly confusing) use of the word ‘map’ here following common practice in functional programming
systems, which define functions like map, mapcar, etc.

6.1.2 Monotone and Continuous Functions

Monotone functions do not necessarily preserve the topological structure of their input, but always preserve
the ‘order’ of their input.

In what follows we let D be the set of all finite or countably infinite collections over the finite or
countably infinite set D. If we define {D} = { {(z} | = € D } then D® satisfies the recursive domain
specification [27]

D® = (DY + D°® x D°.
Also, we need to introduce L, the undetermined collection. Extending the definition above for the lifting

Dy = Du{l},let (D}, = (D)U{L}, and D be the set of collections containing L as a subcollection
zero or more times. In other words,

D{ = (D), + D} x DP.

Henceforth, we will also extend any function defined on D® to a strict function on D by asserting that
F(L) = L. We make the simplifying assumption that all functions are strict.
A collection monotone function f is a mapping in D° — D<® such that there is a partial ordering C
on D° for which
Si © 52 implies f(S1) C f(S2).

The following are partial orderings on collections that are important for us in deriving semantics for SVP-
transducers.

o collection prefizx ordering
S TifS=T,or S=14,0r §=(51¢5;) and T = (T} oT3) and recursively 5;<,T1 and 52=<.T>.

o collection sequence prefixr ordering
S=sseqT if either 5 = T or S<4,e,T.
S<esegl f S=1Land T # 1, 0r § = (510852) and T = (71 ©T2) where either Si<oe,71 and S2=,T3,
or §1 = 11, neither 5) nor 1) contain 1, and S3<cyseeT5.

Collection prefix ordering S=<,T" insists that 5 be a prefix of T', growing outward from the root. Collection

sequence prefix ordering S=<q,.,7 further insists that either S = T or the leftmost L in S be non-1L in T
With each of the orderings above, D} is a complete partial order (¢po). This is shown by demonstrating

that ascending chains have limits. An ascending chain with respect to C is a finite or countably infinite

sequence
C = [51,85,5s,..]
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of collections Sy, Ss, S3, ...1in D? such that
S1ESC S5
For each ordering above, every ascending chain C over D{ has a limit (least upper bound)
ImC = Uie,S;.
Probably the main subtlety here is to order limits in a standard way such that
uss C ur; iff vmian S, C T,.

Since the ordering C used is the key determiner of monotonicity, we will henceforth write C-monoteonicity
when we need to make the ordering explicit. More generally, for two domains D; and D, with orderings C;
and Co, a function f: D; — D, is monotone if

X G Y implies f(X) T2 f(Y).

In this case, we say f is (C;,Ca)-monotone. For example, the function collection_size: D¢ — N from
collections to natural numbers is monotone with respect to the collection prefix ordering <, on its input and
the numeric ordering < on its output. So, colection_size is (<,,<)-monotone.

Continuous functions are monotone functions with one additional property: they preserve limits. Specif-
ically, f is called C-continuous if f is C-monotone, and for every chain ¢ = Sy, S, ... that is ascending
with respect to C, we have

fmC) = limf(C)

where lim f(C) = Ujewn f(S:). Also f is called (C1,C2)-continuous if f is (C;,C2)-monotone and f preserves
limits accordingly. For example, collection_size is (<,,<)-continuous.

Functional composition preserves monotonicity and continuity. When f is (C;,C2)-continuous and g is
(C2,Ca)-continuous, then the composition of f with g is (C;,C3)-continuous.

The relational algebra operators are monotone on their arguments. When expressed as SVP transducers,
selection, projection, cross product, set union, set intersection, and set difference are all collection homomor-
phisms, monotone functions, and continuous functions! Moreover, they are monotone in multiple senses:

o Operators of the relational algebra are monotone with respect to (multi)set inclusion on each of their
argaments. An operator f is monotone with respect to set inclusion in an argument if whenever
S1 C Sa, then f(S1) € f(S2). (There is one exception: the set difference operator is monotone in its
first argument and antimonotone in its second argument, i.e., S C Sz impliess R— 81 D R — 52.)

