Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

TREE DECOMPOSITION WITH APPLICATIONS TO

CONSTRAINT PROCESSING
Itay Meiri July 1991
Rina Dechter CSD-910037

Judea Pearl

E/L&Cff.z{vv;ﬁa} AAaT-90, PP 107k,

Tree Decomposition with Applications to Constraint Processing

| Itay Meiri

Cognitive Systems Laboratory
Computer Science Department
University of California
Los Angeles, CA 90024

Rina Dechter
Computer Science Department
Technion - Israel Institute of Technology
Haifa 32000, Israel.
Judea Pearl
Cognitive Systems Laboratory
Computer Science Department
University of California
Los Angeles, CA 90024
Abstract

This paper concerns the task of removing redundant information from a
knowledge base, and restructuring it in the form of a tree, so as to admit efficien

Technical Report
R~146
() February 1990

given
t prob-

lem solving routines. We offer a novel approach which guarantees the removal of all
redundancies that hide a tree structure. We develop a polynomial time algorithm that,
given an arbitrary constraint network, generates a precise tree representation whenever
such a tree can be exwracted from the input network; otherwise, the fact that no tree
representation exists is acknowledged, and the tree generated may serve as a good ap-

proximation to the original network.

Topic: Automated Reasoning
Subtopic: Constraint-based systems
Keywords: Constraint networks, relational databases, maximum spanning tree

* This work was supported in part by the National Science Foundation Grant # IRI 8815522 and an Air Force Grant

AFOSR 880177

1. Introduction

This paper concerns the problem of finding computationally attractive structures for representing
constraint-based knowledge.

It has long been recognized that sparse constraint networks, especially those that form
.trees, are extremely efficient both in storage space and in query processing. A densely-specified
network may hide such a desirable structure, and the challenge is to identify and remove redun-
dant links until the natural structure underlying the knowledge base is recovered. The general is-
sue of removing redundancies has been investigated in the literature of relational databases
[Maier 1983, Dechter 1987], as well as in the context of constraint networks [Dechter and
Dechter 1987]. This paper offers a novel approach which guarantees the removal of all redun-
dancies that hide a tree structure.

Formally, the problem addressed is as follows. Given a constraint network, find whether
it can be transformed into a tree-structured network without loss of information; if the answer is
positive find such a tree, if the answer is negative, acknowledge failure.

This paper develops a polynomial time algorithm that, given an arbitrary network, gen-
erates a tree representation having the following characteristics:

1. The tree represents the network exactly whenever such a tree can be extracted from the
input network, and

2. If no tree representation exists, the fact is acknowledged, and the tree generated may
serve as a good approximation to the original network.

The algorithm works as follows. We examine all triplets of variables, identify the redun-
dancies that exist in each triplet, and assign weights to the edges in accordance with the redun-
dancies discovered. The algorithm returns a maximum-spanning-tree relative to these weights.

An added feature of the algorithm is that when the tree generated is recognized as an ap-
proximaton, it can be further tightened by adding edges until a precise representation obtains.
This technique may be regarded as an alternative redundancy-removal scheme to the one pro-
posed in [Dechter and Dechter 1987], accompanied with polynomial complexity and perfor-
mance guarantees.

2. Preliminaries and nomenclature

We first review the basic concepts of constraint satisfaction [Montanari 1974, Mackworth 1977 ,
Dechter and Pearl 1987).

A network of binary constraints consists of a set of variables (X 1:-+.,X,) and a set
of binary constraints on the variables. The domain of variable X i» denoted by D;, defines the set
of values X; may assume. A binary constraint, R, on variables X; and X, is a subset of the
Cartesian product of their domains (i.e., R; ; € D; x D;); it specifies the permitted pairs of values

1

for X; and X;.

A binary constraint R is tighter than R’ (or conversely R’ is more relaxed than R), denot-
ed by R C R’, if every pair of values allowed by R is also allowed by R’. The most relaxed con-
straint is the universal constraint which allows all pairs of the Cartesian product.

A tuple that satisfies all the constraints is called a solution. The set of all solutions to
network R constitutes a relation, denoted by rel(R), whose attributes are the variables names.
Two networks with the same variable set are equivalent if they represent the same relation.

A binary CSP is associated with a constraint graph, where node i represents variable X,
and an edge between nodes { and j represents a direct constraint, Rj;, between them, which is
not the universal constraint. Other constraints are induced by paths connecting { and j. The con-
straint induced on i and j by a path of length m through nodes ig =i, iy,...,in = j, denoted by
Riii ..., i,» TEPresents the composition of the constraints along the path. A pair of values xe D;,
and yeD; is allowed by the path constraint, if there exists a sequence of values
vieD;,...,vy_1€D;_ such that Ripiy(xv1), Ri i,(vi,va), ..., and R inOVm-1,Y).

