Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

EVOLUTION AS A THEME IN ARTIFICIAL LIFE:
THE GENESYS/TRACKER SYSTEM

David Jefferson December 1990
Robert Collins CSD-900047
Claus Cooper

Michael Dyer

Margot Flowers

Richard Korf

Charles Taylor

Alan Wang

Evolution as a Theme in Artificial Life:
The Genesys/Tracker System

David Jefferson, Robert Collins, Claus Cooper,
Michael Dyer, Margot Flowers, Richard Korf,
Charles Taylor, & Alan Wang
November 1990

Technical Report UCLA-AI-90-09

Evolution as a Theme in Artificial Life:
The Genesys/Tracker System-

David Jefferson, Robert Collins, Claus Cooper
Michael Dyer, Margot Flowers, Richard Korf
Charles Taylor, Alan Wang

UCLA
Los Angeles, California 90024

Abstract

Direct, fine-grained simulation is a promising way of investigating and modeling natural
evolution. In this paper we show how we can model a population of organisms as a
population of computer programs, and how the evolutionarily significant activities of
organisms (birth, interaction with the environment, migration, sexual reproduction with
genetic mutation and recombination, and death) can all be represented by corresponding
operations on programs. We illustrate these ideas in a system built for the Connection
Machine called Genesys/Tracker, in which artificial “ants” evolve the ability to perform a
complex task. In less than 100 generations a population of 64K “random” ants, represented
either as finite state automata or as artificial neural nets, evolve the ability to traverse a
winding broken “trail” in a rectilinear grid environment. Throughout this study we pay
special attention to methodological issues, such as the avoidance of representational
artifacts, and to biological verisimilitude.

1. Introduction

One of the major research themes of the UCLA Antificial Life group is the simulation of
biological evolution, especially the exploration of its large scale behavior (macroevolution).
Our simulations do not use differential equations or aggregated models, but are instead
direct, fine-grained, “microanalytic” simulations of a large population in a complex environ-
ment over many generations. We believe that an organism can be simulated in a natural way
by a computer program; just as an organism is bomn, moves, interacts with its environment,
processes information, reproduces with variation, and dies, so too can a program initiate, mi-
grate, interact with its environment, process information, produce modified copies of itself,
and terminate. In our simulations we represent each individual organism separately as a
computer program of some kind whose execution represents the sequence of significant
events in the organism’s life from birth to death. Each organism has a genotype (a bit string)
and a phenotype (a program encoded in the bit string}), both of which are generally unique in
the population. Over many generations of replication, competition, and selection, we expect
novel and superior forms to evolve.

Our long-term goal is to study natural evolution through artificial evolution. Today, biologists
have only a few ways to study macroevolution: (a) the mathematics of population genetics,

*To appear in J. D. Farmer, C. Langton, S. Rasmussen and C. Taylor (Eds.), Artificial Life I, Addison-Wesley, in
press.

(b) laboratory and field experiment, (c) examination of molecular relationships among modern
species, and (d) examination of the fossil record. Each method has important limitations.
Population genetics today usually cannot give sharp nonequilibrium results for systems with
a large number of genes. Experiments are usually confined to small populations for a few
generations (except for microorganisms), and usually cannot be perfectly controlled. The
fossil record is notoriously biased and incomplete, containing primarily morphological informa-
tion on those creatures whose life style and body type made them likely to be preserved.
And, both molecular and fossil studies tell us about how natural evolution proceeded histori-
cally, as it was, but not so much about the principles of evolution as it might have been. We
hope to add to this list another intellectual tool for the study of evolution, computer simula-
tion. Just as viruses and bacteria can serve as models of the molecular biology of eucaryotic
organisms, we believe that evolving populations of computer programs can act as simple,
controllable, replicable models for large-scale evolutionary processes. We hope some day
that biologists may use simulation to help resolve some of the outstanding foundational
problems in evolution, including perhaps questions about modes of speciation, the evolution of
cooperation, the unit(s) of selection, and the evolution of sex.

This paper has two parts. The first part is methodological; it sets forth our view of how
evolution can profitably be studied by computer in new ways and with new kinds of models.
We describe the strengths, and some of the limitations as well, of our paradigm.

