Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

THE UCLA MIRROR PROCESSOR: CONTROL
IMPLEMENTATION AND TESTING CONSIDERATIONS
FOR A VLSI RISC WITH MICRO ROLLBACK

Titus Lai January 1991
CSD-910001



The UCLA Mirror Processor:
Control Implementation and Testing Considerations
for a VLSI RISC with Micro Rollback

Titus Lai

Computer Science Department
University of California

Los Angeles, California 90024-1596
US.A.

January 1991



Abstract

Many methods for achieving fault tolerance are based on the use of concurrent error detection —
the outputs of every component are checked before being used by any other component. In order (o
minimize the performance degradation usually associated with concurrent error detection, checking can
be done in parallel with the transfer of information between components. Since module state may be
modified before an error is flagged, system modules support micro roliback — the ability to undo recent

state changes and roll back the system to its state prior to the clock cycle in which the error originated.

The UCLA Mirror Processor is a RISC microprocessor capable of micro rollback. Concumrent error
detection is accomplished by running two Mirror Processor chips in lock-step synchronization and

comparing their extemnal outputs and a compressed signature of their internal states.

This report details the function, timing, and implementation of the Mirror Processor controller,
emphasizing the error detection and recovery mechanisms. The area overhead of the error detection and
rollback logic is shown to be quite large: 67% of the controller area is dedicated to micro rollback. The
performance overhead is found to be minimal. Functional testing, in which a processor chip is tested in
software through the use of its normal instruction set, is shown to be adaptable to the Mirror Processor.
Special instructions added for testing the error detection and rollback logic are presented, along with

example test procedures using these instructions.



- i -

Table of Contents

Chapter 1: INEOGUCHON ....c.cuoeiiecevenie st sttt st et et et st enae s s ent e e neeesee e s ees e 1
L1 MICTO ROIDACK ..ottt ettt et sttt ae s et e e e e an s s 1
1.2, Overview Of MIITOT PIOCESSOT .......ovveriieeieisieneiese s s ee st bt ce e em e e sees e seeeeseeanessarssesessas 2
1.3, MAIDN PTOCESSOT ..ovtviiinireveiscecsecnese st sessns e s neesssesesctesesonena resesestsssstasasnserenssseessues sesemseesesersaens 3
L4, EITOT DEIECHON ..ouoonieicireient et e sttt sess st et sasat e er s sanss e s obes sas st essmsesseessseabeseasenaeressenens 4
L5, EITOT RECOVETY ..ooviiietieice ettt ben s reab e e et aes s ss s st s st st eee e sestenesanns 4
Chapter 2: The Mirror Processor CORLIOUET ........ccvovuiveeaeriereisssesiensssrens e sesrssssssssssenssnessenssecsnssen 5
2.1. Controller Design COnSIdErations .......cocovieveieeereiiinseesmiieeeresssesieseseecosrressessesssseseeseesaseessens S
2.2. Description Of the CONLIOTIET .........ccoeiierie e et e e en e e e seeas et e e 6
2.3, CoNrOller TAMINE .o.voiiiveiireeeec et ceeeree e et se e e e e seervrrees sserssesassssesstaseneseenesseeseesasememnneens 8
2.3.1. ProcesSOT TIMHIIE ...c.cvuiiieieeieees e sttt cse et ee st ese st aeea e st atsseessas s s eneereasnnnsnasanessoen 8
2.3.2. Memory Interface TIMiNg ........ccoovuiiemmiiiiceiei ettt sas e s e 8
2.3.3. Normal INStruction CYCLE ........ocooiiiiiniitiieie e esss st aa ens s et e s s e 11
2.3.4. Interrupts and TTAPS ...c.covieiieeccceree st ste e s s ase s s st et bbb et s e enersmrasresnsnas st sens 13
2.3.5. ROIBACKS ...covirmiereeniinii ittt et niseserss e e ssasba b sas s s et eaas et eban e rsns e snsnstsssatsensssmeessene 14
2.4, Details of Controller IMPIemMENALION .........ccoeiiveririrerre e sesse e s e eseer e e e sesesesseens 14
AL BUSTR ...ttt et st e n e s e s r et b as e 14
2.4.2, busIR Latch and DIVEL c......coovviveirrirriiieirie st eetese et sne s eser s essba s bese e s b s eas e e sen 15
2.4.3, NEXE S LOZIC ovvivieiireiicri e ie st e cr s te s b b e b e s sres st stsssea et atsshe st s bt srenseremnsene 15
2.8, PLAS oottt ettt ettt st et st s e a e et eaes e bas e ns eanae s s eaesnen e e erarresen 16
2.4.5. Condition Code LOGIC ....cooeiirriii et siecres st eer s e ee st sean e sa e s sre s nssaserassnnentansssaes 17
2.4.6. Post-FSM Logic and Valid Bit LOZIC .....ccocoiuiciriviiiniieerneiesesers e ressseesesssssses s ssssessssens 18
2.4.7. Memory ContIOl LOBIC ...ccvvvviieererrieiceeresers e sestessssseeveas e eanseassbe s smsesnerssasshesesnosassins 19
2.4.8. Memory Enable Signals ...ttt st es s ren e rrar e sens 19
2.4.9. INTEITUPL LOZIC .vovevieriiririitiniienereesent s secn s sesss e e s seses e et e sn s ensresseses sensassssesssssione 20
2.4.10. COMPATALOT LOZIC ...c.ceeeeieee ettt et st s sbes st s aba s b anss e enes 21
2.4.11. Controller ROIUDACK MEIMOTY .....cccoiveeiiiiienirit s verrsse s s s smssb s sressressessssssssssassssssestas 23
2.4.12. Critical PathS .....ccooiiiiiiiiie ettt et se e s e et en e ae s ae e s et 24
2.5. Alternate Wait State TiMiNG ........coovveririniiinieniereienriessenriesseessess s srassesssrasssssrsesssnssessesssess 25
2.6. CLOCK GENMETALION ....ovveeeiie e e e s e ines e se st es et e st et beba et esbasssenssbassensnsbebassassentenneennins 26
Chapter 3: Error Detection and RECOVETY oottt e s 32
3.1. ROIDACK TIMING ...oovtrereeiricreireeernireierirecsseressasesecsaessasesensensesassssessonssaessanssaessssessssassesssseasranss 32
3.1.1. Intemnal ROIIDACK .......ccooiiiieiieiniirnreee s e seees s e e e seasneae e s sse s e e s e s s sasasiaatsansnnns 32

3.1.2. EXtermnal ROIDBACK ..ottt eeeera e erervessmeannsssnensnesesneseronassenneeerneesarnnssssanesnrs 32



- ili -

3.1.3. Absolute and Relative ROIDACKS ..........c.ccceueuiiniieieeteiice e eee s e s 32
3.2. Error Detection TiMINgG ......c.c.cc.oiiioieioeiosirecirnsici e e sassis et es e e e e e s esen s sseesarasasssaees 33
3.2.1. Register File Parity EITOTS .........c.ccccoiviiiinicinerieiees s essss et esnssssss e ssteeeevessesesesesesssesaes 33
3.2. 2. BUSIN PATILY EITOT ..ottt ces et ss s s e e s e s e s eeoe e ese et erese e se s 33
3.2.3. COMPARSON EITOTS ...cuoviriiiivrcrvii it ass sttt eeaeesceen et s s e e e st st ae s et es e eeeees 33
3.2.4. DUSOUT PAMILY EITOT .ocvouirieveeeeeecsee ettt seets e ees e et eeean s ssesstesseeteeeeseeeeetotsnaos 33
3.2.5. Multiple ROIIDACKS ......ocooiiieieiiceietcr et rse s e srasse s sasss e et ee e sese e saes e 34
3.3. Rollback Control Logic and TiMiNE .....c.ccoccoeveioirieiieeecies ettt caesse e een e sn e 36
B3 1L OVEIVIEW ittt ee s e st s s e as s b et s ter e sontsaeas st sren et nten e et e s et reenn e eeeees e e easenees 36
3.3.2. External ROIDAck SIZNALS .....occocoiiiiiiee ettt saes st 37
333 INPULLAICRES ...ttt et v et st b s st s s e ses e mte e st set s s mm s ne e 37
3.3.4. Intemal ErTOr SigNals ........ccooevirereriiiiiniiiete s s ss et e ssa st ia e e e 37
3.3.5. POSE-TOIDACK COUNLET ..ot ieeeniee sttt e ee e e sse e s een e et e s ennanas 38
3.3.6. Rollback Enable Bit and COUNIET .......c.cueoiomooiieecre ettt es et e et ee s s 38
3.3.7. Internal ROIDACK LOZIC ....cvoviieiiiiiiecee ettt e e enen s 38
338, VALIA BIS Lottt et e e et et et a e e eee e e en e sanenaesrans 39
3.3.9. SeleCtion LOZIC ....cocvciieiiinr ettt ettt e rea st e s s et s ee s s ns sttt esesane 39
3.3.10. Rollback AMOUNE ENCOET ....c.cocoiiiiricieieeis ettt ce et st e e eneesen e e aneaean 40
3.3.11. Rollback AMOUNE AMDIIFAON .....cciviietiieeiirneee e ee s stes et s s e creenen e seeneesssseseseeesens 40
3.3.12. Frame Counter and ROIDACK COUNLET .....ccviuieviiioiriecerereveiies s sresse s eeereenen e sesesesens 41
3.3.13. SHUdOWI LOGIC ...ttt e b ea b st st sa e e e ens 41
3.3.14. Pad ENADINE ...covoviiiiie ettt ea s sea et s st et sr bbbt 42
F.3I5 ROIDACK Bl ..ottt ettt st st e ere e an e seeens 42
3.3.16. ROIIDACK PTOCEAUTE .....ceiiiicriiieeiite ettt et aere s s s ren et se e es s s et se e e e 42
33017, Critical PRI .ot e e et e sr e e era b st 43
3.4, SHALE REPAIT ..cooiiiriieierecreesrrree st e tesessesssaes e sesse s saes esesseaessesas et esesaasaneetensestatesenteamensesrnetrrenenes 43
Chapter 4: Controller IMPIEMENLALION .....cvceviveiieiiieeerieeies e iesscrsraess s esesesssses s rese s e e sssassasssseeenon 48
UL LAYOUL Lottt ettt st et r et es et et e ae et aba st et babe st e ta st eemsnb e rentsnneresertentnentaes 48
4.2, OVEINEAG ...ttt ettt ettt s se s e et ss e e ne et et e s A srn e sane b e beerera seas 48
4.2.1. Are@ OVETNCAU ..ottt et sr et st eas ettt sr e e re e anen s 48
4.2.2. TransiStor OVETIEad .........coviiiiiiiiieeceree et st s e s e e re s s 51
4.2.3. EXAMIPIES ...cooiriiiiiciririreceevesesreseteses oo see s e st ere se e ebaneas et eneassssesessnaeasssnnsesasnebetsanebeseteten 52
G231 CMP .ottt et e ettt e e st e a e aRe e Re e e ekt ee et arten sasenesaareanes 52
G232 RB ettt s ea s e Rt R e bRt R e et be st arran e rar e bens 54
G233 STATE ...ttt ettt s sttt st e e e va s re s e saae e s e sne s esbe et beseassansnntereabens 55
Chapter 5: Simulation and DebUZEiNg .........ocoorii et sar e v ettt e 57
5.1. Architecture Level SIMUIAtION ...c..ccooiiiiiiiicienics et rns e e se s sssrssses s sresbens 57
5.2. Switch Level SIMUIALION .....cocoviiie et rn st v s s s e s e ss e e essa s e sessenesaas seae 58
CRAPIET 62 TESLIIE ..eeoeiercriesirerereieeeerie e eerreseesres e st e e essesseastesnes raesssasaasssassesstsanesessseseessastrasessenssnsssans 59

6.1. Testing CONSIAEIALONS ......c.eoeierirer ittt r et er et et se e e e e e s e e s e e e ene e neneesres 59



- iy -

6.2. Testing Vanilla RISC ...t ss st b st st teeer e 59
6.2.1. FUnCtional TESHNE .......ccciriiiiicciciente et s e sr e e st esesn s e esben e besnessebes b e seeeeseene 59
6.2.2. Application of Functional TESHNE .........cceiiiieiniiiiiirieieieeiieee et st se et en e e e sessen 62
6.3. Testing Error Detection and Rollback LOZIC ....c..oveeiirieeeee e 64
6.3. 1. TESUINSIIUCTIONS ...oouiiiiiiiicierrrer s s sseaeisesen e sssanse st saese e e ebes bt s e e eessrseenenenssrensns st enss 64
6.3.2. Error Recovery Test PrOCEAUTIES .......ocvviiiriiieniceicet vt ce s se s ebaes e s et enes e 65
6.3.2.1. State Compression COmpPAariSOn EITOT .......cccoieciieeiireeereeeeirne sttt smesemraseser e nesenees 65
6.3.2.2. Register File Parity EITOT .........ccoioii e et sttt et en et sa e 66
6.3.2.3. Memory Access, Address Companison EITOT ... e snessssssssssasiese s 67
6.3.2.4. Memory Access, Data Comparison EITOT ......ccocuvuveieeciieseierensieeseesesesieeesesessesess e 67
6.3.2.5. Input Bus (busIN) Parity EITOT ..o invrmssessinsrnssesressssessssessbesmessessessnesreans 68
Chapter 7: CONCIUSION ....oviiicciniiiiii sttt ettt sn s e e s e e e e e e n e s e e e e se st anen et aneabssnssnsas 69
Appendix A: Controller SIZNALS ......coi i st e b e eneea 71
Appendix B: Test Program LISHNES ........ooiiiiiiiiici e e e e e se s nsaase s e saabsssrenes e 79
Appendix C: Error DEtection TESIS ....cvivrrevirireriirecieseriesesaecarsesessasssessssassssassassesassesssssssnsssssssssassanies 03
Appendix D: Verification INSIIUCHONS ......ooiviiieieerreceresteeiesee e sess e sreseesns s saenae e s e nearessensebesnes 94

RETEIEIICES 1oivvviiiiereeisiseeesssttresietseesaatsetteeesssnesiaeersasnseeeasaraneesaneesaneesnseansss annssaensssasnassrssessnsssanstesnssesemmens 96



List of Figures

Figure 1.1: Prototypical Register with Delayed Write Buffer .....oo.ooee e

Figure 1.2: MIITOT PIOCESSOT ...oivviiviiiiiiriiicer st e sr e e s sr s s sae s s cor e ta st e amnn e e reerens

FIigure 2.1 CONMIOLIET ....ccviviiiiieirii ittt sttt s se et e e r e e e ebra e b e st et e bannas

Figure 2.2: Memory Interface TiMiNg ...ttt et s et ce e e cre s er s see s nes 10
Figure 2.3: CONLIOL TIMINE ...vivvieieiririiinnisninanitiseesisessesssesssssssssssesnssssssssessssassssns tenm sesssesmemsssessssnsesees 12
Figure 2.4: busiR Latch and DIVET ..ottt sanecsrer e e e emese sbarer e 15
Figure 2.5: PLA Bit SLCE (@1 PLA) oot et er e e e e e 18
Figure 2.6: Memory Address Enable BIl ... ettt et et s e e 20
Figure 2.7: Comparator Logic BIOCK ... e 22
Figure 2.8: CIOCK GEINETALON .......ocvrriciiereerreererereressremeeerrescsnses e vaessusescnsesneeronss sesssessnensesesonseonns seessenns 27
Figure 2.9: d4 Delay INVETIET ...t iiiiiiii sttt essn st s st s e e e 28
Figure 2.10: Slave Clock Generation Timing ..o e 28
Figure 2.11: Clock Generation TiMiNE .....ccccoviimrieircinecienisen e sves et s e e se s s e 29
Figure 2.12: 5 GENETALIOMN ..occovivverrt e et ene s bbb b s s bt st st b bbbt bt et 30
Figure 2.13: ¢, Clock Generation TIMINg ......coco ettt srece e e 31
Figure 3.1: ROIDACK COMIOL ....ooooiricc e et et e s bt e s eas e ennens 36
Figure 3.2: Rollback Amount Arbitration LOZIC ..ot 41
Figure 3.3: RoIDack ProCedUIT .....oviviee i it et s s st e s s s ass s 44
Figure 3.4: Rollback Control TIMing ... 45
Figure 3.5; Rollback Amount ArDIFAON ..ot et e e eas e e se s e e er e sne e 46
Figure 3.6: State Repair ProCedUre ... s 47

Figure 4.1: Controller FIOOMPIAN .....coociiiirree ettt ettt s sa st s st s 48



Table 2.1;
Table 2.2;
Table 2.3:
Table 4.1:
Table 4.2:
Table 4.3:
Table 4.4:
Table 4.5:
Table 4.6:
Table 6.1;

-vi -

List of Tables
Data Size Line ENCOAINE ..ot ieesisessiessssssessssssssassses e saes sessnsssessnins 9
IREEITUPE VECIOTS 1ottt ee s resrevane st e seesse e sas e e s se st s saas srea st eans saseeeseesressnseessensssbenearan 21
Comparison Logic Error Signals ... e e s e 22
Blocks in CONtrOLEr LAYOUL .......oooeiiieiiieienieiieee ettt ettt esceta st e s ene st e e basseseessrassren 49
Controller Implementation SEALISHCS .....cccoieriirereriiieeenreseeespeeestssasseesieeeeseesrrer e e s searsees 50
Area Overhead, DIMENSIONS .....cciceerrnieesieeseeiarseeesseseesuesessestesseseestasesssssessesnssessnssssassasness 50
Area Overhead, Percentage of TOtal Area .......coiivieiiieciiiiiicniceieestie e e et 51
Transistor Overhead, Number Used ........coooeiiiiiiieiie e e 52
Transistor Overhead, Percentage of Total Number ... 53

Instruction Argument DEfiMitions .........coocevviiericveiicee et e s s 64



1. INTRODUCTION

In a fault-tolerant computing system, the ability to detect errors and recover quickly from them is of
utmost importance. In many systems, checkers are placed at the outputs of each module in the system in
order to confine the error to that module and prevent it from causing damage elsewhere. However,
because module outputs must be checked before being sent to other modules, the system can experience

significant delays while the outputs are being checked.

One way to get around this problem is to do the checking at the same time the outputs are being sent
to other modules. In this case, the results of the checker may not be ready until several cycles later, at
which point an error may have propagated o other modules. Thus, it will be necessary to undo the results

of the last few cycles and restore the state of the system to a known error-free state.

1.1. Micro Rollback

A method of backing up a CPU several cycles, known as micro rollback, is described in[8]. It
basically involves the placing of an N -entry delayed write buffer (DWB) at each register that holds
information across cycles (e.g., program counter, status register, instruction register, etc.). Figure 1.1
shows a circuit diagram of a typical DWB. When a register is written, it is actually written into the first
entry of the DWB. At each subsequent cycle, the entire DWB is shified by one entry, and the last entry is
written into the actual register. Along with each entry in the DWB, there is a bit indicating whether that
entry is valid or not. The bit is normally set when the register is written; to cancel the results of the last
M cycles, the valid bits of the M most recent entries are cleared (where M <N). When the register is
read, a selection circuit picks out the most recent entry with a set valid bit. In addition, when the DWB
shifts, the actual register is written only if the valid bit is set. The same idea is also used in the register

file, except that the DWB entry includes the address of the register being written each cycle.

The Mirror Processor is a VLSI processor employing hardware support for micro rollback, based

largely on the Berkeley RISC II processor(4]. One of its intended goals is to evaluate the arca and



...........................................

3
invalidate decoder = rollback amount
1 l 1
invalidate} linvalidate| |invalidate
] | |
load
valid | wvalid [ wvalid
) £ N I I
| vV 3
Il !
L { :
sclect—g*’I $ S+ 1 select 1 select [ select
H i
K !
i, select 1
L gate I
L':";"‘_‘"_"';":";"'_"'_"'_'_":";"' S 'i' """" '-IL- l A S S
| A i 1
| load update gate | . load gate |
1 ! t !
—J L - - t !
d— d 47 awb dwb dwb | + 9 |
| i
I I | b I
| dwb bus | 1 data us |
L o o o et e e e e = = L o o e e e e i my =

Figure 1.1: Prototypical Register with Delayed Write Buffer
performance overhead of micro rollback. This report describes the implementation of the controller of
the Mirror Processor, details its rollback and recovery schemes, and presents some issues related to the

testability of the processor.