A network whose direct constraints are tighter than any of its induced path constraints is
called path consistent. Formally, a path P of length m through nodes ig, iy,...,i, is con-
sistent, if and only if Rii, SRy,i.. Similarly, arc (i,j) is consistent if for any value
xeD;, there exists a value ye D; such that Rij(x,y). A network is arc and path consistent if all its
arcs and paths are consistent. Any network can be converted into an equivalent arc and path con-
sistent form in time O(n3)(1) [Mackworth and Freuder 1985]. In this paper we assume all net-
works are arc and path consistent.

Not every relation can be represented by a binary constraint network. The best network
that approximates a given relation is called the minimal network; its constraints are the projec-
tions of the relation on all pairs of variables, namely, each pair of values allowed by the minimal
network participates in at least one solution. Thus, the minimal network displays the tightest
constraints between every pair of variables. Being a projection of the solution set, the minimal
network is always arc and path consistent.

3. Problem statement

We now define the tree decomposability problem. First, we introduce the notion of tree
decomposition.

Definition. A network R is tree decomposable if there exists a tree-structured network T , on the
same set of variables, such that R and T are equivalent (i.c., represent the same relation). T is
said to be a tree decomposition of R, and the relation p represented by R is said to be tree

(1) Actually, the complexity is O (n3k3), where X is the domain size; however, for simplicity, we assume the
domain size is constant.

decomposable (by T). R is tree reducible if there exists a tree T such that R is decomposable by
T, and for all (i,/)eT, Tij = R;;, namely the constraints in T are taken unaltered from R.

The tree decomposability problem for networks is defined as follows. Given a network
R, decide if R is tree decomposable. If the answer is positive find a tree decomposition of R, else,
acknowledge failure. The tree reducibility problem is defined in a similar way. A related prob-
lem of decomposing a relation was treated in [Dechter 1987], and will be discussed in Section 6.

Example 1. Consider a relation p; shown in Figure 1. The minimal network is given by
MA.B =MA.C =M3_c = {00, 11}, and MA,D = Mg_D =MC.D = {00, 10, 11} , where constraints
are encoded as lists of permitted pairs. Any tree containing two edges from {AB, AC, BC) is a
tree decomposition of M; for example, T, = (48, AC, AD} and T, = (AB, BC, BD}. M is also
tree reducible, since the link constraints in these trees are identical to the corresponding con-
straints in M.

=1
-1 -]
~ = ol
- ool

Figure 1. p; — a tree-decomposable relation.

Example 2. Consider a relation p, shown in Figure 2. T = (AB, AC, AD, AE} is the only tree
decomposition of p;.

—_—— - 0o o
e e - O S|
= et o= D~ @D

D e O e e e e [(Y

n—-ch-—-l—-l—-i—‘a

Figure 2. p; — a tree-decomposable relation.

The rest of the paper is organized as follows. Sections 4 and 5 describe the tree decom-
position scheme, while Section 6 presents extensions and ramifications of this scheme. Proofs of
theorems can be found in [Meiri, Dechter and Pearl 1990].

4. Tree decomposition schemes

Tree decomposition comprises two subtasks: searching for a skeletal spanning tree, and deter-
mining the link constraints on that tree. If the input network is minimal, the second subtask is
superfluous because, clearly, the link constraints must be taken unaltered from the corresponding
links in the input network, namely, decomposability coincides with reducibility. We shall, there-
fore, first focus attention on minimal networks, and postpone the treatment of general networks
to Section 6. Our problem can now be viewed as searching for a tree skeleton through the space
of spanning trees. Since there are n"™? spanning trees on n vertices (Cayley’s Theorem (Even
1979]), a method more effective than exhaustive enumeration is required.

The notion of redundancy plays a central role in our decomposition schemes. Consider a
consistent path P =g, iy, ...,i,. Recall that the direct constraint R;,.i. is tighter than the path
constraint R; ; ;. If the two constraints are identical we say that edge (i,/) is redundant
with respect to path P; it is also said to be redundant in the cycle C consisting of nodes
{i0,i1,...,im). If the direct constraint is strictly tighter than the path constraint, we say that
(4,7) is nonredundant with respect to P (or nonredundant in C). Another interpretation of redun-
dancy is that any instantiation of the variables {i0,i1,...,in} which satisfies the constraints
along P is allowed by the direct constraint Ry,.i,. Conversely, nonredundancy implies that there
exists at least one instantiation which violates R i -
Definition. Let T be a tree, and lete = (i,j) & T. The unique path in T connecting / and j, denot-
ed by Pr(e), is called the supporting path of e (relative to 7). The cycle Cr(e) = Pr(e) U {e} is
called the supporting cycle of ¢ (relative to T).

Theorem 1. Let G = (V,E) be a minimal network. G is decomposable by a tree T if and only if
every edge in E - T is redundant in its supporting cycle.

Theorem 1 gives a method of testing whether a network G is decomposable by a given
tree T. The test takes O (1) time, as there are O (n?) edgesin £ - T, and each redundancy test is
O (n).

