Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

TEMPORAL QUERY PROCESSING AND OPTIMIZATION IN
MULTIPROCESSOR DATABASE MACHINES

T. Y. Cliff Leung November 1991
R. R. Muntz CSD-910077

Temporal Query Processing and Optimization in
Multiprocessor Database Machines*

T.Y. CLff Leung
Richard R. Muntz
University of California, Los Angeles

November 7, 1991

Abstract

In this paper, we address issues involving temporal data fragmentation, temporal query
processing, and query optimization in multiprocessor database machines. The impact of con-
ventional data fragmentation schemes on various temporal queries is discussed. We propose
parallel processing strategies for complex temporal pattern queries (such as multi-way joins)
which are based on partitioning temporal relations on timestamp values, and optimizations for
processing snapshot operators (i.e., comparison predicates involving timestamps). We analyze
the proposed schemes quantitatively and discuss the advantages and limitations. Implemen-
tation aspects of the proposed schemes and other parallel query processing techniques are also
presented.

“This work was partially supported by a MICRO grant from the University of California and the Hughes
Aircraft Company,

1 Introduction

There has been a growing interest in multiprocessor database machines which appear to have
better price-performance than traditional DBMSs residing in mainframe computers. A crucial
design issue in these database machines is the so-called fragmentation strategy which specifies
how tables are fragmented and stored in the database system. The fragmentation strategy
has a great impact on the efficiency of query processing.

With the availability of cheaper and larger secondary storage devices such as magnetic
disks, more historical data tends to be stored online instead of being archived onto magnetic
tapes or being purged from the database. Recently, there have been active research efforts
that attempt to provide basic temporal functionalities so that historical data can be accessed
and queried more efficiently [Sno87, Sta88].

There are several classes of temporal queries. Among the most difficult to process is
the complex temporal pattern queries which are multi-way joins whose join condition often
contains a conjunction of several inequality join predicates. In general, these queries are often
expensive to process. The difficulty of the problem can be further increased for the large
temporal relations. With the availability of relatively cheap parallel database machines, one
can exploit parallelism for processing this type of queries.

In [Leu90] we proposed stream processing algorithms for processing temporal inequality
join and semijoin operations. In this paper, we develop parallel join strategies based on
the stream processing paradigm, and show that they can be attractive alternatives. For an
inequality join of two relations, a conventional strategy in multiprocessor database machines
is to dynamically and fully replicate the smaller operand relation. The parallel strategies
proposed here are based on partitioning temporal relations on timestamp values. An analytical
model is developed for estimating the number of tuples that have to be replicated; this model
indicates in what situations only a fraction of a relation is replicated among processors as
opposed to fully replicating the entire relation.

Another subclass of complex queries is called snapshot join queries which are join queries as
of a certain time point or over a certain time interval in the past. We also discuss optimizations
can be achieved when these queries are processed using our proposed parallel strategies.

The organization of this paper is as follows. In Section 2 we present the fundamental
concepts. Section 3 is devoted to the discussion of various existing fragmentation strategies
for temporal relations. The parallel query processing strategies and optimization alternatives
will be the main focus in Section 4. Implementation issues of the parallel strategies will
be addressed in Section 5. Section 6 contains a discussion of other possible parallel query
processing strategies. Finally, we discuss the related work in Section 7, and the conclusions

and future research work in Section 8.

2 Background Information

In this section, we introduce the fundamental concepts: the temporal data model, a classifi-
cation of temporal data and queries.

2.1 Data Model & Definitions

In the temporal data model, time points are regarded as integers { 0, 1, -- -, now } which are
monotonically increasing and where now is a special marker that represents the current time.
A time-interval temporal relation is denoted as X(S,V,TS,TE), where S is the surrogate, V is a
time-varying attribute, and the interval [TS,TE) denotes the lifespan of a tuple [Cli87, Seg87);
we often say that a tuple x<s,v,ts,te> € X starts at time point t, and ends at time point
te !. Both timestamps are commonly called effective timestamps (as opposed to transaction
timestamps) [Sno87].

Definition 1 Current tuple is defined as a tuple whose TS value is a specific time point
and whose TE value is “now”. History tuple is defined as a tuple whose TS and TE values
are specific time points (i.e. its TE value is not “now”). |

Definition 2 “A op ¢”, where A is an attribute, op is a relational operator (>, >, =, <, <,
#) and c is a constant, is called a comparison predicate. Similarly, “A op B” for attributes A
and B is called a join predicate. A subclass of join predicates is called temporal join predicate
if both attributes A and B are timestamps. o

Definition 3 A query guelification in conjunctive normal form is a conjunction (A) of
several terms each of which can be:

¢ a join predicate,

! We concentrate on time-interval temporal relations which may contain any number of time-varying
attributes. One can regard a time point t as an “interval® [t,t+1), and the results in this paper remain
applicable.

e a disjunction (V) of several comparison predicates involving the same attribute
(e.g. “X. V=1V X.V=2").,

Definition 4 P(Ry,---,Ry), m>1, represents a query qualification involving relations R;,
. R.. m)
b} m

Definition 5 Substitution: Given a query qualification P(---,X,-++) and a tuple z € X, we
denote P(---,z,-) as a new query qualification obtained by substituting for all attributes of X
in P(---,X,---) the values from the tuple z. Note that P(---,z, - --) may become unsatisfiable.

|

Definition 6 A general class of queries, called Temporal Select-Join (TSJ), is defined as
the set of relational algebraic expressions of the following form:

O'p(er...‘Rm) (R1 X X R,,“) or O-P(Rl,o--,Rm) (Rl, e, Rm)

where P(Ry, -+, Rp) or simply P is a query qualification and Ry, -+, Ry, m>1, are temporal
relations. o

The semantics of three temporal operators (called snapshot operators), which are com-
monly found in temporal queries — between, intersect and as of, are also of interest here. All
these operators are syntactic sugar — they can be directly specified in terms of comparison
predicates involving only timestamps. Their use allow us to express queries more intuitively
and to “view” the database content that is active during a particular time interval or time
point.

Definition 7 Given a time point T and a time interval [t,,t.), “T between [ts,t.)” holds if
and only if “t, < T A T < t.” holds. 0

Definition 8 Given two timeintervals [TS,TE) and [t,, t.). “[TS,TE) intersect [ts,t.)” holds
if and only if “TS<t, A t,<TE”. “Op(Ry,---,Ry) intersect [tg,te)” is defined as

Op A [R1.TS,R,.TE) intersect [ts,te) A - A [Rm.TS,Rm.TE) intersect {t.,tc) (Rla e aRm)~

That is, we deal with tuples that are active during the interval [t,t.). O

0 now

Figure 1: Characterization of temporal data

Definition 9 Given a time interval [TS,TE) and a time point t, “[TS,TE) as of t” holds
if and only if “t between [TS,TE)” holds. However, “[TS,TE) as of now” is equivalent to
“TE=now”. “Op(Ry, --,Ry) as of t” is defined as

UP A [R1.TS,R;.TE) as of t A - A [Rm. TS, Rm.TE) as of ¢ (Rl, Yt Rm)-

Note that this operator is a special case of the intersect operator. That is, we deal with tuples
that are active at the time point t. a

2.2 Temporal Data

Temporal data has several characteristics and statistical properties that are of interest here.
These characteristics and statistics represent valuable information that provides some guide-
lines on evaluating a proposed scheme.

Time-varying attributes (or similarly relationships) can be classified as continuous or non-
continuous [Seg87). A continuous time-varying attribute is an attribute which must have
a valid non-null value during the object’s lifespan, whereas a non-continuous attribute may
not have a valid value (or equivalently it has a null value) during some period of time. For
example, the stock price can be considered as a continuous time-varying attribute (types A
and B in Figure 1) while a person checking out a book from a library can be a non-continuous
time-varying relationship (type C in Figure 1).

In addition to the above characteristics, we will make use of several statistics. First, the
lifespan of relation (denoted as TRy,) is assumed to be [0,now), and is continuously expanding.
The effective lifespan of an individual tuple, which we mentioned earlier, is specified by the

pair of timestamps — TS and TE. The average tuple lifespan is represented by T, and the
average time between two consecutive insertions of tuples to a relation is represented by Ti.,
as depicted in Figure 1. The mean rate of insertion of tuples into a relation (denoted as 1) is
1/Tipne. For continuous attributes, these two figures are directly related: T, is T},/Ns, where
Ns is the average number of surrogates in the temporal relation. These statistics will be used

to characterize the performance of the proposed schemes to be discussed shortly.

2.3 Classification of Queries

Common queries can be broadly classified using different criteria. Firstly, queries can be
partitioned into select and join queries.

Select Query This is often viewed as n-dimensional range search, e.g. selecting employee
records whose age is between 40 and 50: O 40<age<so (Employee). Various indexing
techniques can be used to speed up the search process.

Join Query We consider two types of joins — inequality join and equi-join. Inequality joins
are often expensive to process while equi-joins can be processed efficiently by a number
of algorithms such as sort-merge joins and hash joins.

Secondly, we can partition attributes of the query qualification into 1) non-time attributes
only and 2) timestamps only. Together with the select and join query classification, we obtain
a 2 by 3 matrix:

| | non-time attributes only | timestamps only |

select O v>s0 (Ry) 0 15<s0 (Ra)
equi-join O r,.u=r,.v (R1,R3) O R,.Ts=R,.Ts (R1,R2)
inequality join | O g, y<r,.v (R1,R2) 0 R,.TE<R,.Ts (R1,R2)

Note that a query can contain a mixture of these qualifications.

Thirdly, any query in these six categories can further be augmented with a snapshot
operator, forming a snapshot query. We distinguish two types of snapshot queries: snapshot
select and snapshot join queries. The first type involves selection based on attribute values
as of a certain time: e.g. O g=q (R) as of t; while the second type involves joining several
relations as of a certain time: e.g. Op(Ry,---,Ry) as of t;. Note that since snapshot operators
also involve timestamps, queries with both a snapshot (especially as of) operator and other
qualification on timestamps may produce null responses if the “combined” query qualifications
evaluates to false. For example, the following queries return null responses:

5

R, — Ri——
R R, — I
B o =

Ry —— Rm —_—

time

Figure 2: Classes of temporal joins

® T rt1E<t (R) as of t = O RTE<t A RTS<t A t<rTE(R)}

¢ U R, TE<R..Ts (R1,Rz} as of t
= O R,.TE<R,.TS A R;.TS<t A t<R;.TE A Ry.TS<t A t<R..TE (R1,R2)

2.4 Temporal Queries

In this section, we discuss several subclasses of TSJ join queries. Each subclass has a
restricted form of query qualification and their characterizations can be intuitively stated as
follows:

Disjoint Join The join condition between two tuples does not require that their inter-
vals overlap, as illustrated in Figure 2(a). For example, queries with join conditions

“Ri. TE<R;.TS” or “R;. TE<R;.TE” belong to this category.

Overlap Join The join condition between two tuples requires that their intervals share a
common time point, i.e. they overlap. We consider two special kinds of overlap joins
whose formal definitions will be presented shortly:

TSJ; — All participating tuples that satisfy the join condition share a common time
point, as illustrated in Figure 2(b). For example, finding a complex “event pattern”
in which all events occur during the same period of time can be viewed as a TSJ;
join query.

TSJ; — The tuples that satisfy the join condition overlap in a “chain” fashion, as
illustrated in in Figure 2(c). However, the participating tuples that satisfy the join
condition do not have to have a common time point. For example, finding an event
pattern in which events occur in some overlapping sequence can be viewed as a
TSJ; join query.

Note that TSJ; queries also belong to TSJ,.

Given a query Q = Op,,..R,) (R1,- -+, Rm), we construct a join graph (denoted as G) from
the query qualification P(Ry, -+, Ry,) using Algorithm 1. Base on the join graph, we will then
be able to formally define TSJ; and TSJ, join queries.

Algorithm 1 Join Graph: There are m nodes in the join graph G; each node represents
an operand relation R;, 1<i<m, and is labeled with the name of that relation. We add an
undirected edge between nodes R; and R; (i#]) into G if the following condition is satisfied:

P(R1, -+, Rm) = Ri.TSSR;.TE A R;. TS<R;.TE ?