1.2. Overview of Mirror Processor

The Mirror Processor (Figure 1.2) is an implementation of a fault-tolerant RISC processor
employing hardware support for micro rollback. It is designed to detect and recover from all single

transient errors and, in some cases, multiple transient errors without the need for extensive error-



-3-

correction code circuitry and without the sacrifice in speed suffered by checking data before its use.

roltback
logic ﬂ—.
busIR
lrollback mem | l l l ‘[
mem | ™ cond P&s Ptfq next busQUT
l state
L .
11 post-FSM AL™ %7
| TLQ
: M M busIN
pad
I L | 1 AD
| RFrRAN FHpPswl{ MM Y[ bDiMM_ o | parlN | i
1, CMP
RF DEC SDEC}' i"ls;kt__ | R | ISVAN
o
i _busD 1 3
- % .F : L L
busA .
\7 busS —>
busB A 3 3 I 1 )
L busR | 5 L LY [busOuT
IN /
Register File parB  parD SHIFT ~ ALU SDR  PC  MAR parOUT

Figure 1.2: Mirror Processor

1.3. Main Processor

At its core, the processor is a 2 um CMOS implementation of the Berkeley RISC II processor
(MOSIS SCMOS design rules with A=1 um). Under basic operation it is, with a few exceptions, binary-
compatible with RISC II. Built on top of that are various error-checking blocks and delayed write buffers
which are transparent to the user. In addition, several new instructions have been added to the instruction

set for the purposes of testing the rollback logic.



1.4. Error Detection

The processor is designed for duplex operation: a master chip functions as the main processor in
the computer system, while a slave chip follows along in lock-step synchronization. The slave performs
the same operations as the master, but instead of writing its outputs to the external bus, it compares them

with the values written by the master. An error is flagged if any differences are found.

In addition, parity checkers are present in each processor to detect errors in values read out of the
register file and in values read from the external input data bus (bus/N). Each processor does its own

local parity checking and flags an error if a parity error is detected.

1.5. Error Recovery

An external rollback signal is made available to the entire processor system (CPU, memory
manager, instruction cache, etc.). Whenever either processor detects an error, it pulls the roliback line
and forces the entire system to roll back a certain number of cycles. If the rollback occurred because of a
comparison error or because of a parity error on the external input data bus, it is assumed that a transient
fault caused the error and that simply rolling back should remove the fault. However, if the error was a
parity error on a register file read, the faulty value may have been present in the register file for a long
time prior to its being read, so simply rolling back may not remove the fault. In this case, the processor
with the good value must send that value to the other processor. This procedure is known as state repair,

and it takes place after any rollback caused by a parity error.



-5.

2. THE MIRROR PROCESSOR CONTROLLER

This chapter presents the Mirror Processor controller design in detail. The data path design is

presented in [5].

2.1. Controller Design Considerations

There were many possible ways that the controller for the Mirror Processor could have been
implemented. As the processor is a RISC processor, there are relatively few instructions, and all of them
are simple instructions in the sense that they only perform one operation. Because of the simplicity of the
instruction set, it is not necessary to build a microprogrammed controller; it is possible to efficiently

hardwire the controller, which can then run significantly faster than a ROM with a microprogram.

The original RISC II has a single generalized decoder to decode the opcode and generate 39 control
bits which are then AND'ed with the various clock signals to produce 100 control signals (including
multiple copies, clock signals, and control bits with no clock qualification). Unfortunately, such a simple
scheme could not be used in the Mirror Processor controller. Many of the control signals are dependent
not only on the opcode but also on the various rollback and repair signals. In addition, the Mirror
Processor has about double the number of control bits as RISC II, due to the additional logic required to
implement error detection and micro rollback. In particular, the controller takes 69 inputs and generates
134 control signals, 68 of which are internal to the controller and 66 of which are sent to the data path. In
addition, it generates 17 external signals and four clock signals. Note that unlike in RISC II, there is no
distinction between *‘control bits'’ and ‘‘control signals’’; every signal already has some sort of clock
qualification as it is generated.

A simpler way to implement the control would be to use one or two PLA’s (Programmable Logic
Arrays) or ROM’s to generate all of the control signals. As noted before, because the Mirror Processor
has a short cycle time and relatively few control signals, a ROM would require too much time to operate

and take up too much area to be a practical solution.



-6-

PLA’s, on the other hand, present the best compromise between speed/area and design/layout effort.
Thus, it was decided that as many of the control signals as possible would be generated directly by
several PLA’s. However, several of the inputs to the controller become valid much later than the
instruction. In order to allow the PLA’s enough time 1o evaluate, it was decided not to have them wait for
the late signals; instcad, those control signals depending on the late inputs would be generated by random
static logic. In addition, some signals have to become valid as soon as possible after the arrival of the

instruction. These signals are also generated by random static logic.

2.2. Description of the Controller

The controller of the Mirror Processor is shown in Figure 2.1. Instructions come in from the pads
on busIN and are latched onto bus/R. A four-state finite state machine keeps track of whether the
processor is executing a normal instruction, executing the second cycle of a two-cycle instruction, or
performing state repair. The Next State Logic block computes the next state based on the incoming
opcode and on the repair signals generated by the Rollback Logic (Chapter 3). The next state, plus the
opcode and the repair signals, are sent to three PLA’s that decode the opcode and generate the majority of

the control signals used by the data path.

Of the signals that aren’t generated by the PLA’s, most of the rest of them are generated by the
Post-FSM Logic and Valid Bit Logic blocks. They produce signals that are dependent on values coming
from the Rollback Logic, Interrupt Logic, and Condition Code Logic blocks, all of which produce their
results well after the instruction arrives. The Valid Bit Logic block generates the valid bits used by all of
the DWBs, while the Post-FSM Logic block generates the rest of these ‘‘late signals.”” There is, in
addition, a separate Condition Code Logic block used to analyze the condition codes from the PSW and
generate a condition bit used to control jump instructions; it is separate from the PLA’s because it too
depends on signals that arrive long after the instruction. Finally, a separate Memory Control Logic block
generates the signals used to initiate a memory access; they are not generated by one of the PLA’s

because they are needed as soon as possible after the arrival of the opcode.



-7-

The remaining blocks handle inputs from external sources other than the incoming instruction. The

Interrupt Logic Block monitors the extemal interrupt, reset, and shutdown lines as well as signals from

the data path indicating a trap condition. It decides if the current cycle will be interrupted and gates both

the calli instruction onto busIN and the proper interrupt vector onto busOUT. The Rollback Logic block

serves double duty: it monitors the internal parity and comparison error signals and signals a rollback to

the rest of the system if an error is detected, and at the same time it monitors the external rollback and

rollback amount lines and signals the rest of the processor that a rollback is taking place if the line is

pulled. Finally, a DWB saves the contents of bus/R and one of the state bits each cycle and restores them

on a rollback.
(3 (state.int)
IN
bus 32 PADS
d.IRlatch
(s(load Riatch)— / condition codes . interrugt b A
4 internal error i (s, nt)
signals extemal signals 0
(4(gate.IRlatch) L7 is ho 04
Condition — initiate rollback Interrupt
b Code condition bit Rollback Logic — rollback amount Logicp 2
Logic = initiate shutdown
repair signals
i A& 6_and rollback bit EF’% E?_%
14 .
busiR state.rb state.rb state.int
state.int — & master/slave
i 5 : busOUT } =
'9 ) state. wail
Next State 3 ¢4_¢
Logic RE 1] 3l s TR E 4 J7 32t [ s
! Il e Memory
s L2 | ¢, PLA LR PLA [ PLA LOgiC
3
— P L
” 2 & ) [ - ]
14 ¢3 3 23 £21
” I 2 12 2 1 ] 5
_ et cond.
[ Rollback Memory Valid [ state.tb Post-FSM bit
Bit  p——state.int Logic
14 Logic statc. wait :{W
i3
& 17 118 lw pre ba 412 47
- v v v b
Figure 2.1: Controller
The generation of the four clock phases is done on-chip in the Clock Generator block. However, in




-8-

order to allow more control over the clock signals when testing the processor, separate input pads for each

of the four signals is provided as well.

The implementation details of each of the controller blocks are given in Section2.4 and

summarized in Section 4.

2.3. Controller Timing

This section details the timing of the Mirror Processor from the point of view of the controller.

Timing as it relates to the data path is covered in greater detail in [5].

2.3.1. Processor Timing

The processor runs on a four phase clock with a total cycle time of 100 ns. The first and third
phases (¢; and ¢4) are 30 ns each (25 ns high, 5 ns low), and ¢, and ¢, are 20 ns each (15 ns high, 5 ns

fow).

2.3.2. Memory Interface Timing

Figure 2.2 shows the timing used by the processor to communicate with the memory system. The
address of the word, halfword, or byte being accessed is gated onto the address/data lines, the data size
lines are set (the encoding is the same as in RISC II; see Table 2.1), and the readfwrite line is set to
indicate the type of access (0 = read, 1 = write), after which the address enable line is asserted. It is
assumed that the memory does not run on the same clock as the processor, so the address enable line is
present to tell the memory when to begin the access. On the leading edge of the address enable, the
memory can assume that the address and the read/write signal are stable and latch them in. If the
memory cannot retrieve the requested data (on a read) immediately, it has approximately 25-30 ns to
assert the wait line (45 ns minus time to go through pads minus delay from rising edge of ¢; to rising
edge of address enable), as the processor must latch the wait signal at the end of ¢,. If the memory can

respond immediately and the access is a read, it should begin gating the data onto the address/data lines



-9.

immediately after the falling edge of address enable and continue to do so until the falling edge of the
data enable signal. If the access is a write, the memory should wait until the rising edge of data enable,

at which time the data to be stored should be stable on the address/data lines and can be latched in.

Data Size | out.size<l> | out.size<0>
word 1 0
halfword 0 1
byte 0 0

Table 2.1: Data Size Line Encoding

Addresses are gated onto the pads during ¢4, and the address enable line is asserted shortly after the
trailing edge of ¢4. The data on a read is latched in by the processor on ¢s, while the data on a write is

gated onto the pads beginning ¢,, with the data enable signal asserted shortly after the trailing edge of ¢..

The address enable line rises on the falling edge of ¢4 and falls on the falling edge of ¢;; the
memory must latch the address within that time (30 ns). It then has until the falling edge of data enable to
gate the data onto the address/data lines; this will occur 50 ns after the falling edge of address enable
(i.e., on the falling edge of ¢3). If the memory cannot respond in that time, it must signal a wait state.
Data enable is asserted only on cycles that are not wait cycles, so if a wait state is signaled, the memory
will then have one cycle plus 50 ns to respond. Note that the address enable line will not be reasserted
during the wait cycle. In the case of a write, the data to be written will be gated onto the address/data
lines during ¢, regardless of whether the cycle is a wait cycle or not; however, the data enable line will
not be asserted on a wait state, just as in a read. Once data enable is enabled, the memory will have 30 ns
to latch the data in.

The short length of time allowed for the memory 1o raise the wair signal is a result of certain
implementation constraints. Section 2.5 describes these constraints and presents a possible solution to

this problem.



-10-

100 ns

II"—25ns—'l “‘15ns"| |‘—25ns—'1 "—ISns-'|
—j L) I

Address i ADDRESS jJ—r+————

%, L

1
H
'
1
H
;
14
4. 1.4
H
\
}
\
1
H
|
|
i
o A
;
44
F

! Lo ! | _
prommrmm————— gy Yy N T ‘
Read AU NN\ DATA /™= :

]
Write +

R N
R/W i ) o

Address -t
Enable ]

Enable _. ' !

P
........... SO SO SO S
Data Pt | l

) .- .7.. o _....,....1 - T :..... ;..............-.... :.......

Figure 2.2: Memory Interface Timing



-11 -

2.3.3. Normal Instruction Cycle

Figure 2.3 shows the timing of the various blocks in the controller during a normal instruction
cycle. The Mirror Processor has a pipelined instruction fetch/execution cycle: as one instruction is being
executed, the next instruction is being fetched. The instruction fetch begins on ¢4, when the address of
the instruction to be fetched is gated onto busOUT and through the pads. If the memory cannot respond
with the requested data that cycle, it raises the wait line, which the controller latches on ¢,. If the wait
line is high, the state.wait bit is set, and the processor does nothing except shift the DWBs (with valid bit
= () until the next ¢,, when the wait line is latched again. If the memory can respond, the incoming
instruction is gated onto bus/N and passed straight through onto bus/R during ¢5. As the opcode is
arriving on bus/R, the Next State Logic computes the next state, and its output is latched on the falling
edge of ;. While all this is happening during ¢;, the $4 PLA begins precharging. It evaluates and
latches its outputs on ¢4, which is when the ¢; PLA’s precharge. These PLA’s evaluate and latch their
outputs on ¢;. Meanwhile, the Memory Control Logic also evaluaies on ¢4, just in time generate the
signals needed for the next instruction fetch. The Condition Code Logic PLA precharges ¢, and
evaluates ¢3, in time for the condition bit to determine which address to gate out on ¢4 for conditional

jumps. Note that every PLA evaluates every cycle, regardless of whether or not it is a wait cycle.

The sequence for a two-cycle instruction (load, store) is only slightly different. Because of the
instruction fetch pipeline, the instruction following the load/store amives on busIN during ¢; of the first
cycle of the load/store. However, it is not decoded until §; of the second cycle, so it must be stored
somewhere. At the same time, the opcode of the load/store is re-decoded during the first cycle, so it must
remain on busIR across two cycles. Thus, during the first cycle of the load/store, the next instruction is
latched into the [Rlatch but is not gated onto bus/R. During the second cycle, when busIN will have data

during ¢, the IRlarch is not reloaded, but its value is gated onto busiR.

The instruction execution timing during ¢4 is constrained by certain implementation details and

impacts greatly on the controller’s critical path (Section 2.4.12). Section 2.5 describes possible



-12 -

)

LY

2

Q4

¢4

e

I.-\I.

LoadbusiR

S

Generate -4

{
1

Next State....
¢sPLA L.

Precharge -----

Evaluate-----2------

04 PLA....
Precharge..... [P S
&, PLA ... '
Evalugte ---i----sereetrrememmmmm oottt
o, PLA__. L i

— e

—g—t

- Iml.J N

o —a— -

Load Rollback"“'%“'"““"'“"“""' T
L
Update Roliback-—-orrrrrmrored s
L
La[ch Extema]-----A:--------‘---------—A----- S S

Rollback.-....i

Latch Imerrupt"-"‘"""-"---"--'"------ "““"“‘""""‘."“"""“““'““""'"“ oot

Signals.....i

MemOry -3 o s
Access

Memory-...

Memory -
Codes.....|

Latch Condition -4

L =

- —d—f - ——t-

i
|
i
l
i
|
1
1
!
|

Evaluate Condition -
Code Logic--.-}

|

R
|
L

Gate CALLI:__,

:
——
1
H
'
H
H
e —
i

Gate Inlerrupt---"‘_'"--"--"""-----""

Vector-..

Figure 2.3; Control Timing



-13-

alterations to the Mirror Processor’s design that could improve the critical path and also allow the

memory a longer time to assert the wait signal.

2.3.4. Interrupts and Traps

The interrupt logic monitors the external Interrupt Request (/RR), shutdown, and reset lines, as well
as various lines from the data path indicating a trap condition. All are latched on ¢,, at which time the
internal interrupt signals are sent to the rest of the processor. If the interrupt or trap is taken, a hardwired
calli instruction is gated onto bus/N during ¢ in place of whatever instruction would normally be gated
on from the pads, and an interrupt vector corresponding to the type of interrupt or trap is gated onto
busOUT during ¢4. The instruction that is actually interrupted is allowed to finish, but an invalid bit is

shifted into the register file DWB, effectively canceling the results of the instruction.

The handling of interrupts after this point is exactly the same as in RISC II; all of the caveats that
apply to RISC II apply to the Mirror processor as well. For instance, the first instruction of every
interrupt handler must be a getlpc, typically to r24, in order to save the address of the instruction being
fetched during the execution of the interrupted instruction. In addition, all interrupt handlers must end

with the following sequence:

Jmpx aiw,0(r25)
reti alw,0(r24)

in order to restore the sequence of memory accesses prior to the interrupt. Finally, the interrupt handler
must be careful to save its own state before re-enabling interrupts and make sure there are more free

register windows before making a subroutine cali [4].

There are, however, two cases where the interrupt sequence differs from the RISC II scheme. Two
of the trap signals, ‘‘bad shift amount’” and ‘‘address misalignment,”” cannot be generated by the data
path before the end of ¢,. In these cases, they are latched ¢, and the trap is taken in the following cycle.
However, because the point at which the trap is taken is one cycle after the instruction that caused the

trap, more needs to be done in order for the trap handler routine to determine the instruction that caused



-14 -

the trap. So, in addition to latching the signals ¢, invalid bits are written into every DWB on ¢,, when
they load their valid bits. Thus, there will be no state change after the trap is detected, and the trap

handler will be able to find the correct instruction.

Reset and shutdown are handled in exactly the same manner as other interrupts, except that they

have higher prioritics than any other type of interrupt or trap.

2.3.5. Rollbacks

The rollback memory attached to bus/R operates in exactly the same way as the Instruction Register
in the data path [5]. Tt loads from bus/R on ¢, and updates on ¢,. When a rollback occurs during ¢, the

valid bits are cleared (set to 0), and the most recent valid entry is selected and gated onto bus/R all on ¢s.

2.4, Details of Controller Implementation

This section presents detailed descriptions of each of the blocks in the controller except the rollback

logic, which is described in Chapter 3.

2.4.1. busirR

busIR stores 14 bits of busIN: the opcode (seven bits), the Set Condition Codes (SCC) bit, the Data
Immediate (/MM) bit, the condition field (four bits), and the five-bit destination register (Rd) field, four
bits of which coincide with the condition field. All of the other blocks in the controller read off of this
bus, which serves to buffer the controller from bus/N during loads, stores, and state repairs. Loads and
stores are two-cycle instructions; the opcode must remain available for two cycles because the PLA’S
decode the opcode every cycle, regardless of what else is going on that cycle (e.g., state repair, rollback,
interrupt, etc.). In addition, the destination register for a load must be available during the second cycle
for the incoming data. During a rollback, the value of busiR is restored by the controller’s rollback
memory. If a state repair takes place after a rollback, busiR keeps the instruction available while the data

word being repaired is read in on busiN.



-15-

2.4.2. busIR Latch and Driver

Nommally, the interface between busIN and bus/R acts as a transparent laich, while during loads and
stores it holds the next instruction over one cycle as described in Section 2.3.3. The driver is similar in
design to the busIN driver[5], with the addition of a latch between bus/N and the driver; see Figure 2.4,

SPICE runs show that it takes 8.0 ns to charge busIR from zero to one.

foad gate 16:8
busiN ~I>O—§ a ) H[ w=64),

— busiR

Do o

gate

Y

Figure 2.4: busiR Latch and Driver

2.4.3. Next State Logic

The state of the controller logic is determined by a four-state finite state machine, with each state
representing the type of cycle that is currently executing. Most cycles are represented by the normal
state, that is, a normal one-cycle instruction. The second cycle of a load or store instruction is represented
by the suspend state, so called because the instruction fetch that would normally take place during that
cycle is replaced by the load/store access instead, so the instruction fetch pipeline is temporarily
suspended. The other two states represent the first and second state repair cycles (repairl and repair2
respectively).

Although four states can be represented by two bits normally, three bits must be used in this case,
one to distinguish between normal and suspend states (bit 0), and two more to indicate repair/, repair2,
or no repair. The normal'suspend bit is saved each cycle in the controller’s rollback memory and is

restored on a rollback. If a state repair takes place after the rollback, the bit must be remembered across



-16 -

both cycles of the repair since it will not be restored again after the repair, so it is carried along
unchanged through both cycles. Bit 1 is set for repairl, while bit 2 is set for repair2; neither bit is set in

the absence of state repair.

The next state is computed during ¢4 based on the current state, the repair signals set during ¢, and
the opcode of the instruction being executed in the current cycle. In normal operation, the only time the
state needs to change from normal to suspend is when the next cycle will be the second cycle of a load or
store. Only one opcode bit (bit 5) is needed to distinguish between load/store instructions and all others,
so the suspend state will be true only if the current state is normal, and bit 5 of the opcode that arrived in
the previous ¢, is set. Thus, opcode bit 5 (op5) is latched every ¢, to be used in the following ¢3;. The
actual next state computation is implemented in random static logic, with its outputs latched ¢; and re-
latched ¢, before being fed back around as inputs (see Figure 2.1). Note that the re-latching during ¢,
could just as easily have been done during ¢, or ¢4 the phase in which to do the latching was chosen at

random.

