Computer Science Department Technical Report
University of California

Los Angeles, CA 90024-1596

ALGORITHMS FOR CONSISTENCY IN OPTIMISTICALLY

REPLICATED FILE SYSTEMS

Richard G. Guy March 1991
Gerald G. Popek CSD-910006

Algorithms for Consistency in
Optimistically Replicated File Systems*

Richard G. Guy
Gerald J. Popek!

Department of Computer Science
University of California Los Angeles

Abstract

Management of related, replicated objects is often
fundamental to the design of reliable distributed
systems. We are concerned both with the objects
themselves: propagation of updates and reclama-
tion of storage; as well as management of the possi-
bly replicated directories used to keep track of and
find the objects.

This paper presents a family of algorithms for use
in managing replicated objects and the accompany-
ing graph structured directory systems. Members
of this family are presented in order of increasing
power and flexibility, followed by discussion of their
correctness. The use of the algorithms in a repli-
cated file system context is outlined throughout the
presentation.

1 Introduction

Desires to improve availability and performance of
information serves to motivate replicating informa-
tion at locations “closer” to the data’s intended
use. A continuing difficulty in the operation of rep-
licated information storage services, however, is un-
satisfactory support for consistent update, Conven-
tional methods achieve mutual consistency of data

*This work was sponsored by DARPA under contract
number F29601-87-C-0072.

TThis author is also affiliated with Locus Computing
Corporation.

and the directories which refer to them by restrict-
ing availability for update. In the face of communi-
cations limitations, methods such as primary site,
majority voting, quorum consensus, and the like re-
duce the performance and availability for update as
the number of copies of an object or directory ref-
erences is increased. This pattern is the reverse of
what is desired.

There are numerous environments for which rep-
licated storage is quite valuable. In some of these,
rapid communication among sites is not suitable
or even possible. Interesting examples include con-
ventional high availability systems using redundant
hardware, significant numbers of workstation users
collectively engaged in a large software develop-
ment project, an office workgroup composed of sev-
eral widely geographically separated workgroups,
large numbers of laptops operating while discon-
nected, and military systems subject to communi-
cations silence. These examples share several com-
mon characteristics:

¢ low latency communications on demand can-
not be guaranteed, either due to failures or
policy decisions (such as not keeping a line in
operation during high tariff periods);

¢ updates to data and meta-data (directories)
are important to allow and occur from sites
whose identity could not be specified in ad-
vance;

+ concurrent updates of a given data item or di-
rectory entry are quite unlikely, and in those
rare cases where a conflict does occur, subse-

quent reconciliation is feasible. Strict transac-
tion semantics are not required.

We argue elsewhere that these conditions charac-
terize a very large set of important environments,
including much of today’s use of distributed file sys-
tems [8, 5].

Our approach to providing replicated storage in
these environments is called optimistic replication.
Optimistic replication uses a one-copy availability
concurrency control policy for both read and up-
date: if any copy is physically accessible, read and
update are permitted. Optimistic replication fur-
ther guarantees no fost updates semantics, so it is
incumbent upon the system to detect conflicting
updates and manage the mutual inconsistency un-
til it 1s repaired.

Conventional replica management schemes im-
plicitly or explicitly always have the property that
a set of up-to-date “authority” replicas exists. No
such authority is present in optimistic replication,
short of a consensus reached by all replicas—a con-
sensus not easily obtained when a complete com-
munications graph between all replicas is unattain-
able.

For example, consider the problem of creating
and deleting objects under optimistic replication.
Object creation can be effected by causing a sin-
gle replica to exist at one node; another node may
then notice that an object exists for which it lacks
a replica, and it will proceed to establish one of its
own. But how is an object deleted? Simply delet-
ing a replica will not do, since that is indistinguish-
able from object creation: one node has a replica,
another does not, so which is it to be? Does the
replica represent a newly created object, or does
the “missing” replica represent a recently deleted
object?

Attempting to determine whether an object is
newly created or recently deleted is futile in the ab-
sence of additional information. This creafe/delete
ambiguity (first noted by Fischer and Michael in
(3]) is resolved in conventional replication schemes
by appealing to an authority; in optimistic replica-
tion, some other means must be used. In this paper,

we provide solutions for this and other problems
typically encountered in optimistic replication.

1.1 File systems

The algorithms presented in this paper are designed
to provide for management and garbage collection
of distributed, selectively replicated graph struc-
tures with associated resources. In practice, they
have been extensively applied to the support of an
optimistically replicated hierarchical filing system
and accompanying name service for UNIX[5].

Consider the primary components of a typical
Unix file system. Files are hierarchically orga-
nized, with designated files (directories) contain-
ing the structural details (pathname components)
which indicate a file’s place in the hierarchy. The
hierarchy is usually a restricted form of a directed
acyclic graph.

Two types of “objects” are present, files and file
names. For replication management purposes, each
object can be treated independently, including in-
dependent consideration of a file and its names. In
the algorithm model below, a UNIX file corresponds
to a multiply-named logical object, while the file’s
names are constdered to be singly-named objects in
their own right.

Although we have applied these algorithms in the
context of a standard UNIx file system, they can
readily be used in other applications. For exam-
ple, a distributed name service such as the DARPA
Internet Domain Name System could directly use
these algorithms to manage its databases.

1.2 OQutline

The next section specifies the problem to be solved
in more formal terms and presents a family of al-
gorithms to address it. We then comment further
on their utility, consider other related research, and
conclude. The appendix provides correctness argu-
ments which aid understanding of the algorithms.

2 Algorithms

The task of a management algorithm is to support
the propagation of changes to names and objects,
and to identify and recover all resources support-
ing the existence of a logical object. This section
presents a simple model of object and names, fol-
lowed by several reclamation algorithms which ad-
dress various combinations of object properties.