That is, for tuples r; € R; and r; € Ry, r; and r; span a common time point 3. 0

Definition 10 A query Q = Opp,,..r.) (R1,--*,Rm) belongs to TSI, if the following
conditions hold:

1. The number of operand relations in Q is greater than 1, i.e. m>1.

2. The join graph G constructed using the Algorithm 1 is a connected graph, i.e., all nodes
in G are connected.

O

Definition 11 A TSJ; query is also a TSJ; query if the join graph G constructed using
the Algorithm 1 is a fully connected graph. In other words, for all i and j such that 1<i<m,
1<j<m and 1#j,

P(R1, e ,Rm) = R,TSSRJTE A RJTSSR,TE

Theorem 1 Common Time Point: Given a query Q = Op(g,,..r,) (R1,"**,Rm) € TSJ,.
For each m-tuple <ry,--,rm>, where r € Ry, 1<k<m, that satisfies the join condition
P(Ri, -+ ,Rm), all participating tuples (r’s) span a common time point. a

? Testing implications can be readily achieved via algorithms presented in [Ros80, UlI82, Sun89]. Moreover,
semantic optimizations can be used to add edges in the graph.

3 This condition is defined such that we can also handle the join predicate “X.TE=Y.TS” for a join of two
relations.

Proof:

The proof basically follows from the definition of TSJ;. Consider a m-tuple
<ry,--,Tm>, where r, € Ry, 1<k<m, that satisfies the join condition P(R;,
-+, Rm). Without loss of generality, let us assume that tuples r; and r; do not
share a common time point, where 1<i<m and 1<j<m. Then, exactly one of the
following conditions holds:

1. ., TE < r;.TS, 1.e. r; ends before r; starts.
2. ;. TE < ri.TS, i.e. rj ends before r; starts.

In either case, the m-tuple <ry,---,r,> would not have been generated by the
join because “r;. TS<r;. TE A r;. TS<r;. TE” is false and thus the m-tuple does not
satisfy the join condition P(R,,---,Ry). Q.E.D.

The class of TSJ; and TSJ; are temporal pattern queries (e.g. multi-way temporal joins) in
which the lifespans of tuples intersect. The main characteristic of these join conditions is that
a tuple r; € R; which starts at time t does not join with (theoretically) infinitely many “future”
tuples 1; € R; which start after r; ends *. For example, Cartesian products across multiple
relations (i.e. no join predicates) and the query with the join condition “R;. TE<R;.TS” do
not belong to either TSJ; or TSJ,. This characteristic is crucial in developing the parallel
query processing schemes to be described later.

Examples of TSJ; query include the commonly called “natural time join™ [Cli85, Cli87],
“intersection joins” [Gun91] which join relations in first temporal normal form [Seg88]. Also,
the following temporal join operators [All83] belong to TSJ; 5:

meet-join(X,Y) — “X.TE=Y.TS”

contain-join(X,Y) — “X.TS<Y.TS A Y. TE<X.TE”
start-join(X,Y) — “X.TS=Y.TS A X.TE<Y.TE”

finish-join(X,Y) — “X.TS>Y.TS A X.TE=Y.TE”

equal-join(X,Y) — “X.TS=Y.TS A X.TE=Y.TE” _
overlap-join(X,Y) — “X.TS<Y.TS A Y. TS<X.TE A X.TE<Y.TE”

Note that the overlap-join(X,Y) is asymmetric with respect to the operands. Here we define
a symmetric version of the overlap-join(X,Y):

% Or conversely, a tuple r; € R; which starts at time t does not join with (theoretically} infinitely many
“past” tuples r; € R; which ends before 1; starts.

5 In [Leu90], we note that these temporal join operators are really shorthand for expressions involving only
temporal join predicates.

intersect-join(X,Y) — “X.TS<Y.TE A Y.TS<X.TE”

Example 1: Given temporal relations X, Y and Z. The following is a TSJ; query:

ag contain—join(X,Y} A contain—join(Y,Z) (X:Y:Z)

Although there is no explicit join predicate between relations X and Z, the TSJ; definition is
still satisfied. However, the following is a TSJ, query but not TSJ;:

g intersect—join(X,Y) A intersect—join{Y,Z) (XaYaZ)

Note that the join between X and Y, and that between Y and Z are TSJ; queries. In Section
6, we will discuss this type of join query in more detail. Until then, we will focus on TSJ;
queries. o

We now show how common temporal queries can be formulated in TSJ;. Consider the
following temporal relations which store information on studios, directors and stars in the film
industry ©:

Studio(Sname,Head, TS, TE)

Dir(Dname,Sname,TS,TE)
Stars(Star,Dname, TS, TE)

where Sname and Dname stand for the name of studios and directors respectively.

Example 2: To find the head of a studio and the director who worked for the studio at the
same time:

- . 7
g intersect—join(Studio,Dir} A Studio.Sname=Dir.Sname (StUdIO,DH‘)

Example 3: To find all combination of studio heads, film stars and directors such that the
star acted in a film that the director directed at the studio during the same period of time:

% These relations are adopted from the examples in [C1i87].
7 A more appropriate response might include two “computed” fields which represent the lifespan of a joined
tuple. In this paper, we focus only on the query qualification which is the major optimization issue.

g intersect—join(Studio,Dir} A intersect—join(Dir,Stars) A P (Studio,Dir,Stars)

where P is “Studio.Sname=Dir.Sname A Dir.Dname=Stars.Dname”. O

Example 4: To find all combination of studio heads, film stars and directors such that the
studio head was a star in a film that the director directed at the studio during the same period
of time:

T p1 A p2 (Studio,Dir,Stars)

where P1 is “Studio.Sname=Dir.Sname A Head=Star A Dir.Dname=Stars.Dname” and P2 is
“intersect-join(Studio,Dir) A intersect-join(Studio,Stars) A intersect-join(Dir,Stars)”. O

Example 5: Consider an example in a different application domain: EMP(Eno,Dept,TS,TE)
and DEPT(Dno,Floor, TS, TE) which store the employee and department information. To find
the employees who ever worked on the first or the second floor:

g intersect—join(EMP,DEPT) A Dept=Dno A (Floor=1 v Floor=2) (EMP-JDEPT)

3 Temporal Data Distribution

We consider a generic “shared-nothing” multiprocessor database machine [Sto86, DeW90] as
shown in Figure 3, which has n nodes connected via an interconnection network. Each node
has a processor, some main memory and secondary storage devices (such as magnetic disks) 8.
In this section, we discuss how a given temporal relation can be partitioned and distributed in
such a database machine, and the tradeoffs involved with respect to the efficiency of processing
the various classes of query listed earlier. Readers should keep in mind that whether or not
a query qualification involves the partitioning attribute generally has a predominant impact
on query processing efficiency, and therefore a specific fragmentation strategy can facilitate
processing some kinds of queries while it may cause other queries to be more expensive to
process.

A number of well-known fragmentation strategies have been proposed and implemented in

8 We use the terms nodes and processors interchangeably — a processor also refers to its processing
capability and associated disks.

10

Interconnection Network

4 A 4

P1 P2 Pn

Figure 3: A generic “shared-nothing” multiprocessor database machine

multiprocessor database machines [Ter85, DeW90]. They include:

e round-robin
¢ hashing

e range-partitioning

Hashing and Round-robin

We first discuss the hashing and round-robin strategies as both strategies attempt to
spread the workload more evenly among processors by distributing tuples randomly. For our
discussion, we consider relations X(S,U,TS,TE) and Y(S,V,TS,TE) which can be fragmented
on any attributes such as S, V or TS °. We first consider that both relations are fragmented
on their surrogates, i.e., S is the partitioning attribute.

Select queries with an equality predicate involving the partitioning attribute (e.g. X.S=1)
are processed by a unique processor. On the other hand, selection on non-partitioning at-
tributes (e.g. X.TS=>50) and range-searching on the partitioning attribute (e.g. 50<X.$<100)
generally involves all processors. Select queries can be processed in parallel if there is an index
on the search attribute (i.e. the TS timestamp). For example, consider a range search for
“45<X.TS<50". However, the parallel search is efficient only when the number of matching
tuples on each processor is relatively large. The reason is that the overhead of starting a
subtransaction on a processor becomes relatively small when the processor has to work on a
large amount of tuples. On the other hand, if the select query returns only a few matching
tuples, the parallel search is relatively inefficient as most processors would have wasted their
resources on starting a subtransaction which retrieves only a very few or even no matching
tuples.

Let us now consider join queries. A naive approach to achieve parallelism is to fully and
dynamically replicate the smaller relation in all processors, which is very expensive unless the

® The partitioning attribute can be a single attribute such as § or a “composite” attribute composed of
multiple attributes such as S and TS.

11

relation is small. This expensive data movement does not occur when the join condition implies
an equality predicate on the partitioning attribute (i.e. X.S=Y.S) and both operand relations
are fragmented using the same partitioning function (e.g. the same hash function). In general,
data movement is required for inequality joins such as temporal join operations. For example,
consider contain-join(X,Y) whose join condition is “X.TS<Y.TS A Y.TE<X.TE”. We note
that tuples with close (but unequal) TS values are likely to be stored at different processors due
to the randomness of hashing or round-robin strategies regardless of the partitioning attribute.
Unless there is an additional qualification that limits the data that has to be examined, an
expensive data movement is required prior to the execution of local joins, in parallel, on each
ProOCessor.

A snapshot query generally requires all processors to participate since qualifying tuples
are likely to be stored at all processors. As in the case of a select query, indexing techniques
such as [Elm90, Kol90, Leu92] can be used to speed up the processing locally.

Choosing the partitioning attribute involves several issues. First, the decision will depend
on the frequency of various queries. For example, if most (both select and join) queries
involve the surrogates, the surrogates may be good candidates for the partitioning attribute.
Second, the decision may also depend on the attribute domain itself. As an example, suppose
the domain of a time-varying attribute consists of only a small number of entities, say 30.
For large relations, hashing on this attribute may produce a skewed data distribution and
thus have an adverse effect on query processing efficiency. Note that although surrogates
are guaranteed to be unique in the database system (i.e. the values will not be re-used), a
surrogate value may appear in a temporal relation more than once. To use the uniqueness of
data values as the criterion of selecting the partitioning attribute, one may therefore choose
a composite attribute <S,TS> 1°,

Range-partitioning

The range-partitioning strategy can be characterized by clustering and storing tuples with
close {or equal} partitioning attribute values at the same processor. That is, the partitioning
attribute is also a clustering attribute. We discuss three types of range-partitioning strategies
for a temporal relation Y(S,V,TS, TE).

The first strategy is to partition a relation Y along a non-time attribute dimension (e.g. V)
as illustrated in Figure 4. This strategy partitions the attribute domain into a fixed number of
intervals, and tuples in the same range are stored at the same processor. For example, as shown
in Figure 4, tuples with V values in the range of [v,,v;) are stored in processor p;. The query
processing algorithms for select, join and snapshot queries under this partitioning strategy are

10 For continuous time-varying attributes (i.e., each object has one attribute value at any point in time),
a value of the composite attribute <surrogate,timestamp>> can uniquely determine a tuple. For this reason,
one can also choose <5, TE> as the partitioning attribute.

12

F
Vg =t mr s r s e s e e et e r e c s e e e ==
B PA .
B PY .
S P2
V1 P1 » time

Figure 4: Range-partitioning along non-time attribute

similar to the hashing and round-robin schemes that we discussed earlier. For example, select
queries with an equality predicate involving the partitioning attribute (e.g. V=1) are executed
in a single processor. However, there are some (and perhaps slight) differences. First, range
search queries on the partition attributes may sometimes be executed on only a subset of the
processors. For example, a range search “Y.V<vjy” is performed only at processors p; and p;.
For an equi-join involving the partition attribute (e.g. X.U=Y.V), the join can be executed
in parallel without data movement if both join attributes are the partitioning attribute and
both relations are fragmented using the same range-partition function.

Usually the number of partition ranges is the same as the number of processors in the
system and therefore each processor is assigned with a single range. Recently it has been
proposed in [DeW90] that the domain is partitioned into a large number of smaller ranges and
thus each processor is responsible for more than one range. This approach enables processing
select queries more efficiently while keeping the workload among processors more balanced at
the same time. This work, however, does not address join queries (including temporal joins)
and snapshot queries.

The second strategy is to partition the relation along a timestamp attribute (e.g. TS) as
illustrated in Figure 5. For example, tuples that start during the interval [ty,t;) are stored
in processor p;. Using this scheme, equi-joins on non-partitioning attributes (e.g. non-time
attributes) become more expensive to process as many tuples have to be moved among pro-
cessors. However, partitioning relations on timestamp attributes may be a good alternative
for temporal query processing — below we discuss this scheme in more detail.