The suspend and op5 bits are latched one more time during ¢; before being sent to the Controller
Rollback Memory (Section 2.4.11). Since the Rollback Memory is loaded during ¢, and the next op5 bit
is also latched during ¢, this latch prevents the opS5 bit from being overwritten before is it written into the
Rollback Memory. It was later noticed that the latch is not needed for the suspend bit, and in addition, it
would not be needed for the op5 bit if it were latched during ¢, or ¢, instead. However, there was

insufficient time to make the necessary design modifications.

2.4.4. PLA’s

Most of the control signals used by the data path are generated by three domino logic PLA’s. The
%4 PLA, the smallest of the three, generates the signals that must be valid during ¢,. It precharges during
5 and evaluates during ¢4, thus requiring its inputs (including the three bits of next state) be stable before

the rising edge of 4. The ¢;, and ¢, PLA’s generate the signals that are used in the other phases.



-17-

Because there are a large number of such signals, they are divided up between two PLA’s in order to
avoid having a very large PLA with a long evaluation time. The two PLA’s precharge during ¢; and
evaluate during ¢,. Most of their outputs are also latched during ¢,; however, several of the ¢;, PLA's
outputs are not laiched until ¢, because their previous values are being used §,. Specifically, the PSW
update and the register file write both take place ¢, so signals pertaining to these blocks are delayed

until ¢,.

The PLA’s were generated by feeding the output equations to eqniott {6] and then passing the output
to espresso [6] with the *‘output phase optimization’ option to minimize the number of product terms.
magic layout was generated with mpla[6] using a template originating from Caltech but modified
heavily. Figure 2.5 shows a ‘‘worst case’” bit slice of the ¢, PLA. It combines the input with the largest
gate load, the NAND term with the greatest number of series transistors, the NOR-plane input with the
largest gate load, and the NOR term with the largest drain load. SPICE simulations of the worst cases of
each PLA show evaluation times of 13.0ns, 165 ns, and 18.5ns for the ¢4 ¢, and ¢y, PLA’s
respectively. The setup time for the ¢4 PLA is 7 ns (i.e., the input must be stable 7 ns prior to the rising
edge of the evaluate clock, which is ¢4 in this case; see Section 2.4.12); the setup times for the ¢, PLA’s

were not calculated because their inputs must already meet the ¢4 PLA setup time.

2.4.5. Condition Code Logic

This block of logic takes as input the four condition code bits from the PSW and the four bits from
the condition field in the instruction and produces as output one bit indicating whether or not the
condition codes satisfy the indicated condition (in the case of a conditional branch). The output bit is
AND’ed with some of the PLA outputs to produce signals required at the beginning of ¢4 (these signals
determine which address is gated onto busQUT for the next instruction fetch), so the output of this block
must be ready by the middle of ¢;. As we have limited ourselves to static gates of no more than four

inputs, a static NAND/NOR tree implementation of the logic would require five levels of large, four-input



-18 -

1 other inputs })—&
4 4+ 1 & 1 & _t _1 _1 _I

gmmmmz_i—lzs,bc 1
Vb

%

o o

x28

O

in out
Figure 2.5: PLA Bit Slice (¢, PLA)
NAND and NOR gates, which would be slow and which would require a lot of area. However, all of the
inputs can be ready by the end of ¢,, so dynamic logic can be used instead. The logic has been
implemented as a PLA with eight inputs, one output, and 18 product terms, generated in the same manner
as the other two PLA’s. The PLA precharges ¢, while latching its inputs at the same time, and it
evaluates and latches its outputs during ¢,. SPICE runs show the output is ready 7.75 ns after the rising

edge of §,.

2.4.6. Post-FSM Logic and Valid Bit Logic

Some of the control signals used by the data path are dependent on the condition bit, the rollback
signal, the interrupt signal, and the wair signal, all of which become valid long after the PLA’s evaluate.
In order to allow the PLA’s to evaluate without waiting for them, these control signals are produced
outside of the PLA’s by the Post-FSM Logic and Valid Bit Logic blocks. The valid bits shifted into the

DWBs each cycle are produced by the Valid Bit Logic block, while the rest of them are produced by the



-19-

Post-FSM Logic. In either case, every signal is produced by AND'ing the required condition bit(s) with
the decoded opcode signals coming from the PLA's. Static random logic is used since the inputs armive at

different times.

2.4.7. Memory Control Logic

Five of the bits that control the memory access (read/write, instruction/data, data size (2 bits),
address/data pad enable) must be valid as soon into ¢4 as possible, since the instruction fetch begins that
phase. They cannot be included in the ¢, PLA because that PLA requires most of ¢4 to evaluate, so
instead they are generated by the random logic in the Memory Control Logic block. Both dynamic and
static implementations were considered. It was found that because all of the inputs are ready before the
end of ¢4, the static version was faster than the dynamic version (the delay being only the delay through a
latch, rather than the time to discharge the output line plus the delay through the latch), so the static

version was used.

2.4.8. Memory Enable Signals

The two memory enable bits, address enable and data enable, are also generated in the Memory
Control Logic block. The memory interface scheme requires that the enable signals not go up until the
address or data is stable on the address/data lines, so the enable signals cannot simply be tied to the rising
edges of ¢4 and ¢,; they must be delayed until it is certain that the memory sees the proper address/data
value on the lines. At the same time, the enable signal should rise as soon as possible after the
address/data value is ready in order to give the memory as much time as possible to respond to the
request. One way to do this would be to self-time the delay, i.e.,, use the worst case delay on busOUT to
trigger the enable signal (assuming the delay through the pads is equivalent for all pads). However, none
of the busOQUT lines can be used to directly trigger the signal because it cannot be guaranteed that at least
one of the lines will have a transition, so a delay circuit featuring an exact replica of one bit of busOQUT

must be designed in order to implement this scheme. This would take up far too much area in the



-20-

controller, so the self-timing approach was dropped.

The current implementation has the address enable line being enabled from the falling edge of ¢4 to
the falling edge of ¢,. SPICE runs have shown that this gives an adequate delay, although it doesn't give
the memory quite as much time to respond. The circuit diagram is shown in Figure 2.6. The falling edge
detectors use delay inverters [5] (see Section 2.6) to delay the complement of the clock signal long
enough to generate a pulse on the falling edge. The datra enable circuit is similar, except that it is valid

from the falling edge of ¢, to the falling edge of ¢5.

enable [

: D>

v

Figure 2.6: Memory Address Enable Bit

2.4.9. Interrupt Logic

This block, implemented in static random logic, takes all the various interrupt and trap condition
signals and sets the internal interrupt bit, state.int, In the case of a reset or a shutdown, the internal reset
or shutdown bit is set instead (state.reset and state.shutdown respectively). The Interrupt Logic also
determines the interrupt vector to gate onto busOUT. Since all of the vectors differ only in three bits,
only those three bits need 1o be generated and sent to the busQUT driver in the data path. A list of all
possible interrupt and trap conditions and their respective interrupt vectors is shown in Table 2.2. It
should be noted that the interrupt vectors shown differ from the RISC II vectors in that they are placed in
the lower half of the memory space (locations 0x0 to 0x40), while in RISC II they were placed in the

upper half (0x80000000 o 0x80000030). This was done in order to simplify the logic gating the interrupt



221 -

vector onto busOUT. 1t should also be noted that only reset and shutdown traps are non-maskable; all

others can be masked out by the interrupt enable bit from the PSW.

Cause Vector
Reset Pin pulled
illegal opcode
privileged opcode 0x00000000
address misalignment
illegal shift amount
Interrupt Request Pin pulled 0x00000010
Register File window overflow 0x00000020
Register File window underflow | 0x00000030
Shutdown Pin pulled 0x00000040

Table 2.2: Interrupt Veciors

2.4.10. Comparator Logic

Each output pad has associated with it a small amount of comparison logic. When the processor is
operating in slave mode, each output signal value is compared with the value present on the pad (which is
the value written by the master), and if they differ, an error signal corresponding to that pad is set. Most
of the comparison error signals are routed directly to the Comparator Logic block (Figure 2.7 and
Table 2.3), where they are OR'ed together to create a global comparison error signal (error.CMP). The
exceptions are the multi-bit vectors: data size (2 bits), state compression (4 bits), and address/data pads
(33 bits). In each case, the error signals from the individual pads are first OR’ed together at the pads, and
only a single error signal representing the entire vector is sent to the Comparator Logic block (except for
the address/data lines, where three signals are sent; see below). A more detailed description of the
comparison logic at the pads is presented in [5].

Because of the large number of address/data pad error signals, there was not enough room at the
pads to OR all of them together into a single error signal. Instead, they are OR’ed down to three signals
(one representing bits 0 to 15, one representing bits 16 to 32, and the error signal from the parity bit pad)

which are then sent to the Comparator Logic block. The three signals are OR’ed together here into the



gate.busOUT _pad AD4 e

error.padAD

gate.busOUT_padAD2 *

state.shutdown

.22 -

[

error.state
errorA

error.sysmode

other error
signals

state.th
state.shutdown

state.rb

state.shutdown

Figure 2.7: Comparator Logic Block

Error Signal Signal(s) Being Compared
error AD address

error.enb.addr | address enable bit
error.enb.data | data enable bit

error.id instruction

error.ira interrupt acknowledge signal
error.rw read

error.size data size

error.state state compression bits
error.sysmode | system mode bit

error.busA busA parity error
error.busB busB parity error
error.busOUT | busOUT parity error

Table 2.3: Comparison Logic Error Signals

5]

error.CMP

final error signal (error.padAD).

Most of the error signals are OR’ed together in a static OR tree and latched ¢,. After the internal
rollback and shutdown lines have been set during ¢, the comparison error signal is ANIY’ed with them
and latched again on ¢, after which it is sent directly to the Rollback Logic (Chapter 3). The state
compression and system mode bit error signals cannot be ready by the end of ¢, so they are OR’ed in
with the ¢, error signal after the ¢; latch. In addition, because the state compression errors are ignored
during shutdowns, the state compression error bit (error.state) needs to be AND’ed with state.shutdown.

However, because state.shutdown changes during ¢,, and error.state does not become valid until



-23 -

sometime into ¢,, state shutdown needs 10 be saved. save.shutdown saves state.shutdown during ¢, and is
then AND’ed with error.state when it arrives. Finally, because the address/data lines are used twice per
cycle, the error signal from those lines (error.padAD) is latched during both ¢, and ¢4 (for address and
data errors, respectively), conditioned on whether or not a value is being gated out during that phase.
gate.busOUT padAD4 is asserted during ¢4 and ¢; when an address is being gated out, and

gate.busOUT _padAD?2 is asserted during ¢, and ¢; when data is being stored.

In addition to detecting comparison errors on external signals, the Comparison Logic block also sets
the error signals for parity errors on busA, busB, and busOUT. The parity bits read out of the register file
are sent to the Comparison Logic block along with the new parity bits generated by the data path after the
register read and compared. They are XOR’ed together, and the appropriate error signal is set if they
differ. The parity bit calculated for busOUT during the second cycle of a state repair is XOR'ed with the
newly-calculated parity bit of the value read from the register file the previous cycle; the busOUT error

flag is set if the bits are different. Section 3.2.4 describes the busOUT parity error in more detail.

2.4.11. Controller Rollback Memory

The fourteen bits of busIR, plus the normal/suspend bit and opcode bit 5 of the previous cycle, are
saved in a DWB each cycle and restored on a rollback. The controller DWB behaves in exactly the same

way as the IR, loading on ¢, and updating on ¢,.

During normal one-cycle instructions, the controller DWB contains the same information as the IR
except for the state bit, since busiR is loaded directly from bus/N. Thus, in those cases the controller
DWB is completely redundant and not needed. However, during the first cycle of a load or store
instruction, busiR and busIN will have different values: busIR will hold the load/store instruction across
to the second cycle, while the next instruction arrives on bus/N. When rolling back to that second cycle,
both the load/store instruction and the next instruction need to be restored. In this case, the controller

DWB is needed to restore the load/store instruction while the IR restores the next instruction.



_24-

2.4.12. Critical Paths

The main critical path for the controller occurs during ¢5, when the instruction arrives on busiN.
Because the PLA’s are dynamic, the inputs cannot change during the evaluate phase. In the case of the ¢,
PLA, it evaluates during 4, so its inputs cannot change after the rising edge of ¢4. In addition, there is a
sctup time associated with the inputs, such that if an input changes after the minimum setup time, the
PLA may not function properly. For the PLA’s used in the Mirror Processor, the worst-case scenario
happens if the input closest to the precharge transistor in the AND plane changes to 1 after the precharge
clock has been de-asserted. If the node on the other side of the AND plane transistor for this input
(node 24 in Figure 2.5) was set to 0 in the previous cycle, and all the other inputs are 0, then the
precharged node (node 25 in Figure 2.5) may incorrectly discharge. Thus, the minimum setup time is the
latest time prior to the rise of the evaluate clock that the input can change without causing the precharged
node to discharge. For the ¢, PLA, the input must be stable at most 23 ns into ¢5. This results in the
following critical path: the instruction arriving on the address/data pads during ¢3 must go from the pads

to busiN 1o busiR to the ¢4 PLA and be stable by 23 ns into ¢.

The critical path during ¢, is set by the evaluation time of the ¢, PLA, while the time required to

perform rollback amount arbitration sets the constraints for ¢, and ¢, (see Section 3.3.17).

Another critical path during ¢, resulted in the removal of the conditional retum instructions.
Because the PSW updates its condition codes during ¢, and the interrupt logic sets state.int during ¢, it
would be necessary to evaluate the condition bit, increment the Current Window Pointer in the PSW,
detect a register window overflow, and cause a trap all within ¢,. Since this was clearly not possible
given a 15 ns ¢,, it was decided to make retumns unconditional. Thus, the window pointer could be
incremented without waiting for the condition bit to be evaluated, and an overflow condition could be
detected much sooner in ¢,. In addition, the evaluation of the condition bit could be moved to ¢, thereby

allowing it to be implemented as a dynamic PLA.



225 -

2.5. Alternate Wait State Timing

Because the memory is not given very much to time to assert the wait signal, it would be preferable
to latch the wait line one phase later, during ¢4;. However, this is not possible with the current controller
implementation. Because the PLA's evaluate every cycle regardless of whether or not it is a wait cycle
(Section 2.3.3), bus/R must not be reloaded during ¢4 of a wait cycle; otherwise, the PLA’s will receive
garbage input. Since it is necessary to know whether or not the current cycle is a wait cycle before ¢5, the

wait line must be latched during ¢,.

One possible way to allow the wair line to be Iatched during ¢; would be to 1oad bus/R regardless of
the value of the wait line and then disable the latching of the PLA, Memory Logic, and Condition Code
Logic outputs during a wait cycle. The outputs would then remain the same as in the previous cycle, as in
the case of the current implementation. In addition, the Register File Translator in the data path [5] would
have to disable the latching of the destination register number off of bus/N during a wait cycle. Since
nothing else is dependent on the wait signal being set during ¢4, the latching the signal can be delayed

until then.

Another way to allow latching of the wait signal during ¢; would be to eliminate the need to use
busiR during ¢4. Then, the loading of busiR could be delayed until ¢4, allowing the wait signal 0 be
latched during ¢4. However, the modifications to the controller design to allow this would be more than
trivial.

First, there are two blocks that read the opcode of the instruction that arrives during ¢ off of bus/R
during ¢4: the ¢, PLA and the Memory Control Logic. Under normal operation, the Memory Control
Logic outputs the same values every cycle except during the second cycle of a load or store instruction.
Thus, the only time the opcode is important in the Memory Control Logic is during the second cycle of a

load or store, during which time bus/R is not re-loaded anyway.

Of the twelve ¢4 PLA outputs, ten of them are dependent on the opcode of the just-arrived

instruction. One of them (gate.busOUT_padAD?2) differs only during the second cycle of a store, so the



-26 -

arguments for the Memory Control Logic signals apply to this signal as well. The remaining nine signals
are needed by the data path at or near the beginning of ¢,. If they were to be implemented in static
random logic, the opcode inputs would not need to be ready until the time the signals need to be ready
minus the evaluation time. Since the signals are not needed at exactly the beginning of ¢, the evaluation
time can be pushed into ¢,. If the evaluation time is made short enough and pushed far enough into ¢,
the loading of bus/iR can be delayed until after the wait line has been latched in ¢;. In order to minimize
the evaluation time, the opcode decoding must use as few gates as possible. Of the nine signals that need
to be generated, six of them control the inputs to the shifter, requiring that the logic detect an ALU
instruction, a shift instruction, or a Idhi instruction. Two of the other three signals control the window
pointer in the PSW, requiring the detection of calls and retums, and the last signal controls the selection
of ecither the PC or LSTPC (see[5] for full descriptions of these blocks), requiring the detection of the
getlpc instruction. Because of the great number of instructions that need to be detected, it would
probably require more than “‘a few'' gates to implement all the signals; however, the evaluation time

could probably still be shortened enough to allow the loading of bus/R during 4.

Although the second scheme would involve much more work to achieve, another benefit would be
to remove busIR loading from the controller’s critical path during ¢5 (Section 2.4.12). It would, however,

probably increase the critical path in ¢4, as the logic would not be given very much time to evaluate.

2.6. Clock Generation

The Clock Generator block generates the four clock phase signals used by the rest of the processor.
The block can generate all four signals from an external master clock signal, or all four signals can be
supplied externally, in which case the Clock Generator block passes them straight through. A single

clock mode bit (in.csel) determines which mode the Clock Generator will operate in.

When operating in on-chip generation mode, the Clock Generator takes two inputs: a fast

clock (¢;), which has a cycle time of 25ns and is used to generate each phase signal, and a slow



-27 -

clock (¢,), which has a cycle time of 100 ns and is used to indicate the start of ¢,. Both clocks are
guaranteed to have a 50% duty cycle, and the rising edge of the slow clock is guaranteed to occur a setup
time before the rising edge of the fast clock (although the falling edge of ¢, is not guaranteed to occur
before the rising edge of ¢,). Each clock is fed into an edge detector whose outputs serve as inputs to an
SR flip-flop. The flip-flop is set on the rising edge of ¢, and is cleared on the the falling edge of ¢;. The
output of the flip-flop is then sent into a four-stage shift register, where each stage represents one of ¢,
through ¢4 The shift register is clocked by ¢ since the output of the flip-flop is set to 1 only during one
cycle of ¢y per cycle of ¢, the first stage of the shift register will be loaded with a 1 only every fourth
cycle. Thus, on each successive cycle of ¢, only one stage of the shift register will have a 1, and the

stage with the 1 drives the signal for that particular phase.

_— d4 _ » state.phil
¢r T
da _
¢s ] S
¢f C,
» state.phi3
d4 a4
& — c
¢f Cs
Cy
» state.phi4
&

Figure 2.8: Clock Generator

Figure 2.8 shows the edge detectors, flip-flop, and shift register. Each stage in the shift register is
composed of a master-siave flip flop. The master stage is clocked by ¢ ; the slave stage is clocked by a
signal generated from ¢, (c,). Figure 2.8 also shows the logic that generates two non-overlapping clocks
from a single clock. In the figure, inverters marked with a d are delay inverters [5]; the number following

the d indicates the number of series P-transistors. A ‘‘d4’’ delay inverter is shown in Figure 2.9. Timing



228 -

I

!

Figure 2.9: d4 Delay Inverter

diagrams for the slave clock and the shift register output are shown in Figures 2.10 and 2.11.

5 - ’——ﬂ‘
] \
4 i
! \
3 - I l|
Volts o, I' C
2 — 1 !
] |
|| 1
14 '
f \
0 ] 1
| I | I | |
0 5 10 15 20 25
Time (ns)

Figure 2.10: Slave Clock Generation Timing

Because ¢, has a 25 ns cycle time, each shift register stage will hold its value for exactly 25 ns.
Since both ¢, and ¢, are high for 25 ns, the output of the ¢, and &, shift register stages can be sent
directly to the clock drivers. However, both ¢, and ¢4 are high for only 15 ns, and they must each rise
5 ns after the falling edge of the previous phase, so the shift register stage outputs cannot be used directly.