2.1 Model

Our model provides clients with a persistent storage
service for a collection of entities called objects, A
logical object is represented by a finite set of physical
object replicas. Each object has a replication factor
which defines the intended quantity and placement
of replicas.! Clients access an object via a logical
name, which is represented by a finite set of physical
name replicas. Each name has a replication factor
separate from the object it names and from other
names for the object.

The system creates a new logical object by estab-
lishing a single physical object replica and a single
physical name replica. Additional physical name
and object replicas for this object are established
asynchronously as indicated by the relevant repli-
cation factor. The first physical name replica to
be established for a logical name is tagged with a
unique value that distinguishes this particular us-
age of the name from all others; all physical name
replicas for this logical name carry this same tag.

An object is initially created with one (logical)
name. Some objects may be restricted to only
the original name; other objects allow names to
be added or removed at will. Each object replica
maintains a reference count indicating the number
of (local) name replicas which refer to it.2 Name

!In this paper, we use the term replica to include all of
the resources at a node which are devoted to the (logical)
object. Typically, this includes a copy of the object’s “client
data,” as well as any replication or other bookkeeping meta-
data associated with the object. Resources consumed by
meta-cdata must be reclaimed as well as resources used by
client data.

2 A name replica is reflected in the reference count of ex-

removal will leave an object inaccessible when no
physical name replicas for the object exist. New
names can only be added to an accessible object,
so an inaccessible object is permanently inaccessi-
ble. Resources held by an inaccessible object are
subject to reclamation.

Name removal is effected by marking a name rep-
lica ‘deleted’, which prevents its use in accessing
an object. This indelible mark eventually propa-
gates to other name replicas, but until then, the
object may be accessible via unmarked name repli-
cas. An object replica’s reference count is decre-
mented atomically with marking a name replica.

An additional name for an object may be estab-
lished provided that the physical object replica ref-
erenced by the to-be-established initial name rep-
lica currently has a non-zero reference count.

The difficulty of replica management is deter-
mined (in part) by several issues:

¢ static versus dynamic naming
¢ object mutability

¢ equivalence of name and object replication fac-
tors

¢ static versus dynamic replication factor

The algorithms presented in the next several sub-
sections vary in their ability to handle these is-
sues, ranging from the simplest combination (fixed
name, immutable object with equivalent static rep-
lication factors for both name and object) to the
most difficult (dynamically named mutable object
with non-equivalent dynamic name and object rep-
lication factors).

To aid clarity of discussion, we assume that no
more than one replica is stored by any given node.
The algorithms generalize directly to multiple repli-
cas per node.

We make minimum assumptions about the avail-
able communications environment to assure suc-
cessful operation of the algorithms in practice. All

actly one replica.

we require is that information be able to flow from
any node to any other in the network over time if
relayed through intervening nodes. More formally:

nodes N, and N, are time flow con-
nected if there is a finite sequence of nodes
Ny, Ng,... . Npsuchthatfor1 <i < m, a
message can successfully be sent from N;
to N,‘+1 at time t,', and ti < t.‘+1.

We require that every pair of nodes is time fow
connected starting at any time.

This property does not require, for example, that
any pair of nodes be operational simultaneously,
but it does mean that no relevant node can be down
indefinitely.

We also assume that nodes are truthful: Byzan-
tine behavior does not occur. Finally, history only
moves forward: a node must never “roll back” from
a reported state, so stable storage of any reported
state must precede that report.

2.2 Basic two-phase algorithm

The basic two-phase algorithm is appropriate for
the simplest kind of replicated object: static sin-
gle name, immutable object, and equivalent fixed
name and object replication factors. The task at
hand is basically to garbage collect. Subsequent
more difficult types of management tasks adapt this
algorithm to accomplish their goals.

The basic reclamation algorithm proceeds in two
phases at each node. The first phase begins execut-
ing at a node when the node learns the object is to
be reclaimed, that is, when its (single) name replica
is marked ‘deleted.” This mark is then also placed
on the object replica. Actual physical reclamation
of the object replica (and name replica) will not oc-
cur until after the node completes its second phase
of the algorithm. Figure 1 lists the basic two-phase
algorithm in pseudo-code,

Each node concurrently executes the algorithm,
and shares its progress with other nodes. Shar-

ing improves the algorithm’s efficiency, but more
importantly, it enables the algorithm to cope with
pathological communications failures.

2.2.1 Phase one

The first phase proceeds by composing a list of
nodes that have their object replica marked deleted.
In effect, each node is engaged in the same activity:
collecting information about the deletion status of
each object replica. A node completes its first phase
when every replica is listed as marked deleted.

When two nodes cannot directly communicate,
information propagates by way of intermediate
nodes. Indirect communication is, in fact, an in-
tegral part of the algorithm: when nodes inquire
about each other’s status, algorithm status as well
as deletion status is shared. The list of replicas
marked deleted which is maintained by a node is
shared with other nodes, who in turn incorporate
the information into their own lists.

A node that has completed phase one has lim-
ited knowledge about the status of other nodes. It
knows that all have marked their name replicas and
object replicas deleted, and thus have themselves
begun executing phase one of the algorithm. How-
ever, a node at this stage makes no assumptions
about the knowledge other nodes have of it. It is
quite possible that no other node is aware that the
node in question has marked its replica deleted, as
the flow of information is not guaranteed to be a
two-way exchange at any step.