Let the processors be denoted as p;, for 1 < i < n. There are a total of ny,; intervals in the
partition function:

[tl atZ)a LY [tnpi-latnpi)’ [tnpi’tnpi+1)

13

1%} P2 P3 P4

S N T S
O R T e ——
b o = w m m e e = -
L L e

» time

tl ta t3 t4 ts

(sl
(=3

t7

Figure 5: Range-partitioning along timestamp

We refer to t; and [t;,ti;1) as partition boundaries and partition intervals respectively. Parti-
tioning relations on TS (and TE respectively) timestamp is called TS (and TE respectively)
range-partitioning. As the relation lifespan is assumed to be [0,now), by convention t; is 0
and tp ;41 is now. In general, we require that the number of partition intervals be at least
as large as the number of processors, i.e. ny;>n. For simplicity, we adopt the hybrid range-
partitioning scheme in [DeW90]: an interval [t;,t;41) is assigned to p; if i equals j modulo n.
For T'S range-partitioning, processor p; stores a fragment of X, denoted as X;, which contains
tuples of X that start during the interval [t;,ti41), 1.e., “x. TS between [t;,t;11)” holds. Similarly
for TE range-partitioning, X; contains tuples that end during the partition interval.

Consider that both relations X and Y are TS range-partitioned using the same partition
function. That is, tuples that start during the interval [t;,ti4;) are stored at processor p;.
For contain-join(X,Y), tuples with close TS values are likely to be clustered within the same
processor and therefore a pair of tuples that satisfy the join condition are likely to be stored at
the same processor. However, a partition boundary may lie between the start times of tuples
x and y that satisfy the join condition so x and y are actually stored at different processors. In
short, processing temporal join in parallel may still require dynamically copying some fraction
of relations between the processors.

For range search queries and snapshot select queries involving the partition attributes, we
note that the queries may sometimes be executed on only a subset of the processors. For
example, suppose we want to find the attribute values as of a certain time t; which falls
in the partition interval [t;,t;+1). As qualified tuples can start at any time earlier than t,,
processors from p; to p; (which may be only a subset of the processors) would generally have
to participate in the search, unless there is some additional information which would limit the
search to a smaller subset of processors.

14

$: : i : : :

Vg p=-=--~- il T PR SOy R
] 1] 1
Pi P2 Pz , P4 , P1 v ...

Vg ===~ il 2l Sl it
] I I £

V3 --1.34...:.._1_){_' P2 Ps _I_)i-:.----:..".'
..) v P P2 Pa , P4

V2 F---= r—===F==-=-- i
1 1 1 1

v SR , Pt P2 L » time

ty t2 t3 t4 ts te ty

Figure 6: Two dimensional range-partitioning a temporal relation

In {Leu90] we noted that sorting relations on different timestamps may improve the ef-
ficiency of processing some queries. For example, processing contain-semijoin(X,Y) using
stream processing algorithms requires only minimal buffer space (enought for one tuple from
each relation) when X is sorted on TS and Y is sorted on TE. Consider another example
query: meet-join(Y,X) whose join condition is “Y.TE=X.TS”. These queries may be more
efficiently processed if the relation Y is range-partitioned on the TE timestamp and X is
range-partitioned on the TS timestamp. In other words, selecting a particular timestamp as
the partitioning attribute may also depend on the types of temporal join operations.

The above two types of range-partitioning schemes can be considered as one dimensional
as there is only one partitioning attribute. A third strategy is to partition the relation in
a two dimensional fashion; one can imagine we superimpose a Grid File structure [Nie84]
on the search space. Each grid (i.e. rectangle) can be of different size and is assigned to a
specific processor. Omne possible approach is illustrated in Figure 6: we partition the search
space horizontally and vertically into regular bands, resulting in a number of rectangular grids
of the same size. Grids within a vertical band are assigned to processors in a “staggering”
fashion. For example, processor p; stores grids with solid boundaries as shown in Figure 6.

We note several interesting points with respect to query processing compared with the one
dimensional schemes. For simplicity of explanation, let us compare the TS range-partitioning
scheme and the above two dimensional scheme (i.e. the TS timestamp is the partitioning
attribute in both cases). For the two dimensional scheme, a range search may be executed
on a subset of processors (as in the TS range-partitioning scheme). For example, tuples with
condition “X.V>vy A X.V<vz A X.TS=t,” can be retrieved by processor p;. Range search on
only one partitioning attribute, however, involves some optimization issues. For example, in
the TS range-partitioning scheme (i.e. one dimensional), a search on “X.TS=t4" is performed
only at a single processor (i.e. p4) whereas in the 2-dimensional scheme, the search is performed

15

at all processors. That is, the two dimensional scheme attempts to spread the workload
across all processors and thus reduce the query response time. Ideally, the reduced query
response time would be approximately about 1/n (where n is the number of processors) of the
response time in the one dimensional scheme plus the overhead associated with coordinating
the parallel search. This strategy may be beneficial if the number of matching tuples on
each processor is relatively large. When the number of matching tuples is small (e.g. only a
few tuples were inserted at time point t4)}, the gain due to parallelism may not be offset by
the associated overhead. For an equi-join to be executed in parallel without data movement,
the join condition has to imply “X.V=Y.V A X.TS=Y.TS” since there are two partitioning
attributes. Note that the class of join queries to be processed in this fashion is smaller as the
join condition is more restrictive. For this reason, join queries and snapshot join queries are
generally more costly to process.

In the remainder of this paper, we will further develop parallel query processing schemes
based on range-partitioning on timestamp attributes and show that these schemes may be
good alternatives for complex temporal pattern queries and snapshot queries.

4 Parallel Temporal Query Processing

In this section, we discuss some parallel processing strategies for complex temporal queries
based on the following approach:

Relations are range-partitioned along the time dimension. Each processor will
work independently on the partition intervals that are assigned to it. The query
response is the union of results from all processors.

We first introduce the notion of checkpointing the execution state of a query, and show that
once sufficient state information has been constructed at every processor (i.e., replicating
some tuples between processors), queries can be processed in parallel without additional data
transfers. We discuss several optimization strategies and present a preliminary quantitative
analysis of our approach.

Before we proceed, we differentiate two classes of range-partition function: homogeneous
and heterogeneous. In this section, we focus on TSJ, join queries whose operand relations are
homogeneously range-partitioned.

Definition 12 Relations are referred to as homogeneously range-partitioned if their par-
tition functions are the same, i.e., all the partition boundaries are the same. If different
range-partition functions are used, it is referred to as heterogeneous. O

16

1y ——

—"0, T X3, X2, X *1 |local
OP :

l, —» ———0,, - ¥3,¥2,Vi—— | Workspace

— (X)Y)

(a) (b)

Figure 7: (a) A generic stream processor and (b) a merge-join stream processor

4.1 Notion of Checkpointing Execution State

In order to explain the notion, we first discuss 1) the stream processing paradigm for temporal
query processing, and 2) the notion of checkpointing a stream processing execution.

Stream Processing

In [Leu80], we introduced stream processing algorithms for processing temporal joins and
semijoins. A stream is abstractly defined as an ordered sequence of data objects. A stream
processing algorithm can be abstractly described as a stream processor which takes one or
more input data stream(s) and produces one or more output data streams. A generic stream
processor is shown in Figure 7(a). A classical example of stream processing operations is
the merge-join where both operand relations are sorted on their join attribute as depicted
in Figure 7(b); the output from the join operation is also a data stream sorted on the join
attribute.

Stream processing in database systems has several interesting characteristics. First, a
computation on a stream has access only to one element at a time (referenced via a date
stream pointer) and only in the specified ordering of the stream. Second, stream processors
may keep some local state information in order to avoid multiple readings of the same data
stream. The state information represents a summary of the history of a computation on the
portion of data streams that have been previously read. Depending on the operation itself,
the state may be composed of copies of some elements (e.g. tuples for join operations) or
some summary information of the objects previously read (e.g. partial sum for aggregate
functions). In [Leu90] we noted that the storage requirements for the local state information
heavily depend on the sort ordering of input streams, data statistics and the operation itself.
For example, when we merge-join two relations sorted on their key attribute, at any point in
time we need only one tuple from each table as the state information. On the other hand,
if one of relation is not sorted, keeping all its tuples in the local workspace is required prior
to reading the other relation. Alternatively, one can reduce the storage size by allowing the
unsorted relation to be read multiple times. In such a case, the merge-join is actually a

17

nested-loop join.

Checkpointing Stream Processors

We now discuss the notion of checkpointing the execution state of a query in the context
of stream processing. To illustrate the idea more clearly, we consider a stream processor that
implements a query Q with data streams X and Y as shown in Figure 8. For the sake of
simplifying our discussion, we assume that both X and Y are sorted on a timestamp (i.e.
either TS or TE) in increasing order. A stream processor that implements the processing of
a query Q starts by reading elements at the beginning of data streams. At any time point t,
the execution state of the stream processor includes:

¢ state information, denoted as s,(Q), stored in the local workspace of the stream proces-
SOT.

¢ dspi(X) and dsp(Y): the data stream pointer for X and Y respectively which represents
the position of the data stream at which the stream processor has read so far. As we
mentioned earlier, data stream elements are accessed one at a time using the data stream
pointer and in a specified ordering of the data stream.

The notion of checkpointing the execution state of a query has the following characteristics in
terms of the state information and data stream pointers:

¢ The execution state at time t is stored in a checkpoint, denoted as ck(Q).

¢ Consider a time point t’' which is greater than t. The execution state at t’ is a function
of ck(Q) and all tuples in the data stream X {(and Y respectively) between dsp;(X) (and
dspi(Y) respectively) and the first tuple whose TS value is greater than t'. That is, the
execution state at t’ contains sufficient information so that re-reading the portions of
data streams prior to dsp¢(X) and dsp(Y) can be avoided.

The type of state information required depends on the query itself. We will define what state
information is required for TSJ; queries shortly, but to put it simply, at any time the state
information of a join query consists of a subset of tuples of operand relations. One can think
of the state information of the query at each checkpoint as the union of the state information
of individual operand relation.

State Information at Partition Boundaries

We now outline the parallel processing strategy for TSJ; queries. Given that relations
are homogeneously range-partitioned on timestamp attributes (TS or TE), i.e., processor p;

18

a stream processor for Q

dsp(X) —»
dspu(y) — VT

dspi (X)
X >
Y N time
t £’
dSpt (Y)

Figure 8: Checkpointing the execution of a stream processor for query Q

Interconnection Network

! " u |

Pi Pi+:
X >
Y >
. . . time
t; tit1 tis2
dspti (X) dSPtH.l (X)
dspti (Y) dspti+1 (Y)
Sf-i(Q) Bti41 (Q)

Figure 9: Constructing state information at partition boundaries

19

is assigned an interval [t;,ti+1) as depicted in Figure 9. For the moment, we assume that the
data stream pointers at the partition boundary t;, dsp;(X) and dspy,(Y), are “pointing” at the
relation fragments X; and Y; respectively. Given a query Q, the strategy is to construct suffi-
cient state information at every partition boundary so that each processor can independently
process the query Q on its local relation fragments using the constructed state information.
For example, as shown in Figure 9, p; will process its local fragments X; and Y; using the
state information s, (Q). Similarly, pi;1 will process Xi;1 and Y;y; using the state information
St;31{Q). In general, the strategy has three distinct phases:

Replication Phase Construct sufficient state information at every partition.

Join Phase The query can be executed by each processor using its local relation fragments
and the constructed state information.

Merge Phase The query response is produced by merging (and eliminating duplicates) the
results returned from all processors.

Let us emphasize that the TSJ; queries are multi-way temporal joins, i.e., there are m operand
relations. For the sake of simplicity of exposition, we concentrate on joins of two relations
unless we state otherwise.

4.2 Replication Phase

In this subsection, we discuss the construction of state information at each partition boundary
for a query to be processed in parallel by each processor.

Definition 13 The state predicate of a relation R is a query qualification on R 1. |

The state predicate of a relation is used to construct the state information of the relation
required on each processor. The issue is how to derive the state predicate of individual
relations using the user query qualification. For a query involving relations X and Y whose
query qualification is P(X,Y), the Algorithm 2 shows the simpliest approach to derive state
predicates from P(X,Y).

Algorithm 2 The state predicate for the relation X, denoted as Py, is obtained by re-
placing the following predicates in P(X,Y) with “true™:

1 Recall that a query qualification on R is a conjunction of several terms and a term is a disjunction of
some comparison predicates involving the same attribute.

20

e join predicates and

» comparison predicates that involve the relation Y.