Figure 2.12 shows how ¢ is generated; 4 is generated in the same way. The shift register stage output



-20.

Volts by

R -

L

I I I T i | I
0 25 50 75 100 125 150

-

|
]
| \
| I
| 1
Volts I :
| I
| !
: ]

5
r_r"ﬂ m
4 - I :
]
3 L
Volts ' :
2 | [
] I
1 - !: ]'
tate.ph state.phid
o | | fuesp | aesh |
] I I T I I !
0 25 50 75 100 125 150
Time (ns)

Figure 2.11: Clock Generation Timing



-30-

(state.phi2) is AND’ed with ¢, however, the rising edge of state phi2 is delayed 4 ns, and the falling
edge of ¢ is delayed 6.5ns to create a signal that rises 5ns after the rise of ¢, (there is a 1ns
propagation delay) and falls 15 ns later. Because the falling edge of state.phi2 is also delayed 4 ns while
the rising edge of ¢, is not, a straightforward AND’ing of the delayed signals would result in a spike at
the output at the beginning of the next ¢ cycle. In order to prevent this from happening, the last NAND
gate is modified slightly to include the non-delayed state.phi2 as well. Thus, the ¢, output will be high
only when state.phi2 and the delayed state.phiZ are high, along with the delayed ¢;. A timing diagram of

the ¢, clock generation is shown in Figure 2.13.

ds 'C{
o ‘ {00,

a3
state.phi2 DQ—DD—DO—DO——

Figure 2.12: ¢, Generation



-31-

5 e a
{ 1
] |
I |
3 ' |
Volis ! 'y | delayed
2 ' \
| |
1 ! \
' \
0 L
T | I | T |
25 30 35 40 45 50
v
)
I [ ] I I 1
S0

Figure 2.13: ¢, Clock Generation Timing




-32-

3. ERROR DETECTION AND RECOVERY

The Mirror Processor includes two types of error detection: parity checking of the register file and
input bus, and comparison of output pins. Error recovery is accomplished by micro rollback and state
repair. This chapter details the timing of the error detection and recovery schemes, as well as the
implementation of the rollback control logic. The implementation of the error detection schemes is

detailed in [5].

3.1. Rollback Timing

3.1.1. Internal Rollback

The internal comparison and parity error signals are laiched by the Rollback Logic on ¢4 and ¢,
respectively. If any error condition is true, the external roflback line is pulled on ¢,, and the proper

rollback amount is sent out at the same time. The rollback and rollback amount lines are held until ¢,.

3.1.2. External Rollback

The rollback logic monitors the extemal roliback and rollback amount lines and latches them on ¢,.
If the rollback line is pulled, the internal rollback signal (srate.rb) is set and sent to the rest of the
processor. On ¢,, all the DWBs invalidate the indicated number of valid bits, and in the case of the
controller, busiR is restored from its DWB. If the rollback amount is greater than four, then the external
shutdown signal is pulled on ¢;. Note that because the rollback amount is latched at the end of ¢§,, any

rollback amount arbitration must be completed before then.

3.1.3. Absolute and Relative Rollbacks

In most cases, rollbacks will be absolute. An absolute rollback of n cycles means that the processor
will roll back exactly n cycles, regardless of whether any of those cycles are valid or not (see
Section 3.3.8). Occasionally, a relative rollback will be required. A relative rollback of n cycles results

in rolling back the n most recent valid cycles. The number of cycles actually rolled back will depend on



-33.

the number of invalid cycles in the recent past.

3.2. Error Detection Timing

3.2.1. Register File Parity Errors

The values of busA and busB are parity checked when they are read out of the register file during ¢,.
The error signal is latched by the rollback logic on ¢y, and in the following cycle a rollback of one cycle

takes place. State repair is then initiated (Section 3.4).

3.2.2. busIN Parity Error

A value arrives on busIN during ¢, of every cycle except a wait, and its value is parity checked on
the following ¢,. The error signal is latched the following ¢4, after which a rollback of two cycles is

signaled. No state repair is needed.

3.2.3. Comparison Errors

The comparison error signal is latched each ¢; by the Comparator Logic (Section 2.4.10). If an

error is indicated, a roliback of two cycles will be signaled. Again, no state repair is needed.

3.2.4. busOUT Parity Error

Nomally, the value on busOUT is checked by the output pad comparison logic. However, during
state repair, the comparison is disabled because each processor will have a different value on busQUT
(the one doing the restoring will have the value to be restored, while the other one will have whatever
value was left there from the previous cycle). Because the value being restored is left on busQUT
between the first and second repair cycles, any errors occurring to that value will not be caught by the
normal comparison mechanism. Thus, the parity bit that is generated for busOUT is compared against the
parity bit of the value that was read out of the register file during the first repair cycle, and an error signal

is latched ¢ if a mismatch occurs, followed by a rollback of one cycle to restart the state repair.



-34 -

3.2.5. Multiple Rollbacks

There are several situations in which errors occurring during a rollback will cause further rollbacks.
How multiple rollbacks are handled is dependent on the number of previous rollbacks and, to a certain

extent, on the type of error that caused the most recent rollback.

If a rollback occurs and an erroneous value is restored from a rollback memory, that value will be
detected either one or two cycles after the rollback (two cycles in the case of the PC, since it doesn’t get
put on the output pads until one cycle after the rollback; two cycles in the case of the controller if the
flipped bit(s) is in the destination register field, since its state compression is not exported until the cycle
after the rollback; one cycle in all other cases). In either case, the normal two-cycle rollback that would
occur due to a comparison error will not invalidate the DWB entry with the bad value. In order to recover
in this situation, it is necessary to roll back to the cycle before the one that was rolled back to previously,
thus requiring a relative rollback [5] of two or three cycles (i.e., canceling the two or three most recent
valid cycles [see Section 3.3.8]). The rollback logic has associated with it a counter that keeps track of
the number of cycles since the last rollback; if an error is indicated within two cycles of a previous
rollback and the normal amount to rollback is the same as the counter value (i.e., the rollback will be to
the same cycle that was rolled back to before), then it is assumed that the error was due to a faulty
rollback memory value, and a relative rollback to the cycle before the erroneous one is performed instead.
Note that if the second rollback is caused by a parity error, the relative rollback one cycle more will result
in the wrong register being repaired, since it is the instruction rolled back to that is used to0 determine
which register to repair. However, this will do no harm, since the correct value will be copied from one

processor to another.

It may be the case, however, that the proper cycle to roll back 10 is greater than four cycles previous
to the current one. Since it it impossible to roll back more than four cycles, the rollback amount will be
capped at four cycles, thus effectively causing a rollback to the cycle rolled back to before. In this

scenario, because the offending instruction is never invalidated, it will repeatedly cause comparison errors



-35.

and rollbacks. Since there is no way to recover from this situation, it is recessary to detect when repeated
rollbacks are occurring. The rollback logic has another counter that keeps track of the number of
rollbacks that have occurred and which is cleared every 16 cycles. If four rollbacks occur within 16

cycles, it is assumed that the processor is stuck in an infinite rollback loop, and a shutdown is signaled.

Another problem occurs if it happens that the repeated rollbacks are caused by an erroneous value in
the PSW rollback memory. When a shutdown trap is taken, all the other DWBs are loaded with fixed
values associated with the calli instruction or are not read from. The IR and the controller DWB are
loaded with the calli instruction, and the PC and MAR are loaded with the address of the shutdown
handler. The SDR is not read from during the shutdown trap, and the next access 10 the SDR will be a
write since the only time the SDR is read from is during the second cycle of a load or store, which will
not happen again until after it is loaded during the first cycle of the next load or store. The PSW, on the
other hand, only changes the Interrupt Enable and System Mode bits while keeping the previous values of
the other fields. If one of those other fields is the one that caused the repeated rollbacks, it will still be
incorrect after the shutdown, causing even more rollbacks. To correct this situation, all error checking is
disabled for three cycles following a shutdown, enough time for the shutdown handling routine to save

the PSW and store in a known good value.

Error checking is also disabled for three cycles after a reset in order to prevent random values on the

error signals from causing an unwanted rollback.

If, on a register read, both processors detect a parity error in the same register, then it will not be
possible to do a state repair, since neither processor has the correct value. However, to allow for the
possibility that one of the processors actually has the correct value and that a second transient fault may
have caused it to erroneously report an error (e.g., bit flip on busA itself and not the register, flipped
parity error signal, flipped repair signal), no state repair will follow the one-cycle rollback. Thus, the
instruction reading the registers with corrupted values will be executed again, and if the transient fault

case were true, then only one processor will signal a parity error the second time through, However, if



-36 -

both processors really do have bad values in the same register, then they will both signal a parity error on
the same bus again. This will again cause a one-cycle rollback without state repair, and so on until the

fourth rollback, after which a shutdown will occur.

33. Rollback Control Logic and Timing

This section presents a detailed description of the Rollback Logic in the controller, as well as
detailed timing of the rollback procedure. A block diagram of the Rollback Logic is shown in Figure 3.1.

external external

state.shutdown state.reset repair  rollback

l l clear state.rb  state.shutdown statcreset  signals  signals
4} | Frame M rollback bit .‘. I t f ¢ &4 4 Tepair
Counter | ¢, 2} [postrolbac o} [ Enable 2 > signals
OSL-TO; C
Courter b, Counter [ %2 %_.Input Laiches |3 rollback
state.rb [ J. amount
T'; 1ib i o state.rb
ollbac 4 .
2 Counter lRollback Enable—l valid
rollback 2 Rollback [
state.rb amount # 1 Ensble B
b : %
. ” external
L Shutdown —I internal ) Internal Rollback Select rollback

[ error signals 5 " P amount

state.rb i 41 2

4

3
clear
2 l’llj roltback bit | Enable Pads l::& 12 Rollback Amount
21

rollback bit L A:bitfation
3
external repair rollback amount
signals pad enable

Figure 3.1: Rollback Control

3.3.1. Overview

The Rollback Logic consists of two parts. The first part monitors the the error signals generated by
the parity checkers and comparators and pulls the external rollback line if an error is detected. It also
determines the amount to roll back and recognizes shutdown conditions. The other part monitors the
external rollback, rollback amount, and repair lines and sets the intemal rollback signal (state.rb). Each

part operates independently of each other, with the second part signaling a rollback to the whole system



-37-

and the first part reacting to the fact that something in the system has signaled a rollback.

3.3.2. External Rollback Signals

There are eight external rollback signals shared by all the modules in the system. The rollback line
is asserted to tell the system that a rollback is going to occur. Whenever the rollback line is asserted,
every module in the system must initiate a rollback in the current cycle. The amount to roll back is given
on the rollback amount lines and is represented as a three-bit binary number. The four repair lines
indicate which bus (busA or busB) on which processor needs to repaired in the event of a parity error. For
a particular bus, the processor that detected the error asserts its out.repairX line, where X is either A or B
for busA or busB respectively, which is then demultiplexed to assert either the repairXm or repairXs
signal, where m and s correspond to master and slave respectively. Each processor reads in all four
signals directly and can thus determine if it needs to be repaired or if it needs to repair the other
processor.

All of the external rollback signals are active-low wired-NOR lines held at one by 750Q pullup
resistors. The out line of each pad is connected to ground; when any module in the system wants to assert
a signal, it raises that pad’s enable line, thus forcing a zero onto the line. The 7509 value was chosen to
give a slightly faster fall time than rise time (the higher the resistance, the faster the fall time and the

slower the rise time) but to have a reasonably fast rise time nonetheless.

3.3.3. Input Latches

The eight external rollback signals are latched during ¢,. state.rb is set if the rollback line has been
pulled and the reset and shutdown lines haven’t (they have precedence over rollbacks). The latch outputs

are sent directly to the rest of the data path and controller.

3.3.4. Internal Error Signals

The busA and busB parity error signals are latched during ¢4, while the signals indicating bus/N



-38-

parity errors, busOUT parity errors, and output pad comparison errors are latched by the controller’s
Comparator block during ¢;. All five signals are sent directly to the Intemal Rollback block
(Section 3.3.7). In addition, the latched busA and busB parity error signals are sent to the output pads to

become the external repair signals (out.repairA and out.repairB respectively, see Section 3.3.2).

3.3.5. Post-rollback Counter

This two-bit counter keeps track of the number of cycles since the last rollback. It is set to 1 during
a rollback cycle and increments by one each subsequent cycle untit it rolls over 1o zero, after which it
stays at zero. If the Internal Rollback Logic (Section 3.3.7) detects an error when the counter is non-zero,
and the normal absolute rollback amount for that type of error is the same as the counter value minus one,

then a relative rollback is signaled instead (see Section 3.1 3).

3.3.6. Rollback Enable Bit and Counter

When a reset or shutdown occurs, intemal parity and comparison errors should be ignored for a few
cycles afterwards (see Section 3.2.5). The three-bit Rollback Enable Counter is set to four when a reset or
shutdown trap is taken and decrements by one each subsequent cycle until it reaches zero, after which it
remains at zero. Whenever the counter is greater than zero, the Rollback Enable Bit is cleared. When the

Rollback Enable Bit is cleared, internal rollbacks are disabled.
Both the Rollback Enable Counter and the Post-rollback Counter are implemented in a domino
logic PLA similar to the ones used elsewhere in the controller. The inputs are latched during ¢, at the

same the PLA is precharging, and the outputs are evaluated and latched during ¢5.

3.3.7. Internal Rollback Logic

This block of static random logic determines if the next cycle is going to be a rollback cycle and, if
so, the number of cycles to roll back. The block evaluates when any of the intemal error signals change,

and if the signals indicate a rollback is to occur, the external rollback line is pulled beginning ¢;. The



-39.

amount to rollback is determined by the type of error (one cycle for busA/busB parity errors, two cycles
for other errors) and the value of the Post-rollback Counter (Section 3.3.5). The amount is signaled on
one of four lines, indicating ‘‘roll back 1,”" *“‘roll back 2, *‘roll back relative 2,”" or “‘roll back
relative 3.” The first two (indicating absolute rollbacks) are sent directly to the Rollback Amount
Encoder (Section 3.3.10), while the other two latter two (indicating relative rollbacks) are sent to the
Selection Logic (Section 3.3.9) for translation into an absolute rollback amount. All four lines are

mutually exclusive, so that it is not possible to signal more than one rollback amount.

3.3.8. Valid Bits

A set of valid bits like those used in the DWBs is used to keep track of which cycles are valid when
performing a relative rollback. It is a four-bit shift register, updated each cycle, where each bit represents
one of the past four cycles. When a rollback is performed, each cycle that is rolled back across has its
corresponding bit set to zero. See[5] for implementation details. The first stage of each cell is loaded
during ¢, and the second stage is updated during ¢,. Invalidation takes place during ¢ of a rollback

cycle.

A valid cycle is one in which its corresponding valid bit here is set to 1. This will include any cycle
that wasn’t a rollback cycle, repair cycle, or wait cycle, and any cycle that wasn’t invalidated by a

previous rollback.

3.3.9. Selection Logic

The Selection Logic translates a relative rollback amount into an absolute rollback amount, using
the valid bits to select the second or third most recent valid instruction. It is the same as the three-level
selection logic in the PC 5], except that the logic to select the most recent valid cycle has been removed.
The logic will select the second or third cycle depending on whether a 1 comes in on the **roll back
relative 2" line or the *‘roll back relative 3"’ line (they are supposed to be mutually exclusive; there

should never be a case where both lines carry a 1) and will output a 1 on one of six lines corresponding to



-40 -

cycles 2 through 7. The logic is purely static, so the proper line will be set shortly after either the

selection lines change or the valid bits shift, both of which happen in ¢y,

3.3.10. Rollback Amount Encoder

This block of static random logic, labeled ‘‘Encode’’ in Figure 3.1, encodes the eight rollback
amount lines, two from the Internal Rollback block (**roll back one,”* “‘roll back two"") and six from the
Selection Logic, into a three-bit binary number representing the actual rollback amount. If the Selection
Logic gives a value greater than four, it is encoded as four (i.e., the processor will never cause a rollback

greater than four cycles).

3.3.11. Rollback Amount Arbitration

It is possible that more than one module in the system will signal a rollback in a given cycle. If this
is the case, and the two modules gate different rollback amounts onto the rollback amount lines, the
greater amount should be the taken. Each module requesting a rollback needs to decide if it is requesting

the greatest amount and, if not, remove its value from the rollback amount line.

The procedure used by the Mirror Processor is a straightforward implementation of the Futurebus
arbitration protocol [9]. The rollback amount being gated onto the extemal rollback amount lines by the
processor is compared bit by bit with the amount read in from the same lines, starting with the most
significant bit. To begin with, every bit is enabled and gates its value out on line. If any bit gates out a 0
and reads in a 1, it knows some other module is gating out a greater value starting with that bit position,
so it disables all the lower significant bits. Once a bit is disabled, it stops gating its value on the line. If
the bit gating a 0 out reads 2 0 in, then it re-enables the lower bits. Note that the most significant bit is
never disabled.

Figure 3.2 shows the implementation of the arbitration logic. In the figure, the our.RBx lines arc the

rollback amount lines output by the selection logic, while the in.RBx lines are the external rollback

amount lines (in this figure, they are assumed to be active high). The enb.pad RBx lines are the actual



-41-

Out.RB2 b.oad RE2
enb.pad.tb L enb-pad.
D— enb.RB1

enb.RBO
.pad.RB
inRBi— ’_} TOpGRRD

out.RBO

in.RB

out.RB1 enb.pad RB1

.

Figure 3.2: Rollback Amount Arbitration Logic
rollback amount output pad enable signals (they enable the pads connected to the external rollback
amount lines; see Section 3.3.2), and enb pad.rb enables the external rollback line pad. Note that the

rollback amount pads will not be enabled unless the rollback signal is asserted as well.

3.3.12. Frame Counter and Rollback Counter

The Frame counter is a four-bit counter that increments each cycle and repeatedly counts from zero
to 15. It is set to zero whenever a reset or shutdown occurs, or when a Clear Rollback Bit instruction
(Section 6.3.1) is executed. The Rollback Counter is a two-bit counter that is incremented whenever a
rollback occurs and is reset whenever the Frame Counter goes to zero. It indicates the number of
rollbacks that have occurred in the present frame, and is used to detect repeated rollbacks. Both of these
counters are implemented in a domino logic PLA that latches its inputs ¢,, precharges ¢, and

evaluates .

3.3.13. Shutdown Logic

This block of static random logic determines when to shut down. A shutdown condition exists if

the external rollback amount is greater than four or if a rollback occurs and the Rollback Counter already



-42.

has a value of three, indicating that four rollbacks have occurred within the last 16 cycles, which is a sign
that the processor is probably in an infinite rollback loop. If a shutdown condition is flagged, the

shutdown line is pulled ¢,.

3.3.14. Pad Enabling

To assert the external shutdown and roliback signals, the output pad for that signal must be enabled
to force a zero onto that line (Section 3.3.2). The Enable Pads block enables one of these two output pads
whenever it is decided that that particular signal is to be pulled. Each pad is enabled on ¢, if needed and

disabled on ¢,, allowing the input latches to latch the signals during ¢,.

3.3.15. Rollback Bit

The Rollback Bit is initially cleared on a reset and is set on ¢, whenever a rollback occurs. Once is

it set, it remains until cleared by a clrrbm or clrrbs instruction {Section 6.3.1) or a reset.

3.3.16. Rollback Procedure

The entire rollback procedure is shown in Figure 3.3, with the timing of the various Rollback Logic
blocks shown in Figure 3.4. The procedure begins when comparison error signals are latched ¢; and
parity error signals are latched ¢4. The Internal Rollback block determines the amount to roll back as
soon as the error signals are stable in ¢4 and at the same time checks the Post-rollback Counter to see if a
relative rollback is needed. If so, the proper selection signal is sent to the Selection Logic which then
sends its output to the Rollback Amount Encoder, all during ¢, and ¢,. The external rollback and
rollback amount lines are pulled on the rising edge of ¢;, at which time rollback amount arbitration takes
place. This has until the end of ¢, to complete, at which time the input latches will have latched the
external signals and set the state.rb bit. All the DWBs in the processor are invalidated during ¢5, and at
the same time the Post-rollback counter is set to one. The Rollback Counter is checked during ¢, to see if

a shutdown should occur, and then it is incremented. If the shutdown condition is met, the shutdown line



-43.

is pulled ¢,, and the trap is taken on ¢,.