¢ Relational algebra operators are monotone with respect to ordering of tuples in significant ways. Define
the value partition ordering < on collections by

5 <° 5 ife<yforallez €8, andall y € Sy,

where < is any total ordering on values. Then many relational operators are monotone with respect to
<¢. If f(S) is a binary relational operator with argument S (for example, f(5) = SN T, for a given
relation 7'}, then S <° S, implies f(51) <° f(52).

These monotonicity properties of the relational algebra operators are very important, being exploited by
virtually every database query optimizer.

6.1.3 Structure-Preserving Mappings

The structure of trees that implement collections can capture important kinds of information: individual
sort ordering, subcollection lexicographic sort ordering, segmenting (partitioning by predicate), balance
(partitioning by size; parallelism), sequence (linear organization; sequentiality). This physical structure can
be crucial both for efficient and for correct operation. We have shown also that collections can be coerced
to take these particular structures with the SVP restructure transducer. More generally, now, what do we
mean by ‘structure’ of a collection?
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Let us define a strucfure of collections to be a predicate on collections. For example, the predicate
sorted(<,5) is satisfied by collections § whose leaf sequences are in increasing sorted order with respect to
<. Also, the predicates partitioned{h,5), balanced(S), sequenced(S), etc. identify useful structures.

We say that a function f on collections is structure preserving i there is a structure predicate P such
that whenever S satisfies P, then f(S) satisfies P. More specifically we say f is P-structure preserving. A
function f is (Py,P;)-structure preserving if whenever S satisfies Py, then f(S) satisfies P,. When f is a
function with multiple arguments, then it may be structure preserving in a particular argument, etc.

This formalism allows us to capture the properties of the nice classes of mappings introduced in the
previous sections, particularly the monotone mappings. The preceding sections showed that collection homo-
morphisins preserve structure — for example, relational algebra operators preserve sort order, set inclusion,
and value partitioning with respect to the orderings . Value partitioning is extremely important in bulk data
processing. To see this, write 5] ¢ <53 for a collection that is partitioned into two nonempty subcollections
51 and Sy such that 57 <% Ss2. Then the following equations hold:

selectg (5] o< Sz) = selectB(Sl) o< selectB(Sz)
project4(S1 o< S2) = projects(S1) og project4(Sa)
RN (Sl oL Sg) (R M Sl) og (R N Sz).

In other words, the operators select, project, and M preserve partitioning by <. The union and difference
operators preserve partitioning when both their arguments are partitioned identically:

(Rl og Rg) U (Sl og Sz) = (Rl U Sl) o< (R2 U Sz)
(Rl 05 Rg) - (51 05 Sz) = (R1 — S1) OS (Rz — Sz).

If a mapping on individual items is monotone, then the corresponding collection homomorphism is structure
preserving, and its computation permits division (and conquering).

Necessary and sufficient conditions for structure preservation are straightforward for SVP transducers
that perform no restructuring or collecting. These transducers preserve sort ordering when the h function
is appropriately monotone, preserve balance or sequence when the h function maps unit collections to unit
collections, preserve partitions with respect to the predicate p when the h function preserves p, and so forth.
Often conditions can be derived when restructuring and collecting are present. SVP transducers encourage
this kind of reasoning about the structure of collections and its preservation under mappings.

6.2 Sequence Transducers and Pipeline Parallelism

The material above describes how to analyze single SVP transducers. Complex mappings on multiple
collections will in general require a network of these transducers. Assigning a semantics to networks of
processes can be very complex in general, and the fact that processes work here on tree-structured data (the
transducers here read and write trees) complicates the picture further.

Fortunately, we can generalize on one key result in parallel processing: Kahn’s result for networks of
processes [17]. Kahn showed that networks of continuous functions permit pipeline parallelism, and provide
an elegant semantics of stream-oriented computation. We first summarize these results, and then show how
to generalize upon them for SVP.

