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Abstract

Advances in VLSI technology and the increased complexity of circuit designs cause performance
to become an increasingly important constraint for layout. In this paper, we address the issue of
delay optimization during the global routing phase. We formulate this problem as the construction
of a bounded-radius spanning tree for a given pointset in the plane, and present a family of effective
heuristics. Our approach has very good empirical performance with respect to total wirelength,
and can be smoothly tuned between the competing requirements of minimum delay and minimum
total netlength. We present extensive computational results which confirm this. Extensions can
be made to the graph and Steiner versions of the problem, and a number of open problems are
described.

1 Introduction

As VLSI fabrication technology advances, interconnection delay becomes increasingly significant in
determining overall circuit speed. Recently, it has been reported that interconnection delay contributes
up to 50% to 70% of the clock cycle in the design of very dense and high performance circuits (1]
[15]. Thus, with submicron device dimensions and nearly a million transistors integrated on a single
microprocessor, on-chip and chip-to-chip interconnections are playing a major role in determining the

performance of digital systems.

Due to this trend, performance-driven layout design has received considerable attention in the past
few years. However, most of the work in this area has been on the timing-driven placement problem.
A number of methods have been developed to generate good placements wherein the blocks or cells
in timing-critical paths are placed close together. The so-called zero-slack algorithm was proposed
by Hauge, Nair and Yoffa [4]; fictitious facilities and floating anchors methods were used by Marek-
Sadowska and Lin [11], and a linear programming approach was used by Jackson, Srinivasan and Kuh
[6] [7]. Several other approaches, including simulated annealing, have also been studied [1] [10] [15].
Since no global routing solution is generally available at the placement step, most of these placement

algorithms use the net bounding box semiperimeter to estimate the interconnectjon delay of a net.



While such techniques have been developed for timing-driven placement, only limited progress has
been reported for the timing-driven interconnection problem. In [2], net priorities are determined based
on static timing analysis; nets with high priorities are processed earlier using fewer feedthroughs. In
(8], a hierarchical approach to timing-driven routing was outlined. In [12], a timing-driven global router
based on the A* heuristic search algorithm was proposed for building-block design. However, these
results do not provide a general formulation of the timing-driven global routing problem. Moreover,
their solutions are not flexible enough to provide a trade-off between interconnection delay and routing

cost.

In this paper, we give a solution for timing-driven global routing in cell-based design regimes. The
method is motivated by considering the highly similar problem of finding minimum spanning trees of
bounded radius. In particular, when given a lower bound R for the spanning tree radius, we search
for spanning trees with radius (1 + ¢) - R. Such a formulation offers a very natural, smooth trade-off
between the tree radius (maximum signal delay) and the tree weight (total interconnection length).
This in turn affords the circuit designer a great deal of algorithmic flexibility, as the parameter ¢ can
be varied depending on performance constraints. The timing-driven global router that we propose is
based on several simple yet very effective heuristic algorithms for computing bounded radius minimum
spanning trees. Extensive experimental results show that our global router reduces interconnection
delay by, e.g., an average of 28% for 10-pin nets, when compared with conventional minimum spanning
tree based global routers. Moreover, our method indeed produces an entire class of routing solutions

which embody the trade-off between minimum delay and minimum wire cost.

The remainder of this paper is organized as follows. In Section 2, we present a general forrmula-
tion of the performance-driven global routing problem. In Section 3, we present a simple yet very
effective heuristic algorithm for computing bounded radius minimum spanning trees, and analyze per-
formance bounds for the algorithm. Section 4 describes several variations and improvements of this

basic algorithm, and experimental results are reported in Section 5.

2 Formulation of the Problem

A netis a set of terminals to be connected where one of the terminals is a source and the rest are sinks.
A routing solution of a net is a spanning tree T (called the routing iree of the net) which connects all of
the terminals in the net. Since the routing tree may be treated as a distributed RC tree, we may use the

first-order moment of the impulse response (also called Elmore’s delay) to approximate interconnection



delay [3] [14]. A more accurate approximation can be obtained using the upper and lower bounds on
delay in an RC tree derived in [14]. However, although both the formula for Elmore’s delay and those
in [14] are very useful for simulation or timing verification, they involve sums of quadratic terms and
are difficult to compute and optimize during the layout design process. Thus, a linear RC model (where
interconnection delay between a source and a sink is proportional to the wire length between the two
terminals) is often used to derive a simpler approximation for interconnection delay (e.g., [10] [13]). In
this paper, we shall also use wire length to approximate interconnection delay in the construction of
routing solutions. In practice, a subsequent iterative improvement step, based on a more accurate RC

delay model, may be used to enhance the routing solutions.