3.3.17. Critical Path

The Rollback Logic’s critical path occurs during rollback amount arbitration. In a system where
only the processor and its slave can request a rollback, the worst case arbitration scenario will be if one
processor requests a rollback of four (binary 100) and the other processor requests a rollback of three
(binary 011), since bits one and zero of the second processor must first be enabled and then disabled, and
the line value must be stable at the input latch output by the end of ¢,. SPICE runs show that with a 20 pf
load on the external line and a 7500 pullup resistance, bit zero can enable and disable itself with plenty
of time to spare if each processor’s rollback amount has been determined before the rising edge of ¢, (see

Figure 3.5).

3.4. State Repair

Figure 3.6 shows the state repair procedure. During the first repair cycle (labeled repair ), both
processors read the values out of the registers indicated by the instruction just rolled back to (i.e., the
normal ¢; register file read). The register containing the value to repair is then gated onto busD
during ¢,. During the second repair cycle (repair 2), the processor with the correct value assumes master
mode and gates busD onto busQUT and the address/data lines during ¢,, while the other processor
assumes sigve mode and reads the correct data in from the address/data lines and onto bus/N and the
shifter during ¢; and from the shifter to the register file during ¢4. Both processors then restore their

respective master/slave modes and resume with the instruction that was rolled back to.



o detect
4] error
busA, busB
busOUT / \bus]N, CMP
¢4~ | roll back 1 roll back 2 | No repair
set appropriate check = rollback
repair signal post-rollback amount roll back
L counter one more ©1—01
not equal

41—, lencode rollback amount,

¢ | pull rollback & repair lines

if lose arbitration,
®1-92release rollback amount

_ %2l Latch roltback
¢1 |check repair signals [« & repair signals; invalidate DWBs |¢,
set state.rb
L other chip needs busA/B:
send busA/B to other chip
set
L t-rollback
next | this chip needs busA/B: e p"iofﬁngf‘c
state other chip sends busA/B

to this chip . / \ o

—» one chip needs busA, other check check | .4
needs busB: repair busA rollback rollback pull shutdown line|g,
counter amount
3
L both chips need same bus: <3 <4
no repair

increment rollback counter
increment frame counter

l

next state

¢ take shutdown trap &,

Y

Figure 3.3: Rollback Procedure



Latch Comparison
Error

Increment Counters

Rollback Enable |

Load Valid Bit

Update Valid Bits

Rollback Amoum::.

Pull

Rollback Pin----4

Gate Rollback---jwsessaemsmrareseeieo
Amount---1

Rollback Amount-—-—-------
Arbitration----+

Latch External

Signals---+

Rollback and----
Repair Signals-—

Shutdown Pin----

[ ] l

45 -

| 1 L

_ ) |

o L. LA R L. P O S OSSO ..
I AL | ! | L !l L !
[ ™= S I T . I T
O S L1 ! Lol . Ll !
! ' | ! L ! i !
= e f e ? ot Y — —
S ' .1 L. R R - S S L.
| | 1 [ [ ! | l
1 T '\ 4 ™ — ; 'y """"" 'L H
| L [ ! [ (. [ |
' I | [ ! ! L] D | L !
! . . ! T T ™ L
! e b e ...
| ] | f | U] i
""""""""""" ' I t '—,' '\ ! L
SO N S ! VS Y SRR N NSO SO L) L
! f \ L P i W '
r L T T o I !
| LI 1 | 1 ! ! |
i T r 1 T i Lo b |
4 L A = LI 1 1 A LI ’
SO O OO DO A L L R S VN AV L.
| [ | [ [ 1 [ 1
: s .- . :
! ] L Ll ] S RSO NN SRR i
i ] | ] ] | 1 [
' 4 J | A S ! '\ 1 T
‘ i ! P ! ! L !
' T T A A ! ! = .
A O SN M SO - L.l . e -
| i i i i i i |
! L — ! 'y """" '\ ! T . !
i1 L | [ [ ¢
[ ! T { ! | !
L J ! y T T
L e | IO S . N E A ..
Pull-—; ! i N 1] ! Y \
' ! 4 HE L d L '

Figure 3.4 Rollback Control Timing



-46 -

5 T ==
j ! !
4 ! |
! I
1 1
3 .
Volts ¢l | ¢2 |
2 ] [} I
i |
| |
1 ! !
: '.
0 ] 1 I
I [ i [ [ | ]
0 10 20 30 40 50 60
§
pad
4 - /
3]
Volts
2
1 latch
k output
0

' ] [ [ [ [ [
0 160 20 30 40 50 60

Time (ns)

L JL

enable ——y PAD PAD «— enable %

in latch

output
;—l out out le

¢2

Master Slave

Figure 3.5: Rollback Amount Arbitration



repair 1

repair 2

-47 -

l parity error detected |

&

register file read

roll back 1

&

check for parity error

error

no error

&2

determine bus

10 repair

busA

\u‘sB

(139 LbusA—)busD —I

&

I busB—busD ]tbg

¢

determine if
SENDER or
RECEIVER

SENDER

set mode to
MASTER

busD—busOUT
~pads

|

\ECEIVER

set mode to
SLAVE

]

compare busOUT
parity with
busD parity

)

pads—busIN

—~>busT—shifter| %2

no error

l

shifter—yreg. file |¢.—¢1

restore

MASTER/SLAVE

maode

!

Figure 3.6: State Repair Procedure



- 48 -

4. CONTROLLER IMPLEMENTATION

The details of the controller layout are presented in this chapter. The Mirror Processor was
implemented in 2 um CMOS using the MOSIS SCMOS design rules with A=1 pm. The layout tool used

was magic [6].

4.1. Layout

Figure 4.1 shows the floorplan of the completed controller layout, minus the routing between
blocks. Table 4.1 lists the names of each block in the layout and their function. Note that the state
compression logic is not strictly a part of the controller, but it was included in the controller layout in
order not to increase the stride of the data path. A summary of the statistics on each module is shown in
Table 4.2, The number of hand-drawn transistors does not include transistors generated by PLA tools and
transistors in copies of replicated cells. Also, the number of inputs does not include the clock signals or

the power lines. A complete accounting of every signal in the controller is given in Appendix A.

TATH
RB m H
CUDATA PHI4 PADENB
i
BUSIR

Figure 4.1: Controller Floorplan

4.2. Overhead

4.2.1. Area Overhead

Table 4.3 shows the dimensions of the active area of each of the top-level modules in the controller
and an estimation of the dimension of each module if there was no support for micro rollback, state
repair, or error detection. Estimates are given for the cases where one of the three features is missing and

for the case were none are present. Active area in this case is defined as the area of the smallest bounding



-49.

Block Function
CLOCK Clock generator
CMP Comparator Logic: generates global comparison error signal (error.CMP)
COND Condition Code Logic: generates cond signal
CUDATA | Controller Roliback Memory
EXT External Signal Latches: latches extemal wait, reset, and shutdown signals
INT Interrupt Logic: generates global interrupt signal (state.int) and interrupt vector
IRLATCH | busiR Latch and Driver
MEM Memory Control Logic: generates all signals for memory accesses
NS Next State Logic, plus all associated latches, drivers, multiplexors, and feedback paths
PADENB | Generates enable signal for address/data output pads
PHITA ¢, PLA
PHI1B ¢, PLA
PHI4 64 PLA
POST Post-FSM Logic
RB Roliback Logic
STATE State Compression Logic: generates four bits of exported state based on eight bits of state
from the data path and four bits of state from the controller
VALID Valid Bit Logic: generates valid bits for every DWB
CU Entire controller

Table 4.1: Blocks in Controller Layout

box of a module that does not include power lines or routing to other modules.

For each module, the dimensions were arrived at by determining which parts of the module were
not needed for that particular feature (rollback, state repair, or error detection) and estimating the change
in the height and width of the module if those parts were to be removed. This was done by looking at the
parts of the module that determine the overall height and width. In most cases, the module is laid out in
parallel rows of gates, with power rails running between each row. Usually, a single row (the ‘“‘critical
row’’) determines the width of the module, and the number of rows determines the height. If any of the
parts to be removed were part of the *““critical row,”* then the row was shrunk by the amount taken up by
the removed parts, and the new width of the module was determined to be the new width of the *“critical
row’’ or, if it became smaller than another row, the width of the new *‘critical row.”” If an entire row
could be removed, or if enough of one row could be removed that all of another row could be moved into

the vacant spots, then the new height of the module was determined to be the old height minus the height



<50 -

. . Number of Transistors Product
Block Dimensions (1) Total  Hand-drawn Inputs Outputs Terms
CLOCK 404x620 389 239 7 4 -
CMP 151x417 180 170 27 4 -
COND 420x287 248 0 8 1 18
CUDATA  591x963 1328 149 21 2 -
EXT 176x96 56 24 4 3 -
INT 329x200 196 196 17 7 -
IRLATCH  376x404 366 80 19 14 -
MEM 212x482 248 114 10 7 -
NS 250x396 210 162 9 9 -
PADENB 124x91 44 44 5 I -
PHI1A 997680 948 6 13 28 62
PHIIB 1031x690 1044 14 16 24 65
PHI4 669x746 610 30 14 12 35
POST 308x241 218 146 20 10 -
RB 713x1371 1131 356 20 17 -
STATE 167x521 228 68 17 4 -
VALID 293x164 166 118 12 8 -
Cu 1553%7451 7636 1824 69 87 -
Table 4.2: Controiler Implementation Statistics
. . Dimensions without:
Block Dimensions () rollback repair detection all

CLOCK 390x620 0x0 0x0 0x0 0x0

CMP 116x417 116x397  116x309 00 0x0

COND 420287 420x287  420x287 420x287  420x287

CUDATA  560x905 0x0 560x905 560x905  Ox0

EXT 176x86 176x86 176x86 176x86 176x86

INT 167x316 167x299  167x299 167316 167x299

IRLATCH  365x362 0x0 365x362 365x362  0x0

MEM 189471 189x471  189x377 189x471 189%377

NS 189%371 189x256  60x301 189x371 60x198

PADENB 124x74 124x74 107x74 124x74 107x74

PHI1A 994x679 868x638  810x601 994x679  700x569

PHI1B 1028x682 886x587  692x446 668x542  600x419

PHI4 593x674 593x674  543x608 593x674  543x608

POST 308x230 244x230  268x230 188x230 180x230

RB 690x1371 0x0 690x1319  572x382  Ox0

STATE 132x500 132x467  132x467 0x0 0x0

VALID 293x151 0x0 277x151 293x151 0x0

Table 4.3: Area Overhead, Dimensions




-51-

of the removed row. In many instances, a part of a module is used for more than one feature; in that case,
the part is not considered a candidate for removal except in the case where no features are present. For
the PLA’s, the new area was calculated by removing all input and output signals used solely by the

feature in question and regenerating the PLA with espresso, egntott, and mpla 6],

Table 4.4 gives the percentage of area that each module would be reduced by in the absence of each
feature; the values were calculated directly from Table 4.3. Support for all three features takes up 67% of
the total active area of the controller. Although it is not listed in the tables, it should also be noted that

busiR would not be needed in the absence of micro rollback and state repair.

Rlock Area Overhead, Percent
rollback  repair  detection all
CLOCK 0.00 0.00 0.00 0.00
CMP 4.80 2590 100.00 100.00
COND 0.00 0.00 0.00 0.00
CUDATA 100.00 0.00 0.00 100.00
EXT 0.00 0.00 0.00 0.00
INT 5.38 5.38 0.00 5.38
IRLATCH 100.00 0.00 0.00 100.00
MEM 0.00 19.96 0.00 19.96
NS 31.00 74.24 0.00 83.06
PADENB 0.00 13.71 0.00 13.71
PHI1A 17.95 27.87 0.00 40.99
PHIIB 25.82 5598 48.36 64.14
PHI4 0.00 17.40 0.00 17.40
POST 20.78 12.99 38.96 41.56
RB 100.00 3.79 76.90 100.00
STATE 6.60 6.60 100.00 100.00
VALID 100.00 5.46 0.00 100.00
total 50.10 19.98 30.62 67.12

Table 4.4: Area Overhead, Percentage of Total Area

4.2.2. Transistor Overhead

Table 4.5 shows the number of transistors that could be removed from each block if one or all of the
three features is missing. As in the area overhead calculations, the parts of each module that are not

needed for each feature were identified, and the number of transistors in each part was subtracted from the



-52.

total. For the PLA's, transistor counts were taken of the new PLA’s generated for the area overhead
calculations, and the resulting counts were subtracted from the transistor count of the original PLA,
Table 4.6 translates Table 4.5 into percentages; it gives for each block the percentage of the total number
of transistors that the block could be reduced by in the absence of each feature. Over 62% of the

transistors in the controller are used in the support of micro rotlback, state repair, and error detection.

Block Transistors Transiston:s Used For:
rollback repair error all
CLOCK 389 0 0 0 0
CMP 180 6 46 180 180
COND 248 0 0 0 0
CUDATA 1328 1328 0 0 1328
EXT 56 0 0 0 0
INT 196 8 14 0 22
IRLATCH 366 366 0 ¢ 366
MEM 248 0 32 0 32
NS 210 30 112 0 142
PADENB 44 0 10 0 10
PHI1A 948 155 226 0 344
PHIIB 1044 279 521 526 640
PHI4 610 0 79 0 79
POST 218 22 20 80 94
RB 1131 1131 86 607 1131
STATE 228 44 26 228 228
VALID 166 166 8 0 166
total 7636 3535 1180 1621 4762

Table 4.5: Transistor Overhead, Number Used

4.2.3. Examples

As examples, the overhead calculations for the CMP, RB, and STATE blocks will be described in

detail.

4.2.3.1. CMP

The only signal associated with rollback is srase.rb. It is used as an input to an inverter and a three-
input NOR, and the inverted signals is used as an input to a three-input NAND. The inverter and the

NOR are part of the *‘critical row,”* so removing the inverter and one input of the NOR would shrink the



-53.

Bl Transistor Overhead, Percent
ock .
rollback  repair  error all

CLOCK 0.00 0.00 0.00 0.00
CMP 3.33 25.56 100.00 100.00
COND 0.00 0.00 0.00 0.00
CUDATA 100.00 0.00 0.00 100.00
EXT 0.00 0.00 0.00 0.00
INT 4.08 7.14 0.00 11.22
IRLATCH 100.00 0.00 0.00 100.00
MEM 0.00 12.90 0.00 12.90
NS 1429 53.33 0.00 67.62
PADENB 0.00 22.73 0.00 22,73
PHI1 A 16.35 23.84 0.00 36.29
PHIIB 26.72 49.90 50.38 61.30
PHI4 0.00 12.95 0.00 12.95
POST 10.00 9.17 36.70 43.12
RB 100.00 7.60 53.67 100.00
STATE 19.30 11.40 100.00 100.00
VALID 100.00 4.82 0.00 100.00
total 46,29 1545 21.23 62.36

Table 4.6: Transistor Overhead, Percentage of Total Number
width by 20A. The height would not change, as the number of rows remains the same. The active area
would then shrink from 48372 A2 to 46052 A2, so the area overhead for rollback is 4.80% of the total area.
The number of transistors in the inverter is two, and two transistors are used per input in the NOR and
NAND gates, so the total number of transistors used for rollback is six. Six transistors out of a total of

180 gives a 3.33% transistor overhead for rollback.

Without state repair, error.busOUT would not be needed since busQUT is only checked during the
second repair cycle. The logic associated with this signal involves an XOR, a NAND, and a pass gate in
the “‘critical row.”" Removal of these items would shrink the ‘“critical row’’ by 108A, making it shorter
than the next widest row. However, this next widest row would shrink by 102X, making it shorter than
the new width of the *‘critical row,”” so the overall width will continue to be determined by the **critical
row,”” and it will be 108A shorter. The height will remain the same since no complete row can be
removed. The overall active area will shrink from 48372 A2 to 46052 A2, for a 25.90% area overhead for

state repair. The gates involved in generating error.busQUT are two XOR’s, three NAND's, three pass



.54 -

gates, and five inverters. The total number of transistors making up these gates is 46 out of a total of 180,

resulting in a 25.56% transistor overhead for state repair.

Since the only purpose of the Comparator Logic is to generate a signal when an error is detected,
there would be no need for this block if error detection were not being performed. Thus, both the area

and the transistor overhead is 100% for error detection.

As the Comparator Logic block would not be needed for error detection, it would also be absent if

all three features were removed, so the overall area and transistor overhead is 100%.

4.2.3.2. RB

Without support for micro rollback, there would be no need for the Rollback Logic block, so the

arca and transistor overhead for rollback is 100%.

In the absence of state repair, the following things would be removed: logic input latches, and
output drivers for repairA, repairB, repairA_, repairB_, and ctri.norepair, the logic 1o hold the repair
signals constant through both state repair cycles (the block labeled ‘‘REPAIR’’ in the layout), the logic
and output drivers for out.repairA_ and out.repairB_, and the logic for generating an internal rollback on
a busOUT parity error (which is only checked during a state repair; see Section 3.2.4). The width of the
module is set by the width of the input latches block (RBINPUTS). Since five of the latches would be
removed, making it shorter than the selection logic block (RBSELECT), and RBSELECT would not
shrink, the new width of RB would be set by the right edge of the rollback amount encoding sub-block
(ENCODE), thus making the overall width 52X less. The overall height would remain the same since no
complete row could be removed, and the overall area would shrink from 945990 A% to 910110 A2,
resulting in a 3.79% area overhead. The number of transistors used by the logic listed above is 86 out of

a total of 1131, giving a 7.60% transistor overhead for state repair.

Without error detection, the Rollback Logic block would not need to generate internal rollbacks,

and it would only need to respond to external rollbacks. The only parts of the Rollback block that would



-585.

need to remain are the Frame Counter/Rollback Counter PLA (RBSHUTDOWN; see Section 3.3.12), the
shutdown logic (SHUTDOWN), the rollback bit (RBBIT), and the input latches minus the busA/busB
parity error laiches. Since this is substantially less than what is presently there, the entire block could be
rearranged so that the blocks are stacked on top of each other. The widest block is RBSHUTDOWN, so
the new width would be 382A. Arranging the stacking so that SHUTDOWN and RBBIT are in the same
row, the new height would be 572A. Thus, the new overall area would be 218504 A2, as compared with
the original 945990 A? area, resulting in a 76.90% area overhead. A transistor count of the missing
blocks, plus the 12 transistors that would be taken out of RBINPUTS, totals 607, resulting in a 53.67%

transistor overhead for error detection.

When all three features are removed, the entire block can be removed, since micro roliback would

no longer be supported. Thus, the overall area and transistor overhead is 100%.

4.2.33. STATE

The State Compression Logic takes eight bits of compressed signature from the data path, the three
state bits from the Next State Logic, and the previous cycle’s opcode bit 5, and XOR’s them all down into
a four-bit signature. All of the data path signals are masked out during a rollback cycle, so all the
masking logic would be removed in the absence of micro rollback. In addition, the latch that saves
state.rb across ¢, would also not be needed, as well as the input inverter for state.rb. This results in a
total of eight NAND gates, one NOR gate, one pass gate, and three inverters. The width of the module is
determined by the width of the XOR's plus the width of a latch plus the width of two input inverters. The
width of the XOR’s will not decrease, but one of the latches would be removed, allowing room for the
four input inverters on the right to be put in its place. Thus, the overall width of the module would
decrease by 33, while the height would not change at all, bringing the overall area down from 66000 A2
to 61644 A%, resulting in an area overhead of 6.60% for micro rollback. The number of transistors in the

logic that would be removed is 44 out of a total of 228, giving a 19.30% transistor overhead.

The case in which support for state repair is removed is similar to the micro rollback case. The



-56-

busD state compression bits are masked out during the first repair cycle, so the masking logic would need
to be removed. There is also a latch that saves state.repairl across ¢, as well as an input inverter; these
too would be removed. Finally, neither state.repairl nor state.repair2 would be generated by the Next
State Logic, so neither bit needs to be XOR’ed into the final result. ‘Thus, two XOR's could be removed.
The total width of the XOR's would shrink by 72A; however, the width of the output drivers would
remain the same. Therefore, the overall decrease in width would be accomplished by removing the
state.repairl latch and the four input inverters that handle the repair signals. As in the rollback case, the
decrease in width is 33X and the decrease in height is zero, for a total area overhead of 6.60%. The
number of transistors in the unneeded logic totals 26 out of 228, for a transistor overhead of 11.40% for

state repair.