That is, P|« contains only comparison predicates involving only X in P(X,Y). Similarly, we
can obtain the state predicate for the relation Y denoted as P|,. 0

Example 6: Consider the film industry examples presented earlier. The query to find the
head of a studio that the director “Fred” worked for at the same time is:

o intersect—join(Studic,Dir) A Studio.Sname=Dir.Sname A Dir.Dname=Fred (Stule,D]I‘)

The state predicate for the relation Dir is “Dname=Fred” while the state predicate for the
relation Studio is “true”. O

Deriving state predicates using the Algorithm 2 can be “improved” by propagating con-
straints between attributes, that is, the derived state predicates can become more “restrictive”.
For example, consider the query to find the head of the studio “MGM” and the directors who
worked for the studio at the same time is:

O intersect—join(Studio,Dir) A Studic.Sname=Dir.Sname A Studio.Sname=MGM (Studio,Dir)

Using the above method, the state predicate for the relation Dir is “true” while the state
predicate for the relation Studio is “Studio.Sname=MGM?”. Intuitively, only tuples in relation
Dir that satisfy the predicate “Dir.Sname=MGM” would participate in the join and thus
only these tuples should be replicated as state information. For the rest of this subsection,
we describe a mechanism in which bounds on timestamp values can be propagated between
relations; propagating other types constraints (e.g. equality comparison predicates in this
example) can be achieved in a similar manner [UlI82, Chak84, Jar84, She89].

We first consider constraints (i.e. upper and lower bounds) on timestamps of individual
relation R:

ts™ < TS < ts* and te” < TE < tet

where ts™, ts*, te™ and te* are constants. That is, the values of TS timestamp are bounded
by the interval [ts~, ts*) and those of TE are bounded by [te™, tet). If a particular timestamp
1s not explicitly constrained, its default constraint interval is [0,now). Since in our data model

21

TE;

[0,t) [t2,mow)

Figure 10: Constraints on timestamps: upper and lower bounds

the TS value must be smaller than the TE value in each tuple, the two constraint intervals
are therefore related:

o If te~ < ts™, the constraint on TE becomes: ts~ + 1 < TE < tet.

o If tet < ts*, the constraint on TS becomes: ts~ < TS < tet — 1.

That is, the data values of TS or TE can further be constrained. From now on, without loss
of generality, we assume that “ts™ < te™” and “ts* < te*” hold for each individual relation
in our discussion. Note that if the lower bound is larger than or equal to the upper bound,
the query response must be necessarily null.

Definition 14 Given numbers a;,- - -, am, for some m>1, max(a;, - -, ams) returns a; such
that a;>a; where 1<j<m and 1<i<m while min(ay,- -, ay) returns a; such that a;<a; where
1<j<m and 1<i<m. 0

The relationship among constraints on timestamps can be easily explained and determined
using a constraint graph structure: Algorithm 3 can be used to construct a constraint graph
G using the query qualification P 2.

Algorithm 3 Constraint Graph Construction *:

1. For each timestamp T of an operand relation, there is a node (labeled with T) in the
graph G. Each node is tagged with a pair of values representing the upper and lower

12 Similar constraint graph construction algorithms appear in [Ull82, Chak84, Jar84).
13 Note that whether or not P has a comparison predicate that involves the operator “#£” and a timestamp
(e.g. “Ri.TS # t,”) does not have any impact on the graph construction algorithm.

22

bound of the constraint on the timestamp data values. For example, in Figure 10(a),
the TS and TE timestamp values are bounded by [ts™, ts*) and [te™, te*) respectively.

. For every relation R;, a solid directed arc from the node R;.TE to node R;.TS is added
to G.

. If “Ty<T3” is a predicate in P for any timestamps T; and T;, a solid directed arc from
the node T3 to the node T, is added to G. Similarly, a dotted directed arc from T, to
T, is added to G if “T;<T,;” isin P. 14

. i “Ty=T;" is a predicate in P for any timestamps T; and T; of different relations, we
merge these nodes together resulting a single node (labeled with {T,T,}) that represents
both timestamps Ty and T,. The largest lower bound of nodes T; and T, becomes the
lower bound of the new node {T;,T;}. Similarly, the smallest upper bound of T; and
T; becomes its upper bound.

. Given the graph G that is constructed so far, we detect if there is a cycle in G. A path
from a node T, to a node T; exists if (1) there is a (solid or dotted) directed arc from
T, to Ty, or (2) there is a directed arc from T, to another node T3 and there is a path
from T3 to T;. A cycle exists if there is a path from any node to itself. There are two
cases when a cycle exists:

¢ The cycle has at least one solid directed arc (which represents “<” relationship).
In this case, the user qualification is identically false and thus the query produces
a null response.

o All the directed arcs in the cycle are dotted arcs (which represent “<” relation-
ship). In this case, all the nodes in the cycle are merged together as in the case
of “=" relationship. The lower and upper bounds of the new node are determined
accordingly.

Note that for any TSJ; query, all nodes in G are in partial ordering (i.e. G has one or more
roots). O

Example 7: In Figure 10, we show the constraint graph for the following query:

T R, TS<t; A contain—join(RiR;) A R;. TE>t, (Ri,Rj).
O

14 In [Leu$0], we noted that semantic query optimization can play a significant role in query optimization.

Using additional semantic information regarding temporal relationships between timestamps, more arcs may
be added in the graph.

23

When the constraint graph is constructed using the Algorithm 3, constraints can be prop-
agated between nodes (using Algorithm 4 below) °.

Algorithm 4 Constraint Propagation: The upper bounds are propagated from roots to
leaves whereas the lower bounds are propagated in the opposition direction. Suppose that the
constraint on a node T is [t7,t7) and that on a node T; is [t7,t]).

1. Dotted arc: for a dotted directed arc from a node T, to a node T,, the propagation of
the upper bound of T to T; results the new upper bound of T; being min(t],t7). The
propagation of the lower bound of node T; to T, results the new lower bound of T,
being max(ty ,t7).

2. Solid arc: If the arc from T, to T} is solid, the new upper bound of node Ty is min(t],t5 —
1). The propagation of the lower bound of Ty to T; results the new lower bound of T,
being max{ty,t7 +1).

a0

Example 8: Consider Figure 10(b), the TS values of relation R; (i.e. TS;} are bounded by
the interval [0,t;—1) while the TE values (i.e. TE;) are bounded by [t2+1,now). The state
predicate for the relation R; becomes “R;. TS<t;—1 A R;. TE>t,+1". O

Definition 15 The state information of a relation R at the partition boundary t;, denoted
as sy, (R), is stored at processor p; and contains:

{r]|r€RAPrTS<t; A t;<r.TE A P|,(r) } if R is TS range-partitioned
{r|r€RAPrTS<tizq A t;1<r.TE A P|(r) } if R 1s TE range-partitioned

where P|; is the derived state predicate for the relation R. That is, all qualified tuples (based
on P|;) whose lifespan intersects with the partition interval [t;,t;41) and are not stored at
processor p; will be replicated at processor p;. O

Given a user query Q = Op(X,Y) € TSJ;, the state predicates can be derived from the
query qualification P using the Algorithms (2) — (4) resulting P|; and P|, . As soon as the

15 Similar constraint propagation algorithms appear in [Ull82, Chak84, Jar84).

24

state information of all operand relations at all partition boundaries have been constructed,
the join phase, which is the focus of the following subsection, can proceed.

4.3 Join Phase & Merge Phase

For a user query Q = Op(X,Y) € TSJy, each processor p; can execute Q using its local relation
fragments and the state information constructed at p;. The response to Q is the union of the
results (and eliminating duplicates) from all processors:

U 1cigny { Op(Xisy(Y)) U Op(Yi84(X)) U Op(Xi,Y5) }

where ng; is the total number of partition intervals.

Theorem 2 Parallel Join Strategy: Given a query Q = Op(R4,---,Rp) € TSJy, the
join strategy is a parallel join of local relation fragments and the state information at each
Processor:

U 1<i<n,, { Op((R Usy(Ra)), -y (R U su(Ru))) }

where n; is the total number of partition intervals, and R, ; is the ith fragment (i.e. partition
[t;, ti+1)) of the relation R;, 1<j<m, which is stored at processor p;. O

Proof We sketch the proof of the correctness of this parallel join strategy for TSJ, queries
(Theorem 2):

Given a query Q = Op(Ry,---,Ry) € TSJ,. By the definition of TSJ,, each m-
tuple <ry,re,- - ,rm>, where r; € R; for 1<j<m, that satisfies the join condition
must have a common time point (denoted as t.), as shown in Figure 11. That
is, for each participating tuple r; € R;, 1; satisfies the derived state predicate P|g,
(otherwise 1r; will not be a component of the m-tuple <rq,12, -, rm>). Without
loss of generality, we assume that t. falls into a partition interval [t;,t;11) which is
assigned to a processor p; '6. Specifically, “t. between [t;,t;;;)” holds. For every
participating tuple, r; € R;, 1<j<m, exactly one of the following conditions must
hold:
16 It is possible that the operand tuples share a common time interval that spans multiple partition intervals.

In this case, the m-tuple may be produced by more than one processor. The final merge phase would eliminate
the duplicates.

25

I

Ty

1
1
1
1
I3 I
1
'
1
1
)

Im

i . 1 .
t te tisa time

Figure 11: A m-tuple <ry,rs, - -,1,,> that satisfies a TSJ; join condition

1. The relation R; is TS range-partitioned and the tuple z; starts during the
partition interval [t;,ti+). That is, 7mr; is a tuple in the relation fragment
stored at processor p;.

2. The relation R; is TS range-partitioned and the tuple r; starts earlier than t;
and span the partition boundary t;. That is, 1; should have been replicated
at processor p; as the state information.

3. The relation R; is TE range-partitioned and the tuple r; ends during the
partition interval [t;,ti1). That is, rmr; is a tuple in the relation fragment
stored at processor p;.

4. The relation R; is TE range-partitioned and the tuple r; ends at or later
than ti;; and span the partition boundary ti+,. That is, r; should have been
replicated at processor p; as the state information.

Therefore, each component in the m-tuple <ry,r3,-+,1,> can be found either in
the state information or in the relation fragment. Hence, the m-tuple <ry,rg,- -,
I'm> is produced by the processor p;. In other words, every m-tuple in the query
response is produced by at least a processor in the parallel join processing strategy.

Q.E.D.

4.4 Reducing State Information

The definition of the state information of a relation at a partition boundary as qualified tuples
(based on the derived state predicates) that span the partition boundary is general enough
to support the parallel query processing strategy for any query in TSJ; whose operand rela-
tions are homogeneously range-partitioned. In this subsection, we discuss some optimization
opportunities in which the number of tuples replicated as state information can be reduced.

26

Asymmetry Property

First, we define the asymmetry property of operands in a TSJ; join query with respect to
the TS and TE timestamps.

Definition 16 Given a TSJ; query Q = Op(R,,...kn)(R1, -, Rm). The relation Ry, where
1<k<m, has the asymmetry property with respect to the TS timestamp if the following
condition is satisfied:

P(Ry,--+,Rm) = Rx.TS > R,.TS, for all 1<i<m.

Definition 17 Given a TSJ; query Q = Opg,,..kn)(R1, -+, Rm). The relation Ry {where
1<k<m) in Q has the asymmetry property with respect to the TE timestamp if the following
condition is satisfied:

P(Ry,- -, Rw) = Ry.TE < R;.TE, for all 1<i<m.

For each m-tuple <ry,---,rn> that satisfies the join condition P, where r; € R; for
1<i<m, the asymmetry property with respect to the TS timestamp means that the tuple
rx € Ryg must have the largest TS value among all participating tuples. For example, con-
sider contain-join(X,Y) whose join condition is “X.TS<Y.TS A Y.TE<X.TE” and overlap-
join(X,Y) whose join condition is “X.TS<Y.TS A Y.TS<X.TE A X.TE<Y.TE”. The relation
Y in both contain-join(X,Y) and overlap-join(X,Y) has the asymmetry property with respect
to the TS timestamp while the relation X does not. Similarly, the asymmetry property with
respect to the TE timestamp means that the tuple ry must have the smallest TE value among
all participating tuples. For example, the relation Y in contain-join(X,Y) and the relation X
in overlap-join(X,Y) have this asymmetry property.

Depending on whether a relation is TS or TE range-partitioned, the asymmetry properties
can be used to show that constructing the state information of the relation is redundant and
thus the replication phase for that particular relation can be eliminated.

Theorem 3 Property of Redundant State Information: Given a TSJ; query Q = Op(R;,
-++, Ry), the condition under which the state information of a relation Ry (where 1<k<m) is
redundant is:

27

The relation Ry has the asymmetry property with respect to the partitioning
attribute (i.e. TS or TE timestamp).