2.2.2 Phase two

Immediately upon completing phase one, a node
begins executing phase two. In this phase, a node
compiles a list of nodes that it learns have finished
phase one. The first node placed on this second
list is, of course, itself: phase two began at this
node precisely because it had finished phase one.
As with the earlier phase, phase two at this node is
complete when all nodes are listed. The same style
of list sharing utilized in phase one also occurs in

/* variables and data structures:

Let set R := replication factor,
r,s element drawn from R,
self is element of R,

P1[] binary vector of size |R],
P2[] binary vector of size IRI,
R[] binary vector of size |IR|.
*/
begin: while (my name replica is not
marked deleted)

{ donothing; }
mark my object replica deleted;

Pi{r] := 0, for all replicas r;
P2[r] 0, for all replicas r;

phasel: Pi[self] := 1;
while (P1[x] == 0 for any r) {
Rlr} := 0, for all r;
choose some r to query;
ask r for its P1 vector;
if r responds {
R[] := r’s response;
foreach (R[s] == 1)
{ Pils] :=1; }

}

phase2: P2[selt] := 1;
while (P2[r] == 0 for any r) {
R[z] := 0, for all r;
choose some r to query;
ask r for its P2 vector;
if r responds {

R[] := r’'s response;
foreach (R[s] == 1)
{ P2[8] :=1; }
}
}
postlude:

reclaim object replica resources;
reclaim name replica resources;

Figure 1: Basic two-phase algorithm

phase two.

Nodes placed on a phase two list are those that
know that all replicas are marked deleted. A node
with a complete phase two list therefore knows that
all nodes know all replicas are marked deleted. This
global state is vital to providing “once reclaimed,
never re-cstablished” behavior: it allows a node
(finished with phase two) to reclaim all local re-
sources devoted to the replicated object and to for-
get about it entirely, secure in the knowledge that
the replica will never be re-established in response
to a query from another node about the object.?

A node that is striving to finish phase two might
query a node which has already reclaimed its re-
sources and forgotten about the object. The query
response will indicate that no such object is known,
which the inquirer will (correctly) interpret to mean
that the queried node has completed phase two.
The inquiring node uses this inferred status to com-
plete its own second phase, and proceed with re-
claiming its object and name replicas’ physical re-
sources.

2.2.3 One phase is not enough

The algorithm’s first phase ensures that all nodes
with replicas are aware that the object’s resources
are to be reclaimed. This property guarantees that
no replica will survive the reclamation effort with-
out having been aware that reclamation was in
progress, The second phase guarantees that all por-
tions of the distributed algorithm will terminate de-
spite barriers to information flow that are formed
as nodes reclaim their replicas’ resources.

In order to appreciate why one phase is insuffi-
cient, consider a hypothetical one phase algorithm
and its execution in a particular class of network
configuration behaviors. In the imagined algo-
rithm, a node reclaims a replica’s resources upon
learning that all extant replicas are aware that

3“Once reclaimed, never re-established” behavior is im-
portant for both practical and theoretical reasons: re-
source allocation and deallocation is costly and should be
done only when necessary; and, removing the possibil-
ity of re-allocation greatly simplifies algorithm termination
arguments,

Figure 2: One phase network example

reclamation is in progress. The network configu-
ration of interest (see Figure 2) is composed of a
group of well connected nodes and two nodes which
are weakly connected to the group and very weakly
connected to each other.

Suppose that an object is initially created at
Node Z, with replicas to be established at all nodes
A, B, ... Y, Z. Soon after establishing a replica,
Node A determines that the object should be re-
claimed. According to the algorithm, Node A notes
that it is self-aware of reclamation, and begins the
process of acquiring knowledge about other repli-
cas’ reclamation status. Suppose that the link be-
tween nodes A and B is the only remaining (albeit
weak) link from Node A to the others.

Now consider Node B’s possible perspectives
upon receiving an inquiry from Node A (which
contains the information that reclamation is in
progress): Node B is either aware of the object al-
ready (because a replica exists at Node B), or it is
not aware (no replica exists at Node B).

In the first case (Node B is already aware of
the object), Node B notes that reclamation is in
progress and Nodes A and B are cognizant of it.
Node B, in turn, attempts to contact other nodes.
Suppose the well connected group of nodes (B - Y)
rapidly succeeds in learning that reclamation is in
progress, and even manages to get a response back
from Node Z acknowledging that reclamation is in
progress. Further suppose that Node B is the first
node to learn that every node is aware of the intent
to reclaim. Node B therefore reclaims its resources
and forgets entirely about the object (including the
fact that its replica was reclaimed).

Continuing the scenarto, when Node B receives
the initial inquiry from Node A, it replies quickly.
Unfortunately, congestion on the link causes the
reply to be lost. Node A eventuaily sends another
message to Node B inquiring about Node B's recla-
mation status, since it failed to get a response to the
first message. By the time Node B receives the sec-
ond message, its replica is already reclaimed. This
scenario forces consideration of case two: Node B
is unaware of the object.

Another way in which Node B might be unaware
of the object is that Node B has never learned of
the object before receiving the inquiry from Node
A. (Perhaps Node A learned of the object directly
from Node Z via the very weak link between them.)
From Node B’s perspective, these two situations are
indistinguishable, yet its response must differ for
the two scenarios: in one, Node B must establish
a replica (whose body may be empty) to support
indirect communication to other nodes about the
reclamation initiated by Node A; in the other, all
nodes are (or were) aware of reclamation, and do
not need (or want) to re-establish replicas.

Failure to support indirect communication that
may be critical to algorithm termination is un-
acceptable. It is also unacceptable to simply re-
establish replicas just in case indirect communi-
cation support is needed: re-establishment in the
above scenario is a side-effect of an event (success-
ful transmission of a message) whose frequency is
both unbounded (by the algorithm) and may not
contribute to progress towards termination.

The two-phase nature of our algorithm provides
an ignorant node with the ability always to distin-
guish “never knew” from “forgotten”. An ignorant
node which receives a phase one message correctly
concludes “never knew”, and establishes a replica
to provide support for indirect communication. An
ignorant node concludes “forgotten” upon receiv-
ing a phase two message, and does not establish a
replica. (An ignorant node’s reply to a phase two
inquiry—“I know nothing”-implicitly means “I fin-
ished phase two, and so can you,” which is all the
inquirer needs to know to reclaim its replica’s re-
sources and terminate.)