Dlustration. Consider Example 1. Tree T, = {AB, AC, AD } is a tree decomposition, since edges
BC, BD and CD are redundant in triangles {A, B, C}, (A, B, D} and (A, C, D}, respectively.
On the other hdnd, T, = {AD, BD, CD) is not a tree decomposition since edge AB is nonredun-
dant in triangle {A, B, D} (indeed, the tuple (A =1, B =0, C =0, D =0) is a solution of T5, but
is not part of p;).

An important observation about redundant edges is that they can be deleted from the net-
work without affecting the set of solutions; the constraint specified by a redundant edge is al-
ready induced by other paths in the network. This leads to the following decomposition scheme.
Repeatedly select an edge redundant in some cycle C, delete it from the network, and continue
until there are no cycles in the network. This algorithm, called TD-1, is depicted in Figure 3.

'Algorithm TD-1

l.N « E;

2. while there are redundant edges in N do

3. select an edge e which is redundant in some cycle C, and
4. Ne&N-({e)

5.if N forms a tree then G is decomposable by N

6. else G is not tree decomposable;

Figure 3. TD-1 - A tree decomposition algorithm.

Theorem 2. Let G be a minimal network. Algorithm TD-1 produces a wee T if and only if G is
decomposable by T.

To prove Theorem 2, we must show that if the network is tree decomposable, any se-
quence of edge removals will generate a tree. A phenomenon which might prevent the algo-
rithm from reaching a tree structure is that of a stiff cycle, i.e., one in which every edge is non-
redundant (e.g. cycle {B, D, C, E} in Example 2). It can be shown, however, that one of the
edges in such a cycle must be redundant in another cycle.

The proof of Theorem 2 rests on the following three lemmas, which also form the
theoretical basis to Section 5.

Lemma 1. Let G be a path consistent network and let e = (i0.im) be an edge redundant in cycle
C={io, i1y sim). EC = {ig, i1,..., 0k lk+ts - ..+ im) is an interior cycle created by chord
(g, ip), then e is redundant in C’.

Lemma 2. Let G be 2 minimal network decomposable by a tree T, and let ee T be a tree edge
redundant in some cycle C. Then, there exists an edge e’ C, e’ T, such that e is redundant in
the supporting cycle of e’.

Lemma 3. Let G be a minimal network decomposable by a tree T. If there exist eeT and e’e T
such that e is redundant in the supporting cycle of e’, then G is decomposable by
T'=T-{e}uw{e}.

Algorithm TD-1, though conceptually simple, is highly inefficient. The main drawback is
that in Step 3 we might need to check redundancy against an exponential number of cycles. In
the next section we show a polynomial algorithm which overcomes this difficuity.

5. Tree, triangle and redundancy labelings

In this section we present a new tree decomposition scheme, which can be regarded as an
efficient version of TD-1, whereby the criterion for removing an edge is essentially precomput-
ed. To guide TD-1 in selecting redundant edges, we first impose an ordering on the edges, in
such a way that nonredundant edges will always attain higher ranking than redundant ones.
“Given such ordering, we do not remove edges of low ranking, but apply the dual method instead,
and construct a tree containing the preferred edges by finding a maximum weight spanning tree
(MWST) relative to the given ordering. This idea is embodied in the following scheme.

Definition Let G = (V,E) be a minimal network. A labeling w of G is an assignment of weights
to the edges, where the weight of edge e< £ is denoted by w(e). wis said to be a tree labeling if
it satisfies the following condition. If G is tree decomposable, then G is decomposable by tee T
if and only if T is a MWST of G with respect to w.

Finding a tree labeling essentially solves the tree decomposability problem, simply fol-
lowing the steps of algorithm TD-2 shown in Figure 4. TD-2 stands for a family of algorithms,
each driven by a different labeling. Steps 2-4 can be implemented in O (n3): Step 2 can use any
MWST algorithm, such as the one by Prim, which is O (n?) (see [Even 1979]); Steps 3-4, decid-
ing whether G is decomposable by T, are O (n?) as explained in Section 4.

Algorithm TD-2

l. w & tree labeling of G;

2. T «MWSTof G w.rt. w;

3. test whether G is decomposable by T;

4. if the test fails G is not tree decomposable;

Figure 4. TD-2 - A polynomial tree decomposition algorithm.

We now turn our attention to Step 1, namely computing a tree labeling. This will be
done in two steps. We first introduce a necessary and sufficient condition for a labeling to quali-
fy as a tree labeling, and then synthesize an O (n°) algorithm that returns a labeling satisfying
this condition. As a result, the total running time of TD-2 is bounded by O (n3).

Definition. Let G = (V,E) be a minimal network. A labeling w of G is called a redundancy la-
beling, if it satisfies the following condition. For any tree T and any two edges, ¢’ € E - T and
e€T, such that e is on the supporting cycle Cr(e’) of ', if G is decomposable by T then

(Hwie) swie). (D

(ii) e is redundant in Cr(e”) whenever w (e”) = w(e). (2)

Theorem 3. Let w be any labeling of a minimal network G. w is a tree labeling if and only if w is
a redundancy labeling.