The radius R of a net is the maximum Manhattan distance from the source to any sink in the
net. The length or cost of an edge between points # and y is the Manhattan distance dist(z,y). The
pathlength in the routing tree T from the source s to any sink z, denoted by pathlength(T,s,z), is the
sum of the lengths of all edges in the unique path from s to z. We define the radius of a rouling tree,
r(T), to be the maximum pathlength from the source to any sink. Clearly, »(T} > R for any routing
tree T'. According to the linear RC delay model, in order to minimize the interconnection delay of a
net, we want to minimize the radius of the routing tree since it measures the maximum interconnection
delay between the source and any sink. If minimizing the radius is our only consideration, the global
routing problem is trivial: simply connecting the source to every sink using the shortest path yields
r(T) = R, which is the best possible result. However, the cost of this routing tree, i.e., the total edge
length, might be very high. In fact, we can show that the cost of the tree can be 2(n) times larger than
the cost of the minimum spanning tree, where n in the number of terminals in the net, as illustrated

in Figure 1.

A routing tree with high cost may increase the overall routing area. Moreover, high cost also contributes
to the interconnection delay which is not captured in the linear RC model. In order to balance the
radius and the cost in the routing tree construction, we formulate the timing-driven global routing

problem as follows:

The Bounded Radius Minimum Spanning Tree (BRMST) Problem: Given a net, find a
routing tree 7' with minimum total cost such that the radius of the routing tree is no more than

(1+¢€) - R, where R is the radius of the net and ¢ is a prescribed constant.

The parameter ¢ controls the trade-off between the radius and the cost of the tree. When ¢ = 0,
Wwe minimize the radius of the routing tree, and when ¢ = co we minimize the total cost of the tree. In

general, as ¢ grows, there is less restriction on the radius, so we can further minimize the cost of the
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Figure 1: An example where the cost of a routing tree (right) is Q(n) times
larger than the cost of a minimum spanning tree (left).

tree. For the example of Figure 2, we show three spanning trees obtained using different values of ¢.
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Figure 2: An example of how increasing the value of € may result in a
decreased tree cost, but an increased radius R.

Figure 2(a) shows the minimum radius spanning tree corresponding to the case ¢ = 0}, with maximum
pathlength »(T) = 6; Figure 2(b) shows a solution with 7(T) = 10 corresponding to the case ¢ = 1; and
Figure 2(c) shows the minimum cost spanning tree corresponding to the case € = oo, with »(T) = 14.
We can see that the tree cost decreases as the radius increases. The bounded-radius minimum spanning
tree formulation provides a great deal of flexibility for our timing-driven global router. In practice, for
nets in the timing-critical paths, the router uses small ¢ so that the interconnection delay is minimized.

For nets not in any timing-critical path, the router uses large € so that the total wire length is minimized.

According to the result in [5], constructing a minimum spanning tree with bounded radius in a

general graph is NP-complete. However, this result does not imply that the BRMST problem is NP-



complete since in our formulation, terminals are in the Manhattan plane (whose underlying graph is a
grid graph) rather than a general graph. At this point, the exact complexity of the BRMST problem

is still unknown.

The objective of this paper is to present a heuristic algorithm for the BRMST problem. Our goal is
to construct a bounded-radius spanning tree with small cost. In the following discussion, the terminals

of a net will correspond to a pointset P.

3 An Algorithm for Computing Bounded Radius Minimum
Spanning Trees

Qur basic algorithm for a pointset P finds a routing solution by growing a single component, following
the general scheme of Prim’s classical minimum spanning tree construction. We grow a tree T =
(V, E) which initially contains only the source s. At each step, we choose 2 € V and yEP—
V such that dist(e,y) is minimum. If adding (2,4) to T does not violate the radius constraint,
L.e., pathlength(T, s, z) + dist(z,y) < (1 +¢€) - R, we include the edge (z,y) in T. Otherwise, we
“backtrace” along the path from z to s to find the first point z’ such that (z’,y) is appropriate (ie.,
pathlength(T', s, 2') + dist(z',y) < R), and add (z’,y) to the tree. In the worst case, the backtracing
will terminate with 2’ = s, since the edge(s, y) is always appropriate. Note that in backtracing we could
choose z' such that pathlength(T,s,z') + dist(z',y) < (1+¢) - R. However, our choice of appropriate
edges leads to fewer backtracing operations, while guaranteeing that backtracing is still always possible.
In other words, we intentionally introduce some “slack” at y so that points within an €R neighborhood
of y will not cause additional backtracing. Limiting the amount of backtracing in this way will keep

the cost of the resulting tree close to that of the minimum spanning tree.

We call this algorithm the Bounded Prim (BPRIM) construction. The high-level description is
given in Figure 3. This algorithm has several advantages. First, we can show that the radius of the

resulting tree is never greater than the radius of the MST whenever the MST is unique.
Property 1: If the MST is unique!, then r(Teprim) < r(Tmst).

Proof: If »(Tarsr) < (1+€) - R, then r(Terrim) = r(Tarst) since the two trees will be identical.

Otherwise, »(Tpprrm) < (1+¢€) - R < r(Tarst) by construction. O

With regard to total tree cost, we note that the difference between BPRIM and MST tree cost will

!When the MST is not unique, see the discussion at the end of Section 4.