2.3 Intermediate algorithm

The basic algorithm in the previous section applies
to fixed name, immutable objects with identical
static name and object replication factors. In this
section we relax the first two constraints to allow
dynamic naming and object updates, while contin-
uing to require name and object replication factors
to be both identical and static.

Dynamic naming and object mutability each
complicate the reclamation problem, and the com-
bination of the two is especially difficult. Dynamic
naming introduces a global stable state detection
problem, while object mutability requires special
mechanisms to prevent inadvertent data loss.

2.3.1 Dynamic naming

A necessary, but not sufficient, condition for object
reclamation is that the object have no names. In
our model, ‘no names’ means that every name rep-
lica referring to an object replica has been marked
deleted.

In the basic two-phase algorithm, object recla-
mation inevitably follows name removal; the two
phases ensure that all replicas will be reclaimed,
exactly once. In the dynamic naming case, it is
much harder to determine whether or not recla-
mation s to occur: names may be added or re-
moved at any node at any time, since optimism
allows unsynchronized concurrent updates across
non-communicating nodes. When a name is added
at one node concurrently with a name removal at
another node, a transient situation may arise in
which a node has no names for an object for a time,
until the new name propagates to that node. Dur-
ing this time, reclamation of the ‘nameless’ object
replica would be premature, even though it has a
zero-valued reference count.

Premature reclamation must be avoided because
of the potential for data loss. Concurrent update,
name creation, and name removal together with
the non-atomicity of name and object propagation
leave open the possibility that the only object rep-

lica reflecting an update could temporarily have a
zero-valued reference count. Such a replica must
not be prematurely reclaimed.

Although a single replica’s zero-valued reference
count may be a transient condition, when all repli-
cas have zero references a global stable state [2]
exists. The problem, then, is to detect that all ob-
Ject replicas simultaneously have zero-valued refer-
ence counts in an environment when simultaneous
or pseudo-simultaneous queries of all nodes is not
feasible.

We provide an adaptation of our basic two-phase
algorithm which exploits the rules governing name
additions to achieve a relatively inexpensive, fully
distributed mechanism for determining the global
zero-valued reference count stable state. The adap-
tation requires that each object replica maintain
a monotonic counter in parallel with the reference
counter, and that the algorithm compile and dis-
tribute a vector of these new counters.

The new counter is incremented atomically with
the reference counter, but it is never decremented.
[t functions as a ‘total name counter’ to reflect
the number of name replicas at this node which
have referred to the object replica. The total name
counter from each replica is used to determine that
a zero-valued reference counter has been quiescent
between interrogations.

2.3.2 Algorithm for dynamic naming

This intermediate two-phase algorithm is triggered
at a node when the object replica’s reference count
is zero. In the first phase, two parallel vectors are
maintained. One vector indicates which replicas
have reported a zero-valued reference count, and
the other contains the total name counter value re-
ported by those replicas.

A node has completed its first phase when all
replicas are listed with total name count values
recorded in the parallel vectors. This also implies
that each replica reported a zéro-valued reference
counter. These parallel vectors are shared with
other nodes executing the algorithm.

The second phase proceeds similarly, with two
parallel vectors of total name count values and re-
port indicators. In this phase, the total name count
values recorded reflect a replica’s total name count
value at some point after the queried replica has
finished phase one.

As anode is collecting values in the second phase,
it compares the newly reported values with those
recorded in its phase one vector. If any discrep-
ancy is discovered (i.e., the corresponding values
are not identical), the algorithm aborts, initializes
its vectors, and restarts phase one. This abort oc-
curs when the transient behavior described above
OCCUrs.

A node finishes its second phase when all repli-
cas have reported values to it, and the values are
tdentical to those collected in the first phase. At
this point, all object replicas are guaranteed to be
permanently inaccessible.

2.3.3 Mutability

As presented, the intermediate algorithm will deter-
mine that an object is globally inaccessible. A fur-
ther condition is necessary {and sufficient) to allow
physical reclamation to proceed: data must not be
lost inadvertently as an unavoidable consequence of
optimism. We are not concerned here with the kind
of ‘inadvertent loss’ that results when a client mis-
takenly removes a name, but with the consequences
of concurrent update and name removal.

Consider a scenario with one object, two names,
three replicas, and three clients. (Imagine a journal
paper draft, with three collaborating colleagues.)
Suppose that each of the nodes is isolated, but opti-
mism allows each author to continue working. One
author makes revisions to his object replica. Each
of the other two authors decides (differently) that
one of the two names is superfluous, and removes
it. Each of the clients will be understandably dis-
appointed if the object is reclaimed (since it even-
tually will be declared globally inaccessible), espe-
cially the one who updated it.

Our approach to the general problem of re-

move/update conflicts is to assume that name re-
moval is undertaken in the context of an object
replica. We invest the name removal operation with
the additional semantics that a client wishes object
reclamation (when no names exist) if no other ob-
Ject replicas are newer than (or in conflict with)
the object replica which is initially affected by the
name removal.

To accommodate the additional semantics, the
reclamation algorithm must determine which of the
object versions represented by the replicas is the
latest, and which is the latest version to provide a
context for name removal. (Optimism also intro-
duces the possibility that no ‘latest’ version exists,
such as when unsynchronized concurrent updates
occur to distinct replicas, thus generating an up-
date/update conflict.) After identifying the latest
object version and removal context version, it is
trivial to decide whether a remove/update conflict
exists.

Version 1dentification and context recollection
can be readily accomplished with version vectors,
which provide a multi-dimensional version number-
ing scheme for replicas [9]. We augment the object
replica model with two data items: a ‘current’ ver-
sion vector, and a ‘removal context’ version vec-
tor. The current version vector always identifies
the current value of the object replica. The re-
moval context vector is replaced by a copy of the
current version vector when a name removal oper-
ation is issued with this object replica providing
context. Each replica’s removal context vector will
be checked to see that no remove/update conflict
exists.