6.2.1 Kahn’s Networks of Functions

We provide a brief summary of the classic paper [17].
D is the set of all finite or countably infinite sequences of items drawn from a set D, also including the
empty sequence A. We order members of I* by prefix inclusion j,eq,7 s0 that

S ZRseq T i Sisaprefixof T, forall 5,7 € D,

The least member of D* is therefore A. Note A is not an end-marker, unlike [] for lists. The set D* with
the ordering <,., is a complete partial order, since every ascending chain has a limit.

We are particularly interesied in functions f in D¥ — D* that are <,.,-continuous. Such a function
is monotone with respect to the sequence prefix ordering, so giving the function more input cannot result

In [17], the symbol C is used instead of <seq, with the definition: ‘X C Y iff X is an initial segment of Y'.
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in the function’s producing less output. Also, such a function cannot wait indefinitely before producing an
output. Kahn shows several useful functions on D¥ are <,.,-continuous, notably F (first), R (remainder),
and A (a cons-like approximation of append), where A(X,Y) yields the leftmost element of X followed by Y.

A process is represented as a collection of <,.,-continuous functions on sequences, More precisely, a
process is a program that reads items from the sequence on a specified input port (waits on that port),
and writes sequences to a specified output port (sends on that port), Reads on a port always block until
something is written there. Each output of the process can be defined by a =seg-conttinuous function of the
inputs. Finally, a network of processes is a collection of (continuous) processes corresponding to the nodes
of a static communication graph, whose edges specify their inputs and outputs.

Kahn points out that <,.,-continuity has the following important consequences:

1. A finite network of <,.,-continuous processes implements a =,.,-continuous function; it follows that
a least fixed point semantics for the network are then straightforward to obtain, and amount to the
ensemble of histories corresponding to the edges in the communication graph.

2. Parallel programs consisting of a network of <,.;-continuous processes can be proven to yield the same
result regardless of the control scheme, as long as the control scheme is fair. (Furthermore, if the
control scheme is unfair the worst that can happen is that the network will produce less output than
it would with a fair scheduler.)

Thus, continuity provides an elegant formal sernantics for stream computations, and also provides a limited
guarantee of pipeline parallelism. It is remarkable that Kahn’s concept of continuity goes far towards
formalizing what we want in a function that provides pipeline parallelism, as well as matching the properties
we want from database mappings.

6.2.2 Networks of SVP Transducers

Our results follow on the foundation set by Kahn. We replace the cpo of sequences D“ by the cpo of
collections D°, ordered by either collection prefix <, or collection sequence prefix <os¢,. Thus networks of
SVP collection homomerphisms are continuous, and have a continuous semantics.

Note that =,se,-continuity corresponds to pipeline parallelism (as it did for Kahn), while <,-continuity
corresponds to independent parallelism. Let us say that a collection S is less defermined than another T
if wherever S differs from T, S is undetermined (1). A transducer is <,-continucus if further determining
its input cannot cause it to yield a less determined output, and the transducer will not consume input
indefinitely before producing output. Similarly, transducers are <,,.,-continuous if determining their input
collections left-to-right cannot cause them to yield output that is less determined left-to-right, and they
cannot delay indefinitely before producing output.

A straightforward approach gives us a parallel implementation that corresponds to these semantics.
Where Kahn's processes read and write sequences, the processes here read and write collections. The syntax
of SVP transducers can be seen as ‘reading’ the collection structures in the left hand side of the equations, and
‘writing’ the right hand side. Again, all reads are blocking. We use the symbol L to denote an indeterminate
collection — a collection that, when read, causes suspension of the reading process. We digress from Kahn's
static network of processes, however, in allowing recursive invocations of SVP transducers to spawn new
processes.