The merit of Theorem 3 is that it is often easier to test for redundancy labeling than for
the ultimate objective of tree labeling. Having established this equivalence, the next step is to
construct a labeling that satisfies conditions (1) and (2).

Definition. A labeling w of network G is a triangle labeling, if for any triangle r={e,e;,e5}
the following conditions are satisfied.

(i) If e, is redundant in ¢ then
w(ei)Swies), wie;) Swies). 3
(i) If e, is redundant in 7 and €3 is nonredundant in ¢ then
wiey) < w(ey). (4)
Conditions (3) and (4) will be called triangle constraints.

Dlustration. Consider the minimal network of Example 2. Analyzing redundancies relative to all
triangles leads to the triangle constraints depicted in Figure 5. Each node in the figure represents
an edge of the minimal network, and an arc e; — €y represents the triangle constraint
w{e1) < w(ey) (for clarity, all arcs from bottom layer to top layer were omitted). It so happens
that only strict inequalities were imposed in this example. A triangle labeling w can be easily
constructed by assigning the following weights: w(AB)=w(AC) = w(AD) = w(AE) =3,
w(BD)=w(BE)=w(CD)=w(CE)=2 and w(BC)= w(DE)=1. Note that the tree
T ={AB, AC, AD, AE), which decomposes the network, is a MWST relative to these weights, a
property that we will show to hold in general.

Figure 5. Triangle constraints for Example 2.

Clearly, conditions (3) and (4) are easier to verify as they involve only test on triangles.
In Theorem 5 we will indeed show that they are sufficient to constitute a redundancy labeling,
hence a tree labeling. Moreover, a labeling satisfying (3) and (4) is easy to create primarily be-
cause, by Theorem 4, such a labeling is guaranteed to exist for any path consistent (hence
minimal) network. Note that this is by no means obvious, because there might be two sets of ri-

angles imposing two conflicting constraints on a pair (a,b) of edges; one requiring w(a) < w (b),
and the other w(a) > w(b).

Theorem 4. Any path consistent network admits a triangle labeling.

The idea behind triangle labelings is that all redundancy information necessary for tree
decomposition can be extracted from individual triangles rather than cycles. By Lemma 1, if an
edge is redundant in a cycle, it must be redundant in some triangle. Contrapositively, if an edge
is nonredundant in all triangles, it cannot be redundant in any cycle, and thus must be included in
any tree decomposition. To construct a tree decomposition, we must therefore include all those
necessary edges (note that they attain the highest ranking) and then, proceed by preferring edges
which are nonredundant relative to others. The correctness of the next theorem rests on these
considerations.

Theorem 5. Let G be a minimal network, and let w be a labeling of G. If w is a triangle labeling
then it is also a redundancy labeling.

By Theorems 3 and 5, if the network is minimal any triangle labeling is also a tree label-
ing. What remains to be shown is that, given any minimal network G = (V,E), a triangle labeling
can be formed in O (n3) time. Algorithm TLA, shown in Figure 6, accomplishes this task.

Algorithm TLA

1. create an empty directed graph G, = (V,E,) with Vi=E,

2. for each triangle r = {e;, €;, ¢} inG do

3. if edge e; is redundant in 7 then add arcs ei—ejande; - e toGy;
4. G, =(V,,E;) ¢ superstructure of G ;

5. compute a topological ordering w for V5;

6.fori:=1t0 i1V;| do

7. foreachedgeeinC; do

8. wie) « w(C));

Figure 6. TLA - an algorithm for constructing a triangle labeling.

Let us consider the TLA algorithm in detail. First, it constructs a graph, G, that
displays the triangle constraints. Each node in G, represents an edge of G, and arc ¥ — v stands
for a triangle constraint w () < w(v) or w(4) < w(v). The construction of G (Steps 1-3) takes
O (n3) time, since there are O (n3d) triangles in G, and the time spent for each triangle is constant.

Consider a pair of nodes, u and v, in G 1. It can be verified that if they belong to the same
strongly-connected component (i.e., they lie on a common directed cycle), their weights must
satisfy w(u) =w(v). If they belong to two distinct components, but there exists a directed path
from u to v, their weights must satisfy w(u) < w(v). These relationships can be effectively en-
coded in the superstructure of G, [Even 1979]. Informally, the superstructure is formed by col-
lapsing all nodes of the same strongly-connected component into one node, while keeping only
arcs that go across components. Formally, let G, = (V3,E ;) be the superstructure of 1. Node
Cie G, represents a strongly-connected component, and a directed arc C; — C; implies that
there exists an edge u — v in G, where ue C: and ve C;. Identifying the strongly connected
components, and consequently constructing the superstructure (Step 4), takes O (n”) (a time pro-
portional to the number of edges in G| [Even 1979]).