2.3.4 Remove/update conflict algorithm

It is easy to modify the intermediate two-phase al-
gorithm to collect and compare the various vec-
tors and determine if a remove/update conflict ex-
ists: each instance of the algorithm can collect (and
share) sets of vectors, and perform the appropri-
ate comparisons when the sets are complete. This
approach, however, imposes quadratic storage and
message size complexity upon each instance of the

algorithm.*

Linear storage complexity can be achieved by
exploiting the (partial) ordering of version vector
values. Instead of collecting each replica’s ver-
sion vector values, an algorithm instance can retain
only the greatest (latest) vector value encountered,
along with a vector indicating which replica’s vee-
tors have been consulted and whether the vectors
conflict with the greatest values seen to this point
in the algorithm’s execution.

The linear optimization is not free, however. A
two-phase consultation scheme is required to col-
lect the vectors and correctly assert that a partic-
ular vector value is greatest, or that no value is
greatest due to conflicting versions. As it happens,
these two phases can be executed in parallel with
the two-phase algorithm that determines global in-
accessibility, so the cost is effectively eliminated.

Once global inaccessibility and remove/update
conflict status are determined, a decision can be
made whether to reclaim an object replica’s re-
sources. If a remove/update conflict is discovered,
reclamation will not occur; proper action at this
point is application dependent. (An example is de-
scribed in a later section.)

Figures 3 and 4 show the intermediate algorithm.

2.4 Advanced two-phase algorithm

The previous algorithms each assume that object
and name replication factors are fixed at creation
time, and are identical. In practice, these con-
straints are not attractive. Changing circumstances
of network behavior or object usage may necessi-
tate adding, deleting, or moving replicas, which can
not be usefully predicted when an object is cre-
ated. It should also be possible to change an ob-
Ject’s replication factor without directly affecting
object names.

Note that an object (or name) replication factor

*Each version vector is of length n, of which n must be
collected in each set (n = |replicas]).

is itself a replicated data structure which is used to
manage other replicated data structures. The ver-
sion vector technique used to manage updates to
replicated data can not easily be applied to man-
aging updates to version vectors themselves.

Our system supports an approximation to an
ideal flexible replication factor mechanism: a repli-
cation factor can grow to be very large (2% repli-
cas), with masks used to ‘shrink’ a replication fac-
tor. One mask is used to indicale that particular
replicas should be (irrevocably) ignored during al-
gorithm execution. The second mask permits an
object replica to avoid the expense of storing the
object itself any further, but the ‘skeletal’ replica
must continue to participate in algorithm execu-
tion. In short, a replication factor monotonically
increases in physical size, with adjustments avail-
able to reduce the actual number of physical copies
of a client’s data which are maintained.

Increasing a replication factor is straightforward.
Any replica’s replication factor can be augmented
simply by adding a (globally unique) replica iden-
tifier to its list of replicas. A replica can form a
new replication factor while executing the one of
the two-phase algorithms by taking the union of
its replication factor and that reported by another
replica.

A replication factor’s ‘ignore’ mask provides a
way for a replica to be forever ignored. This is
especially useful when recovery of a destroyed rep-
lica is impossible or too expensive. Indicating that
a replica is to be ignored is an irrevocable action.
Like an increase in replication factor, a new ignore
mask is formed by taking the union of the local
mask and one reported by another replica.

The ‘skeletal’ mask indicates which object repli-
cas don’t actually store any client data. This mask
is maintained in an optimistic fashion, but without
conflict detection: mask updates cause a new time-
stamp to be generated for the mask; the mask with
the latest timestamp is deemed to be correct.

2.4.1 Algorithm

Very few changes need to be made to the intermedi-
ate two-phase algorithm to support dynamic name
and object replication factors. Each replication fac-
tor must support two additional parallel data struc-
tures {the masks), and the algorithm must check
reported replication factors for changes. Care must
be exercised, though, when increasing a replication
factor not to viclate the semantics of an in-progress
reclamation algorithm.

QOur two-phase algorithms have two critical
points: when a node finishes phase one, it believes
that all replicas have been consulted; and when a
node finishes phase two, it believes that all replicas
have finished phase one.

While a node is currently in phase one, its repli-
cation factor can be augmented safely because ev-
ery other node must consult it at least once more,
during phase two. When this node is consulted,
other nodes will learn about the additional rep-
lica(s). But a replication factor must not be aug-
mented to create a new replica when the ‘source’
replica’s node is in phase two.

For brevity, we do not show these minor algo-
rithm modifications in a separate figure.

10

/* major changes to basic algorithm
show asterisks in first column. */

/* new vectors:

NCR total name count response
NC1 total name count, phasei
NC2 total name count, phase2

NV total name count validation
V¥ replica’s version vector

VVR version vector response

SVV saved version vector response
RC removal context vector

RCR removal context response

new scalars:

*/

begin:

phasel:

* * % ¥ »

*

#* % ¥ £ * *

c reference count response
RU remove/update conflict flag

while (my ref-counter non-zerc)
{ donothing; }

reset all elements of vectors:

P1, P2, NCR, RC1, NC2, NV

RU := 0;

Fi[self] := 1;

while (P1[r] == 0 for any r) {
KCR(r] := 0, for all r;
choose some r to query;
ask r for its €, NC1, P1;

¥V, RC

if r responds with C==0 {
NCR(] := r's NCi;
W[:=z's P1;

foreach (NV{s] == 1) {

HC1[s] := NCR[=];
P1[s] := 1;
}
VVR :=1r’s VV;
RCR := r's RC;
if (VVR >= vV)
{ SVV := VYVR; }
if (RCR >= RC)
{ RC := RCR; }