8 = source
R = maximum distance between s and any z € P
T =(V,E) = ({s},0)
while V| < | P}
Select two points z € Vandye P—V minimizing dist(z,y)
if pathlength(T, s, z) + dist(z,y) < (14¢€)-R then
V=Vu{z}
E=EU{(z,y)}
else find the first point z’ along the path from = to s
such that pathlength(T, s, z') + dist(z', <R
V=Vu{zl}
E=EU{(="p}

Figure 3: Computing a bounded-radius spanning tree T for a given pointset
P and tolerance «.

depend on the parameter ¢. In practice, most nets will have between two and four pins. Furthermore,
it 1s unlikely that a single gate will be used to drive more than six gates in CMOS design. In this case,
we can show that the cost of the resulting tree is within a small constant factor of the cost of the MST
for nets of practical size. Table 1 gives the worst-case ratio of BPRIM cost over MST length for small

values of |P{, as a function of ¢.

Property 2: Let B(¢) be the worst-case ratio of the cost of BPRIM output to the MST cost. Then
the following bounds hold:

Netsize | BoundB(e) Te=0]e=1Te=1
n=2 i 1 1 1
n=3 ﬁ 2 % 1
n=4 | max(#e 2| 3 3 2
n=>5 max(%,-l-;g—{) 4 % 2
n==6 max(ﬁ_’—:,-lﬁ) 5 3 3

Table 1: Analysis for small nets. Results are based on Manhattan distance.

Proof: These results are obtained by studying the number of backtracings that can occur. We show




the proof for n = 5. Other cases are similar.

Assume that the point set has unit radius. Let ¢(T) be the cost of a minimum spanning tree.
Suppose that there is only one backtracing. Clearly ¢(T) £ 14+ €. Let c(e) be the edge which cause
the backtracing. Then

e(T) — e(e) + 1 1 1 24 ¢
_— < =
BO<=—m St st =T

If backtracing occurs twice, let ¢(z) and ¢(y) be the costs of the edges which cause the backtracings.

Then,
eoT) —c(x) —e(y)+2 2 2 3+¢

B(e) < oT) <1+

If backtracing occurs three times, the tree produced by BPRIM is a star graph. Moreover, in this
case, it is easy to see that T < 1+ 3¢. Thus,

4 4
L — <
By s m < 1o
Therefore,
24¢ 3+4e¢ 4 3+¢ 4
< = -
B(f)—max(1+e’ 14+¢'’ 1+3c) max(1+c’ 1+3c)

O

In fact, the experimental results of Section 5 show that B(e) is still bounded by a a small constant
even for very large pointsets (i.e., see the tables of Appendix I}. However, examples exist which show

that the worst-case performance ratio of BPRIM is not bounded by any constant for any value of .

Theorem: For any ¢ and any constant K, there exists a pointset for which BPRIM will have a

performance ratio greater than K.

Proof: On the pointset illustrated in Figure 4, BPRIM will have an unbounded performance ratio;
moreover, this pointset can be modified (by adding closely-spaced points which form an arbitrarily
long snaking path between the clock source s and y) so as to yield arbitrarily large performance ratio

for any value of e. 0

The time complexity of BPRIM is O(n?) and is easily shown to be ©(n?), since there are instances
where each new point will force examination of most of the points that have already been added to the

tree.
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Figure 4: Example where the performance ratio of the algorithm is not
bounded by any constant for any ¢, The optimal solution is shown on the
left, while the BPRIM output is shown on the right.

4 Extensions of the Basic Algorithm

As it turns out, the bounded-radius construction can also be applied to minimum spanning tree methods

other than Prim’s algorithm. A more general algorithm template could be as follows:

§ = source
R = maximum distance between s and any = € P
T=(V,E) = ({s},0)
while |V| < |P|
Select two points r € V and y e P~ V,
with pathlength(T, s, x) + dist(z,y) < (14 ¢)- R
V=vu{x}
E=EU{(z y)}

Figure 5: Computing a bounded-radius spanning tree T for a given pointset
P and tolerance «.

This general template gives rise to a number of distinct variants, depending upon how the pair

of points z and y are selected inside the inner loop. Several variants give significant performance

improvements over the BPRIM algorithm:



» H1 - Find z and y as in BPRIM, and among all points z’ along the path in T from z to s, select
the point &' which yields a minimum-length appropriate edge (z',y); add (z',y) to T.

e H2 - Find a point y € P — V that minimizes dist(z,y) for any £ € V, and among all points
z' € V, select the point z’ which yields a minimum-length appropriate edge (2’,y); add (z',4) to
T.

® H3 - Find a pair of points 2 € V and y € P — V that yield a minimum-length appropriate edge
(#,9); add (z,y) to T.