The second part describes a particular system, called the Genesys, that we built to test the
computational feasibility of this approach to studying evolution. We show how we have been
able to evolve artificial “ants” that are capable of complex behavior, e.g. following a “broken
trail” in a grid environment. Genesys is not per se an attempt to resolve any biological ques-
tion. It is rather an ambitious exercise exploring computational and theoretical issues about
biologically realistic evolution. Our experience with the most important of these issues is de-
scribed below.

2. Methodological issues in artificial evolution

In attempting to mimic natural evolution many fundamental methodological questions arise.
Just what is an organism, and how should it be represented computationally? How do genetic
algorithms differ from biologically-motivated evolution? How can we be sure, when we
purport to create something by evolution, that we have not somehow guided or forced that
process by design choices or initial conditions? In this section discuss these questions, prior
to describing the Genesys system in detail.

Can artificial evolution be open ended?

In (Taylor, Jefferson, Turner and Goldman 1989) we reported on an earlier evolution
simulator, called RAM in which each organism in the population is represented as a pair
containing (a) a parameterized Lisp function, referred to as the organism’s “behavior
function”, and (b) a sequence of parameter values to the behavior function, which act as the
organism’s genome. Each individual parameter value is like a “gene”, and an organism in-
herits the parameter values of its parent(s), usually modified by mutation (and possibly
recombination). All organisms (of the same “species”) share a common behavior function,
but differ in the genes.

We consider RAM to be a successful experimental system, and still use it today. (See
(Gibson, Taylor, and Jefferson 1990), (Taylor, Muscatine and Jefferson 1989), (Taylor,
Jefferson and Burla 1987)). It is definitely capable of illustrating evolution of organisms inter-
acting in a common environment. But we are dissatisfied with some of RAM’s limitations,
First, it can support only small populations (a few hundred organisms) because of the large
amount of memory it requires and because it runs on workstation-class machines; and
second, while it is comparatively easy for RAM to simulate asexual reproduction, sexual
reproduction and mate selection have to be specially programmed. But one of the most im-
portant deficiencies in our view is that the Lisp function that defines the behavior of an organ-
ism is not itself subject to mutation or recombination: only the genes (parameters) are. Fur-
thermore, the genes have to be manipulated by mutation operators that are specific to the
type and meaning of the gene. An integer gene, for example, might be incremented or decre-
mented, with perhaps a clause preventing it from going negative; or a real-valued gene might
be multiplied by a random value near 1.0.

This approach, however, seems ultimately too contrived and too distant from natural genetics.
In natural life there are no integers and no reals in the genome. We do not have separate
types of genes, each with its own specific type of mutation operator, and the boundaries
between codon regions are not at all respected by the natural “genetic operators™ of substi-
tution, deletion, insertion, inversion, and crossover. Because in RAM all heritable informa-
tion is contained in the genes, most of the information determining the structure and behavior
of the organism (the behavior function and the Lisp interpreter) is static from generation to
generation, and not subject to evolution. Since the modeler specifies in advance both the
types of the genes and the mutation operators that apply to them, in effect he specifies a low-
dimensional parameter space which is the universe of all genotypes. Evolution is then con-
ducted as a genetic “search” within this space, and most of the structure and behavior of the
organism is out of reach of evolution. Mathematically, the confinement of evolution to a small,
closed parameter space does not resemble the thousands of degrees of freedom available in
the evolution of even the tiniest natural genome. The kind of evolution exemplified by RAM
is, unfortunately, not open ended.

In building our new system, Genesys, we wanted to construct a systemn that corrected these
deficiencies. We wanted almost all of the logic of the organism’s behavior to be subject to
evolution, and we wanted the evolution to be based on genetic algorithms that are biologically
defensible, with no knowledge of the environment or the evolutionary “goal” in any way
embedded in the choice of genetic operators or any other aspect of the genetic algorithm.
These constraints required us to change the representation of organisms and their genomes
drastically, away from Lisp functions and typed parameter values, and toward a programming
paradigm that would have a small interpreter (so that the complexity of an organism’s behav-
ior resides more in the program and less in the interpreter) and that would allow the entire
text of the program itself to be subject to evolution. When representing organisms as pro-
grams for evolutionary studies, we believe that an encoded form of the program itself should
be the genome.