Figure 3: Intermediate algorithm, phase one.

phase2:

L K SN BEE JEE R B R

L EE I BN N R I B I

P2[self] := 1;
while (P2[r] == 0 for any r) {
NCR[r] := 0, for all r;
choose some r to query;
ask r for its C, NC2, P2;
VV, RC
if r responds with C==0 {
NCR[] := r’s NC2;
NV[] := r’s P2;
foreach {(RV[s] == 1) {
NC2[s] := NCR[s];
P2[s] := 1;
it (NC1[s] '= Nc2({s])
goto begin;

}

VYVR := r's VV;

RCR := r's RC;

it (VVR conflicts SVV or
RCR conflicts RC)
{ RU := 1}

if (VVR >= yV)
{ SVV := VVR; }

if (RCR >= RC)
{ RC := RCR; }

Y} else if (C > 0)
{ goto begin; }

postlude:

it (RU == 0) {
reclaim object replica resources
Teclaim name replica resources

} else {put object into orphanage}

Figure 4: Intermediate algorithm, phase two.

3 Applications and observa-
tions

Which two-phase algorithms are appropriate for
managing a UNIX file system? UNIX files are mu-
table, dynamically named objects, so at least the
intermediate algorithm should be used for them.
File names (directory entries) are simple objects
which can be managed with the basic two-phase
algorithm.

While the intermediate algorithm is a sufficient
base upon which to construct a usable file system,
the additional cost of implementing and using the
advanced algorithm (with flexible replication fac-
tors) is negligible. The Ficus optimistic replicated
file system, described in a companion paper [8], in-
corporates the advanced algorithm to manage its
files.

The advanced algorithm is also used to support
the name service that connects subtrees together to
form a large connected hierarchical filing environ-
ment. This name service plays a role similar to NIS
(Yellow Pages) in NFS, or volume support in AFS.
The implementations of these two applications (file
hierarchy and volume hierarchy) ate common, so
multiple facilities were not required.

3.1 Directed acyclic graphs

The UNIX filing environment is a simple directed
acyclic graph (dag) structure. These algorithms
may be applied to an arbitrary graph structure
as well, so long as there are no disconnected seif-
referential subgraphs. Additional mechanism is
needed to handle that case.

In fact, modest mechanism beyond that dis-
cussed in this paper is required even to handle dags.
That is because the discussion was cast in terms of
a single logical object. The additional facilities are
simple, and discussed in [5]. Other variations of
these algorithms are also discussed there, such as a
version which supports rapid creation and deletion
of very large numbers of replicas.

12

3.2 Performance

Performance of these algorithms is, of course, im-
portant. A suitable measure is the number of mes-
sages that must be exchanged in order to cause a
set of n nodes with replicas to reach agreement.
One would expect that the worst case could be ex-
pensive, since the underlying minimum communi-
cations assumptions do not allow a stylized pattern
of interaction always to be employed. The worst
case indeed requires O(n?) messages, as most nodes
talk to most of the other nodes to complete each
phase 8

However, in practice the situation is far better,
since we can communicate in a stylized manner
most of the time. As a simple example, if the nodes
order their communications in a ring, then a total
of 3n — | messages are used.®

4 Related work

Our work is related to several areas of research: the
“gossip” problem, which has received substantial
formal treatment; optimistic file systems, including
LOCUS, Coda, and Deceit; optimistic “dictionar-
ies” (directories) in file systems; and, distributed
garbage collection.

In the gossip problem, each node in a graph must
communicate a unique item to every other node in
the graph. A variety of papers have appeared in
the twenty years of its study [7], yielding complexity

5In each phase, in the worst case, a first node pulls from
the n — 1 other nodes to become knowledgeable. A second
node then pulls from the remaining n — 2 unknowledgeable
nodes, and then the first, knowledgeable one. The third node
puils from the rermaining n — 3 unknowledgeable nodes, and
then one of the knowledgeable ones. Thus each phase re-
quires
(n-D+(r-1+n-2)+(n-3}+.. . +1=iotn
pulls, and there are two phases. Thus, n? + n = 2 pull mes-
sages are required.

8 Assume that a single message is active in the ring at
any time. This ever-changing message flows around the ring
three times. Phase one of the algorithm begins for all nodes
in the first round trip. Phase one completes and phase two
begins for all nodes during the second round trip. Phase two
completes for all nodes during the third round trip.

results under varying communications assumptions.

Heddaya, Hsu, and Weihl [6] used a two-phase
gossip protocol to manage distributed event histo-
ries of updates to object replicas. A timestamp
vector is used to determine when history elements
may be safely discarded. Their solution does not
address the problem of completely forgetting that
a history exists, but only forgetting items in the
history.

LOCUS [12, 10] is an intellectual ancestor of the
Ficus file system which incorporates these algo-
rithms. LOCUS system prototypes incorporated
more limited replica management algorithms, from
which the algorithms presented here are descended.

The Coda project {11] has similar goals to our
own Ficus work and bases its replica management
on the LOCUS version vector {9] mechanism and
an earlier draft of this work {4].

Fischer and Michael [3] proposed recasting the
replicated directory maintenance problem as a rep-
licated “dictionary” problem, with slightly (but sig-
nificantly} different semantics. A timestamp vector
was used to infer from a comparison of two dictio-

nary replicas which entries had been inserted and
which had been deleted.

Allchin [1] and Wuu and Bernstein [14] ex-
panded upon Fischer and Michael’s approach to use
two-dimensional timestamp matrices to reduce the
number of messages exchanged, with small varia-
tions in semantics.

None of these works addressed the general prob-
lem of reclaiming resources of named replicated ob-
jects; they were concerned with “dictionary entries”
as isolated entities.