Property 1 also holds for H1, H2, and H3. However, when the MST is not unique, it is possible
for the radius of the BPRIM construction to be arbitrarily larger than the radius of the MST. For
example, in Figure 4, if we move the point y slightly to the right so that dist(s, z) = dist(s,y), BPRIM
may initially connect s to either z or y, and will eventually construct either the tree shown on the left
or the one shown on the right of Figure 4, respectively. In this way, an unfortunate sequence of choices

by BPRIM may yield r{T") >> r(MST) even though the two trees have identical costs.

The time complexity of variants H1 and H2 is ©(n?), while variant H3 can be easily implemented
within time O(n®). Figure 4 shows that each variant will also have unbounded worst-case performance

ratio.

5 Experimental Results

The BPRIM algorithm and variants H1, H2, and H3 were implemented in ANSI C for the Sun-4,
Macintosh and IBM environments; code is available from the authors upon request. The algorithms
were tested on a large number of random pointsets of up to 500 points, generated from a uniform
distribution in the 1000 x 1000 grid. As noted in, e.g., [9], any set of approximation heuristics induces
a meta-heuristic which returns the best solution found by any heuristic in the set and has asymptotic
complexity equal to that of the slowest original heuristic; we implemented the meta-heuristic over H1,

H2, and H3 and labeled this as H4, which takes O(n?) time.

Although there exist examples where the BPRIM algorithm outperforms the more complicated
variants (e.g., see Figure 6), the data indicates that on average, variant H1 significantly dominates
BPRIM, H2 significantly dominates H1, and H3 significantly dominates H2, as can be seen in the tables
of Appendix II.
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Figure 6: Example where BPRIM outperforms variants H2 and H3; here §
1s a very small real number and € = (2 — 36)/(2 + 36).

6 Extensions and Open Problems

Our basic algorithm and all of its variants readily extend to other norms, to higher dimensions, and
to alternate geometries (e.g., 45- or 30-60-90-degree routing regimes). In addition, the algorithm can
be applied to arbitrary weighted graphs with non-metric edge weights, as in building-block and mixed-

mode design. Extensions to performance-driven Steiner routing are also straightforward.

There are several interesting open problems. First, the complexity of the BRMST problem is
still unknown when points are in a plane. Also, it is open if there is a polynomial time approximation
algorithm for the BRMST problem with constant performance ratio (the constant would be independent
of the problem size but depend on the value of €). Moreover, for a given set of points, if the minimum
spanning tree is not unique, it is unknown how to choose one with the minimum radius. Further studies

of these problems are in progress.

7 Conclusion
We present a family of global routing heuristics which construct a bounded-radius spanning tree for

a given pointset. Our approach allows a smooth tradeoff between delay minimization and total wire-

length, and has good empirical performance along with efficient time complexity.
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8 Appendix I: Ratios of Heuristic Tree Radius to MST Ra-
dius

The tables in this appendix give the minimum, maximum, and average ratios of the heuristic tree
radius to the MST radius. The data shown represents averages of 500 cases generated from a uniform

distribution in the unit square. The source node was selected to be one of the points at random.

# BPFRIM | BPRIM | BPRIM H1 H1 H1 B2 HZ H2 H3 H3 H3 H4 H4 H4
pts min ave max min ave max min ave max min ave max min ave max
5 0.43 .81 1.00 043 | 0.81 1.00 0.43 | 0.81 1.00 0.43 | 0.81 1.00 0,43 | 0.81 1.00
8 0.37 0.74 1.00 037 | 0.74 | 1.00 037 | 0.74 | 1.00 0.37 | 0.74 1.00 037 [ 0.74 | 1.00
10 0.38 0.72 1.00 033 [ 072 | 1.00 033 | 0.72 | 1.00 0.38 | 0.72 1.00 033 [ 072 | 1.00
15 0.32 0.67 1.00 032 [ 0.67 | 1.00 0.32 | 0.67 | 1.00 0.32 | 0.67 | 1.00 0.32 | 0.67 | 1.00
25 0.27 0.63 0.97 027 { 0.63 | 097 0.27 | 0.63 | 0.97 .27 { 063 | 0.97 0.27 | 0.63 | 0.97
50 0.27 0.57 .89 0.27 0.57 Q.89 0.27 0.57 0.39 0.27 Q.57 0.89 0.27 0.57 0.89
100 0.24 0.52 0.92 0.24 | 0.52 | 0.92 0.24 | 0.52 | 0.92 0.24 | 0.52 | 0.92 0.24 | 052 | 0.92
200 0.25 0.48 0.77 0.25 | 048 | 0.77 0.25 | 0.48 | 0.77 0.25 | 0.48 | 0.77 025 | 6.48 | 0.77