It is well-known that the superstructure forms a DAG (directed acyclic graph), moreover,
the nodes of the DAG can be topologically ordered, namely they can be given distinct weights w,
such that if there exists an arc i — j then w (i) < w(j). This can be accomplished (Step 5) in
time proportional to the number of edges, namely O (n?). Finally, recall that each node in G,
stands for a strongly-connected component, C;, in G 1» which in tumn represents a set of edges in
G. If we assign weight w(C;) to these edges (Steps 6-8), w will comply with the triangle con-
straints, and thus will constitute a triangle labeling. Since all steps are O (n3), the entire algo-
rithm is O (n?).

Ilustration. Consider Example 1. There are two strongly-connected components in G:
C1=(AD, BD,CD)} and C, = {AB, AC, BC). There are edges going only from C; to C,.
Thus, assigning weight 1 to all edges in C, and weight 2 to all edges in C, constitutes a triangle
labeling. Consider Example 2, for which G is shown in Figure 5. Note that G, =G, that is,
cvery strongly-connected component consists of a single node. Assigning weights in the ranges
1-2, 3-6 and 7-10 to the bottom, middle and top layers, respectively, constitutes a triangle label-

ing.

6. Extensions and Ramifications
6.1. Decomposing a relation

Given a relation p, we wish to determine whether p is tree decomposable. We first describe how
TD-2 can be employed to solve this problem, and then compare it with the solution presented in
[Dechter 1987].

We start by generating the minimal network M from p. We then apply TD-2 to solve the
decomposability problem for M. If M is not tree decomposable, p cannot be tree decomposable:
because otherwise, there would be a tree T satisfying p = rel (T) < rel (M), violating the
minimality of M [Montanari 1974]. If M is decomposable by the generated tree T, we still need
to test whether re/(T) = p (note that M may not represent p precisely). This can be done by com-
paring the sizes of the two relations; p is decomposable by T if and only if Ipl = lrel(T)I.
Generating M takes O (n?1 p!) operations, while 17| can be computed in O (n) time [Dechter

and Pearl 1987]; thus, the total time of this method is O (n2 Ip),

An alternative solution to the problem was presented in [Dechter 1987]. It computes for
each edges a numerical measure, w, based on the frequency that each pair of values appears in
the relation. First, the following parameters are computed:

n(X; = x;) = number of tuples in p in which variable X; attains value X;.
n(X; = x;,X; =x;) = number of tuples in p in which both X; =x; and Xj =X;.
Then, each edge e = (i,) is assigned the weight

n (xi!xj)

RGNty ©)

w(e)= > n (x;,xj)log
X, X; € X,'.Xj
It has been shown that this labeling, w, is indeed a tree labeling, also requiring O (n? Ipl) com-
putational steps.

Comparing the two schemes, our method has three advantages. First, it does not need the
precision required by the log function. Second, it offers a somewhat more effective solution in
cases where p is not available in advance but is observed incrementally through a stream of ran-
domly arriving tuples. Finally, it is conceptually more appealing, since the removal of each edge
is meaningfully justified in terms of being redundant.

6.2. Decomposing a non-minimal network

Given an arbitrary network R (not necessarily minimal), we wish to determine whether R is tree
decomposable. Although we do not have a tractable solution for the general case, our method
does facilitate such a solution when the domain sizes are bounded. The reason is that when the
domain size is bounded by & and the network is tree decomposable, a polynomial time algorithm
exists (employing k +1-consistency) for finding the minimal network [Dechter 1989].

6.3. Reducing a network

Given an arc and path consistent network R, we wish to determine whether R is tree reducible.
This problem admits TD-2 directly, since it can be shown that any path consistent network is
tree reducible only when it is minimal. Thus, if TD-2 returns failure, we are assured that R is not
tree reducible (thoughit could still be tree decomposable).

6.4. Removing redundancies from a network

Given a network R (not necessarily tree decomposable), we wish to to remove as many redun-
dant edges as possible from the network. Qur scheme provides an effective heuristics, alternative
to that of [Dechter and Dechter 1987]. We first apply the TD-2 algorithm and, in case the tree
generated does not represent the network precisely, we add nonredundant edges until a precise
representation obtains.

10

6.5. Approximating a Network

Given a network R, find a tree network which constitutes a good approximation of R. The tree T
generated by TD-2 provides an upper bound of R, as it enforces only a subset of the constraints.
The quality of this approximation should therefore be evaluated in terms of the tightness, or
specificity, of T.

Conjecture: The tree T generated by TD-2 is most specific in the following sense: no other tree
T’, extracted form the network, satisfies re/ (T") < rel(T).

Although we could find no proof yet, the conjecture has managed to endure all atternpts to con-
struct a counterexample.

7. Conclusions

We have addressed the problem of decomposing a constraint network into a tree. We have
developed a tractable decomposition scheme which requires O (n?) time, and solves the problem
for minimal networks. The technique maintains its soundness when applied to an arbitrary net-
work, and is guaranteed to find a tree decomposition if it can be extracted from the input network
without altering the link constraints. The main application of our scheme lies in preprocessing
knowledge bases and transforming them into a very effective format for query processing. Other
applications are in guiding backtrack search by tree relaxation of subproblems. Finally, we envi-
sion this technique to be useful in inductive learning; especially, for learning and generalizing
concepts where instances are observed sequentially. The tree generated by TD-2 provides one of
the simplest descriptions consistent with the observed data, and at the same time it is amenable
to answer queries of subsumption and extension.