What is an appropriate represeniation for organisms?
Given that organisms are to be represented by programs, and that they must be subject to

mutation and recombination, what kind of programs should they be? Should they be
mathematical automata of some kind? Procedural programs? Rule systems? Logic circuits?

Logic programs? Constraint systems? Neural nets? And how should they be encoded into a
genome, and what mutation and recombination operators should they be subject to? Should
they be encoded as bit (or character) strings, with mutation and recombination at the bit (or
character) level? Or should they perhaps be represented a flattened parse trees with muta-
tion and recombination at the lexeme level? Data elements, such as integers, will inevitably
be part of such a program. Should they be represented and mutated as atomic objects, with
whole-integer operators, or as bit strings with bit flipping as the mutation operator? If the
latter, should they be ones-complement, twos-complement, or perhaps gray code? We refer
to all of these questions as the problem of the “representation of organisms”, a problem we
expect to grow in significance as research in artificial evolution continues.

From all these possibilities we chose two of programming paradigms to work with: finite
state automata (FSAs) and recurrent artificial neural nets (ANNs). In both cases we chose
to encode the entire “program” (FSA state transition table, or neural net weights) as a bit
string and to subject it to bit-level mutation and recombination operations. We will describe
them in more detail later in Sections 4 and 5; but here we only note that one of the major
questions driving us in this research has been “Which of those two representations, FSAs or
ANNg, is ‘better’ for evolution studies?”. Some of us believed that the FSA’s were super-
ior, at least for the Tracker task, because that task is essentially finite and sequential, and
any deterministic algorithm for it is formally equivalent to some finite automaton. Others of
us felt that ANNs were probably superior; ANNs encoded as bit strings would seem to be in-
herently more robust and well-conditioned under mutation and recombination than the appar-
ently more brittle and less redundant FSAs.

We put a lot of work and debate into trying to answer this question. It turned out that after
going to some length to make the two representations as comparable as possible, empirical
trials consistently showed that the FSA representation performed slightly better than the
ANN representation on the Tracker task. However, we have not come to a full understanding
of why this is so, and we do not necessarily believe the empirical result generalizes in any
meaningful way to other tasks, or to larger organisms than the ones we are working with.
We never did answer the question fully; probably neither representation dominates the other
in all dimensions. In any case, we now believe it to be a false dichotomy, and not such an
important question after all, as we will discuss in Section 11.

Koza has described a fascinating system that takes a different point of view from the one we
have adopted (Koza 1990). He executes genetic algorithms over Lisp programs, but with a
different purposes and mechanisms than either RAM or Genesys. Like RAM, he uses Lisp
programs as the representation of “organisms” (though he does not refer to them as
organisms). But unlike RAM, where the genome is a list of parameters, he treats Lisp
programs as an S-expressions and uses subexpression-oriented mutation and recombination
operators on the text of the program itself. His goal it to engineer programs that can solve
problems, and he has been able to essentially duplicate our work (among many other things)
by evolving Lisp programs that perform the same Genesys/Tracker task that we will describe
here. But the problem-solving flavor of his research, which studies essentially goal-directed
evolution, is in contrast to our goal, which is the study of natural evolution, which is
fundamentally not goal-directed. As a result, there is no need for him to choose genetic or
evolutionary mechanisms that closely resemble natural ones, whereas we feel bound to
justify our experimental designs biologically. Likewise, with an essentially engineering,

nonbiological point of view, there is no need for him to pay the kind of attention to
representational artificact that we do here.

How can we control for experimenter bias and representational artifacts?

One of the difficult problems that can arise in evolution studies is the “credit assignment”
problem. When an evolutionary experiment succeeds in producing a population of organisms
that exhibits a certain interesting behavior (e.g. trail-following), how can we decide the
extent to which that behavior may have been built into the architecture of the organism or the
structure of the initial population? How do we know that there is not a bias built into the mu-
tation operators chosen, or the programming paradigm that the organisms are expressed in,
etc? Has evolution really created something novel?

In Genesys we have taken a number of precautions and used a number of controls to ensure
that bias and representational artifact are minimized in our results. First, as we just
described, we use two distinct representations, finite autornata and artificial neural nets, in-
stead of just one. These two representations are so profoundly different that no artifactual
result derived from an experiment with one would be naturally preserved in an experiment
with the other. Because we succeed in evolving trail-following organisms in both cases, we
feel confident that we are not being fooled by some subtle property of one or the other
representation.