Without error detection, there would be no need for exportation of internal state. Thus, the entire

State Compression block could be removed, resulting in a 100% area and transistor overhead.

When all three features are removed, the need for state exportation is also removed, since error

detection is no longer supported. Thus, the overall area and transistor overhead is 100%.



-57-

5. SIMULATION AND DEBUGGING

This chapter presents the methods used in simulating and debugging the Mirror Processor design at

the architecture and switch levels.

5.1. Architecture Level Simulation

The entire processor was simulated at the architecture level using a commercial hardware
simulation sysiem called ENDOT[3]. The processor was specified in ISP, a hardware description
language based on ISPS[1], and two of them were simulated running as a master/slave pair. Simulation
input was produced by assembling several small program fragments with a modified RISC II assembler
and converting the resulting a.out file into an ENDOT memory. The actual simulations were run by
manually controlling each clock phase and then manually checking the values of the lines and registers
that were relevant 1o the instruction being simulated. For example, after an ALU instruction had been
executed, the register file DWB would be checked to make sure that the correct result had be stored in the
correct register, and the PSW would be checked to make sure the the proper condition codes had been set.
For a jump or call instruction, the PC and MAR would be checked to make sure that the proper address
had been calculated. Different parts of the data path and controller would be checked similarly for other

types of instructions.

The program fragments used as simulation input (see Appendix B) were designed to cover every
instruction in as many modes as was practical. Some instructions, such as the jump instructions, are
tested for only a few modes (i.e., not every possible combination of condition codes and branch condition

was tested) that are believed to cover all the logic in the data path.

The error detection and rollback logic was tested by manually injecting faults into various places
and checking that they were properly detected and corrected (if possible). A list was drawn up containing
a representative list of transient faults and their expected error recovery procedures, and test sequences

were written for each entry in the list. See Appendix C for the full list.



-58 -

In each case above, the set of test cases was arrived at through ad-hoc means. There is no guarantee

that every possible error case has been tested, or that every design error has been uncovered.

The choice of ENDOT as the hardware simulator was not without its problems. To begin with, the
simulator has no notion of a capacitive bus (one that holds its value, even if nothing is driving it), and
both the controller and the data path make heavy use of capacitive busses, so some very ugly hacks had to
be put in the ISP’ description to emulate them. Another problem occurred with when blocks. A when
block conditioned on several inputs usually evaluates whenever one of the inputs changes. However,
once the block starts evaluating, the inputs are not checked again until the entire block has evﬁluated.
Thus, inputs that change while the block is still evaluating do not force the block to reevaluate, and there
is the possibility that behavior will mask errors in the logic. This is especially important since the

capacitive bus emulation makes use of when blocks.

5.2. Switch Level Simulation

Switch level simulation of the extracted magic layout was done with bdsim [7]. Each block in the
controller was simulated separately in order to verify that the magic layout matched the ENDOT
specification. Bdsim test scripts were generated as follows: for each block, a C program was written
containing a translation of the ENDOT description of that block. The C programs cycled through every
possible input for the block and calculated the expected output based on the translated ENDOT
description. Bdsim commands to generate each input vector and verify each output vector were then
output. Several test scripts were also generated to verify the connections between each of the blocks and
their interaction behavior. Switch level simulations of the entire data path and controller are described

in[5].



-59.

6. TESTING

This chapter describes the methods that can be used to test the processor chip once it has been
received from the manufacturer and details the additional hardware added to implement these testing

functions.

6.1. Testing Considerations

There are several points that had to be kept in mind when designing testability features for the
Mirror Processor. In addition to testing the vanilla RISC portion of the processor, all of the error
detection and rollback logic must also be tested. In order to do that, schemes had to be developed to force
parity and comparison errors and to verify that rollbacks had occurred. It was also desired that all this be
accomplished with minimal extra hardware, and that the processor be able 1o periodically test itself while
already in operation.

Because of the minimal hardware requirement, scan latches as used in RISC II were not used. They
have a high area overhead and require separate clocks, and, as pointed out in [4], they don’t really add
much to either the controllability or the observability of the chip. Instead, to keep the hardware to a
minimum and at the same time allow for the self-testing requirement, it was decided to rely on functionat
testing, where test programs use normmal instructions to test that the functionality of the processor is

correct. A few new test instructions were added in order to exercise the parity checkers and comparators.

6.2. Testing Vanilla RISC

6.2.1. Functional Testing

Functional testing, in which the functionality of a microprocessor is tested using only its normal
instruction set, is presented in [10] and [2]. Briefly, a processor is broken down into four functional units,
and fault models are developed for each one. The functional units defined by the authors are instruction

sequencing, register decoding, data transfer (busses), and data manipulation (ALU, shifter, etc.). Tests



-60-

for each functional unit are then developed, with the assumption that there can be any number of faults in
a single functional unit, but that only one functional unit can contain faults. This is because the other
functional units are used in verifying the one under test, so they must remain fault-free in order not to
mask faults in the one being tested. Fault models and test procedures are presented for each functional
unit except for data manipulation, since each block’s fault model and test procedure is specific to its

implementation.

The instruction sequencing fault model and test procedure is particularly important, as the
instructions are required to be fault free when testing the other functional units. The fault model
presented in{2] states that an instruction is composed of a series of microinstructions executed in
sequence, where each microinstruction is composed of a series of microorders executed in parallel. The
term instruction is used in a broad sense to indicate a general type of action (for instance, READ a value
from a register, ADD two numbers together, BRANCH to a certain location) that is independent of the
specific microprocessor in question. Thus, an instruction may refer to a single machine instruction or to
an entire sequence of machine instructions. The sequencing for a particular instruction is considered
faulty if one or more microinstructions or microorders that are part of the instruction are not executed, or
if one or more microinstructions or microorders are executed in addition to the proper ones for the
instruction.  Since microinstructions are composed of microorders, missing or additional

microinstructions will manifest themselves as missing or additional microorders.

A simple fault is a fault in which there is at most one additional microorder (there may be any
number of missing microorders). The fault model allows for any number of simple faults. It is shown
in[2] that other types of faults (linked, coupled, and cyclic) can be decomposed into a series of simple
faults and that detection of simple faults is sufficient to detect the other types of faults. In order to detect
simple faults, a set of codewords is associated with all the registers in the processor except the PC. The
codewords have the property that any simple fault operating on a codeword will produce a non-codeword.

In addition, if a fault occurs such that a register ends up with a codeword associated with another register,



-61-

that other register will contain a non-codeword. Methods of choosing an appropriate set of codewords
and mapping them to the register set are given in[2]. Therefore, in order to detect missing or additional
microorders in the sequencing of a particular instruction, every register is loaded with its codeword, the
instruction is executed, and the values of every register are read and compared against their expected

values. Any simple fault will be detected by the presence of a non-codeword in a register.

A sequence of four instructions is used to verify the values of cach of the registers. The instructions
are: READ register i into memory location a, LOAD (MOV) register i from memory location a,
compare (CMP) two registers and set the Z bit if they are equal, and branch if the Z bit is set (BEQ). The
most important of these is the READ instruction, which corresponds to a store instruction in the Mirror
Processor. Note that no instruction, including the verification instructions, can be tested for additional
microorders until the READ instruction has been verified for every register. However, the READ
instruction cannot be completely verified until the other three verification instructions have been verified.
On the other hand, it is possible to test for missing microorders in the three instructions without their
being completely verified, as shown in Procedure 1 in{2), so the first step in the testing process is to
perform this test. It is shown in[2] that having no missing microorders in the three instructions is

sufficient to verify the rest of the instructions.

Once this test has been done, the READ instruction can be verified for every register, after which
every other instruction can be verified. The procedure for verifying the READ instruction is as follows:
Each register is first loaded with its codeword. A register is chosen and its value is read out and verified
using the other three verification instructions. Then, for every other register, the other register’s value is
read out M XK +1 times, where K is the maximum duration (number of cycles) of the instruction and M is
the maximum number microorders in any instruction (i.e., the maximum number of parallel operations
supported by the processor). This forces any linked faults to show up. Then the original register is read
and verified again, after which the other register is read and verified again. The whole loop is then

repeated for every register. This procedure detects simple faults that operate on one register. Other



-62 -

procedures to detect simple faults involving transfer of data between registers and simple faults involving

arithmetic operations follow this first one; they involve alternately reading greater numbers of registers.

6.2.2. Application of Functional Testing

The test procedures outlined in [10] and {2] can be applied to the Mirror Processor for testing the
vanilla RISC portion of the processor. It should be noted, however, that the processor model used in the
above papers does not take into account some features which are specific to the Mirror Processor. These
features should be taken into account when designing test procedures. Some suggestions for
incorporating these features into the testing procedure are given below; however, it is by no means a

comprehensive list,

First, the test procedures to verify the READ instruction for each register should be modified to
include reading out of every entry in the register’s DWB. This can be done by loading a register with its
codeword and then immediatedly reading its value back out four times in succession. Since the DWB
will shift every cycle, it will not be possible to run the verification instructions on each value as it is read
out. Instead, the four values should be stored into other registers that have already been verified, and each
of those registers should then be verified to be holding the same value stored into the original register.
Note that it will be necessary to verify reading from the actual registers first before verifying reading
from the DWB’s, since there must be four already-verified registers to store the values read out of a

DWB.

Secondly, the maximum duration X of an instruction should include the time it takes for a value to
go all the way through the DWB and into the actual register. When verifying all of the instructions apart
from the READ instruction, and in particular the LOAD instruction (in this context, LOAD means ‘‘load
a value into a register,”” but not necessarily from memory), it will be necessary to ensure that no
additional microorders are executed as a value goes through a DWB (note that the READ test checks that
no additional microorders are caused by the READ instruction only). Recall that additional microorders

can be detected by the presence of a non-codeword in the register. Thus, each LOAD instruction should



-63 -

be followed by (at least) four NOP instructions in order force a value to go all the way to the actual

register before its value is read back out.

An important point to keep in mind is that great care should be taken in placing a machine
instruction other than a nop in the delayed slot after a branch, particularly in the case of the verification
instructions. The algorithm given in[2] to check for inactive microinstructions and microorders
(Procedure 1) is a series of move (MOV) instructions followed by branches on the results of the MOV's
and on the results of compare instructions (CMP). Each CMP instruction is followed by a branch on zero
(BEQ) instruction which is followed by either another branch or another CMP; in either case, the
intention is that the following instruction be executed only if the BEQ had not taken place, so neither one
can be placed in the delay slot (since it would be executed regardless of whether the branch took place or
not). Each BEQ is in turn directly dependent on the CMP immediately before it, so the CMP cannot be
placed in the delay slot, and each CMP is dependent on the MOV's that took place prior to the CMP, so
the MOV'’s cannot be placed in the delay slot. Thus, for this algorithm, nothing can be placed in a delay
slot. Since this algorithm uses the four verification instructions exclusively, it follows that the other tests
that make use of the verification instructions will have similar compare-branch sequences, and any

instruction placed in a delay slot would have to be independent of the verification sequence.

Finally, the instruction sequencing tests assume that any register can be read at any time without
changing the user-visible state of the processor (other than the PC). While this is true for the global
registers (RO through R9), a particular local register cannot be directly accessed without first setting the
Current Window Pointer in the PSW. Thus, when reading a local register, the PSW must also be saved

and restored.

Appendix D shows the sequence of Mirror Processor instructions that make up the four verification

instructions. The above points were taken into account when creating the sequences.

Apart from the error detection and rollback logic, the fault models presented in [10] and [2] also do

not cover the interrupt handling logic. While trap conditions can be set up in the test programs, and



-64 -

shutdowns can be forced with repeated rollbacks, there is no way the processor can initiate an external

interrupt (i.e., pull the /RR line). Thus, part of the interrupt logic cannot be tested while in self-test mode.

However, that part can be tested if an external tester is available to pull the /RR line.

6.3. Testing Error Detection and Rollback Logic

6.3.1. Test Instructions

Normally, the error detection and roltback schemes are transparent to the user, so there is no way to

force a parity or comparison error using the regular RISC Il instructions. Thus, several new instructions

were added to explicitly force parity and comparison errors and to verify that a rollback has occurred.

The instructions are as follows; the argument types are listed in Table 6.1:

Argument Definition

Rsi Source register 1. register number, instruction bits 14 to 18; content of register is used as
operand.

Rs2 Source register 2: register number, instruction bits 0 to 4 (with /MM bit [13] of); content
of register is used as operand.

Rd Destination register: register number, instruction bits 19 to 23; result of operation will be
placed in this register; for store instructions, content of register is used as operand.

§2 Source 2: either a register number or a 13-bit immediate. If $2 is a register number, it is
the same as Rs2; if it is an immediate, it corresponds to instruction bits 0 to 12 (with IMM
bit [13] on).

X 32-bit immediate: the assembler will turn this into a 19-bit offset from the PC
corresponding to instruction bits 0 to 18; offset is added to PC at runtime to produce
address of memory access.

Table 6.1: Instruction Argument Definitions
Clear Rollback Bit Clears the rollback bit in the Rollback Control Logic (Section 3.3.15).
clrrbm clrrbm clears the rollback bit on the master, while clrrbs clears the bit
clrrbs on the slave.
Add with Bad Parity Functions as a normal add instruction, except that an incorrect parity bit
addbpm Rs1,52,Rd is stored in the destination register of one of the processors. addbpm
addbps Rs1,52,Rd stores the bad parity in the master, while addbps stores the bad parity in

the slave. This instruction is used to force parity errors on busA and
busB.



Jump if Rollback Bit Is Set
jmprbm Rs1,Rs2,Rd
jmprbs Rs1,Rs2,Rd

Store Bad Data
strbdm Rd, X
strbds Rd, X

Load with Bad Parity
ldrbpm X,Rd
ldrbps X,Rd

-65-

If the rollback bit is set, a PC-relative jump is taken, using the contents
of Rs2 as the offset, and Rs! is stored in the destination register. If the
rollback bit is nor set, the branch is not taken, and either Rs/ or Rs2 is
gated onto busD and stored in Rd, depending on the instruction and
mode: for jmprbm, the master stores Rs/, and the slave stores Rs2; for
Jjmprbs, the slave stores Rs/, and the master stores Rs2. Since the
branch offset can have only a few limited values, there are two separate
instructions to allow both the master and the slave to gate any value onto
busD in order to exercise the busD state compression logic. This
instruction is used to force state compression comparison errors as well
as to verify that a rollback has occurred.

Similar to a normal PC-relative store instruction. If the rollback bit is set,
both processors will store the contents of Rs into location X: if it is
cleared, one of the processors will store the contents of the MAR instead.
For strbdm, the master will store the bad data, i.e., the contents of the
MAR. For strbds, the slave will do so. This instruction is used to force
a comparison error on the data portion of a memory write.

Similar to a normal PC-relative load instruction. If the rollback bit is set,
both processors will load Rd with the contents of location X; if it is
cleared, one of the processors will gate the loaded data onto busiN with
an incorrect parity bit. For ldrbpm, the master will load a bad parity bit,
while for ldrbps, the slave will do so. This instruction is used to force a
parity error on busiN.,

6.3.2. Error Recovery Test Procedures

The procedures used to test the various error detection and rollback schemes are detailed below. A

detailed program fragment showing each procedure is shown in the files restlO.ras and testll.ras in

Appendix B.

6.3.2.1. State Compression Comparison Error

The rollback bit is cleared on both processors (clrrbm and clrrbs), and then a Jump if Rollback

(jmprbm or jmprbs) is executed. Since the rollback bits are cleared, the branch will not be taken, but

gach processor will gate a different value onto busD, causing a comparison error to be detected in the

delay slot after the branch. A rollback of two cycles back to the jmprbm or jmprbs instruction will take

place, during which the rollback bit will be set. The second time through, the branch should be taken to a

continuation point in the test procedure,



- 66 -

To verify that the rollback had actually taken place, a jump to an error routine should follow the
Jump if Rollback instruction. If the test arrives at the error routine, then either the rollback did not occur,
or the rollback bit was not set during the rollback. In either case, it will be known that there is a fault in
the rollback logic. If the test arrives at the continuation point, then either the rollback must have taken
place and set the rollback bit correctly, or the rollback bit was never cleared in the first place. To verify
the that rollback bits are not stuck at one, they should be cleared again, after which a Jump if Rollback to
the error routine should be executed, with the constraint that the values gated onto busD are the same for
both processors if the rollback bits are cleared. Thus, if the rollback bits are stuck, the test will arrive at
the error routine, while if they are not, the test will continue on. To prevent different values from being
gated onto busD, Rs! and Rs2 should be the same register R. This forces the contents of register R to be

put onto busD regardless of the master/slave mode of each processor.

6.3.2.2. Register File Parity Error

Add with Bad Parity (addbpm or addbps) is used to store a bad parity bit on one of the processors,
after which the rollback bits are cleared, and an instruction that reads the register with the incorrect parity
is executed. A rollback of one cycle should occur, followed by a state repair. The instruction should be
executed again with no error, after which there should be a jmprbm or jmprbs instruction. If the
rollback and repair executed correctly, the rollback bit will have been set, and the branch should be taken
to the continuation point. As described in Section 6.3.2.1, the Jump if Rollback instruction should
specify the same register in both the Rs/ and Rs2 fields. This will prevent unwanted comparison errors
since, even if the branch is not taken, the same value will be gated onto busD by both processors. Note
that the parity bit written into the register file is not included in the exported state, so there will be no

state compression comparison error when the non-matching bits are read out.



-67-

6.3.2.3. Memory Access, Address Comparison Error

The rollback bit is cleared on one processor but not the other (both bits can be set with a rollback
forced by one of the previous tests), after which a Jump if Rollback instruction is executed. Since only of
the processors has a set rollback bit, only that one will take the branch, resulting in each processor
generating a different address for the instruction fetch in the following cycle. Hence, a comparison error
will be detected the cycle following the execution cycle of the Jump if Rollback instruction. A rollback
of two cycles back to the Jump if Rollback instruction will take place in the cycle after that, during which
the rollback bit will be set on both processors. The second time through, both processors will take the
branch to the continuation point. A branch to the error routine should follow the Jump if Rollback
instruction, so that if the comparison logic does not detect the error, at least one of the processors will end
up in the error routine. Here again, unwanted comparison errors can be prevented by ensuring that the
same register is specified in both the Rs/ and Rs2 fields of the Jump if Rollback instruction (see

Section 6.3.2.1).

6.3.2.4. Memory Access, Data Comparison Error

The rollback bit is cleared on both processors, and then a Store Bad Data (strbdm or strbds)
instruction is executed. One of the processors will store the contents of Rd during the second cycle of the
instruction, while the other one will store the contents of the MAR. The comparison error will be
detected the following cycle, after which a rollback of two cycles back to the second cycle of the store
will take place (and setting the rollback bits in the process). The second time through, both processors
will store Rd. Following the store, there should be a Jump if Rollback instruction to verify that the
rollback bit had been set. As in the Address Comparison Error case, a branch to the error routine should
follow the Jump if Rollback instruction so that if the data mismatch goes undetected, at least one of the
processors will end up in the error routine. And again, the same register should be specified in the Rs/
and Rs2 fields of the Jump if Rollback instruction in order to prevent a state compression comparison

error (Section 6.3.2.1).



-68 -

6.3.2.5. Input Bus (busIN) Parity Error

The rollback bit is cleared on both processors, and then a Load with Bad Parity (Idrbpm or 1drbps)
instruction is executed. One of the processors will load a bad parity bit during the second cycle of the
instruction, and that will be detected in the following cycle. A rollback of two cycles back to the second
cycle of the load will take place after that, setting the rollback bits at the same time. The second time
through, both processors will load the correct parity. Following the load, there should be a Jump if
Rollback instruction to verify that the rollback bit had been set. As in the previous cases, both the Rs/ and
Rs2 fields of the Jump if Rollback instruction should specify the same register so that both processors will

gate the same value onto busD and prevent a state compression comparison error.



-69 -

7. CONCLUSION

As shown in the preceding chapters, it is quite possible to build an efficient controller for the Mirror
Processor. However, the area overhead for error detection and micro rollback support is rather large.
Where the RISC II required only a simple instruction decoder, the Mirror Processor has three large PLA’s
plus a host of random logic to generate all the required control signals. The Rollback Control Logic
block itself is equivalent in compiexity (if not in area) to the rest of the controller and required a
substantial amount of design effort. Extra area was also expended in order to meet the strict timing
requirements. Based on this implementation, the area overhead for supporting micro rollback and duplex

mode operation is approximately 67% of the active area in the controller.