L

10.

11.

References

Dechter A. and Dechter R., Removing Redundancies in Constraint Networks, Proc. of
AAAI-87, Seattle, WA.

Dechter R., Decomposing a Relation into a Tree of Binary Relations, In Proceedings, 6th
Conf. on Princ. of Database Systems, San Diego, CA, 185-189, March 1987. To appear
in Journal of Computer and System Science, Special Issue on the Theory of Relational
Databases.

Dechter R., From Local to Global Consistency, Technical Report, Technion, Haifa, Isra-
el, 1989,

Dechter R. and Pearl J., Network-Based Heuristics for Constraint Satisfaction Problems,
Artificial Intelligence 34(1), 1-38, 1987.

Even §., Graph Algorithms, Computer Science Press, Rockville, Md, 1979.

Freuder E.C., A Sufficient Condition of Backtrack-Free Search, JACM 29(1), 24-32,
1982.

Mackworth A K.. Consistency in Networks of Relations, Artificial Intelligence 8(1), 99-
118, 1977.

Mackworth A.K. and Freuder E.C., The Complexity of Some Polynomial Network Con-
sistency Algorithms for Constraint Satisfaction Problems, Artificial Intelligence 25(1),
65-74, 1985.

Maier D., The Theory of Relational Databases, Computer Science Press, Rockville, Md,
1983.

Meiri L, Dechter R. and Pearl J., Tree Decompositions with Applications to Constraint
Processing, Technical Report R-146, Cognitive Systems Lab., University of California,
Los Angeles, February 1990.

Montanari U., Networks of Constraints: Fundamental Properties and Applications to Pic-
ture Processing, Information Sciences 7, 95-132, 1974,

12

Appendix: Proofs of Theorems

Theorem 1. Let G = (V,E) be a minimal network. G is decomposable by a tree T if and only if
every edge in £ — T is redundant in its supporting cycle.

Proof. Assume G is decomposable by T. Suppose there is an edge (i,j)e £ — T which is non-
redundant relative to its supporting path Py;. Thus, there exists an instantiation of the variables
on P; which satisfies the constraints along P;, but the pair of values (x,y), assigned to variables
i and J, is disallowed by R;;. Since the network is arc consistent, this instantiation can be extend-
ed to a complete solution of T. However, since the pair (xr,y) is disallowed by R;, T is not
equivalent to G, and thus cannot be a tree decomposition; contradiction.

The other direction is rather obvious. If any edge in E - T is redundant in its supporting
cycle, it can be deleted from the network without affecting the set of solutions. Thus, T is
equivalent to G, and it is a tree decomposition. [J

Lemma 1. Let G be a path consistent network and let e = (i 0:im) be an edge redundant in cycle
C=ligsit, . sim). B C'={ig, iy, .., ik, igaps... »im} is an interior cycle created by chord
(i, ip), then e is redundant in C’.

Proof. From path consistency we have

Ripip SR i (A-1)
Composition of constraints preserves tightness, thus
Rio . ivivan o ooim S Rig v o vibae i (A-2)
Since (ig,i,) is redundant in C, we have
Rig, viviras o viven e vin S Rigi - (A-3)
From (A-2) and (A-3) we obtain
Rig,.. vivisa- . in SR (A-4)
From path consistency, R; ;< Ri, .. . iis....i,»and thus (ig,iy,) is redundant in C°. O

Lemma 2. Let G be a minimal network decomposable by a tree T, and let ee T be a tree edge
redundant in some cycle C. Then, there exists an edge e’e C such that e is redundant in the sup-
porting cycle of e”.

Proof. Assume that the vertices along C are vy,...,v,, where ¢ =(v{,v,). Without loss of
generality, we may assume that v, is not a leaf in T (otherwise, reverse the order of the vertices
along C). Let & be the highest index such that there exists a path Py ; in T from v, to v; not pass-
ing through v,,. Note that £ > 1 since v, is not a leaf.

13

Consider the path P = P, , U (e} which is entirely contained in T. There exists a path in
T connecting vertex v, to a unique vertex, v, on P. Clearly v = v,,; otherwise, there would be a
path in T from v, to vg,; not passing through v,,, violating the assumption that v, is the highest
such vertex. Therefore, there exists a pathin T from vg,; to v,,. Let P, m denote this path.

Let e’ = (¢, ¢41). The supporting cycle of e’ is
Cre) =P e U (v Vis1)} U Piyrm U fe).

To complete the proof we now show that e is redundant in Cr(e"). From Lemma 1, since ¢ is
redundant in C, it is also redundant in the quadrangle {v,vg, Ve,V). However, (v{,v) and
(Vi+1,Vm) are redundant with respect to their supporting paths, Py and P, ,, respectively.
Thus, e is redundant in Cr(e’). O

Lemma 3, Let G = (V,E) be 2 minimal network decomposable by a tree T. If there exist ec T
and e’eT such that ¢ is redundant in the supporting cycle of e’, then G is decomposable by
T'=T-{e) U {e’).