We guard against introducing bias through our choice of genetic algorithm and operators by
fixing on one genetic algorithm for all experiments, even when we change representation, so
that the genetic algorithm cannot be “tuned” to the representation or the experiment. In
addition we always use bit strings to represent the genome of an organism, and we use bit-
level genetic operators. Mutation is always simulated by inverting random bits, chosen with
equal probability from anywhere in the genome, regardless of where the bit happens to fall
with respect to the “meaningful” fields (codons) in the programs. Likewise, we permit
crossover with equal probability between any two bits in the genome; we make no effort to
guarantee that it occurs between two codons. These decisions, besides preventing bias,
have the additional advantage of being biologically realistic, since point mutations and cross-
over ¢an occur anywhere within any region of DNA, without regard to the role it may play in
the resulting organism. And, by choosing the bit string and bit-level genetic operators we
guarantee that the phenotype of an artificial organisms is a very distant and indirect function
of the string of bits in its genotype, just as the phenotype of a natural organism is a very
indirect function of the string of nucleotides. In both cases there is no simple way of predict-
ing the change in phenotype that will be caused by a random mutation.

Finally, we further guard against introducing bias through our choice of initial population. We
always start with a population of random organisms, i.e. those derived from an initial
population of random bit strings, where each bit has an equal probability of being 0 or 1. Of
course, all experiments are performed repeatedly with different random seeds. (It has
recently been suggested that we might have tried other distributions, i.e. random bit strings
that were 99% zeros. That would perhaps have guarded against the possibility that we had
somehow “seeded” the population with so much initial variation that evolution proceeded at
a faster than normal rate.)

At whar scale can artificial evolution of this kind be made to work?

Even if the idea of evolving ANNs or FSAs encoded in bit strings is right in principle, we
were concerned that it might not work on a computational scale that we could afford. In
Genesys applied to the Tracker task, which we will describe shortly, we were attempting to
run a genetic algorithm with genomes 450 bits long, and with genetic operators that did not
reflect anything at all about the task. To our knowledge, very few genetic algorithm
experiments had ever been attempted using such long genomes. Since the size of the space
of all organisms grows exponentially with the length of the genome, perhaps an astronomical
population size, or millions of generations, would be necessary before anything interesting
happened. Furthermore, any genetic algorithm must be tuned with several of parameters
(e.g. mutation rate, recombination rate, selection fraction, etc.) If our evolutions had failed, it
could have been just because we were unsuccessful in finding the “right” combination of
parameters for the scale at which we worked.

3. The Tracker task

With all of these methodological questions and considerations in mind we set about to see if
we could indeed exhibit the evolution of some kind of complex behavior. Our intention was to
see if it is possible to produce artificial organisms that exhibit a relatively complex behavior,
and to do so entirely by evolutionary methods, with no built-in design bias, and with no
learning. The evolutionary exercise we now describe here was inspired by the behavior of
certain species of ants that lay down pheromone trails from a food site to their nest to aid in
the process of collective foraging (see e.g. Holldobler and Wilson, 1990). The trails are
“noisy”, and fade with time as the pheromone odors disperse. This trail-following ability is
quite remarkable, and clearly required the evolution of elaborate nervous system structures
that are present in modern ants, but were not present in a sufficiently ancient ancestral popu-
lation.

We designed a highly simplified task called Tracker that resembles ant trail-following at least
superficially, The Tracker task requires an ant to follow a crooked, broken trail of black cells
in a white toroidal grid. The trail has a series of turns, gaps, and jumps that get more difficult
as it progresses. The behavior functions of the ants in the initial population were constructed
by a random process, so that while they have built-in “eyes” to sense the environment and
built-in “motor apparatus” to move around in it, the population clearly has no built-in bias
toward the ability to coordinate sensory input with motor output in such a way as to follow
trails. However afier 100 generations of evolution a large fraction of the population
(anywhere from 20% to 80%, depending on the genetic algorithm parameters) is nearly perfect
at the task.