O

Proof We sketch the proof for the Theorem 3 as follows:

We comnsider the case of the TS range-partitioning; the argument for the case of the
TE range-partitioning is similar. Given a TSJ; join query, all the components of
each m-tuple <ry, -+ ,rp,> where r; € R; (1<i<m) that satisfies the join condition
must have a common time point. Also, given that relation Ry has the asymmetry
property, the component ry in the m-tuple must have the largest TS value and
therefore the r,. TS value must also be a common time point. Since the relation
Ry is TS range-partitioned, the m-tuple must have been produced in the partition
where the tuple ry is stored. Hence, the tuple ry need not be replicated to other
partitions for the join process. Q.E.D.

Example 9: Consider the overlap-join(X,Y) whose join condition is “X.TS<Y.TS A Y.TS<
X.TE A X.TE<Y.TE”. Suppose that the relation Y is TS range-partitioned. Only the state
information of the relation X (but not relation Y) has to participate in the join phase. There-
fore one has to replicate only tuples of relation X as state information, and the construction
phase of state information of the relation Y can be eliminated. O

There are some interesting observations. First, the relation Y in the contain-join{X,Y) has
the asymmetry property with respect to both TS and TE timestamps. For this reason, the
state information of relation Y need not be constructed regardless of whether the relation is
TS or TE range-partitioned. Second, the above two conditions have already accounted for the
equality join predicates on timestamps. For example, the relation X in the meet-join(X,Y),
whose join condition is “X.TE=Y.TS”, has the asymmetry property with respect to the TE
timestamp while the relation Y has the asymmetry property with respect to the TS timestamp.

Statistics

We discuss the definition and use several simple statistics on the data in each partition.
We show how these statistics can further reduce data movement and discuss their pros and
cons. Again, for the sake of simplifying our discussion, we focus on joins of two relations —

Xand Y.

Suppose that the query optimizer keeps the maximum and minimum of the TS and TE
timestamp values for every relation fragment. In other words, the TS and TE timestamp values

28

of each relation fragment Y; are bounded by the intervals: {Y;. TSmax, Yi-TEmax), [Yi-TSmin,
Y;. TEmin). Together with the user query qualification P, these statistics may further reduce
data movement of the relation X. To illustrate this point, let us consider several examples.
Suppose that the fragment Y; of a relation Y is stored at processor p;, and that the partition
interval assigned to p; is [t;,tipa).

o Consider the overlap-join(X,Y) whose join condition is “X.TS<Y.TS A Y. TS<X.TE A
X.TE<Y.TE”. Intuitively, tuples in the relation X that span the partition boundary t;
and whose TE values are smaller than Y;.TS.;, need not be sent to processor p; because
these X tuples do not join with any tuples in Y;. This is also true for X tuples that span
t; and whose TE values are larger than Y;. TExay.

¢ Consider the contain-join(X,Y) whose join condition is “X.TS<Y.TS A Y.TE<X.TE".
Intuitively, tuples in the relation X that span t; and whose TE values are smaller than
Y;. TEwin need not be sent to p; as state information.

e Consider the meet-join(X,Y) whose join condition is “X. TE=Y.TS". We note that tuples
in the relation X that span t; and whose TE values are smaller than Y;. TSy, or larger
than Y;.TSnax need not be sent to p; as state information.

To eliminate redundant tuples from being replicated as state information, one can make
use of the constraint propagation algorithm that we presented earlier. For example, consider
the overlap-join(X,Y) whose constraint graph is shown in Figure 12. After the upper and
lower bounds have been propagated, the TS values of relation X are bounded by the interval
[0,Y;.TSax—1) while the TE values are bounded by [Y;.TSmin+1,Yi.TEmax—1). The state
information of relation X at the partition boundary t; therefore contains:

{z|zeXAzTS<t; At;<z.TE A Pli(z)
A 2. TS<Y;.TSmax—1 A Yi.TSpin<z.TE A 2. TE<Y;.TEqax }

where the derived state predicate P|, is actually “true” for the overlap-join(X,Y). Note that
the predicate “x. TS<Y;.TSnax—1" is subsumed by the fact that “z.TS<t;” and “t;<Y;.TSnax”
hold.

The tradeoffs for these optimizations include that keeping these statistics consistent for
every relation fragment incurs some overhead. For example, suppose the state information
of relation Y in the above example (see Figure 12) has to be constructed, the four statis-
tics (Yi-TSmaxs Yi-TEmax; Yi-TSmin and Y;.TE.;,) do not reflect the actual bounds on the
timestamp values. This means that the actual bounds have to be computed after the state
information of that relation has been completely constructed, and the results have to be
broadcast to all senders (i.e. the processors which send tuples X). This may require sub-
stantial coordination overhead between processors. Moreover, determine if a tuple should be

29

()

[Y;. TSmins Yi-TSmax) [Y;.TEmin, Yi-TEmax)

Figure 12: The overlap-join(X,Y): “X.TS<Y.TS A Y.TS<X.TE A X.TE<Y.TE”

sent to a processor requires the evaluation of a more complex qualification. However, for the
operand relation that has the property of redundant state information discussed earlier, the
four statistics of this relation do represent the actual bounds.

4.5 Participant Processors

For the parallel processing strategies that we discussed earlier, it can be determined a priori
that for some TSJ, queries (whose operand relations are homogeneously range-partitioned),
some processors necessarily return a null response when they join their local fragments using
state information. Similarly, it can also be determined a priori that some processors need
not participate in the replication phase. These situations may occur when the user query
qualification contains some comparison predicates involving timestamps. To illustrate the
idea, we first define the notion of replication-intervals and join-intervals.

Definition 18 A replication-interval is defined as the minimal interval with the property
that only tuples whose partitioning attribute (i.e., TS or TE timestamps) value falls in the
interval may be participated as state information 7. O

Definition 19 A join-interval is defined as the minimal interval with the property that
only tuples whose partitioning attribute (i.e., TS or TE timestamps) value falls in the interval
can possibly contribute to the join result. O

With these two types of interval, we distinguish four types of processors: join, non-join
replication and non-replication processors.

17 Note that if the relation has the property of redundant state information discussed in the previous section,
the corresponding replication-interval is necessarily null (i.e. no tuples will be replicated as state information).

30

Definition 20 A join processor is referred to as a processor that has to participate in the
join phase (of our parallel processing strategy), i.e., the processor which has a partition interval
that intersects with the join-intervals. Otherwise, it is referred to as a non-join processor which
necessarily returns a null response. O

Definition 21 A replication processor is referred to as a processor that has to has to
participate in the replication phase (of our parallel processing strategy), i.e., the processor
which has a partition interval that intersects with the replication-intervals. Otherwise, it is
referred to as a non-replication processor.]

To develop the mechanism which determine join-intervals and replication-intervals, we
need to clarify two issues:

1. The relationship between the comparison predicates involving timestamps and the tem-
poral join predicates.

2. The relationship among:

e the TS and TE range-partitioning functions,
e the join-interval and replication-intervals, and

e the property of redundant state information.

The first issue has been addressed in an earlier section; the upper and lower bounds on the
TS and TE values of each individual relation can be determined by propagating constraints
between relations using the constraint graph. Below we address the second issue.

Definition 22 Given two intervals [ts;,te;) and [tsy, teg), we define:
I-intersect([tsy, te),[ts2, teg)) = [max(tsy, ts2),min(tes, tea))

That is, the time interval that the |-intersect operator produces is the intersection of the two
operand intervals. The left-end value of the produced interval ought to be smaller than the
right-end value; otherwise the operator produces a null interval. o

Having determined the upper and lower bounds of the timestamp values, we can now
study the impact of TS and TE range-partitioning schemes on join-intervals and replication-
intervals. For a TSJ; join query Q with relations R; and R; as shown in Figure 13, there are
three cases to be considered.

31

te. TE; te;!'1
R; ts X TS; tst
ts; . TS; . tst time
R te] TE; : te}
e case 1 ------- -
- CaSE2 mmmmma- >
e, case 3 ------- -
Constraints:
tsy < TS; < tsf ts,; < TS; < ts:lf ..
ter < TE; < tef teg < TE; < te;'j'

TS; < TE; and TS; < TE; for all tuples

Figure 13: Determining the join-interval and the replication-intervals

Case 1: R; and R; are TS range-partitioned

The join-interval is:
[max(ts7, ts7), min(max(tsF, tsf), tef, tef)).

In Figure 13, the join-interval is [ts‘ te}). If the join-interval is null, the join response is also
null. The replication-interval of rela.tlon Ry, where k is either i or j, is:

l-intersect([min{ts;, ts7), min(ts}, ts})), [tsy,ts3)).
Tuples that start during the replication-interval are replicated on join processors for the join

phase. If the replication-interval of a relation is a null interval, no tuples will be replicated as
state information.

If the relation R; (but not R;) has the property of redundant state information, the join-
interval becomes:

[max(tsy, ts), min(ts}, tef)).

32

time

ta R;. TS ta

Figure 14: Constraints on TS timestamps of relations R; and R;: t;<ta

The replication-interval of R; is a null interval while that of R; is:
[ts7,min(ts], ts)).

If both relations R; and R; have the property of redundant state information, the join-interval
becomes:

l-intersect([ts;, ts}), [ts;, tsF))

and the replication-intervals of both relations are null intervals.

Example 10: Suppose both relations R; and R; are TS range-partitioned. Consider the
following query:

O-Ri.TS betwaen [t;,12) A R;. TS between [ta,ti) A interscct-join(R-.,R,-)(Riij)-

The state predicate for relation R; is “Ri.TS between [t),t2) A R, TE 2 max(ty,t3)” while
that for relation R; is “R;.TS between [t3,t;) A R;.TE > max(t;,t3)". The join-interval
is {max(ty, t3),max(tz,ts)). Suppose that t, is smaller than t; as shown in Figure 14, the
join-interval becomes [ts,t4). The replication interval of R; is [t1,t2) and that of R; is a null
interval (i.e. the state predicate for R; becomes “false”). In other words, a tuple r; € R; will be
replicated to the join processors as state information if “r;. TS between [ti,ta) A riTE > t3"
holds, and the join phase involves only joining the state information of R; and the local
fragments of R; that start during [t3, ts) ‘2. o

Case 2: R; and R; are TE range-partitioned

8 One can obtain tighter bounds by examining (and thus accessing) local fragment of R; that start during
[t3,t4). In a later section, we will discuss this alternative in more detail.

33

When both relations are TE range-partitioned, the join-interval and replication-intervals are
simply “mirror-images” of those for the above TS range-partitioning case. To simplify our
presentation, we consider only the situation when both relations do not have the property of
redundant state information. That is, the join-interval is: -

[max(min(ter, te;), ts;

? rj r?

ts;;), min(tef, tef)).

In Figure 13, the join-interval is [te],te}}. The replication-interval of Ry, where k is either i
or i, is:
l-intersect([max(te, te), max(tef, tel)), [te; te})).

Ty !

Case 3: R, is TS range-partitioned and R; is TE range-partitioned

The join-interval is:
[max(ts;, ts;), min(tef, tel)).

In Figure 13, the join-interval is [ts_, te;'j'). The replication-interval of R; is:
[tsy; min(tef, ts¥))

while that of R; is:

[max(ts;, te),tel).

If only relation R; has the property of redundant state information, the join-interval be-
comes:

[max(ts;, s), min(ts, tef)).
The replication-interval of R; is a null interval while that of R; is:
[max(ts7, te;) tef).

Conversely, if only relation R; has the property of redundant state information, the juin-
interval becormes:

34

[max(tsy, te), min(tef, tel)).
The replication-interval of R; is a null interval while that of R; is:
[tsy ,min(tef, tsT)).

In summary, the above syntactic mechanism can be used to determine which processors
have to send data as state information and which processors have to receive data as state
information. Doing so allows us to eliminate redundant work. One may wonder if we can
move tuples from join-interval to replication-interval for the join phase. In general, all tuples
in the join-interval would have to be replicated to all partitions in the replication-intervals
which is very expensive and should be avoided. In the following subsection, we discuss the
overhead of constructing the state information.

4.6 Quantitative Analysis

We present a first-cut quantitative analysis on the overhead associated with constructing state
information of a relation. We measure the overhead in terms of the number of tuples to be
replicated since the communication and/or storage costs will be directly related to this number
(and the tuple size). Earlier we denoted the rate of insertion of tuples into a relation as A and
the average tuple lifespan as Tj,. We also denoted the relation lifespan as TRy,. Using Little’s
result [Lit61), the average number of active tuples of a relation at a particular time is:

= AT

A natural assumption is that the average number of active tuples at partition boundaries is
also T. Similarly, the total number of tuples in the relation is:

A-TRy

Suppose that the selectivity of the state predicate q that is used to construct the state infor-
mation of relation R is o, and is defined as the fraction of tuples in R that satisfy q. The
number of tuples that are copied as state information is given by:

Oq Dp+0 = Oq Dp- ATl

where n, is the number of partition boundaries at which state information has to be con-
structed (i.e. the partition intervals that overlap with the join-interval that we discussed in

35

the previous section). Note that “1 < n, < ny;” holds where np; is the total number of parti-
tion intervals. We define the overhead as the ratio of the number of tuples to be copied over
the total number of tuples in the relation:

gq-0p-A-Tu/(A-TRy) = 0q-np-Tn/TRy

This quantity is consistent with our intuition that:

e n,: the overhead increases as the number of partitions with state information increases.