Proof. By Theorem 1, we need to show that every edge is redundant with respect to its support-
ing path relative to 7”. Let (i,/) be any edge in E ~ 7", and let P be its supporting path in T’
Consider an instantiation of the variables on P which satisfies the constraints along P. Let x and
¥ be the values assigned to i and j, respectively, by this instantiation. We will show that they are
also allowed by the direct constraint R; ;.

Since the network is arc consistent, we can extend this partial instantiation to include the
rest of the variables, in accordance with the constraints of T”. Since e is redundant in its support-
ing cycle in T (it is redundant in Cr(e”) = Cr-(e)), the instantiation satisfies the direct constraint
represented by e. Thus, since T < T’ U (e}, the instantiation satisfies all the constraints of 7.
Since T is a tree decomposition, the pair (x,y) is allowed by R; ;-4

Theorem 2. Let G = (V,E) be a minimal network, Algorithm TD-1 produces a tree T if and
only if G is decomposable by T.

Proof. Clearly, if TD-1 produces a tree, it constitutes a tree decomposition. Conversely, we will
show that if the network is tree decomposable, TD-1 produces a tree decomposition.

We claim that during the execution of TD-1 the following invariant is maintained: there
exists a tree decomposition T such that T < M.

Inidally the invariant holds since the network is decomposable by some tree T C E = N.
Now assume that the invariant holds before edge e is deleted from M. e is deleted since it is
redundant in some cycle C. If ee T, then the invariant trivially holds after the deletion of e. If
€€T then, according to Lemma 2, there exists an edge e’e T such that e is redundant in its sup-
porting cycle. Then, from Lemma 3, T'=T - {e} U (€'} is a wee decomposition of G, and
T’ < N. Hence, the invariant holds after e is deleted.

14

To complete the proof we need to show that upon termination N constitutes a tree. Sup-
pose N contains a cycle C. Since N always contains a tree decomposition 7, there is an edge eeC
which is redundant in its supporting cycle, and thus can be deleted. Thus, when TD-1 terminates
N forms a tree. [J

Theorem 3. Let w be a labeling of a minimal network G = (V,E). w is a tree labeling if and only
if w is a redundancy labeling.

Proof. If G is not tree decomposable, the theorem trivially holds. Now assume G is tree decom-
posable. We use a well-known fact from graph theory, called the MWST property, which says
that a tree T is a MWST if and only if every nontree edge is an edge of minimum weight in its
supporting cycle.

if part: Let w be a redundancy labeling of G. We shall show that w is also a tree labeling; name-
ly,foranytree T C E, G is decomposable by T if and only if T is a MWST with Tespect to w.

LetT < E be a tree decomposition of G. From condition (1) and the MWST property, we
conclude that T is a MWST with respect to w.

Conversely, let T be a MWST with respect to w. We show that if G is decomposable by a
tree T, then it is also decomposable by T. The proof is by inductionon k = |T* =T, namely the
number of edges contained in 7’ but not in T.

Clearly, for k =0, G is decomposable by T = T’. Now assume that if G is decomposable
by T’, such that 17" - T! =k, then it is also decomposable by T. We have to show that if G is
decomposable by tree T, such that IT’ — T = k+1, then it is also decomposable by T.

Let T’ be a tree decomposition, where |7’ = T| = k+1. Let e be an edgein T - T’. Clear-
ly, in Cr-(e), its supporting cycle relative to T”, there are edges of T —T; let E” denote this set of
edges. We first show that there exists an edge e’e £ such that w (e”) < w(e).

Consider T — {e). Deleting e from T divides T into two subtrees Ty and T 5. At least one
of the edges in E’ connects a vertex in T with a vertex in Ty; let ¢’ denote such an edge. We
observe that e is in the supporting cycle of e relative to 7. Then, by applying the MWST proper-
tytoT, w(e’) Sw(e).

Consider again Cr-(e). From condition (1) w(e) Swie’), hence w(e) = w{e”). From con-
dition (2} we conclude that e’ is redundant in Cr(e). By Lemma 3, T”"=T' - {e’} U [e) is a
tree decomposition of G. Furthermore, |T” ~T| = k. Thus, by the induction hypothesis G is
decomposable by T.

15

only if part: Let w be a tree labeling of G. We shall show that w is a redundancy labeling.

Suppose w is not a redundancy labeling. Then, there exists a tree decomposition of G,
T ¢ E, and a nontree edge e’, having supporting cycle Cr(e"), for which either condition (1) or
condition (2) is violated. There are two cases depending on which condition is violated.

Case 1: If condition (1) is violated then there exists a tree edge eeCr(e”), such that
w(e) < w(e). By the MWST property, T is not a MWST relative to w. However, G is decom-
posable by T, and hence, w is not a tree labeling; contradiction.