Table 2: Minimum, average, and maximum radius ratios for ¢ = 0.01

# BPRIM | BPFRIM | BPRIM H1 H1 H1 HZ2 H2 Hz H3 H3 H3 H4 H4 H4
pts min ave max min ave max min ave max min ave max min ave max
b 0.42 Q.82 1.00 0.42 0.82 1.00 0.42 0.82 1.00 0.42 0.82 1.00 0.42 0.82 1.00
8 0.26 0.77 1.00 0.26 | 0.77 | 1.00 0.28 | 0.77 | 1.00 028 | 0.77 | 1.00 0.28 t 0.77 | 1.00
10 0.36 0.75 1.00 0.36 0.74 1.00 .36 0.75 1.00 0.36 0.75 1.00 0.36 0.75 1.G0
15 0.34 0.7t 1.00 0.34 | 0.71 1.00 0.34 | 0.71 1.00 0.34 | 0.71 1.00 034 | 0.71 1.00
25 0.33 0.69 1.00 033 | 068 | 1.00 0.33 | 0.69 | 1.00 0.32 | D.69 1.00 032 | 069 | 1.00
30 0.30 0.61 0.99 0.30 0.61 0.89 0.31 0.61 0.99 0.30 0.61 0.99 0.30 0.61 Q.99
100 0.28 0.59 0.93 0.28 | 0.59 | 0.93 0.23 | 0.59 | 0.93 0.28 | 0.59 | 0.93 023 | 059 | 093
200 0.25 0.53 0.91 0.25 1 053 | 0.91 0.25 | 0.53 | 0.91 0.24 | 053 | 0.91 0.24 | 053 | 091

Table 3: Minimum, average, and maximum radius ratios for ¢ = 0.10

# BPRIM | BPRIM | BFRIM H1 H1 H1 H2 H2 H2 H3 H3 H3 H4 H4 H4
pte min ave max min Bve max min ave max min ave max min ave max
5 0.40 0.87 1.00 0.40 0.87 1.00 0.40 0.87 1.00 0.40 0.87 .00 0.40 0.87 1.00
8 0.40 0.83 1.00 0.40 0.82 1.00 0.40 0.82 1.00 0.39 0.82 1.00 0.39 0.82 1.00
10 G.38 .81 1.00 0.38 0.81 1.00 0.38 0.81 1.00 0.38 0.81 1.00 0.38 0.81 1.00
15 0.32 Q.79 1.00 0.32 0.78 1.00 0.32 0.78 1.00 0.32 0.78 1.00 0.32 0.78 1.00
25 0.37 0.76 1.00 0.37 0.76 1.00 0.37 0.76 1.00 0.37 0.76 1.00 0.37 0.76 1.00
50 .33 0.70 1.00 0.32 Q.70 1.00 0.33 0.70 1.00 0.33 0.70 1.00 0.33 0.70 1.00
100 0.33 0.65 1.00 0.33 0.65 1.00 0.33 0.65 1.00 0.33 0.65 1.04 0.33 0.65 1.04
200 0.28 0.61 .96 0.29 0.61 0.96 0.25 0.61 0.96 0.29 0.61 0.96 0.29 0.6] 0.96