® 0, the more selective the state predicate (which constructs the state information) is,
the less overhead is incurred.

e Ti../TRy,: the overhead is smaller for relations with relatively short tuple lifespans.

Note that the above analysis does not depend on whether the time-varying attribute is con-
tinuous or non-continuous. In case of continuous time-varying attribute, the average number
of active tuples at a particular time is:

T= ATy =T, (Ns/Tp) = Ns

where N3 is the average number of surrogates in the relation.

5 Implementation Issues

In this section, we discuss several implementation issues that are pertinent to the TS and
TE range-partitioning schemes, issues involving storing state information statically and late
updates. We also discuss the application of these range-partitioning schemes to situations
where the access patterns to current and history data are different, and when temporal data
are modeled as non first normal form relations. Finally, we discuss the extension of the notion
of state information for aggregate functions.

5.1 Continuously Expanding Time Axis

Although we regard time points as integers, a major difference between the time domain and
an integer domain (such as department number) is that the time dimension is continuously

36

expanding. Moreover, it is advancing in one direction, i.e., the current time is getting larger.
This leads to some design issues as described below.

For the range-partition function presented earlier, the processor p,; keeps tuples of the
last partition interval [tn,now). Assume that, for the moment, tuples are evenly distributed
among all processors. As time evolves, more tuples with start time greater than t,, are
inserted at processor p,,. Eventually, the workload at processor p,, will be much higher
than other processors. The inherent problem is due to the fact that time is continuously
advancing and we have a fized number of partition intervals. We now briefly discuss several
solutions:

Variable # of partitions This approach basically splits the last partition interval into one
or more intervals. That is, the total number of partitions increases as time advances.

Dynamic splitting This approach is based on balancing the number of tuples kept at
each processor. Suppose that each processor should keep about the same number of
tuples. When the number of tuples in p,; exceeds this threshold, the last partition
interval [tn,;,now) is then split into two regions — {tn;,tny+1) and {tn, +1,n0w). The
latter interval is assigned to any processor, denoted as pn,41; a simple approach,
called “round-robin” [DeW90], is to choose processor p; where j equals np;+1 mod-
ulo n. Tuples which belong to the partition [tn,41,now) are moved from py, to
Prpi+1-

Static splitting This approach is based on static partition intervals. The idea is to
choose the partition intervals a priori such that the last partition boundary t,,
is large enough that no update time would exceed this value. As time evolves to
a certain point, we split the last interval [t,;,now) into one or more intervals —
[tngis tagi+1)s [bugitts bagi42)s << s [tng+is720w). These new intervals are then assigned
to some processors. This kind of static splitting has the drawback that tuples may
not be evenly distributed among processors, but re-organization (as in dynamic
splitting) seldom takes place, if it ever does.

Recall that the overhead of constructing state information of a relation at all partition
boundaries is:

Ov=0q(8pi—1)" T/ TR,

where o is the selectivity of the state predicate q, np; is the total number of partition
intervals, Ty, is the average tuple lifespan, and TRy, is the relation lifespan. The rate of
change of the overhead is given by:

dn.:
dov _ 'T—.TR.,-{%'- — (npi=1)-S70M
de — Ya’lls TR,

which remains constant if the numerator equals 0. That is,

37

d
TRy 38 _ (n,;—1) 4B = o

Note that the relation lifespan is continuously advancing and the rate of change of the
relation lifespan (i.e. 1%‘1‘) is 1. To obtain an intuitive interpretation, we let the current
relation lifespan be:

TR[, = (np-, - 1) . T1,

If we create a new partition boundary (i.e. %“f—‘) at a rate of 1/T), (i.e. the length of
partition interval is T},), the overhead (Ov) will remain the same. On the other hand,
the overhead increases if we create partition boundaries faster. Again, this is consistent
with our intuition that for shorter partition intervals, more qualified tuples may span
multiple partition intervals and therefore the overhead increases. As a rule of thumb,
the length of partition interval should be greater than the average tuple lifespan. Given
the average length of partition intervals (denoted as Tp.), the average number of tuples
in a partition interval is:

A To

Fixed # of partitions This approach is to dynamically re-adjust the partition function to
maintain a fixed number of partition intervals. The idea is to split the last partition
[tnpis70W) i0tO [tny tny+1) and [tn,+1,n0w), choose a particular processor p and relocate
its tuples to its neighbor(s), and the partition {tn, 41,now) is assigned to processor p.
We discuss two alternatives to relocate tuples:

2-processors Choose two processors, p; and piyy, whose partition intervals are (t3,ti41)
and [ti+1,ti+2) respectively, and move tuples that belong to the partition [t;,ti41)
from p; to piy1. Processor p; is responsible for the partition interval [ta,+1,n0w)
while pi4; is responsible for the merged partition [t;,ti42). Note that the number of
tuples in pj;; is Toughly twice as many as it was before the re-adjustment.

3-processors Choose processors p;, pi+1 and piy2 whose partition intervals are [tistie1),
[tis1,ti42) and [tiy2,tiss) respectively, and move half of the tuples of the partition
[ti41,tis3) to pi and the rest to piy2. That is, the partition intervals for p; and
DPi+2 are [ti,tw) and [tir,b;43) Tespectively, where t; is a time point between t;;, and
tiy2. Processor pi4; is responsible for the new partition (ti4+1,now). Note that the
numbers of tuples in p; and p;4; increase roughly by half.

There are several tradeoff factors. First, dynamic re-adjustment requires moving tuples be-
tween processors and therefore the frequency of re-adjustment and the associated overhead
should be kept minimal. For example, in the 2-processors scheme, re-adjustment probably
occurs less frequently as the fragment size doubles after the re-adjustment. Second, tuples
should be more evenly distributed after the re-adjustment. For example, the 3-processors
scheme may produce a more even distribution of tuples as the fragment is split into two halfs.

38

In spite of potentially expensive re-adjustment overhead, there are some advantages. Firstly,
the number of partition intervals is fixed. Consequently, less state information will have to
be constructed during the processing of complex temporal queries. Moreover, in the other
two schemes, the number of partition intervals becomes larger as time evolves, and eventu-
ally some kind of re-organization is needed to keep these partition intervals manageable (and
thus accessing the range-partition function is efficient) [DeW90]. The dynamic re-adjustment
scheme avoids this situation.

5.2 Storing State Information Statically

As opposed to dynamically constructing of state information, an alternative is to statically
store some state information. The approach is to pick a frequent query whose query qual-
ification is P, for a relation X 2, and use P, to create and store the state information at
each partition boundary. That is, the static state information of relation X at the partition
boundary t; contains *°:

{ z | £ € X A 2.TS<t; A t;<2.TE A Py(z) } if X is TS range-partitioned
{z]|z€XAzTS<tig1 A ti1<z.TE A P,(z) } if X is TE range-partitioned

Similarly, we create and statically store the state information of the relation Y using a predicate
P,. In order to process a user query Q = Op(X,Y) € TSJ;, we require that “P|x = P,” and
“P|, = P,” hold, where P|; and P}y are the state predicates derived from P. The implications
are required because the static state information has to contain all relevant tuples in order to
process Q by each processor independently.

Using the quantitative analysis that we presented earlier, the overhead of statically storing
state information of a relation X at every partition boundaries is:

0q - (npi — 1) - T/ TRy

where o, is the selectivity of the state predicate Py, ny; is the total number of partition
intervals, Ty, is the average tuple lifespan and TRy, is the lifespan of relation X.

In general, the more selective the state predicate is, the less space is required for storing
state information statically. On the other hand, the class of queries that can be processed

19 Equivalently we can pick a query that subsumes a set of frequent queries.
20 Note that if retroactive update is supported, it may be necessary to “refresh” the static state information

as the updated tuple may span different partition intervals.

39

in parallel without moving edditional data (i.e. constructing state information dynamically)
becomes smaller. Below, we will discuss some mechanisms in reducing the storage requirement
of state information and their tradeoffs.

Ratio of Partition Boundaries & State Information

The approach can be regarded as reducing the state information along the processor di-
mension. Specifically, only a subset of partition boundaries are selected for storing state
information statically. That is, only a subset of processors will store static state information.
For example, one can store state information at every other partition boundary. The tradeoffs
include that not necessarily all processors have to participate in processing some queries. For
example, suppose that relations are TS range-partitioned. Consider that a simple “as of”
query such as finding the data value of a time-varying attribute of an object as of a particular
time, e.g., & s=10 (X) as of t;. In general, at least processors from p; to p; would have to
participate in processing the query. With state information stored at every other partition
boundary, at most two processors (pj_1 and p;) are required to perform the search.

Suppose that we statically store state information at one out of g partition boundaries.
The overhead of storing state information statically in this approach is:

0q - (npi — 1) '_ﬁ;/(g - TRys)

Interestingly enough, one can view this approach from a different angle. In the original
scheme, each processor stores a relation fragment and some state information. In the above ap-
proach, a portion of the relation fragment is statically moved and stored at another processor.
From this point of view, the query processing workload is spread among the processors.

Partition Boundaries

Another alternative is to select partition boundaries such that fewer tuples span the bound-
aries. For example, one can choose a time point t’ as the partition boundary where there are
many new tuples inserted right after time t’. If we had chosen a time point after t', many
tuples (which span t') may have to be included as state information.

One can utilize this idea in a different approach. Consider two processors pj—; and p; which
store partitions [ti_1,t:;) and [t;, tiy1) respectively. Instead of storing qualified tuples that span
t, as state information at p;, we choose a time point t’ where t;_; <t'<t;, and store only qualified
tuples that span both t’ and t;. To process queries in parallel as before, processor p; has to
read the partition [ti-1,t;) from pi-, but only the portion (t',t;). Practically, processor pi-;
would have to move qualified tuples to p; that belong to the partition (t',t;) and span t;. In
other words, the tradeoff for this scheme is to efficiently access these tuples, e.g. by indexing.

40

Suppose that the average distance between t’ and t; is t for all partition boundaries t;, and
that the tuple lifespan is exponentially distributed with T), as the mean value. The overhead
of storing state information statically at all partition boundaries is:

Ply>t] -oq - (npi — 1) - Tis/ TRy,

where y is a random variable representing the tuple lifespan and P{y>t] is the probability
that a tuple would span both time points t~ and t. The probability P[y>t] equals:

t —
- t1=1-— el - T,
1 - Plocy<t] =1 foT.. e¥/Tu dy

] e-E/TT;

5.3 Late Updates

Although we assume that time points are monotonically increasing, update times are not
necessarily so ?!. This may lead to a potential problem if tuples are statically replicated as state
information. Consider the TS range-partitioning scheme and a current tuple r<s,v,t;,now>
stored at processor p;. The issue is: since the TE timestamp of tuple r can be set to any time
point between {t;+1,now), should tuple r be statically replicated in all processors from p3 to
Pn,; 10 their state information?

There are several ways to tackle this problem. The simpliest solution is to assume that we
are dealing with transaction times, i.e., the update times are also monotonically increasing.
Ensuring the monotonicity can be readily achieved using a system clock.

Another straightforward solution is this. The tuple r is statically replicated in all other
processors as state information. When the TE value of tuple r is updated to a specific value
(say at t;), the duplicates at processors whose partition boundary is greater than t; are removed
from the state information while the duplicates at processors whose partition boundary is
smaller than or equal to t; will be updated accordingly. This approach is optimistic in the
sense that if most updates occur at a time greater than the last partition boundary (tn), not
many duplicates will be removed. If we assume that “now” is the largest current time point,
“now” would be greater than the latest partition boundary t,,; and thus no duplicate will be
removed.

21 Interesting enough, the Time Index proposed in [Elm90] did not address this issue. It appears that the
authors implicitly assumed that update times are monotonically increasing.

41

An alternative is that all current tuples (i.e. TE value is now) are not replicated; only
history tuples (i.e. TE value is not now) are replicated as state information. In the next
section, we further discuss this alternative, keeping in mind that current tuples are more
frequently accessed via surrogate or attribute values instead of the timestamps.