Case 2: If condition (2) is violated then there exists a tree edge ee Cr{e”, such that
w(e) = w(e”’), but e is nonredundant in Cr(e’). Clearly, T"=T - (e} U {e’) is a MWST relative
to w. However, T’ is not a tree decomposition, since e is nonredundant in Cr(e)=Cr(e", its
supporting cycle in T’. Thus, w is not a tree labeling; contradiction. C]

Theorem 4, Any path consistent network admits a triangle labeling.

Proof. Suppose not. Therefore, there are two conflicting constraints, namely, there is a pair of
edges e’,e”e E, for which one set of triangle constraints requires w(e”) > w(e”), whereas anoth-
er set of triangle constraints requires w(e’) < w(e”). Together, there exists a sequence of edges
er=¢e',ey,...,eg=€",... e, =¢’ for which the triangle constraints require

wie)s - Swig)s - Swie)< wie)Swien) s - Swiep).
Without loss of generality we can rename the edges, and the constraints may be written as
wie) s Swiem-1) Swilem) < wlemyy),
where e,,, = €, and the strict inequality is last. Lets,,...,8,, tney be the corresponding se-
quence of wriangles, namely, #; contains edges ¢;_; and ¢; for i =2, . .. ym+l.

We now show by induction that for all i, 2 < ¢ < m, there exists a cycle C; containing ¢,
and e;, in which e is redundant.

For i=2, triangle r; contains e; and e;, and imposes the constraint w(e) S w(e,).
Hence, e, is redundant in C, =1¢,.

Now assume that there exists a cycle C; containing e, and ¢;, in which e, is redundant.
Consider triangle #,,. It contains both ¢; and ei+1, and from the triangle constraint, ¢; is redun-
dant in t;,1. Let v, v, and v3 be the vertices of %i+1, where ¢; = (vy,v,). Clearly, vertices v,
and v, lie on C;. There are two cases depending on the location of v,

Case 1: v3 is not in C;. Let the third edge of 1, (besides ¢; and ¢;,;) be ¢;,, and let
Civ1 =Ci— (&} U (€41, Civ1)- Clearly, e, is redundant in C;,;.

Case 2: v3 is in C;. Therefore, ¢;., is a chord of C;, and it divides C; into two interior cycles, or3

16

that contains e; and e;,,;, and Ci,. By Lemma 1, since ¢, is redundant in C;, it is also redundant
in Ciyq = Ci,.

We have now proved that there exists a cycle containing e, and e,, in which e is redun-
dant. However, e and e,, are adjacent (they are both contained in triangle ¢,,.1). Therefore,
from Lemma 1, e; is redundant in ¢,,,,. On the other hand, triangle ¢,,,, imposes the constraint
w(en) < w(ey), implying that e; is nonredundant in ¢, ., thus contradiction. [J

Theorem §. Let G = (V,E) be a minimal network, and let w be a labeling of G. If w is a triangle
labeling then it is also a redundancy labeling.

Proof. If G is not tree decomposable, the theorem trivially holds. Now assume G is decompos-
able by tree T. Let e’e T and e< T be edges such that e is on Cy(e”), the supporting cycle of e’.
We need to show:

(i) wie) <w(e).
(ii) If w(e”) = w(e) then e is redundant in Cr(e").

Assume the vertices of Cr(e”) are vy, ...,v,, where ¢’ =(v,v;) and e = (VmsVm+1). To
simplify notation, we may assume without loss of generality € # (v,_;,v,) (otherwise, we may
reverse the order of the vertices along Cr(e”)).

(1) We first show that w(e”) Sw(e). Lete; (i = 1,...,m+1) denote edge (v;,v,), and let C; be its
supporting cycle. Let #; be the unique triangle containing edges ¢; and ¢;,,. By Lemma 1, ¢; is
redundant in ¢, for i=1,...,m. Consider the sequence of tiangles f),...,4,. In ¢,
1 <i<m-1, we have w(e;) Sw(e;y), and in triangle 1,, we have w(e,,) S w(e). Together we
have:

wE)=wle)Swie)s -+ Swie,) Swie). (A-3)
(if) Now assume w (e”) = w (e). We can replace the inequalities in Eq. (A-5) by equalities:

we)=wle)=wley)= - =wley,) =wle). (A-6)
From Eq. (A-6) we conclude that edge e;,; is redundant in triangle t;, fori =1, ...,m-1; other-

wise, we would have w (¢;,1) > w(e;), violating the equality. Similarly, e is redundant in 1,,,.

Finally, to show that e is redundant in Cr(e’) = C,, we prove by induction on jthat e is
redundant in C,,_;, for j =0,...,m-1.

For j =0 we have to show that e is redundant in C,,. e is redundant in tm, and €, is
redundant in its supporting cycle C,, 1, thus e is redundant in C,,. Now assume that e is redun-
dantin Cp,_;. Since e,,_; is redundant in ¢,, -j-1, € 1s also redundant in C,,_;_;, which completes
the induction., OO

17