Table 4: Minimumn, average, and maximum radius ratios for ¢ = 0.25
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# BPRIM BPRIM | BPRIM H1 H1 H1 H2 H2 H2 H3 H3 H3 H4 H4 H4
pts min ave max min ave max min ave max min ave max min ave max
5 0.41 0.93 1.00 0.41 0.92 1.00 0.41 0.92 1.00 0.41 (.92 1.00 0.41 0.92 1.0
8 0.48 0.92 1.00 0.33 0.92 1.00 0.33 0.92 1.00 0.44 0.92 1.00 0.44 0.92 1.00
10 0.46 0.81 1.00 0.45 .50 1.00 0.45 0.90 1.00 0.48 0.90 1.00 0.48 0.90 1.00
15 0.44 0.90 1.00 0.44 0.89 1.00 0.44 0.89 1.00 0.41 0.8% 1.31 .41 0.89 1.31
25 0.38 0.86 1.00 .37 0.86 1.00 0.37 0.86 1.00 0.37 0.86 1.07 0.37 0.86 1.07
50 0.39 0.83 1.00 0.39 0.83 1.09 0.38 0.82 1.00 0.39 0.82 1.04 0.39 0.82 1.04
100 0.38 0.77 1.00 0.38 0.77 1.00 0.38 0.77 1.00 0.38 0.77 1.04 0.38 0.77 1.04
200 0.29 0.71 1.00 0.29 0.71 1.00 0.29 0.71 1.00 0.29 0.71 1.01 0.29 0.71 1.01
Table 5: Minimum, average, and maximum radius ratios for ¢ = 0.50
# BPRIM BPRIM | BPRIM H1 H1 H1 Hz H2 H2 H3 H3 H3 Ha H4 H4
pts min ave max min ave max min ave max min ave max min ave max
& 0.56 0.93 1.00 052 0.98 1.00 0.52 0.98 1.00 0.52 0.98 1.00 0.52 0.98 1.00G
8 0.55 0.96 1.00 Q.55 0.96 1.00 0.57 0.96 1.60 0.57 0.96 1.00 o587 0.96 1.00
10 0.52 0.96 1.00 0.46 0.96 1.00 0.46 0.86 1.00 0.48 0.96 1.07 0.48 0.96 1.07
15 0.50 0.95 1.00 .48 0.94 1.00 0.48 0.94 1.00 0.48 0.94 1.02 0.48 0.94 1.02
25 0.44 0.94 1.00 0.44 .63 1.00 0.44 0.93 1.00 0.43 0.93 1.10 0.43 0.93 1.10
50 0.50 0.90 1.00 .49 0.89 1.00 0.49 0.89 1.00 0.48 0.89 1.06 0.48 0.89 1.06
100 0.43 0.87 1.00 0.43 0.86 1.00 0.43 0.86 1.00 0.43 0.86 1.10 0.43 0.86 1.10
200 0.37 0.82 1.00 0.37 0.82 1.00Q 0.37 0.81 1.00 0.37 0.81 1.12 0.37 0.81 1.12
Table 6: Minimum, average, and maximum radius ratios for ¢ = §.75
# BPRIM BPRIM | BPRIM H1 H1 H1 H2 H2 H2 H3 H3 H3 H4 Ha H4
pts min ave max min ave max min ave max min ave max min ave max
5 0.58 1.00 1.00 Q.58 0.99 1.00 0.58 0.9% 1.00 0.58 0.99 1.00 0.58 G.99 1.00
8 0.67 0.98 1.00 Q.56 0.99 1.00 0.56 0.95 1.60 0.53 0.99 1.00 053 0.99 1.06
10 0.65 0.99 1.00 0.57 0.98 1.00 0.57 0.98 1.G0 0.57 0.98 1.00 057 0.98 1.0¢
15 0.65 0.93 1.00 0.54 0.98 1.00 0.54 0.97 1.00 0.54 0.97 1.06 0.54 0.87 1.06
25 0.48 0.98 1.00 0.48 0.97 1.00 0.48 0.97 1.00 0.46 0.97 1.10 0.46 0.97 1.10
50 0.53 0.95 1.00 0.53 0.94 1.00 0.53 0.94 1.00 0.53 0.94 1.06 .53 0.94 1.06
100 0.52 0.3 1.00 0.52 0.93 1.00 052 0.92 1.00 0.52 0.92 1.09 0.52 0.92 1.09
200 0.45 0.89 1.00 0.45 0.89 1.00 0.45 0.88 1.00 0.45 0.88 1.12 0.45 0.88 112
Table 7: Minimum, average, and maximum radius ratios for ¢ = 1.00
# BPRIM BPRIM | BPRIM H1 H1 H1 H2 Hz H2 H3 H3 H3 H4 H4 H4
pts min ave max min ave max min ave max min ave max min ave max
5 1.06G 1.00 1.00 1.00 1.00 1.00 0.63 1.00 1.00 0.69 1.00 1.00 0.69 1.00 1.00
B 0.86 1.00 1.00 Q.80 1.00 1.00 0.67 1.00 1.00 0.67 1.00 1.00 0.67 1.00 1.00
10 0.96 1.00 1.00 0.96 1.00 1.00 0.78 1.00 1.00 0.78 1.00 1.18 0.78 1.00 1.13
15 1.00 1.00 1.00 1.00 1.00 1.00 0.85 1.00 1.60 0.85 1.00 1.10 Q.85 1.00 1.10
25 0.84 1.00 1.00 0.84 1.00 1.00 0.81 1.00 1.00 0.69 1.00 1.26 Q.69 1.00 1.26
B0 0.82 1.00 1.00 3.82 1.00 1.00 0.78 1.00 1.00 0.58 0.99 1.16 Q.58 .99 1.1¢
100 0.73 1.00 1.00 0.72 1.60 1.00 0.73 0.99 1.00 0.66 .99 1.08 0.66 0.99 1.09
200 0.77 0.99 1.00 0.77 0.49 1.00 0.77 0.99 1.00 0.59 0.98 1.24 0.59 0.98 1.24

Table 8: Minimum, average, and maximum radius ratios for ¢ = 2.00
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9 Appendix II: Ratios of Heuristic Tree Cost to MST Cost

The tables in this appendix give the minimum, maximum, and average ratios of the heuristic tree
cost to the MST cost. The data shown represents averages of 500 cases generated from a uniform

distribution in the unit square. The source node was selected to be one of the points at random.