Evaluation of a collection homomorphism statement such as

f(Sl <>S2) = f(Sl)Of(SZ)

therefore suspends until a collection {5y ¢ S7) is obtained as input, and then forks the evaluations of X; =
f(51) and X» = f(52). The X; and X3 evaluations have independent parallelism. Tree prefix continuity
requires that recursive expansion of the collection homomorphism definition be treated properly. Expanding
this recursive definition will require spawning of new processes (for parallel subtrees), and thus the network
of processes we arrive at is not static — it grows and shrinks as expressions are expanded and evaluated.
Kahn actually described proper treatments of recursion in section 4 of his paper; one approach is to evaluate
subexpressions of the expansion ‘on demand’. The network of processes then can grow arbitrarily large
without growing in a way that avoids useful computation.

Collection transductions are similar to collection homomorphisms, but have reduced parallelism. The
statement

f@,5105:) = f(@Q 8) e f(8(Q,51), 52)
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suspends until (SyoS;) is read, and then forks the evaluations of X; = f(@,51), Q' = §(Q,5;), and
Xy = f(Q',S52). Again, the X; and X, evaluations have independent paralleliszn, but this time X, is
evaluated in pipeline with @’. Both X and @’ will be suspended while §; is L. We can obtain continuous
semantics agam, but this time with regard to the the collection sequence prefix ordering <., i-e., with
regard to left-to-right evaluation of collection trees. This mirrors the Kahn's requirements for sequence
transducers [17]. Furthermore, since <, implies <,.,, every <,-continuous function is also ~oseq-continuous,
and a network of transduce transducers and collection homomorphisms is <4,eq-continuous.

More generally, SVP transducers will involve restructuring and collecting. Unfortunately, in general the

restructuring statement
F(S1082) = f(p(51)) 0 f(p(52))

destroys =<,-continuity of a network of transducers, as either p or  can require all of its input to be
determined before it can produce any output, or may be discontinuous in some other way. (For example,
when g sorts its input it is not continuous, and the operators § = oF is not <eseg-continuous, although
it is <,-continuous.} In this situation, we cannot give a continuous semantics for a network of transducers.
Nevertheless, we can often show that the network is structure preserving. Restructuring and collecting often
changes the organization of collections to obey a new structure; so restructuring or collecting from a collection
preserving P; to a collection preserving P, will be ( Py, Ps)-structure preserving. Structure preservation of a
network of SVP-transducers gives us good handle on the semantica of the network, even though the loss of
continuity permits indefinite delays for output to become impossible.

7 An SVP-based Parallel Programming Language

The notation used to specify SVP-mappings is probably too cumbersome to serve as a programming language.
Various styles of languages like functional, rule-based, imperative or graphical could be adopted to design a
programming language in which SVP collections can be represented and mappings on these collections can
be defined. To illustrate this point, we informally present a simple toy parallel programming language with
imperative style, henceforth called PL.

7.1 The PL Language

The variables of the PL language take atomic and constructed values as values, and terms can be built up
using operators (basic SVP-mappings, SVP-transducers) and functions (arbitrary) that map non-collection
values to non-collection values. Programs in PL consist of iterators and definitions, composed by sequencing,
conditional and a while-do looping structure.

Formally, the PL language is defined to contain the following:

Variables
Z1, -, 31, ... We use small letters to denote atomic values and tuple values, and capital letters to
denote collections.

Terms
The variables #;, ..., Si, ... will denote terms, and if ,,..., z, are terms, then so is f(z1,---,z,),
where f is the name of an operator.

Programs
The following are programs:

definitions
if 2 and § are variable names and ¢ is a term then z = ¢t and S = ¢ are programs.
tteralors
if z is a variable name, P is a program, 8 is a collector, f(z,z;1,...,%y) is a term, and S is a term

of type collection, then:
for z in S do P(z,z;,...,2,); od

is a program. The program in an iterator may contain special statements:
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newy = f(y,z,z1,...,2,)
output y 0= f(z,z1,...,2,)

The first statement updates the y variable for the duration of the program within the iterator;
it may (and typically does) refer to the previous value of y. The second statement permits
accumulation of output with a collector 8. The notation y §= =z is shorthand for y = (y 8 z).

sequencing, looping
if Py and P; are programs and b is a boolean expression, then: (Py;P;), (if b then P; else P),
and (while b do P, endwhile), are programs.