5.4 Current Tuples and History Tuples

In the previous sections, we focused on processing of complex temporal pattern queries and
snapshot queries. Although one should not ignore these queries, the most frequently accessed
tuples may be predominantly the current tuples especially in conventional business-oriented
types of applications. This type of access pattern may appear often for several reasons. First,
many users may be interested in only current tuples and might view the temporal database as.
if it were a “static” current database. Second, updating the value of a time-varying attribute
will modify the current tuple by setting its TE value (“now”) to a specific time point. Thus,
accessing current tuples occurs more frequently. One of the characteristics of the access pattern
in business-oriented applications is that current tuples are often accessed via a given surrogate
(or key) value or a time-varying attribute value, e.g., accessing department records by name or
department number. This suggests that a different fragmentation strategy for current tuples
(instead of range-partitioning on timestamps) may provide more efficient accesses.

Hybrid Fragmentation Scheme

To support efficient access to current tuples based on non-time attributes and to facilitate
temporal query processing at the same time, we propose the following hybrid scheme:

e Current tuples are distributed among the processors using any fragmentation method.
For the sake of explanation, we use hashing in our discussion.

o History tuples are range-partitioned on a timestamp attribute (TS or TE) as proposed
before.

That is, we partition temporal relations into two logical disjoint fragments: “current” and
“history” fragments. The idea of this hybrid scheme is rather simple: as the temporal data-
base is being updated, history tuples are “migrated” to a particular processor based on their
timestamp values.

It should be emphasized that the two logical fragments (current and history fragments) can
be stored in different file structures, aithough we might want to treat them as a single logical
entity for discussion purposes. Such separation enables us to access the current fragment more

42

efficiently. For example, one can create an index on the current fragment as in conventional
databases. Moreover, one can also avoid storing the special markers “now” in current tuples
as they are really redundant in the current fragment. Nonetheless, for a temporal relation R
that is TS range-partitioned, processor p; logically keeps tuples specified as:

Ri={r|reRA((rTE=now Ah(r) =i)V .
(r.TE # now A 1.TS between [t,ti+1)) }

where h(r) is a hash function to be applied on attribute(s) of R such as the surrogate.

Note that since temporal relations are logically partitioned into current and history frag-
ments, the “append-only” update model that we presented at the beginning of this paper has
to be slightly adjusted to incorporate the fact that updating a current tuple will generally
migrate the corresponding history tuple between processors.

State Information & Temporal Query Processing

The parallel processing strategies that we presented earlier basically remains unchanged in
the hybrid scheme. The state information is dynamically constructed using both current and
history fragments. Since the current fragment is neither TS nor TE range-partitioned, the
current tuples are re-distributed differently; the state information at the partition boundary
t; contains the following current tuples:

{z]|2z€XAt;<z.TE A z.TSStjy1 A Po(a) }

As in the case of TS or TE range-partitioning schemes, history tuples are also replicated as
state information accordingly. After the replication phase, each processor can individually
work its local history fragments and the state information.

For state information to be stored statically, we adopt a somewhat different strategy in that
only qualified history tuples (i.e. no current tuples) are replicated and stored. For example,
for the relation R that is TS range-partitioned, processor p; statically keeps tuples specified
as:

Ri={rir€RA((r.TE=now Ah{r) =i)V
(r.TE # now A ({ r.TS between [t tit1)) V
(r.TS<t A t<r.TE A Pi(r)))) }

where P; is the predicate for constructing the static state information.

43

A point to note regarding the asymmetry properties that we discussed earlier. Recall
that one can avoid constructing the state information of a relation Ry if Ry is TS (and TE
respectively) range-partitioned and Ry has the asymmetry property with respect to the TS
(and TE respectively) timestamp. For the hybrid fragmentation scheme, these conditions
do not hold because the current fragment is no longer partitioned based on the TS or TE
timestamp. However, if only the history fragment is involved in the user query, one can
still eliminate the construction phase of an operand that has the asymmetry property. The
condition in which only history fragment of a relation Ry is involved is given by:

P = Rx.TE#now

where P is the user query qualification. If we assume that now is the largest current time
point, the above condition is equivalent to “P = Ry.TE<now”.

5.5 —1NF temporal relations

There are several common ways to model temporal data. The data model that we presented
earlier uses a pair of timestamps to represent the tuple lifespan and thus can be regarded as
tuple-versioning [Ahn86] or first temporal normal form (1TNF) [Seg88]. Another approach is
attribute versioning [Ahn86], including the so-called nested or non-first normal form (-1NF)
temporal data models [Gad88, Tan89). In the attribute versioning approach, a temporal
relation may have more than one time-varying attribute; each attribute value is tagged with
a pair of timestamps representing its lifespan. Consider a relation with three time-varying
attributes A, B and C:

R(S, A,TSA,TE4, B,TSg,TEg, C,TS¢,TEc)

Typically, a tuple has a surrogate value and several timestamped data values for each attribute.
For this reason, the tuple is in ~1NF. For example, Figure 15 shows the attribute values of a
tuple (s) over time. The corresponding ~1NF tuple is shown in Figure 16 and its normalized
version is shown in Figure 17. For —1NF relations, the database update model remains
essentially unchanged — the difference is that the “append-only” policy is applied on the
attribute level and thus no additional ~INF tuple is inserted when an attribute value is
updated. In other words, the size of a =1NF tuple grows as more history attribute values
are appended to it. It should be noted that a temporal relation in -1NF (e.g. Figure 16}
is conceptually equivalent to a materialized join on surrogate value using the correspoudiug
normalized relations (e.g. Figure 17), although a different file structure may be used for
storing —1NF tuples.

44

attributes

} : .
R Ea— -
. ba! : . by
g a1 . E . C2 . :Cs: . Cq
" .
i . —_— .
£ t2 E t3 ty ts te tr g
198

Figure 15: A temporal tuple (s;) with multiple time-varying attributes

[S [A [T54,TEx) | B [15s,TEs)|C [TSc, TEc) |

sy | a1 [t1,ts)
az [t33t5)
aj [ts,now)

by [t1,t2)
by [t2,t4)
b3 [t4!t7)
by [t7,now)

¢ [t1,t3)
¢z [ta,te)
c3 [te,ts)
cq [ts,now)

Figure 16: A —1NF tuple for s,

time

S |A|TSs | TEs S |B |TSs | TEs S [C|TSc | TEc
Sy | a1 t1 t3 51 bl t1 tg 81 1 C1 t1 t3
51 | a2 t3 t5 S bz t2 t4 S$1 | €2 t3 te
Sy ¢ a3 t5 now St b3 t4 tr 81 | C3 te tg
s; | by t t7 now S1 | Cq | ts now

Figure 17: Normalization of tuple s

45

Range-partitioning —~1NF relations on timestamp attribute is rather straightforward as
before. Let us consider the hybrid scheme on TS range-partitioning:

e The current fragment of s; is represented by the following tuple, and is stored at a
processor determined by a fragmentation method such as hashing:

[s1 | as [ts,now) [b4 [t7,now) Lc4 [ts,now) |

Note that the start times of current attribute values are different.

e The history fragment is range-partitioned based on the TS timestamp. To explain the
idea, we consider a partition boundary tp as shown in Figure 15. History attribute values
which start prior to tp, are stored at one processor, say p, while those after t, are stored
at another processor, say p,. For tuple s;, processor p; stores the following portion:

51 | a1 [ta,ta) | by [tast2) | €1 [ta,ts)
b2 [t2:t4)
while po stores:
s1 | ag [ta,ts) | b [ta,t7) | c2 [ta,ts)
c3 [te,ts)

Note that history attribute value may not have started during the partition interval.

e State information can be constructed and stored statically. Consider the most general
case in which the state predicate to construct the static state information is “true”. The
portion of tuple s; stored in processor p; becomes:

81 | a1 [t1,ta) | ba fta,te) | €1 [t1,ta)
az [ts,ts) | by [ta,t?) | ca [taste)
c3 [te,ts)

¢ Updating an attribute value will also migrate the history attribute value. For example,
suppose the attribute A of tuple s; is updated to a4 at time to which is later than ts.
The history value as is moved to processor p; which would then store (without state
information):

81

ag [ta,ts)
a3 [ts,te)

b3 [ta,t7)

Cz [t61t8)
c3 [te,ts)

46

5.6 Temporal Aggregate Functions

The notion of state information is not limited to qualified tuples that span partition bound-
aries, and can be further generalized in the context of stream processing. Recall that the state
information of a stream processor at a particular time t’ represents a summary of the history
of a computation on the portion of data streams that have been read before t’. Generally
speaking, it may be very difficult to characterize the state information (and therefore its stor-
age requirement) for an arbitrary computation. However, the notion of state information can
be easily defined for aggregate functions.

Suppose that we ask an aggregate query: find the weekly sales volume on the daily sales
records 22, We further suppose that the data is range-partitioned on a yearly basis among
processors, e.g. processors pj—; and p; store the partitions for the years of t;_; and t; respec-
tively. The state information at processor p; can be defined as tuples that started during the
last week of the year of t;_;. To process the aggregate query in parallel, each processor p; has
to send (at most) tuples in the last week of its local fragment to its “successor” processor. For
example, p; send some tuples of its local fragment (i.e. year of t;) to p;41 as state information.
Note that the number of tuples in the state information for this aggregate query is bounded
— at most one week of daily sales records. Also note that the temporal data is not necessarily
time-interval tuples.

6 Other Parallel Temporal Join Strategies

The strategies that we presented earlier may not be applicable in some situations, e.g. TSJ;
queries. In this section, we discuss several alternative parallel strategies that may be suitable
for temporal joins.

6.1 TSJ; Queries

In the previous sections, we discussed the parallel processing strategies that are suitable for
only TSJ; queries. Here we explain why these strategies cannot be utilized for a more generally
class of join queries — TSJ;, and suggest some alternatives in processing these queries. Recall
that TSJ, are join queries whose join conditions do not require all participating tuples to

22 Several temporal aggregation operators have been proposed and defined in [Sno86, Seg87]. An example
taken from [Seg87] is: “Get a series of 7-day moving averages of book sales.”

47

XYZ

X Y Z
O- o Xy
intersect(X,Y) intersect(Y, Z)
X Y Z
(a) | (b)

Figure 18: Join graph for query in Example 11

share a common time point (but the participating tuples must overlap).

Example 11: Given temporal relations X, Y and Z. The following query belongs to TSJ; (but
not TSJ;):

g intersect —join(X,Y)} A intersect—join(Y,2Z) (anaZ)

and its join graph is shown in Figure 18(a). o

Consider Example 11. As in the case for TSJ,, we assume relations are homogeneous
range-partitioned on timestamp attributes. Given a tuple triplet <x,y,z> that satisfies the
join condition, the tuples x and z may not overlap with each other and may actually reside
on different processors. In other words, even if sufficient state information for all operand
relations have been constructed, the query may not be processed in parallel without moving
additional data. The essential difference here is that the state information of temporary tables
may have to be constructed dynamically during the join sequence while it is not required for
TSJ; queries.

Processing TSJ; queries can be somewhat more complicated than TSJ; queries in general.
For example, we can first construct a join sequence for pairwise join execution using the join
graph built from the join query qualification. In Example 11, it is “X-Y-Z”. Suppose the
join sequence is to join relations X and Y first, and then join the result with relation Z, as
illustrated in Figure 18(b) **:

23 Obviously, there is a tradeoff in choosing which join to be processed first. For example, joining Y and

48

Replication Phase I Construct the state information for relations X, Y and Z, denoted as
st (X), s, (Y) and s, (Z) respectively, at every partition boundary t;, as described before.

X-Y Join Execute the join between X and Y in parallel, the result being a temporary table
(denoted as XY) which is also fragmented among processors. The fragment of XY stored
at p; is:

XYi = Opey(Xissu(Y)) U Trxy(Yis (X)) U Tery (X3,Y3)

where X; (and Y; respectively) is a relation fragment of X (and Y respectively) stored
at processor p;, and Pxy is “intersect-join(X,Y)”.

Replication Phase II Construct the state information for relation XY at every partition
boundary. That is, A tuple pair <x,y> in XY is copied to processor p; as state infor-
mation, denoted as s, (XY), if its y component spans t;.

XY-Z Join The final query response becomes joining the Z fragment with XY fragment and
s, (XY). That is,

Q = U151~_:n { UPyz (XY;,Sti(Z)) U JPyz (Zi‘sti(XY))) O-Pyz(XYhZi) }

where Z; is a relation fragment of Z stored at processor p;, and Pyz is “intersect-
join(Y,Z)”.