Wiseman's survey [13] of distributed garbage col-
lection methods includes several techniques based
on reference counting, but none are designed for use
on replicated objects, and none are directly appli-
cable to imperfectly connected networks.

i3

5 Conclusions

We believe that optimistic replication underlies a
number of important distributed systems problems,
and so have labored to develop relatively general
solutions. The advanced algorithm described here
has been used in the Ficus replicated file system
with excellent results.

It is perhaps worth noting that a successful so-
lution to the problem posed and addressed here is
more difficult than it may at first appear. There are
numerous pathological cases that can occur in prac-
tice, and errors found in earlier work were sobering
and instructive.

There are a number of useful directions for future
work. Further reductions in communications may
be achievable. Incorporation of support for gen-
eral graph structures is an obvious extension. The
ability to freely intermix optimistically replicated
components with others which are kept strictly con-
sistent is important in practice. Nevertheless, the
algorithms as presented appear quite useful in their
current form.

A Correctness discussion

The basic two-phase reclamation algorithm is cor-
rect if and only if these conditions are satisfied;

¢ object reclamation occurs if, and only if, the
object is globally inaccessible

o for each replica of an inaccessible object, recla-
mation occurs exactly once, in finite time

¢ all algorithm executions terminate in finite
time

o all algorithm executions are free from deadlock

We first show that reclamation occurs ifan object
is inaccessible, followed by the only if direction. We
then show that reclamation occurs exactly onece in
finite time by proving that it occurs at least once,
and at most once,

A.1 Reclamation if inaccessible

The “information flow” requirement governing net-
work behavior ensures that it is possible for each
node to learn of status changes at every other
node. Since each node periodically uses the propa-
gation protocol to incorporate other replicas’ status
changes into its own replica, and since all replicas
are guaranteed to be available at the same time,
each node will, in fact, learn in finite time of the
status of every other replica. Therefore, every log-
ical name deletion will eventually be reflected at
every node, as each name replica will be indelibly
marked deleted.

Following the deletion of every name for an ob-
ject, in finite time all name replicas will be marked
deleted. Each object replica will, in turn, have a
zero-valued reference count, and be inaccessible.

The first phase of the algorithm simply collects
the information that, when consulted, each replica
was inaccessible. The second phase similarly col-
lects information from each node. By the previ-
ous argument, each node is guaranteed to learn the

14

desired information. At the conclusion of execut-
ing its second phase, a node reclaims its resources.
Since each node is guaranteed to finish its phases
if the object is inaccessible, each node will reclaim
the resources consumed by the object.

A.2 Reclamation only if inaccessible

We argue by contradiction. Suppose reclamation
of an object replica occurred without the object
being inaccessible. Therefore, some object replica
must have a non-zero reference count at the end of
a node’s second phase.

But, the algorithm’s first phase demonstrated
that each replica had a zero-valued reference count
(though not necessarily simultaneously), and the
second phase ensured that each replica’s reference
count had not changed between the first and sec-
ond reference count queries. Since the second set of
queries strictly followed the first set, a point in time
must exist at which all replicas were simultaneously
inaccessible. Global inaccessibility is a global sta-
ble state, by the restrictions placed on additional
name creation. Therefore, a non-zero object rep-
lica reference can not exist, which contradicts the
hypothesis.

A.3 Reclamation ezactly once

If the object is inaccessible, each replica will be
reclaimed at the end of its node’s execution of the
algorithm, as per the above arguments. Therefore,
each replica is reclaimed at least once.

Multiple reclamation requires multiple establish-
ment of a replica. Replica establishment occurs
when a node without a replica receives a message
that indicates that the receiver is intended to have
a replica and there is no indication in the message
of the replica’s prior existence. Therefore, to re-
establish a replica, a node which has already re-
claimed its replica must receive a message about
the object which does not indicate that the replica
is known to have existed.

It suffices to hypothesize that such a message is
received, and then prove that such a message can-
not arrive. We do so by classifying all messages
and showing that none of the types which could
cause replica establishment will be received after
reclamation.

Every message about an object replica implicitly
indicates a “phase” of algorithm execution. In ad-
dition to phase one and phase two messages, nodes
routinely send status query and response messages
to learn of object updates when the algorithm is not
executing. For convenience, consider these routine
messages to be “phase zero” messages.

When a node without a replica receives a mes-
sage, its deciston whether to create a replica is
based on the phase of the sender:

zero A phase zero message contains no indication
whether the receiving node ever had a replica.
Therefore, a replica must be established.

one A phase one message may or may not indicate
that the replica has ever existed. If it does not
indicate that the replica existed, a replica must
be established. If it indicates that a replica
once existed, an anomalous condition has been
encountered. (See discussion below.)

two A prerequisite for entering phase two is that
all replicas have been consulted, which implies
that all replicas exist. Therefore, the replica
has previously existed, been reclaimed, and
must not be re-established.

A node which has already reclaimed its replica
normally expects to receive only phase two mes-
sages, because a condition of phase two completion
is to determine that all other nodes have finished
phase one. Since phase two messages can not cause
a replica to be re-established, only the receipt of
phase zero or phase one messages after reclamation
might cause a replica to be established again.

Phase zero or phase one messages received by
a node which has completed phase two and re-
claimed its replica could only have been sent before
the sender began phase two. Such messages have

15

been delayed in transit, long enough for the sender
to finish phase one and the receiver to finish phase
two.

The algorithm is resilient to delayed messages
which are received within the next phase: phase
one messages received by a node in the midst of
phase two are quite normal, as are phase zero mes-
sages received during phase one. It is only when
message delay exceeds one phase that replica re-
establishment might occur.

We assume that message delays does not exceed
the time required for one complete phase. If this
bound is invalid, algorithm execution can be artifi-
cially slowed to increase the length of a phase until
a valid bound is achieved. It is, therefore, feasible
to prevent phase zero or phase one messages from
arriving after reclamation occurs.