‘We now informally describe the semantics of PL.

Variables can range over SVP values. Definitions enable us to name expressions in a way similar to let in
functional languages, and similar to Kahn’s networks of equations.

Iterators enable us to express mapping of collections while ‘ranging over’ the collection. Let 2 be a
variable and S be a SVP collection. In the statement for z in S do Prog(z) od, z ranges over the
collection 5. Prog(x) is executed for each value in § with parallelism determined by Prog(z): the new
statement forces sequentialization of an iterator; independent parallelistn resulis when Prog{(z) contains no
new declarations. Notice that an iterator exactly corresponds to an SVP-transducer without restructuring,
and the new statement corresponds to state update.

Finally, sequencing, conditional and looping are defined with the usual semantics.

7.2 PL Program Examples

We start with a program that computes the area of convex polygons as shown earlier. Let triangle(Q) be a
predicate that yields true if its argument is a 3-tuple of points Q = (po, p1, p2) such that none of the points
are undefined (_). Similarly let next_triangle(Q,p) be a function that yields the 3-tuple (po, p2,p) when Q is
a triangle, and otherwise replaces the leftrmost _in @ with p.

define total_area (Polygon) as
T={}
Q=10(,-);
for p in Polygon do
new (@ = next_triangle(Q, p);
if triangle(@) then R = {Q} else R = {};
output 7' U= R;
od;
total_area = 0;
for z in T do
output {otal_area + = area(z);
od;

]

end.

We now give a program example that defines a transitive closure operator (henceforth, TCPO) on a
binary relation (a set of tuples), using an algorithm originally described in [33]. The use of parallelism is
made explicit in the program.

The algorithm TCPO consists of two phases, First, the input relation Input(A, B) is partitioned on the
second attribute B, into a tuple of size n called R. Below, partition_to_tuple is a restructuring transducer that
accomplishes this. TCPQ (the eventual transitive closure) is initialized to {}. Second, the transitive closure
is applied to R as a loop of the following operations. The transitive closure increment Delta is partitioned
on the join attribute (A) to give the D vector. Ranging ¢ over the collection of values 1...n, D; is joined
with R; using the predicate D;.A = R; B (which can be done with SVP-transducers described earlier). The
result of the join is then collected with a parallel union into TC'P(. The while loop terminates when no
new tuples are generated (Delta becomes empty).
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define TCPQ (Input,ha, hp,n) as
R = partition_to_tuple(hg, n, Input);
TCPO ={};
Delta = Input;
while Delta # {} do
D = partition_to_tuple{h 4, n, Delta);
new Delta = {};
foriin 1l.n do
output Delta U= Join(R[t], D[d]);
od;
output TCPQ U= Delta;
endwhile;
end.

8 Summary

To review what is new about SVP:

¢ SVP models information with collections. Collections include many interesting special cases, including
streams, multisets, and groups, and combine sets and streams neatly in a single model.

e Collections are represented as trees, Where there have been many attempts to develop data processing
models using functional operators on sets or on lists, SVP uses trees. This not only permits us to handle
sets and streams in the same model, but also gives an explicit way to represent divide-and-conquer
processing and parallel processing.

e SVP operates on collections with SVP transducers, which can be summarized as providing three
basic operations: restructure (collection reshaping, including sorting and rebalancing), transduce (tree
transduction), and collect (aggregation over collections with pump or APL-reduction).

e SVP is simple. It does not rely on sophisticated algebraic concepts, or a powerful higher-order function
framework, but on divide-and-conquer and functional composition. Earlier versions of the model ex-
perimented with greater sophistication (in fact a sizeable running prototype was written that treated
transducers as higher-order functions), but ultimately this was discarded in favor of the current sim-
plicity.