6.2 Sequential/Pipelining

This strategy assumes that relations are homogeneously TS range-partitioned. In conven-
tional databases, “pipelining” often refers to the paradigm in which data “flow” through
relational operators such as join and select without being stored in temporary files. The
sequential /pipelining strategy here refers to the dataflow among processors and to the fact
that state information is sent from one processor to another sequentially. The approach stems
from the observation that the processor py, which stores tuples in the first partition [t1,t2),
can immediately proceed to execute the join since we assume that the state information at
t; (equal to 0) is empty. While the local join in processor py proceeds, qualified tuples that
span the next partition boundary t; are copied to processor p;. Processor p; can start its
execution at any time but it can not finish the execution until it has received all the necessary
state information from p,. This execution mechanism continues for p; until pa,; which stores
the last partition [ta,,now)-

This sequential/pipelining scheme can significantly reduce the interconnection network
traffic congestion due to the simultaneous tuple shuffling among all processors. The initial

Z may produce a smaller temporary relation than joining X and Y, and therefore the overall cost may be
cheaper if we join Y and Z first.

49

query response is faster as the first processor can start the execution without delay. However,
processing the query takes longer as it has to go through from a processor to another, and the
total query response time may be too long that pipelining becomes unacceptable especially
when operand relations are range-partitioned into many fragments.

6.3 Semijoin & Join

This method can handle both homogeneous as well as heterogeneous range-partitioning. The
semijoin is actually a pre-processing mechanism that can also reduce the number of tuples
moved between processors.

Recall that in an earlier section, we discussed alternatives in reducing the amount of state
information using four statistics: the maximum and minimum of the TS and TE timestamp
values of a relation fragment X;. The idea is that instead of keeping these four statistics,
each processor p; scans the operand fragment X; and determine its ezact fragment lifespan
which is obtained by “concatenating” the lifespans of overlapping tuples in X;. Note that the
fragment lifespan may consist of more than one interval . Using the fragment lifespan of
X, in processor p;, each processor can determine which Y tuples should be moved to p; for
executing the join, for example, sending Y tuples which overlap with the fragment lifespan of
X;. Readers may note that only relation X is required to be range-partitioned on a timestamp
attribute; other fragmentation strategies (such as hashing) can be used on relation Y.

One can compare this approach with the alternative that uses the four statistics discussed
earlier. The above approach has to pay the overhead in determining fragment lifespans (e.g.
scanning fragments once). However, fewer tuples may be sent between processors especially
when the fragment lifespans are consisted of several intervals. That is, there are “gaps” in the
fragment lifespan that can be used to avoid sending redundant tuples as state information.

7 Previous Work

The parallel processing schemes that we present in this paper is a substantial extension of the
work on generalized data stream indexing [Leu92] — the notion of checkpointing the execution
state of a query appears in both [Leu92] and this paper. In [Leu92], we proposed an indexing
technique based on periodically checkpointing on data streams which are sorted on the TS

24 [f the query qualification has a comparison predicate on relation X (e.g. “X.V=v"} and an index on that
particular attribute exists, one can use the index to retrieve qualifying tuples and determine the “fragment
lifespan”.

50

timestamp. Checkpoints are statically stored and can be indexed on checkpoint times. The
major extensions of the work [Leu92] include the following. In this paper, the state predicates
are derived from a user query qualification via constraint propagation algorithm and thus the
state predicates are more “restrictive”. Temporal relations can be range-partitioned based on
the TS or TE timestamp; in [Leu92|, data streams are temporal relations sorted on the TS
timestamp. The class of join query is more expressive in the sense that we can handle equality
temporal join predicates (e.g. X.TE=Y.TS) easily. The proof of Theorem 2 can be used to
show the data stream indexing scheme in [Leu92] is sound.

[Kar90] is apparently the first publication that appears to support temporal features in
multiprocessor database machines. The discussion, however, is quite superficial. First, a
number of standard temporal operators such as “when”, “at” and “during” are proposed
although these operators have been introduced in other literature. More importantly, the
paper emphasizes only on translating user queries (with temporal operators) into conventional®
relational queries, and there is no discussion on query processing and optimization as well as
fragmentation strategies. In short, the paper only proposed a front-end syntactic translator
for a relational database system regardless whether or not the database system is residing on
a multiprocessor database machine.

A partitioned storage for temporal databases was proposed in [Ahn88]. The idea is to split
the storage structure into the history store and the current store, and is similar to the hybrid
range-partitioning scheme proposed in this paper. The current store contains curreat versions
and perhaps some history versions of temporal records while the history store contains only
history versions. The major issues involved are 1) mapping temporal queries into queries on
two storage structures, and 2) update procedures. Their emphasis was on select queries and
equi-joins. The idea of archiving a portion of history tuples into optical disks also appears in
[Sto87, Kol90].

In [DeW91] a “partitioned band” join algorithm was proposed to evaluate the so-called
“band join” which is defined as 25:

A “band join” between relations R and S on attributes R.A and S.B is a join
in which the join condition is “R.A—¢; < S.B < R.A+c;", where ¢, and c; are
non-negative constants.

The proposed partitioned band join algorithm is to split up relations R and S into partitions
R; and S;, and compute the band join by joining R; and §; for each i. For every tuple r in
R;, it is required that all tuples of S that join with r appear in the partition S;. With the

25 One can think of this type of join as “fuzzy” equi-join. The sort-merge band join (modified sort-merge
join) that is proposed in [DeW91] to process “band joins™ is essentially a specific instance of stream processing
algorithms that we presented in [Leu90].

5] !

assumption that the width of a “band” (i.e. c¢;+c;) is small such that the number of tuples
that fit in the band will fit in the main memory, the major concern of the join algorithm is to
choose the partition sizes (without sorting the relation) such that each of the R; fits entirely
into the buffer pool.

Our proposed parallel join strategies can also be used to process this type of band joins —
if the relation R is “converted” into an interval relation using the constants ¢, and cz. There
are a number of differences between [DeW91| and this paper. In this paper, we address a
larger class of temporal join queries and snapshot queries. Recall that a complex temporal
join may involve several time-interval relations. Moreover, we address the optimization issues
related to both TS and TE range-partitioning schemes, as well as query optimization issues.
In addition, we do not assume any relationship between the size of buffer pool and relation
(or fragment) size as the authors in [DeW91] assume for their band join algorithm.

8 Conclusions & Future Work

In this paper, we discuss parallel query processing strategies for complex temporal join queries
and snapshot queries. We show that the strategies are sound for TSJ, queries. A number of
optimization alternatives have been addressed. We have also discussed several data fragmen-
tation strategies for temporal data.

There are many future research directions. The most challenging ones include the parallel
query processing strategies for TSJ; queries whose operand relations that are heterogeneously
range-partitioned, and for TSJ; queries. '

References

[Ahn86) I. Ahn. Towards an Implementation of Database Management Systems with
Temporal Support. In Proc. of the IEEE Int. Conf. on Data Engineering, pages
374-381, February 1986.

[Ahn38| . Ahn and R. Snodgrass. Partitioned Storage for Temporal Databases. Infor-
mation Systems, 13(4):369-391, 1988.

[All83] J. Allen. Maintaining Knowledge about Temporal Intervals. Communications of
the ACM, 26(11):832-843, November 1983.

[Chak84] U.S. Chakravarthy, D.H. Fishman, and J. Minker. Semantic Query Optimization
in Expert System and Database Systems. In Ezpert Database Systems, pages
326-341, 1984.

52

[Clis5)

[Cli87)

[DeW90]

[DeWO1]

Elm90]

[Gad88]

[Gun91]

[Jar84]

[Kar90]

[Kol90] -

[Leu90]

[Leu92]

J. Clifford and A. Tansel. On an Algebra for Historical Relational Databases:
Two Views. In Proc. of the ACM SIGMOD Int. Conf. on Management of Data,
pages 247-265, May 1985. .

J. Clifford and A. Croker. The Historical Relational Data Model (HRDM) and
Algebra Based on Lifespans. In Proc. of the IEEE Int. Conf. on Date Engineer-
ing, pages 528-537, February 1987.

D. DeWitt, S. Ghandeharizadeh, D. Schneider, A. Bricker, H.I. Hsiao, and
R. Rasmussen. The Gamma database machine project. IEEE Trans. on Knowl-
edge and Data Engineering, March 1990.

D. DeWitt, J. Naughton, and D. Schneider. An Evaluation of Non-Equijoin
Algorithms. In Proc. of the Int. Conf. on Very Large Data Bases, pages 443452,
1991.

R. Elmasri, G. Wuu, and Y. Kim. The Time Index: An Access Structure for
Temporal Data. In Proc. of the Int. Conf. on Very Large Data Bases, pages 1-12,
1990.

 S. Gadia and C. Yeung. A Generalized Model for a Relational Temporal Data-

base. In Proc. of the ACM SIGMOD Int. Conf. on Management of Data, pages
390-397, June 1988,

H. Gunadhi and A. Segev. Query Processing Algorithms for Temporal Intersec-
tion Joins. In Proc. of the IEEE Int. Conf. on Data Engineering, pages 336-344,
1991.

M. Jarke. External Semantic Query Simplification: A Graph-theoretic Approach
and its Implementation in Prolog. In Ezpert Detabase Systems, pages 467-482,
1984,

S. Karimi, M. Bassiouni, and A. Orooji. Supporting Temporal Capabilities in
a Multi-computer Database System. In Proc. of the Int. Conf. on Databases,
Parallel Architectures, and their Applications, pages 20-26, March 1990.

C. Kolovson. Indezing Techniques for Multi-Dimensional Spatial Data and His-
torical Data in Database Management Systems. PhD thesis, University of Cali-
fornia at Berkeley, November 1990. Memorandum No. UCB/ERL M$0/105.

T.Y. Leung and R.R. Muntz. Query Processing for Temporal Databases. In
Proc. of the IEEE Int. Conf. on Data Engineering, pages 200-207, 1990.

T.Y. Leung and R.R. Muntz. Generalized Data Stream Indexing and Temporal
Query Processing. In 2nd Int. Workshop on Research Issues on Data Engineering

53

[Lit61]

[Nie84]

[Ros80]

[Seg87]

[Seg88]

[Shes9]

[Sno86|

[Sno87]

[Sta88]

[Sto86]

[Sto87]

[Sun89]

[Tan89]

— Transaction and Query Processing (RIDE-TQP), February 1992. Forthcom-

ing.

J. Little. A Proof of the Queueing Formula L = AW. Operational Research, 9,
1961.

J. Nievergelt, H. Hinterberger, and Sevcik. The Grid File: An Adaptable, Sym-
metric Multikey File Structure. ACM Trans. on Database Systems, 9(1):38-71,
March 1984.

D. Rosenkrantz and H. Hunt. Processing Conjunctive Predicates and Queries.
In Proc. of the Int. Conf. on Very Large Data Bases, pages 64-72, 1980.

A. Segev and A. Shoshani. Logical Modeling of Temporal Data. In Proc. of the
ACM SIGMOD Int. Conf. on Management of Data, pages 454-466, May 1987.

A. Segev and A. Shoshani. The Representation of a Temporal Data Model in
the Relational Environment. In Proc. of the Conf. on Statistical and Scientific
Database Management, pages 39-61, June 1988.

S.T. Shenoy and Z.M. Ozsoyoglu. Design and Implementation of a Semaatic
Query Optimizer. IEEE Trans. on Knowledge and Data Engineering, 1(3):344-
361, September 1989,

R. Snodgrass and S. Gomez. Aggregates in the Temporal Query Language TQuel.
Technical Report 86-009, University of North Carolina, Chapel Hill, Dept. of
Computer Science, March 1986.

R. Snodgrass. The Temporal Query Language TQuel. ACM Trgns. on Database
Systems, 12(2):247-298, June 1987.

R. Stam and R. Snodgrass. A Bibliography on Temporal databases. Database
Engineering, 7(4):231-239, December 1988.

M. Stonebraker. The case for shared nothing. Database Engineering, 9(1), 1986.

M. Stonebraker and L. Rowe. The POSTGRES Papers. Technical Report
UCB/ERL M86/85, University of California at Berkeley, Electronic Research
Laboratory, June 1987.

X. Sun, N. Kamel, and L. Ni. Solving Implication Problems in Database Ap-
plications. In Proc. of the ACM SIGMOD Int. Conf. on Management of Data.
pages 185-192, June 1989.

A.U. Tansel and L. Garnett. Nested Historical Relations. In Proc. of the ACM
SIGMOD Int. Conf. on Management of Data, pages 284-294, June 1989,

o4

[Ter85] Teradata Corporation. DBC/1012 Database Computer System Manual Release
2.0, November 1985. Document No. C10-0001-02.

[U1182] J.D. Ullman. Principles of Database Systems. Computer Science Press, Rockville,
MD, second edition, 1982.

23