The hypothesized message received after a rep-
lica has been reclaimed must be from one of the
three phases, but since delayed phase zero and
phase cne messages can be prevented and phase
two messages do not cause replica establishment,
no message which could cause replica establishment
will be received. This contradicts the hypothesis
that such a message might be received, and so rep-
lica re-establishment (and subsequent reclamation)
after an initial reclamation is not possible.

A.4 Termination

We show that the algorithm terminates by defining
a partial order on the possible states of a node dur-
ing the algorithm’s execution, and showing that all
state transitions are monotonic with respect to this
order. (We showed above that sufficient transitions
will occur, based on the finite time information flow
assumption.)

A node’s algorithm execution status is primar-
ily determined by the list compiled in each phase
of replicas consulted. The set of valid list values
comprises all subsets of the (finite} set of replicas
indicated in the object’s replication factor. A par-
tial order based on cardinality can then be defined
over these subsets.

A state transition (list change) is defined in the
algorithm to be a set union operation, which is
monotonic over the partial order. A partial or-
der is acyclic, so all algorithm state transitions are
acyclic. Progress towards termination is guaran-
teed, unless deadlock occurs.

The intermediate algorithm occasionally aborts
and restarts. The only circumstance in which abort
occurs (a mismatch of total name count vectors) is
bounded in occurrence by the product of the num-
ber of names and the cardinality of the objects’s
replication factor. Since the number of aborts at
a node is bounded, some algorithm execution will
not abort, and so the above termination argument
holds.

A.5 Deadlock-free

We show that the protocol is free from deadlock
by developing a waits for graph model and proving
that it is acyclic for all algorithm executions.

Recall that the propagation protocol underlying
state transitions is non-blocking, so a node is never
blocked waiting for a particular response from an-
other node. It therefore suffices to consider the
algorithm’s behavior at the higher level of phase
transitions, where ‘waiting’ does occur.

Define a total order over the states ‘accessible’,
‘phase one’, ‘phase two’, and ‘reclaimed’ such that
accessible < phase one < phase two < reclaimed.

A node transitions from accessible to phase one
when its replica becomes inaccessible, and from
phase one to phase two when it learns that all nodes
have transitioned to phase one. It transitions from
phase two to reclaimed upon learning that all nodes
have transitioned to phase two.

With the exception of the initial transition from
accessible to phase one, a node waits for all other
nodes to reach the same state as itself, before tran-
sitioning to a later (fully ordered) state. Therefore,
a node only waits for “lesser” nodes; since “lesser”
is acyclic, no cycles can occur in the waits-for graph

16

and so the protocol is deadlock-free.

References

(1] James E. Allchin. A suite of robust algo-
rithms for maintaining replicated data using
weak consistency conditions. In Proceedings
of the Third IEEE Symposium on Reliability
in Distributed Software and Daiabase Systems,
October 1983.

K. Mani Chandy and Leslie Lamport. Dis-
tributed snapshots: Determining global states
of distributed systems. ACM Transactions on
Computer Systems, 3(1):63-75, February 1985.

Michael J. Fischer and Alan Michael. Sacri-
ficing serializability to attain high availability
of data in an unreliable network. In Proceed-
ings of the ACM Symposium on Principles of
Database Systems, March 1082,

[3)

(4] Richard G. Guy. A replicated filesystem de-
sign for a distributed UNIX system. Master’s
thesis, University of California, Los Angeles,

1987.

Richard G. Guy. Ficus: A Very Large Scale
Reliable Distributed File System. Ph.D. disser-
tation, University of California, Los Angeles,
1991. In preparation.

(5]

{6] Abdelsalam Heddaya, Meichun Hsu, and Wil-
liam Weihl. Two phase gossip: Managing dis-
tributed event histories. Information Sciences,

49:35-57, October 1989.
(7

—

Sandra M. Hedetniemi, Stephen T. Hedet-
niemi, and Arthur L. Liestman. A survey of
gossiping and broadcasting in communication
networks. NETWORKS, 18:319-349, 1988,

[8] Thomas W. Page, Jr., Richard G. Guy, John S.
Heidemann, and Gerald J. Popek. Architec-
ture of the Ficus scalable replicated file system.
Submitted concurrently for publication in Pro-
ceedings of the Thirteenth Symposium on Op-

erating Systems Principles, November 1991,

D. Stott Parker, Jr., Gerald Popek, Gerard
Rudisin, Allen Stoughton, Bruce J. Walker,

9]

(10]

[11]

(12]

(13]

(14]

Evelyn Walton, Johanna M. Chow, David Ed-
wards, Stephen Kiser, and Charles Kline. De-
tection of mutual inconsistency in distributed
systems. [EEE Trensactions on Software En-
gineering, 9(3):240-247, May 1983.

Gerald J. Popek and Bruce J. Walker. The Lo-
cus Distributed System Archilecture. The MIT
Press, 1985.

Mahadev Satyanarayanan, James J. Kistler,
Puneet Kumar, Maria E. Okasaki, Ellen H.
Siegel, and David C. Steere. Coda: A highly
available file system for a distributed work-
station environment. [EEE Transactions on
Computers, 39(4):447-459, April 1990.

Bruce Walker, Gerald Popek, Robert English,
Charles Kline, and Greg Thiel. The LOCUS
distributed operating system. In Proceedings
of the Ninih Symposium on Operating Systems
Principles, pages 49-70. ACM, October 1983.

Simon R. Wiseman. Garbage Collection in
Distributed Systems. Ph.D. dissertation, Uni-
versity of Newcastle Upon Tyne, November
1988.

Gene T. J. Wuu and Arihur J. Bernstein. Effi-
cient solutions to the replicated log and dictio-
nary problems. In ACM Symposium on Prin-
ciples of Distribuied Computing, August 1984.

17