¢ SVP permits a natural characterization of siruciure preserving mappings on collections, and these
mappings have important properties that yield parallelism and performance in data processing,

In SVP, database mappings (queries) are formalized as transducers. These mappings have important prop-
erties:

1. SVP-transducers implement many useful bulk data operations: scan computations, relational algebra
operators, arbitrary aggregate operators, including FAD’s pump operator, arbitrary set mappings,
including FAD’s filter operator, and many stream mappings (specifically, stream transductions). More
generally, SVP-transducers implement divide-and-conquer mappings that appear useful in bulk data
processing.

2. SVP-transducers provide a natural means of specifying both independent and pipeline parallelism. At
the same time, they have a rigorous semantics based on continuity with respect to collection orderings,
that supports both independent and pipeline parallelism. Rigorous fixed point semantics can be derived
for networks of SVP-transducers, even for cyclic networks.

The objective of a database model is to find a class of structures and mappings on those structures that:
permit conceptualization of complex problems; permit adaptation and extensibility for new situations; permit
efficient implementation; are rigorously defined; are generally useful. We feel the SVP model meets these
essentlal criteria, and in addition offers insights on parallel data processing.
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9 Future Digressions

SVP is still a model and will benefit greatly from further experience. At UCLA we have developed a simple

SVP implementation in Bop, a rewrite rule language, and the examples in this paper all operate as stated.

Nevertheless there is no substitute for having ‘been there’, particularly when it comes to parallel systems.
This section records some topics that have oceurred to us as promising avenues for further work.

9.1 A General SVP-based Parallel Programming Language

SVP was designed largely with parallel data processing in mind. The ideas here can also be applied in
parallel programming languages, particularly scientific languages aimed at supporting both pipeline and
independent parallelism. Recently a variety of parallel programming models have taken a larger view of
how parallelism should be expressed. For example, [6] combines both a set orientation with parallel lambda
calculus (rewriting) execution. It is interesting to consider a programming language based on the SVP
transducer, or equivalents like divide-and-conquer mappings or a generalized pump operator.

We have not discussed it in this paper, but transducers can implement their own parallel control scheme.
That is, we can use transducers to control networks of transducers, just as control units are used to control
CPUs. This aspect of SVP gives it still more promise as a parallel language.

In order to concentrate on modeling issues, we have left the entire issue of ‘a nice query language interface
for SVP’ open. The SVP-transducer formalismis verbose, and not really appropriate for a user-level interface,
just as relational algebra is verbose. One natural approach here might be a visual query interface such as
the one used for interactive graphic specification of transducers in Stardent’s AVS visualization system.

Another natural approach would be a query language with a ‘set-former’ flavor to it (SQL has such a
flavor), perhaps adapting the list-comprehensions used with increasing popularity in functional programming
[35]. Note that in [35] Wadler argues list-comprehensions can be generalized to monad-comprehensions, with
many applications in functional programming. The monad is an interesting algebraic structure that, among
other things, can serve as a theoretical setting for the pump and APL reduction operators.

9.2 Array Processing and SVP

One direction to pursue is the use of SVP for array processing problems. There are several possibilities
here. Tirst, we might try to modify SVP to avoid the distinction between collections and tuples, perhaps by
embedding both in a more general structure like arrays. This is something that Iverson himself attempted
to some degree in APL [16), encoding ordered trees in arrays.

Second, we can adopt sequence processing as a basis for scientific computations. This has been proposed
by a variety of authors recently. In (1], for example, four kinds of transducers are shown to provide a very
useful kernel for parallel array operations. A more abstract recent proposal for basing parallel computation
on functional operators over lists appears in [28].