# BPRIM | BFRIM | BPRIM H1 H1i Hi H2 H2 H2 H3 H3 H3 H4 H4 H4
pts min ave max min ave max min ave max min ave max min ave max
[ 1.00 1.25 2.47 1.00 1.25 2.47 1.00 1.24 2.47 1.00 1.23 2.47 1.00 1.23 2.47
8 1.00 1.36 3.09 1.00 1.35 3.09 1.00 1.34 2.61 1.00 1.31 2.81 1.00 1.30 2.61
10 1.00 1.44 2.72 1.00 1.42 2.72 1.00 1.39 2.76 1.00 1.36 2.76 1.00 1.35 2.72
15 1.00 1.51 2.75 1.00 1.46 2.44 1.00 1.43 2.44 1.00 1.39 2.36 1.00 1.37 2.36
25 1.01 1.74 3.15 1.01 1.61 2.80 1.01 1.54 2.84 1.01 1.48 2.27 1.01 1.46 2.27
50 1.14 2.13 3.96 1.14 1.78 3.58 1.12 1.65 2.76 1.0% 1.57 2.63 1.08 1.54 2.54
100 1.23 2.71 4.55 1.22 1.98 3.54 1.14 1.80 3.47 1.14 1.73 3.29 1.14 1.67 3.26
200 1.75 3.49 6.02 1.36 2,22 3.88 1.19 1.97 3.49 1.18 1.94 3.41 1.18 1.84 3.41

Table 9: Minimum, average, and maximum performance ratios for ¢ = 0.01

# BPRIM PRIM | BPRIM H1 H1 H1 Hz2 H2 HZ H3 H3 H3 H4q H4 H4
pts min ave max min ave max min ave max min ave max min ave max
5 1.00 1.17 2.22 100 | 117 | 222 1.00 [ 1.27 | 2.22 1.00 | 1.16 2.22 100 f 116 | 2.22
38 1.00 1.25 2.20 1.00 1.23 1.94 1.00 1.22 2.26 1.00 1.20 2.26 1.00 1.20 1.94
10 1.00 1.28 2.33 1.00 1.26 | 2.33 100 [ 1.25 | 218 1.00 | 1.23 ) 218 1.00 | 1.22 | 2.18
15 1.00 1.39 2,79 1.00 § 1.32 | 2.77 1.00 | 1.28 | 2.53 1.00 | 1.25 [ 2.28 1.00 | 1.23 | 228
25 1.00 1.53 271 1.00 | 1.39 | 2.45 1.00 | 1.33 | 2.30 1.00 | 1.28 | 2.16 1.00 } 1.25 | 2.00
50 1.00 1.92 3.49 1.00 | 1.52 | 2.81 1.00 | 141 | 2.92 1.00 133 | 2.22 1.00 | 1.30 { 2.22
100 1.07 2.37 4.96 1.05 1.67 | 3.21 1.04 | 1.49 | 292 1.03 { 140 | 2.51 1.03 | 137 | 2.11
200 1.10 3.17 5.60 1.08 | 1.91 | 363 1.06 | 1.62 | 3.29 1.03 | 158 | a.15 1.03 | 1.51 3.05

Table 10: Minimum, average, and maximum performance ratios for ¢ = 0.10

# BPRIM [ BPRIM [ BPRIM HI H1 H1 H2 H2 H2 H3 H3 H3 Ha H4 H4
pts min ave max min ave max min ave max min ave max min ave max
5 1.00 1.09 1.96 1.00 1.09 1.96 1.00 1.08 1.92 1.00 1.08 1.67 1.00 1.08 1.67
B 1.00 1.18 1.86 1.00 1.14 1.86 1.00 1.13 1.86 1.00 1.12 1.86 1.00 1.11 1.86
10 1.00 1.19 2.34 1.00 1.15 2.34 1.00 1.14 2.32 1.00 1.12 2.32 1.00 1.11 2.32
15 1.00 1.26 2.37 1.00 1.19 2.25 1.00 1.16 2.01 1.00 1.13 1.74 1.00 1.12 1.62
25 1.00¢ 1.37 2.58 1.00 1.21 2.16 1.00 1.17 2.16 1.00 1.13 1.94 1.00 1.12 1.83
50 1.00 1.67 3.14 1.00 1.33 2.08 1.00 1.23 2.36 1.00 1.16 1.66 1.00 1.15 1.66
100 1.00 2.07 4.52 1.00 1.42 2.61 1.00 1.27 2.17 1.00 1.20 2.20 1.00 1.18 1.99
200 1.00 2.62 5.50 1.00 1.61 2.84 1.00 1.35 2.50 1.00 1.28 2.30 1.00 1.25 2.27