The design time for this processor certainly was not minimal. A large amount of time was spent
simulating various error conditions and verifying the correctness of the error detection and recovery
schemes. Part of the problem was that the controller implementation began long before the data path
design was stable and long before several major design features had been fully specified. In many cases,
large portions of the controller had to be redone as new design decisions were made contradicting older
specifications. In particular, the Rollback Logic was redesigned and laid out from scratch twice, once to
correct a design error and improve the routing, and once to add in support for the new test instructions
and logic for the detection and handling of multiple rollbacks. In addition, the Next State Logic was
completely redesigned from scratch once to eliminate the dependence on the current instruction’s opcode
and remove the block from the ¢ critical path (although some of the layout from the initial design was
salvaged). Also, the opcode encoding (i.e., grouping the opcode of each instruction with as many illegal
opcodes as possible in order to minimize the number of bits needed to decode the instruction) was redone
several times as new test instructions were specified. Finally, a last-minute decision to reassign the PLA
outputs to different PLA’s resulted in the creation of a third PLA. The original design called for two
PLA’s that were approximately the same size, one to evaluate during ¢4 and the other to evaluate

during ¢;. However, in order to minimize the evaluation time of the ¢, PLA, all the outputs were moved



-170 -

to the ¢; PLA except for the eleven signals that were required at the beginning of &;. The resulting ¢,
PLA would have been much too large in terms of both area and speed, so it was split into two separate
PLA’s. Other, less major design changes, while not involving restarting from scratch, still required a
large amount of time to accomplish, as each time a module was changed, the ENDOT description had to
be reverified, the circuit design had to be re-SPICE’ed, and the bdsim test scripts had to be regenerated

and rerun.

There are two things that would have greatly reduced the time spent on the design of the controller.
First, as mentioned above, the controller should be based on stable specifications, not ones that are
constantly changing. This alone would eliminate a large number of design iterations. Second, some sort
of automated test procedure should be developed in order to reduce the time spent on manual simulations.
Although simulating the vanilla RISC portion of the processor manually does not take up too much time,
it is quite easy to come up with all sorts of strange, new error conditions for which new test sequences
must be made, and after a while the number of tests that are needed to be performed becomes too large to

do manually.

Given all the above complaints, however, it still appears that one can successfully detect and

recover from most single-event transient errors using micro rollback, without significant time overhead.



-1 -

A. CONTROLLER SIGNALS

This appendix lists every signal in the controller. The list is broken down by block, and for each
block its inputs and outputs are listed. For each input, the block that supplies the input is also listed, and

for each output, the blocks that the output goes to are listed.

CLOCK
Inputs (7) Input from
in.csel pads
in.phi pads
in.phil pads
in.phi2 pads
in.phi3 pads
in.phi4 pads
in.sync pads
Outputs (4) Output to
phil everywhere
phi2 everywhere
phi3 everywhere
phi4 everywhere
CMP
Inputs (27) Input from
busB.par RF
busD.par RF
busOUT.par BUSOUT
error. ADO_ pads
ermor.AD1_ pads
error.ADp_ pads
error.enb.addr _ pads
error.enb.data_ pads
error.id_ pads
error.ira_ pads
error.rw_ pads
eITOr.Size_ pads
error.state<3:.0>_ pads
error.sysmode_ pads
gate.busOUT_padAD2 PHI4
gate.busOUT_padAD4 MEM
load.PAR _busA POST
load.PAR_busB POST
load.PAR_busQUTA POST
load. PAR_busOUTB POST
rfA.par RF
rfB.par RF
state.rb RB
state.shutdown EXT
Outputs (4) Output to

error.CMP_ RB



error.busA
error.busB
error.busOQUT_

COND

Inputs (8)
busiR<4:1>
state.cc<3:0>

Cutpuis (1)
cond

CUDATA

Inputs (21)
CUdata.in<1:0>
busiR<13:0>
ctrl.CU_write
state.tb
state.rb<2:0>

Quipuits (2)
busCU3<1:0>

EXT

Inputs (4)
in.reset
in.shutdown
in.wait
state.rb

Qutputs (3)
State.reset
state.shutdown
state.wait

INT

Inputs (17)
busBAR<1:0>
ctrl.badop
ctrl.badshifi
ctrlint_enb
ctrl.over_under
ctrl.privop
in.irr
out.size<1:0>
out.sysmode
state. PSW_overflow
state.rb
state.repairl
state.repair2
state.reset
state.shutdown

Outputs (7)

72 -

556

Input from

IRLATCH

PSW
Cutput to

POST

Input from
NS
IRLATCH
VALID
RB
RB

Cutput to
NS

Input from
pads
pads
pads
RB
QOutput to
INT, PSW, RB, VALID
CMP, INT, POST, RB, VALID
MEM, NS§, POST, IRLATCH, VALID

Input from
BAR
PHI1A
SDEC
PSW
PHI1A
PHI1A
pads
MEM
PSW
PSW
RB
NS
NS
EXT
EXT

Output 10



_ivec<6:4>
out.ira
state. 10
state.int
state.int3

IRLATCH

fnputs (19)
IR.write
busIN<31:19>
busiN13
gate.IR
state.int
statc.rb
state.wait

Qutputs (14)
busIR13
busiR12
busiRi1
busIR10
busIR9
busIR8
busIR7
busIR6
busIRS
busIR4
busIR3
busIR2
busiR1
busIRO

MEM

Inputs (10)
busIR<12:9>
st<2:0>
state.repairl
state.repair2
state.wait

Outputs (7)
gate.busOUT_padAD4
out.enb.addr
out.enb.data
out.id
out.rw
out.size<1:0>

NS

inputs (9)
busCU3<1:0>
busIR12

-73.

IVEC
pads
VALID

CALLI IRLATCH, NS, POST, PSW, RFTRAN, VALID

VALID

Input from
PHI1A
BUSIN
BUSIN
PHI1A
INT
RB
EXT

Output to
CUDATA, PHI1A
CUDATA, MEM, NS, PHI1B, PHI4
CUDATA, MEM, PHIIB, PHI4
CUDATA, MEM, PHI1A, PHII1B, PHI4
CUDATA, MEM, PHL1A, PHI1B, PHI4
CUDATA, PHI1A, PHI1B, PHI4
CUDATA, PHI1A, PHI1B, PHI4
CUDATA, load.PSW_busCC
CUDATA, RFTRAN
COND, CUDATA, RFTRAN
COND, CUDATA, RFTRAN
COND, CUDATA, RFTRAN
COND, CUDATA, RFTRAN
CUDATA, PHI1B, PHI4

Input from
IRLATCH
NS
NS
NS
EXT
Output to
CMP, PADENB
pads
pads
pads
pads
INT, IMM, pads

Input from
CUDATA
IRLATCH






ctrl.norepair
repairA
repairB
state.int
state.rb
state.wait
Outputs (9}
CUdata.in<1:0>
st<2:0>
state.op_prev_
state.repairl
state.repair2
state.suspend

PADENB

Inputs (5)
ctrl.override_master_
ctrl.override_slave_
gate.busOUT _padAD?2
gate.busOUT_padAD4
in.ms

Outputs (1)
enb.AD_

PHIIA

Inputs (13)
busIR<13:7>
repairA
repairB
st<2:0>
state.rb_bit

Outputs (28)
ALU.carry_car
ALU.carry_val
ALU.gateOUT
ALU.gateOUT_cond
INC.gate
INC gate_cond
IR.write
PC.write
RF.write
ctr. ALU_op<4.0>
ctrl. DIMM_sxt
cirl.badop
ctrl.over_under
ctrl.privop
gate. ALU_busD
gate. DIMM_busT
gate.IR
gate.PC_busD2

.74 -

IZZEEE

Output to
CUDATA
MEM, PHI1 A, PHI1B, PHI4
STATE
INT, MEM, RB, STATE, VALID
INT, MEM, POST, RB, STATE, VALID
STATE

Input from
PHI4
PHI4
PHI4
MEM
pads

Cutput to
pads

Input from
IRLATCH
RB
RB
NS
RB

Cutputs to
POST
POST
POST
POST
POST
POST
IRLATCH, POST, VALID
VALID
VALID
ALU
IMM
INT, POST
INT
INT
ALU
IMM
IRLATCH
PC



gate. PC_busD4
gate. PSW_busD
load.BAR_busDR
load.RFaddr_RA
load.RFaddr_RB
load.RFaddr_RD

PHIIB

Inputs (16)
busIR<12:7>
busIRO
in.ms
repairA
repairA_
repairB
repairB_
st<2:0>
state.rb_bit

Cutputs (24)
PAR .busA
PAR.busB
PAR.busIN
PAR.busQUTA
PAR.busOQOUTB
ctrl. PSW_reti
ctrl. RFpar_invert
ctrl. SHIFT _sxtS
ctrl.busINpar_invert
ctrl.clrrb
gate. MAR_busOUT2
gate. MAR_busOUT4
gate. SDR_busOQUT
gate, SHIFT_busL
gate. SHIFT_busR
gate.busA_busD2
gate.busA_busD4
load. PSW_busD
load.SHIFT_busL.
load SHIFT _busR
load.SHIFT _busT
load.SHam_BAR
load.SHam_IMM
foad.SHam_busB

PHI4

Inputs (14)
busIR<12:6>
repairA
repairA_
repairB

-75-

PC

PSW
BAR
RFTRAN
RFTRAN
RFTRAN

Input from
IRLATCH
IRLATCH
pads
RB
RB
RB
RB
NS
RB

Output to
POST
POST
POST
POST
POST
PSW
RF
SHIFT
BUSIN
RB
MAR
ALU, IMM, MAR
SDR
SHIFT
SHIFT
RF
RF
PSW
SHIFT
SHIFT
SHIFT
SDEC
SDEC
SDEC

Input from
IRLATCH
RB
RB
RB



repairB_
st<2:0>

Qutputs (12)
ctrl. CWP_inc<1:0>
ctrd.PC_select
ctrl. SHIFT _sxtT
ctrl.ovemmide_master_
ctrl.override_slave_
gate.IMM13_busT
gate. IMMI19_busT
gate.busA _busS

gate.busOQUT_padAD2

load.SHIFT_IMM
load.SHam_0

POST

Inputs (20)
ALU.carry_car
ALU.carry_val
ALU.gateOUT
ALU.gateQUT_cond
INC.gate
INC.gate_cond
IR.write
PAR.busA
PAR.busB
PAR.busIN
PAR.busOUTA
PAR.busOUTB
cond
ctrl.badop
state.ccO
state.int
state.rb
state.repair2
state.shutdown
state.wait

Outputs (10)
ctrl., ALU_¢
gate. ALU_busOQUT
gate. INC_busQUT
gate.padAD_busiN
load. PAR_busA
load. PAR_busB
Ioad.PAR_busIN
load.PAR_busOUTA
load. PAR_busQUTB
load. RFTRAN_busIN

RB

=76 -

RB
NS

Output to
PSW, RFTRAN
pC
SHIFT
PADENB
PADENB
IMM
IMM
RF
CMP, PADENB
SHIFT
SDEC

Input from
PHIIA
PHI1A
PHI1A
PHI1A
PHI1A
PHI1A
PHI1A
PHI1B
PHI1B
PHI1B
PHI1B
PHI1B
COND
PHI1A
PSW
INT
RB
NS
EXT
EXT

Output to
ALU
ALU
PC
BUSIN
CMP
CMP
RB
CMP
CMP
RFTRAN



Inputs (20)
ctrl.RB_write
ctel.clrrb
error.CMP_
error.busA
error.busB
error.busIN1
error.busQUT _
in.RB<2:0>
in.rb
in.repairAm
in.repairAs
in.repairBm
in.repairBs
load.PAR_busIN
state.repairl
state.repair2
state.reset
state.shutdown

Quiputs (17)
ctrl.norepair
enb.pad.RB<2:0>
enb.pad.rb
enb.pad.shutdown
out.repairA_
ouL.repairB_
repairA
repairA_
repairB
repairB_
state.rb

state.rb<2:0>
state.rbbit

STATE

Inputs (17)
state. PSW<3:0>
state. RFaddr<3:0>
state.busD<3:0>
state.op_prev_
state.rb
state.repairl
state.repair2
state.suspend

Outputs (4)
out.state<3:0>

=77 -

Input from
VALID
PHIIB
CMP
CMP
CMP
PARIN
CMP
pads
pads
pads
pads
pads
pads
POST
NS
NS
EXT
EXT
Quiput to
NS
pads
pads
pads
pads
pads
NS, PHI1 A, PHI1B, PHI4
PHI1B, PHI4
NS, PHI1 A, PHI1B, PHI4
PHI1B, PHI4
BAR, CUDATA, EXT, INT, IR,
IRLATCH, MAR, MEM, NS§,
PC, POST, PSW, RF, RFTRAN,
SDR, STATE, VALID
CUDATA, IR, MAR, PC, PSW, RF, SDR
PHI1A, PHI1B

Input from
PSW
RF
RF
NS
RB
NS
NS
NS

Output to
pads



VALID

Inputs (12) Input from
IR.write PHI1A
PC.write PHI1A
RF.write PHIT1A
state.I0 INT
state.int INT
state.int3 INT
state.rb RB
state.repairl NS
state.repair2 NS
state.reset EXT
state.shutdown EXT
state.wait EXT

Outputs (8) Output to
ctrl.CU_write CUDATA
ctrl.IMM_ write IMM
ctrl.IR_write IR
ctrlMAR_write MAR
ctrl. PC_write PC
ctrl. RB_write RB
ctrl. RF_write RF

ctrl. SDR_write SDR



-79 -

B. TEST PROGRAM LISTINGS

testl.ras

# testl.ras
# Used to test add, sub, unconditional jumps.

#
.imreg 5
.text

start: add $3,r0,rl # test load immediate into register
add $7,r0, 12

foo: add rl,r2,r3 # test add register to register
jmpr alw, foo # test unconditional relative jump
add rl,r2,r2

#

# Use the following to test unconditional absolute jump:
#

#start: add $3,r0,rl

# add $7,r0,r2

#foo: add ri,r2,r3
add 5foo, r0, r4
jmp alw,0{r4) #<-- this tests absolute jump
add rl,xr2,r2

Other tests:
- add immediate to register other than r0
- absclute jump with non-zero offset (i.e. jmp alw, Sconst, (r4))
- substitute sub for add



-80-

test2.ras

# test2.ras
# Used to test setting of condition codes
#

.imreg 5

.text

start: add r0, $0xled0, 1 #
putpsw 0 ({(rl)
add SOxXfEffOLff, r0, rl #
add $0x0000£002, 0, 2 ¥
add r2,rl,r3,{c}
jmpr uge, foo
add rd, 50,0 ¥
sub rQ, 51, r4
jmpr alw,end
add r0, %0, r0

foo: add $1,x0,rd

end: jrpr alw,end #
add r0,50,r0 #

Some convenient values:
- OxEfE£ff0f£ff + O0x0000£002 sets C
- OXTEffffff + 1 sets N and V
- 0 sets Z (duh...)
- 1 -1 sets N and C

= 3 ¥ A %k dk 3k dk

uge and ult respectively)

and conditional jumps

Enable interrupts

substitute constants with appreopri-

ate values to set desired codes

no-op for delayed branch

when done, r4d == 1 if condition is
true, r4d == -1 if not

Note: brain-damaged assembler doesn’t like ¢ and nc conditions (must use



-81-

test3.ras

# test3.ras
# used to test adde, subec, and, or, xor

#
.imreg 5
.text
start: add r0,50xled40,rl # Enable interrupts
putpsw 0({rl)
add r0, $O0xEEEEQ0EEE, 1
add rl, $0x0000£003, 2, {cC} # this sets C; use 0xf000 to not set it
clrrbm
clrrbs
addc rl,r2,r3
subc rl,r2,.x4,{c}
and rl,r2,r6
or rl,r2,r7
XOor rl,r2,r8
.space 4
shutdown:
getpsw rl
putpsw 0{(r0}
add 0,0, 0
add rd, 0,0
add r0, r0, 0

Expected values are:

C-bit set:
addec: r3 == xQ0fff£f1002
subc: r4 == OxQffff0ffd
and: ré == 0x100000002
or: r7 == 0x1ffff0£fff
XO0r: r8 == 0x0ffff0ffd

C-bit not set:
addc: r3 == Ox1fffflffe
subg: rd4 == OxIffffOfff

ek Sk e Fe Wk ke e 3k B e 3k



-82.

test4.ras

# testd.ras
# Tests shift instructions (sll, sra, srl)

#
.imreqg r5
.ftext
start: add r(, $0xled40, rl # Enable interrupts
putpsw 0(rl)
add r0,50x0000000fF, r1 # Use 0xf000000 to test right shifts.
sll rl,$1,r2,{c} # sShift 1
sll rl,$2,r3,{cl} # Shift 2
s11 rl,$8,r4,{c]} # sShift 8
s1l1 rl,$16,zr5,{cl # Shift 16
sll rl, $24,r6, {c} # Shift 24
add r0,r0, 0 # Empty out DWB
add r0,r0,r0
add r0,r0,r0
add r0,r0, 0
add r0,r0,r0
#
# Use the following to test shifting by a register:
#
#start: add r0,50x1e40, rl # Enable interrupts
# putpsw 0(rl)
¥ add 0, $0x0000000Ff, r1 ¥ Use Oxf000000 to test right shifts.
# add r0,8$1,r2
# add rg,$2,r3
# add r(, $8, rd
# add rQ, 516, r5
# add r0,%$24,r6
# sll rl,r2,r2,{cl # Shift 1
# sll rl, r3,z3,{c} # Shift 2
# sll rl,rd,r4, {c} # Shift 8
# sll rl,r5,r5,{c} # Shift 16
# sll rl, r6,r6,(c} # Shift 24
# add r0,r0,x0 # Empty out DWB
¥ add 0,0, 0
# add r0, 0,0
# add rd, r0, 0
# add rd, 0,0
# add rQ,r0,r0
#
# Other tests:
# Replace sll with srl and sra
# Shift by bad value (should cause trap)



-83-

tests.ras

# testS5.ras
# Tests getlpce, getpsw, putpsw

.imreg r6

.text
start: add rQ, $0xled0, rl # Enable interrupts
putpsw 0(rl)
add r0,5-1,r4 # dummy statement to waste time
getlpc 3, {c} ¥ r3 should get 0x0000000c
add r0,50,r4, {c} ¥ sets Z bit
getpsw r3,{c} # r3 should get 0x00000648, all CC’s cleared

and r3,$0xffff£fs5f7, rd # clear Z bit and change window pointer
or r4, 50x42,r5 # set I and V bits

putpsw r0(r5)

#add r0,8%1,rlé # rl6e, window 3 <-- 1 (NO LONGER VALID)
add r0,$%1,rl6 # rle, window 2 <--1

Other tests:
- putpsw offset by register other than r0
- putpsw offset by immediate
- getlpc/putpsw with S-bit disabled should cause privileged copcode trap;
putpsw the following line to set the S$-bit:

3 M e W e T3

add rQ, 50x1le70,rl # Enable interrupts, set S-bit



R IR I U L b

W W W Bk A

#

M I W Ak d W 3 W e

W e W e A

-84 -

Enable interrupts

r26, window 3 <-- -1

rll, window 3 <=-=- 325 (0x145)

rl <-- =7

r26, window 2 (rl0, window 3) <-- 0x00000018

rll, window 2 <--1

r2 <-- r26, window 3 (should be -1)

r3 <=- rl (rll, window 2; should be 1)

r4 <-- rl5, window 3 (r3l, window 2; should
be ~99)

rl <-- rll, window 2 (should be 1)

rll, window 2 <-- 21

r3l, window 2 <-- -99

return to main

r2 <-- rll, window 3 (should be 325)

Enable interrupts

r26, window 3 <-- =1

rll, window 3 <-- 325 (0x145)

ri <-- =7

r26, window 2 (rl0, window 3) <-- 0x00000020

rll, window 2 <-—- 1

r2 <-- r26, window 3 {(should be -1}

r3 <-- rl (rll, window 2; should be 1)

r4 <-- rl5, window 3 (r3l, window 2; should
be -99)

rl <-- rll, window 2 (should be 1)

rll, window 2 <-- 21

r31, window 2 <~- =99

return to main

r2 <-- rll, window 3 (should be 325)