Third, we can modify SVP to include some features for arrays, and some kinds of nested arrays. More has
developed an extensive theory of nested arrays in [20, 21], and has shown how it generalizes and improves the
(non-nested) model of arrays used in APL. Qthers have gotten very interesting results with recursive arrays.
The classic paper [36] explores the results of storing square arrays as recursive quadtrees (which Wise calls
2%.ary trees, or quaternary trees), and developing matrix operators as divide-and-conquer operations over
these trees. For example, the matrix product can be defined recursively as:

times(z,0) = 0

times(0,y) = 0

times(x,1) = =z

times(1,y) = y

times(x, y) = zy when z, y are numbers

ﬁmes(( A B ) ( E F )) _ ( plus(times(A, E), times(B,G))  plus(times(C, E), times(D, G)) )
¢C D\ G H plus(times(A, F), times(B, H)) plus(times(C, F),times(D, H))

It is striking how many simple matrix operators can be specified this way — sum, product, inverse,
determinant, transpose, etc. Wise shows also that nontrivial operators (full-total-complete-stable pivoting,
and the FFT) are easily programmed with this representation. Still another interesting property of this
representation is that it not only works, it works for sparse arrays! Sparse arrays are quaternary trees
some of whose quadrants are only the constant 0. The definition for ¢imes above efficiently stores many
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sparse arrays and identity matrices (which can be represented as the constant 1). Note that Wise’s array
representation is easily implementable within SVP by treating quaternary trees as 2-level binary trees.
However, it appears the restrictions on recursions imposed by SVP would have to be extended to support
general matrix operators.

In array processing, it seems that the restrictions on SVP recursions over collections are not flexible
enough for expressing some computations. A good example comes from sequence comparison problems [26].
These problems usually have a natural divide-and-conquer structure. For example, if A and B are sequences,
and () is the empty sequence, their minimal string-edit distance d{A, B) is defined by

d({), ) =0
d(yy-B) = d({),B) + w(()y)
dz-A4,0) = dA4()) + wz,()
d(A, B) + w(z,y) (z is replaced by y)
dz-A,y-B) = min¢ d(A,y-B) + w(z,{)) (zisdeleted)
d(

z-A,B) + w({),y) (yisdeleted)

where w(z,y) is a function giving the cost of replacing item z by item y. Matrix-oriented dynamic pro-
gramming techniques are much better for solving this problem than naive recursion. So, even if SVP were
extended to handle this kind of dividing-and-conquering, it would be open how to compile it efficiently.

9.3 Query Optimization and Performance in General

We have not discussed it here, but there is a simple theory for composing SVP-transducers, only slightly more
complex than that for composing simple functions. In particular, if f; and f; are collection homomorphisms,
there is a single collection homomorphism fis such that for all S

fi2(8) = f2(f1(5))

and fiz is definable using the definitions of f; and fy. This is significant for optimization, since it under-
scores that multipass mappings can be transformed into single-pass meppings. Furthermore, many nontrivial
algebraic properties of specific transducers (particularly APL reduction) are derivable, and can be used as
the basis of a transformation-based query optimizer [3, 35]. It appears that SVP may be a very good model
for describing query optimization, since it can formally model scans, access paths, algebraic operators on
collections, and parallelism.

We have avoided discussing performance of the transducers in this paper. In some cases extensions of SVP
will permit more efficient execution of particular mappings. For example, we might modify the left-to-right
transduce transducer to give us a right-to-left variant:

ecudsnart(h, §, @, {}) {}
ecudsnart(h, 6, @, {z)) = h(Q,z)
ecudsnart(k, §, @, S ¢ S2) = ecudsnart(h, §, (2, S2), S1) ¢ ecudsnart(h, §, @, S2).

[

Such a thing is very useful. For example, we can write a relatively fast transducer for
this kind of recursion:

+’ (append) with

SxT = if emptycollection(5) then T else appendl(S,T)
append1({}, T') = {)

append1({z), T) = {g)oT

append1(S) © 53, T) = appendl(Si, append1(S2,T))

(Here fst is used as a collector, and append! is its own & function.) This 1s a ‘conservative extension’ of SVP,
since right-to-left recursions are already expressible in SVP:

ecudsnart(h, 8, @, 5) = mirror{ transduce(h, §, @, mirror( S ))).

Nevertheless, the overhead of the mirror transducers is avoided if we directly offer right-to-left recursion. It
seems inevitable that SVP will grow to incorporate extensions like this over time.
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9.4 Networks of Finite Automata, Tree Automata, and Biichi Automata

Networks of finite automata have been studied since the dawn of computer science. A recent survey of the
area appeared in [29]. Our work shows that stream processing computations can often be expressed with
such networks, and exploring the connection would be interesting.