Table 11: Minimum, average, and maximum performance ratios for ¢ = 0.25
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# BPRIM | BPRIM PRIM Hi Hi H1 H2 H2 H2 Ha H3 H3 H4 H4 H4
pts min ave max min ave max min ave max min ave max min ave max
5 1.00 1.05 1.60 1.00 1.04 1.56 1.00 1.04 1.56 1.00 1.04 1.56 1.00 1.04 1.56
3 1.00 1.07 1.97 1.00 1.05 1.59 1.00 1.05 1.59 1.06 1.04 1.84 1.00 1.04 1.59
10 1.00 1.09 1.73 1.00 1.06 1.59 1.00 1.06 1.59 1.00 1.05 1.59 1.00 1.05 1.59
15 1.00 1.13 2.08 1.00 1.08 1.60 1.00 1.06 1.53 1.00 1.05 1.53 1.00 1.05 1.53
25 1.00 1.21 291 1.00 1.10 1.97 1.00 1.08 1.88 1.60 1.05 1.72 1.00 1.05 1.72
50 1.00 1.40 3.67 1.00 1.15 1.93 1.00 1.10 1.75 1.00 1.06 1.77 1.00 1.06 1.74
100 1.00 1.68 4.39 1.00 1.23 2.61 1.00 1.13 1.92 1.00 1.07 1.70 1.00 1.06 1.70
200 1.00 2.16 5.50 1.00 1.33 2,78 1.00 1.16 2.21 1.00 1.10 1.79 1.00 1.08 1.61
Table 12: Minimum, average, and maximum performance ratios for ¢ = 0.50
# BPRIM T BEPRIM | BPRIM H1 H1 H1 H2 H? H2 H3 Ha H2 Ha H4 H4
pts min ave max min ave max min ave max min ave max min ave max
[ 1.00 1.01 1.41 1.00 1.01 1.41 1.00 1.01 1.41 1.00 1.01 1.41 1.00 1.01 1.41
5 1.00 1.03 1.63 1.00 1.02 t.41 1.00 1.02 1.40 1.00 1.02 1.40 1.00 1.02 1.40
10 1.00 1.05 1.83 1.00 1.03 1.43 1.00 1.02 1.41 1.00 1.02 1.41 1.00 1.02 1.41
15 1.00 1.07 2.28 1.00 1.04 1.60 1.00 1.03 148 1.00 1.03 1.38 1.00 1.02 1.38
25 1.00 1.12 2.48 1.00 1.05 1.58 1.00 1.04 1.64 1.00 1.03 1.49 1.00 1.03 1.41
50 1.00 1.24 3.06 1.00 1.09 1.70 1.00 1.06 1.65 1.00 1.03 1.49 1.00 1.03 1.43
100 1.00 1.41 4.20 1.00 1.12 1.87 1.00 1.06 1.69 1.00 1.04 1.71 1.00 1.03 1.57
200 1.00 1.70 4.79 1.00 1.19 2.24 1.00 1.08 1.87 1.00 1.04 1.53 1.00 1.03 1.37
Table 13: Minimum, average, and maximum performance ratios for ¢ = 0.75
# BPRIM BPRIM | BPRIM H1 H1 Hi H2 H2 H2 H3 H3 H3 H4 H4 H4
pts min ave max min ave max min ave max min ave max min ave max
5 1.00 1.00 1.27 1.00 1.00 1.27 1.00 1.00 1.27 1.00 1.00 1.27 1.00 1.00 1.27
] 1.00 1.01 1.73 1.00 1.01 1.54 1.06 1.01 1.54 1.00 1.01 1.54 1.00 101 1.54
10 1.00 1.02 1.47 1.00 1.01 1.32 1L.00 1.01 1.31 1.00 1.01 1.31 1.00 1.01 1.31
15 1.00 1.03 1.79 1.00 1.02 1.30 1.00 1.01 1.30 1.00 1.01 1.30 1.00 1.01 1.30
25 1.00 1.04 2.38 1.00 1.02 1.38 1.00 1.01 1.37 1.00 1.01 1.33 1.00 1.01 1.33
30 1.00 1.13 2.66 1.00 1.04 1.71 1.00 1.03 1.47 1.00 1.02 1.31 1.00 1.02 1.31
100 1.00 1.22 3.10 1.00 1.06 1.67 1.00 1.93 1.58 .00 1.02 1.38 1.00 1.01 1.31
200 1.00 1.45 5.27 1.00 1.11 2.09 1.00 1.05 1.57 1.00 1.02 1.38 1.00 1.02 1.33
Table 14: Minimum, average, and maximum performance ratios for ¢ = 1.00
# BPRIM | BPRIM | BPRIM Hi H1 H1 H2 H2 H2 H3 H3 H3 H4 H4 H4
pts min ave max min ave max min ave max min ave max min ave max
5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
8 1.00 1.00 1.34 1.00 1.00 1.07 1.00 1.00 1.07 1.00 1.00 1.07 1.06 1.00 1.07
10 1.00 1.00 1.08 1.00 1.00 1.08 1.00 1.00 1.08 1.00 1.60 1.08 1.00 1.00 1.08
15 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
25 1.00 1.00 1.39 1.00 1.00 1.14 1.60 1.00 1.14 1.00 1.00 1.09 1.00 1.00 1.09
50 1.00 1.00 1.71 1.00 1.00 1.13 1.00 1.00 1.11 1.00 1.00 1.11 1.00 1.00 1.08
100 1.00 1.01 2.74 1.00 1.00 1.3% 1.00 1.00 1.15 1.00 1.00 1.08 1.00 1.00 1.08
200 1.00 1.02 2.06 1.00 1.01 1.85 1.00 1.00 1.35 1.00 1.00 1.04 1.00 1.00 1.04

Table 15: Minimum, average, and maximum performance ratios for ¢ = 2.00
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