{call const({r7),r26)

test6.ras

# test6.ras

# Tests subroutine calls.
.imreg «r5
.text

main: add r0, 50xled0, rl
putpsw 0(rl}
add r0,5-1,r26
add r0,$325,r11
add r( ’ 3-7 r rl
callr foo,r26
add r0,51,rll
add r0,r26,r2
add r0,rl, 3
add r0,rl5,r4
.space 4

foo: add rll, 0, rl
add r, $21,r11
add rQ,$-99,r31, (¢}
ret alw,8(r26)
add rQ,rll,r2

#

# Use the following to test absclute calls:

#

#main: add r(,50xled0, rl

# putpsw 0{rl)

# add r0,$-1,r26

# add rQ,$325, 11

# add rQ,5-7,rl

# add rQ, $foo, r7

# call 0(r7),xr26

# add rd,%1,rll

# add r0,r26,r2

¥ add r0,rl, 3

¥ add r0,rl5, r4

#

# .space 4

#

#foo add rll,r0,rl

¥ add r0,$21,rl11

# add r0,5%5-99,31, (c}

# ret alw,8(r26)

# add r0,rll, r2

#

# Other tests:

# Absolute call with non-zero offset

# Call to bad address

# Return to bad address



-85 -

test7.ras

# test?7.ras
# Tests store instructions.

.imreg r5
.text
start: add r0, 50xledd, rl # Enable interrupts
putpsw 0{rl}
add rQ, $325,r1
add r0,5101, 3
str rl, foo, {c} ¥ foo «<-- 325
#strb rt, foo, {c} # for store byte tesat
add rl, s1,rd
str r3, foot4 ¥ foot+d <-- 101
#strb r0, foo+5 # for store byte test
#strb rQ,foo+ll A " " ™
#strb r0, foo+l5 2 " " ™
%
# Use the following for absclute stores:
#
#start: add r, $0xle40,rl # Enable interrupts
# putpsw 0{rl)
# add r0,$325,rl
# add rQ, $foo,r2
# add r0,%101, 3
# st rl,0(r2), {c} # foo <—- 325
# #sthb rQ,0(xr2), {c} # for store byte test
# add r0, 81, r4
# st r3,4(r2) # foot+d <-- 101
# #sth r0,5(r2) # for store byte test
# #3tb r0,10(r2) # " " " "
# #3tb r0,15(r2) A " " "
#
.space 4
foo: .word OxfEfLffEf
word OxfELELELESE
.word Oxffffffff
word OxfELEEfELE
*
# Other tests:
# Store halfwords (sth} to foo and foo+6.
# Store bytes (stb) to foo, foo+5, foo+l0, and foo+lS5S (zero is a good value
# to store).
¥ Store to bad location (cause address misalignment trap).



test8.ras

# test8.ras

# Tests leoad instructions.

.imreg r5
.text
start: add r0, 50xled40,rl
putpsw 0(rl)
1ldr foo, rl, {¢}
1dr foo+d,xr2, {c}
ldrh foo,r3, {c}
ldrh foo+6,r4d, (c}
ldrhu foo, b5, {c}
ldrhu foo+2,r6, {c])
ldrb foo,x7,{c}
1drb foo+5,r8, (¢}
1drb foo+2,r9, {c}
1ldrb foo+7,r10, {c}
ldrbu foo,rll, {c}
ldrbu foo+l,rl2, {c}
ldrbu foo+2,rl3, {c}
ldrbu foo+3,rl4, {c}
add r0,r0, 0
add r0,r0, 0
add r0,rd, 0
add r0,r0, 0
#
# Use the following for absolute loads:
#
#start: add r0,$0xled(, rl
# putpsw (0 (rl)
# add r0,$foo, 31
# 1d 0(r31),rl,{c}
# 1d 4{(r31),r2, {c}
# 1dh C{r31},r3,1{c}
# 1ldh 6{r3l), x4, {c}
# ldhu 0(r31),r5,{c}
# ldhu 2(r31}),x6,{c}
# 1db 0(r3l),r7,i{c}
# 1ldb 5(r31),r8B, {c}
# 1db 2{r31),r9,{c}
# 1db 7(r31),rl0, {c}
# 1ldbu 0(r3l),rll, {c}
# ldbu 1(r31),rl2,{c}
# ldbu 2(r3l),rl3,(c}
# 1ldbu 3(r3l),cl4,(c}
# add r0,r0,c0
# add r0, 0,0
¥ add r0,r0,r0
¥ add r0, 0,0
#
.space 4
foo: .word 0x84838281
.word 0x04030201
#

# Other tests:

# kA dk Wk dk 4k koM e Ak Wk M 3 e 3k

-86-

Enable interrupts
rl <-- 0xB18283B4
r2 <-- 0x01020304
r3 <-- Oxffff8384
r4 <-- 0x00000102
r5 <-- (0x00008384
r6 <-- 0x00008182
r7 <-- OxffffffB4
r8 <-- 0x00000003
r9% <-- QOxffffffg2
rl0 <-- 0x00000001
ril <-- 0x00000084
rlz <-- 0x00000083
rl3 <-- 0x00000082
rl4 <-- 0x00000081

clear DWB

# Enable interrupts
# rl <-- 0xB81828384
¥ r2 <-- 0x01020304
¥ r3 <-- Oxffffg384
# rd4 <-—- 0x00000102
# r5 <-- 0x00008384
¥ r6 <-- 0x00008182
# r7 <-- Oxffffff84
# r8 <-- 0x00000003
# r9 <-- Oxffffffg2
# r10 <-- 0x00000001
# rll <-- 0x00000084
# rl2 <-- 0x00000083
# rl3 <-- 0x00000082
# rld <-- 0x00000081
# clear DWB

W A

{RFlocal([42])
(RFlocal[43])
(RFlccal[44])
(RFlocal[45])
(RFlocal{46])

{(RFglcobal[42])
(RFglchbal[43])
(RFglobal[44])
(RFglobal[45]))
(RFglobal(4e6})

.word 0x81828384 in reality
.word 0x01020304 in reality

# Load from bad location (cause address misalignment trap).



test9.ras

# test9.ras

# Provides interrupt handlers

text

.imreg
jmpr
add

reset:

. space
int: getlpc
jmpr
add
.Space
over: getlpc
jmpr
getpsw
. space
under: getlpc
jmpr
add

.space

reset_handler:
putpsw
jmpr
add

.3pace

int_handler:
jmp
reti
add

. 8pace

over handler:
strxr
callr
str
str
ret
sll
srl
sub
sll
srl
and
and
or
putpsw
ldr
jmp
reti
add

overl:

-87 -

x5

alw, reset handler

0, 50x670,rl # Cwp=11, SwWp=00,
8

r24
alw,int_handler
rQ,51,r23

# save NXTPC

4

r24
alw,over handler
r23

4

r24

alw,under_ handler
rQ, $3,r23

4

0{rl)

alw, start
rl,r0,r0

4

alw,0(x25) #

alw, 0 (r24) #
r0,r0,z0

restore PC
restore NXTPC

4

rl, rlsave

increment CWP
decrement SWP

alw,20{rl)
r23,51,r22
r22,%88,r22
r22,81,r22
r22,58,r22
r22,81,r22
r22,50x180,r22
r23,50xfffffe77f, 21
r22,r2l,r21

0(r2l)

rlsave,rl
alw,0(r25)
alw,0{(r24)

rQ,r0,x0

overl,rl # decrement CWP
rl0, foo # save window to foo
rll, foo+4

#

#

{(of a sort) for testing interrupts and traps.

{(calli has already saved PC)



-88 - test9.ras
.space 4
under_ handler:
jmp alw,0(x25)
reti alw,Q(r24)
add rQ,rc0,r0
.8pace 4
start: add r0,51,rl
add r0,5%5325,rl0
str rl0, rlsave
add r0,%$101,rll
loop: callr loop, r2 # will cause reg file overflow after 2 loops
add r0,x0,r0
#
# Use the following to cause reg file underflow
#
¥start: add x0, $start, rl
# ret alw,Q(rl)
# add r0,r0, 0
#
# Use the following for interrupting subroutines:
#
#start: add r0,51,rl
# callr subl, r27 # r27, window 2 <-- 0x000000cO
# add rQ, $325,r10 # rl0, window 2 <-- 325
# add rg,$1,rll # rll, window 3 <--1
#
# .space 4
#
#zubl: add rQ,5-1,rl0 # rl0, window 2 <-- -1
# ret alw,8(r27)
# add rQ, $-2,rll # rll, window 3 <-- -2
¥
.space 4
rlsave: .word OxfEffffff
foo: .word OxfEfLff£f
.word OxfEfEfeEfe
#
# Other tests:
# Cause external interrupt (including both cycles of load and store
# instructions)
# - both cycles of load and store instructions
# - call instruction
# - instruction after call instruction
# - first instruction c¢f subroutine
# - instruction after return
# - instruction after returning from subroutine



-89 .

test10.ras

# testl0.ras
# Tests test instructions and rollback legic

.imreg rS5

.text
start: add rd, $0xle40, rl # Enable interrupts
jmpr alw,start0

putpsw 0(rl)
foo: .word 0

# Register file parity error, master

start0: add $1,x0,rl #rl <-1
add $16,r0, 4 # rd4 <- 16
addbpm $2,r0,r2 # r2 <- 2, bad parity on master
clrrbm
clrrbs
add rl,r2,r3 # r3 <- 3, cause parity error on master
jmprbm r4,r4,r0 # if rollback occurs, jump to cont0
add r0,r0, 0 #
errorl: jmpr alw,errord # 0x00000034
add r0,r0, 0
# Verify clearing of rcollback bits
cont0: clrrbm # clear rollback bits
clrrbs
jmprbm r4,r4,r0 # if still set, jump to errorl
add r0, r0, 0
jmpr alw,contl
add r0,x0, 0 #
errorl: jmpr alw,errorl # 0x00000054
add r0,r0,r0

# Register file parity error, slave

contl: add $2,r0,rl # rl <- 2
addbps $2,r0,r2 # r2 <- 2, bad parity on slave
clrrbm
clrrbs
add rl,r2,r3 # r3 <- 4, cause parity error on slave
jmprbs r4,r4,r0 # if rollback occurs, jump to cont2
add r0, 0, r0 #
error2: jmpr alw,error2 # 0x00000078
add r0,r0,x0

# State compression comparison error

cont2: add r0,r0,r0 # reset rollback counter

add r0,x0,x0

add r0,r0, x0

add r0,r0,r0

add £, 0, 0

add r0,r0, 0

add r0, 0,0

add rd, 0, 0

add r0,x0, 0

add $3,r0,rl # rl <- 3
add $16,r0,x2 # r2 <- 16
add $7, 0,3 ¥ r3 <-7
add $16,r0,r4 # r4 <- 16

(12)

{6)

(11}

test10.ras



-90 - test10.ras

clrrbm

clrrbs

jmprbm rl,r2,ré6 # r6 <- 3 on master, r6 <- 16 on slave

add r0,r0, r0 ¥ (20)
error3: jmpr alw,error3 # 0x000000C4

add 0, r0, 0
cont3: clrrbm

clrrbs

jmprbs r3,r4,r7 # r7 <- 16 on master, r7 <- 7 on slave

add r0,r0, 0 {7)
errord: ijmpr alw,erroréd # 0x000000DC

add rQ,r0,r0

# Memory access, address comparison error

contd: add r0,r0,r0 # clear rollback counter
add r0,rl, 0
add r0,r0,r0
add r0, 0,0
add rQ,r0,r0
add rQ,x0,xz0
add r0, r0, 0
add rQ,r0,x0
add r0,xr0, 0
add rQ, 0,0
add $20,x0,r2 # r2 <~ 20
clrrbm
jmprbm r2,r2,r0 # slave takes branch, master doesn’t
add r0,r0,z0 {1nh
add 0,0,
error5: jmpr alw,error5 # 0x00000120
add r0,r0,r0
cont5: clrrbs
jmprbs r4,r4,r0 # master takes branch, slave doesn’t
add r0,e0, 0 (6)
error6: Jjmpr alw,erroré # 0200000134
add rd, 0,0
add rQ,r0, 0
cont6: Jjmpr alw,conté # 0x00000140
add r0,r0,x0

# Other tests:

# ~ choose values for jmprb that have same state compression {(e.g., 1 & 16)
# - test instructions with S-bit disabled should cause privileged opcode

# trap:

¥ putpsw the following line to set the S-bit:

#
#

add r0, $0xl1e70,rl # Enable interrupts, set S-bit



testll.ras
# testll.ras

-91.

# Tests test instructions and rollback logic {(continuation of testl(.ras)

.imreg

.text
start: add

jmpr

putpsw

foo: .word

# Memory access,

startl: add
clrrbm
clrrbs
strbdm
add
jmprbm
add

error7: jmpr
add

cont7: clrrbm
clrrbs
strbds
add
jmprbs
add

errorB: jmpr
add

# busIN parity

cont8: add
add
add
add
add
add
add
add
clrrbm
clrrbs
ldrbpm
add
jmprbm
add

error9: jmpr
add

cont9: c¢lrrbm
clrrbs
ldrbps
add
jmprbs
add

errl0: jmpr
add

contl0: jmpr
add

rS

0, $0xled(,rl

alw,startl
0(rl)

Oxffffffff

$16,r0,r4

rd, foo

r0, 0, 0
rd4,rd4,r0
r0,r0,r0
alw,error’?
r0,r0, 0

r4, foo
rQ,r0,xr0
rd,rd4,r0
rQ,r0, 0
alw,error8
r0,x0,x0

error

r0,r0, 0
rQ,r0,r0
rQ,r0,r0
rQ, 0, r0
rQ0,r0,r0
r0, 0,0
r0,r0,r0
r0,r0,rd

foo,rl

rd, 0, r0
r4,r4,r0
r0,rd, 0
alw,error9
r0, 0, 0

foo,rl
r0,r0, 0
r4,r4,r0
r0,r0,r0
alw,errl0
rQ,r0,x0

alw,contl0
r0, 0, 0

# Enable interrupts

e e

* W

e

e e

data comparison error

foo <- 0x24 first time, foo <- 16 second time

0x0000G030

foo <- 16

0x00000050

reset rollback counter

rl <- 16, pad parity on master

0x00000080

rl <- 16, pad parity on slave

0x000000B0

0x000000B8

(11)

(10)

{18)

{(10)

testll.ras



-92 - testll.ras

# Other tests:

¥ - test instructions with S-bit disabled should cause privileged opcode
¥ trap;

# putpsw the following line to set the S-bit:

¥

# add r0, $0xle70, rl # Enable interrupts, set S-bit



-03 .

C. ERROR DETECTION TESTS
Error on busA: roll back 1, repair state
Error on busB: roll back 1, repair state
Error on busIN: roll back 2

Error in CMP (comparator): roll back 2
pads
busQUT
exported state

Repeat above during load/store (relative and absolute)
Error on busIR: roll back 2
Ermor on address: roll back 1
Error on outgoing data (store); roll back 1
Error on incoming data (load): roll back 1

Multiple errors (two)
Bad value in same register on both chips: retry rollback/repair
Unrelated error in same chip
both in registers: roll back 1, repair busA, rediscover other fault, roll back 1, repair busB
one in registers, one in pad/state export/busIN: roll back 2, repair wrong busA/busB, re-execute
instruction with bad register, roll back 1, repair state
Unrelated error in other chip: same as in same chip

Error occurring during state repair
Good value gets bit flip while being transferred: roil back 1 to cancel state repair, re-execute, roll back
1, redo repair
Unrelated error in same chip
both in registers: repair one at a time (busA first)
one in registers, one in pad/state export/busIN: shut down
Unrelated error in other chip: shut down

External rollback right before parity error rollback/state repair

Error occurring during roltback
Error in rollback memory: roll back "one more" (shut down if original rollback amount > 1)
value
IR
MAR
PSW
PC (should fix itself w/out causing rollback)
CuU
SDR
valid bit
as above
Unrelated error: parity errors are ignored; comparison errors other than busD, PSW, CU: roll back 2 +
amount of previous rollback + 2 (i.e., shut down)

Make sure state repair (and the rollback that comes before it) takes precedence over interrupt
Make sure shutdown take precedence over everything except reset
External rollback at same time as internal roliback: rollback greater amount



D. VERIFICATION INSTRUCTIONS

This appendix shows the mapping of the four verification instructions referred to in Section 6.2.1

and [2]. There are two different sets of instructions, one for the global registers and one for the local

registers.

Rl—Rg:

Rio—R73:

MOV a.R;:
1dr
add
add
add
add

CMPR; R;:
sub

BEQ a:
jmpr
add

READR,):
str

MOV a,R;:
str
getpsw
putpsw
Idr
putpsw
Idr
add
add
add
add

CMP Rl' ,R j :
str
getpsw
str
str
putpsw
add
putpsw
add
putpsw
sub

aR;

Ro.Ro.Rg
Ro.RoRg
Ro:RoRg
Ro.Ro.Rg

R; -Rj Ro.{c}

€q,a

Ro.Ro.Ro

R" ,d

Rl ,b

R,
window
a,R;

R,

b.R,
RoRo.Ro
Ro-Rg.R
Ry:RoRy
Ro.Ro.Ro

R;.cC

R

R2|d

R3 €

window i
R;,R¢:R;
window j
R;.Ro.R3

Ry
Ra2.R3.Rq.{c}

-94.

' NOPs to clear DWB

! delay slot

! save R,

! save PSW

! set proper window

! R; adjusted for proper window
! restore PSW

! restore R,

! NOPs to clear DWB

!'save R,

! save PSW

! save R,

! save R,

! set window for R;
'move R; o R,

' set window for R;
!move R; 1o Ry

! restore PSW

! compare R,,R,



1dr
Idr
Idr
add
add
add
add

BEQ a:
jmpr
add

READ(R" )
str
getpsw
putpsw
str
putpsw
ldr
add
add
add
add

cR,
d.R,
e.R2
Re.RoRg
Ro.Ro.Rq
RoRo.Ryg
RoRo.Rg

eq.a

Ro.Re:Rg

Ru.b

window
R;.,a

bR,

Ry.Ro.Ry
Ro.RoRg
Ro.Ro:Rg
RoRoR

-95.

! restore R,
! restore R,
! restore R,
! NOPs to clear DWB

! delay slot

!'save R,

! save PSW

! set proper window

! read register

! restore PSW

! restore R

! NOPs to clear DWB



-96 -

REFERENCES

1.

10.

M. Barbacci, et. al., The ISPS Computer Description Language, Department of Computer Science,
Carnegie-Mellon University (1978).

D. Brahme and J. A. Abraham, *‘Functional Testing of Microprocessors,”’ [EEE Transactions on
Computers C-33(6), pp. 475-485 (June 1984).

Zycad Corporation, ‘‘N.2 ISP* User’s Manual,"’ Document #101, Version 1.14 (1988).

M. G. H. Katevenis, *‘Reduced Instruction Set Computer Architectures for VLSI,”” Report No.
UCB/CSD 83/141, Computer Science Division (EECS), University of California, Berkeley
(October 1983).

M. Liang, *“Micro Rollback on a VLSI RISC: Design and Implementation of the UCLA Mirror
Processor,”’ Master's Thesis, Computer Science Depantment, University of California, Los
Angeles (December 1990).

W. 8. Scott, R. N. Mayo, G. Hamachi, and J. K. Ousterhout, editors, **1986 VLSI Tools: Still
More Works by the Original Artists,”” Report No. UCB/CSD 86/272, Computer Science Division
(EECS), University of California, Berkeley (December 1985).

R. Segal, Bdsim: a multi-level simulator, University of California, Berkeley.

Y. Tamir, M. Tremblay, and D. A. Rennels, *‘The Implementation and Application of Micro
Rollback in Fault-Tolerant VLSI Systems,”” 18th Fault-Tolerant Computing Symposium, ToKyo,
Japan, pp. 234-239 (June 1988).

D. M. Taub, ‘*Arbitration and Control Acquisition in the Proposed IEEE 896 Futurebus,'’ /EEE
Micro 4(4), pp. 28-41 (August 1984).

S. M. Thatte and J. A. Abraham, *‘Test Generation for Microprocessors,”” [EEE Transactions on
Computers C-29(6), pp. 429-441 (June 1980).