It is also interesting to consider limitations of transducers that are preserved under composition. A classic
limitation restricts attention to ‘finite state transducers’, also referred to as ‘Mealy Machines’. These are
finite state automata augmented with an output alphabet and an output function that maps a state and
current input symbol to a current output symbol. Each transition of the automaton produces some output.

Tree automata generalize finite state automata to accept as input rooted, ordered, labeled trees, rather
than sequences. (The generalization comes from viewing sequences as degenerate trees in which each node
has at most one descendant.) A clear and refreshingly informal early survey appears in [30], and a more
recent and complete treatment in [12].

In the root-to-frontier tree automaton (RFA), the input tree is traversed from the root to the leaves.
Each node in the tree, including the root, is labeled with an input, and usually the tree is taken as having a
fixed branching factor (such as 2). The state of the automaton at the root is given, and thereafter the state
at any node of the tree is determined by the state at its ancestor node, the input at its ancestor node, and
its index among the (possibly multiple) descendants of the ancestor node.

At first it seems that tree automata and SVP-transducers may be very similar. However, the definition
of tree automata is not directly comparable with that of SVP-transducers for several reasons:

1. SVP collections are rooted, ordered, trees, but their internal nodes do not carry labels, as is the case
with the trees processed by tree automata.

2. The state of a tree automaton at a node in the tree is determined by the state and input at its ancestor
node in the tree. On the other hand, the ‘state’ of an SVP-transducer at a node in a collection is
determined by the ‘state’ at its ancestor node, as well as upon the entire left sibling subtree, if such a
sibling exists.

3. Tree automata with output (tree transducers) are typically defined as ‘Mealy machines’, producing a
tree incrementally such that the output at each node of the input tree is a function of the current state
and input symbol. SVP-transducers permit considerably more general transductions.

Thus the relationship between SVP and tree automata is not a direct one. Nevertheless, the literature
concerning tree automata is considerable, and studying it will perhaps provide some insights or perspective
about SVP.

Over the past decade there has been increasing interest in formalizing the behavior of nonterminating
processes (such as operating systems), and proving properties of programs over time. One approach for
formalizing these has been as automata on infinite sequences; another has been to use temporal logic.

One class of automata, known as Bichi anlomate, have been shown to be equivalent in expressive power to
temporal logic. Biichi automata are defined almost exactly like ordinary (nondeterministic) finite automata,
and accept a finite word if it drives them into an accepting state, but also accept an infinite word if it drives
them into an accepting state an infinite number of times. An excellent review of the work in this area is
provided in Chapter 4 of [31].

It would be interesting to relate these results for infinite streams to what we have developed with SVP,
In particular, we can perhaps derive a Temporal Relational Calculus, a query logic for streams with temporal
operators,

History

The bulk of this paper was completed during Parker’s sabbatical visit to INRIA in Spring 1991, with the
exception of the section on bond analysis, which was added during August 1991. However, we felt something
was missing. During Simon’s visit to UCLA in November 1991 we realized that restructuring was needed to
complete SVP. The present version of this paper thus includes restructuring, chooses names to skirt confusion
with similar functional programming concepts, and also reflects experience gained from running the various
programs developed in this paper. A demonstration system written in Bop, a rewriting language developed
at UCLA, is attached at the end of this paper. All programs in this paper (and more) are presented there.
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Earlier this month we were informed by Shamim Naqvi that very similar work was independently devel-
oped by Breazu-Tanen, Buneman, and Naqvi [22] during the early part of 1991. This work takes a somewhat
different tack, emphasizing not parallelism or ‘divide-and-conquer’, but the elegant properties of structural
recursion for database programming languages. We think this is a strong confirmation of the concepts
that have motivated us and suggests that database operators based on structural recursion or SVP-style
transduction have a great future.
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