Genesys simulates a large population of organisms, each of which is represented as either a
finite-state automaton (FSA) or an artificial neural net (ANN). That phenotype (the
particular FSA or ANN) is encoded in a genotype represented as a bit string, and the
population evolves using a genetic algorithm (Holland 1975) in which the score of the
genotype, which determines the frequency of its representation in the next generation, is a
function of how well the organism performs in its environment. Genesys runs on a 16K-pro-
cessor Connection Machine (CM2) with 8K bytes of memory per processor (Hillis 1985),
typically with a population of 64K organisms. Execution takes less than 30 seconds per gen-
eration,

QOur experiments were conducted using the following task. An “ant” is placed in a two-
dimensional grid at the beginning of the broken rectilinear trail shown in Figure 1. The grid is
toroidal, so that the cells on the left edge are considered to be adjacent to those on the right
edge, and the cells on the bottom edge are considered to be adjacent to those at the top. This
particular trail, called the John Muir Trail (to distinguish it from other trails we have exper-
imented with) is used throughout this paper. The ant’s task is to move from cell to cell,
traversing as much of the trail as possible in 200 time steps. Its success is measured by the
number of distinct trail cells it traverses. It is free to wander off the trail and pick it up
elsewhere, but that is not an efficient strategy; whenever an ant with such a strategy appears
during evolution, its lineage presumably dies out.

An ant is considered to erase a cell of the trail as soon as it steps on it. This convention is
used because we did not want to give ants “credit” for following the same piece of trail more
than once (which would reward backtracking, circling in place, or just no-oping). Instead of
incorporating into Tracker an algorithm to count the number of distinct trail cells the ant steps
on, we found it computationally simpler just to erase the trail as it progressed.

10
»
Start g ; ! |4 (])]
42
&
z{: i
. 20 5 B 50
7/ S
30 _ o E
B D
% 158
80 T
1 4
160
70

Figure 1: The John Muir Trail in 32 x 32 toroidal grid. Scores for reaching various_land-
marks are indicated. (Gray cells are not part of the trail; they are visual aids to
the reader to mark the fastest route of traversal, and appear white to the ants.)

The John Muir Trail winds around the environment, easy at first, but presenting ever harder
challenges. First it includes three straightaways ending in right turns, followed by a
straightaway ending in a left turn. After a while, starting at trail step 42, it takes several
turns where the corner cell is missing from the trail. At step 58 there is a straightaway
double gap, and then the trail gets progressively more difficult, ending with a series of discon-
nected knight’s moves and long knight’s moves. These last ten steps on the trail are
extremely difficult compared to the rest of the trail, because each of them requires at least
three or four tempos to get to from the previous trail cell, and usually several more tempos
must be used just searching for the continuation of the trail. The maximum possible score is
89, since that is the number of trail cells.

Each ant is in a sense-and-act loop, receiving one bit of sensory input per unit time about
where the trail is, and deciding on two bits of action per unit time. At each time step it stands
on one cell, facing one of the cardinal directions (N, S, E, W), and it can sense whether or not
the cell just ahead of it is part of the trail (Figure 2). We designed the ant to sense the cell
ahead, instead of the cell it is on, because trail-following strategies with this sensory
arrangement are much simpler. After sensing the cell ahead of it, the ant must take one of
four actions:

a) move forward one step;

b) turn right (without moving);
c) turn left (without moving); or
d) do nothing.

We chose this menu of moves also for simplicity. The choice to include a no-op was in
anticipation that algorithms might more easily evolve for trail-following if it were possible for
an ant to change its internal state without changing position or orientation on the grid.
However, in practice we found that no-op moves were bred out of the best algorithms.
Apparently the tempo that such a move consumes is too valuable to be wasted on an action
that does not make progress along the trail, because difference of a single point of the score
for an ant is often the difference between having progeny and having its lineage go extinct.

Figure 2: An ant stands in one cell and sees only the cell ahead of it.

In order for an ant to traverse the trail it must embody an algorithm that causes it to move
forward when it sees trail on the cell ahead, and to search locally for the continuation of the
trail when it does not. It is important to understand that the Tracker task does not require
general trail-following ability; it only requires the ants to traverse this particular trail, starting

from the NW corner facing East. Hence, we should not be surprised to see the evolution of
ants with features adapted to the quirks of this particular trail,

4. The FSA Architecture

Figure 3 shows an example of a Finite State Automaton (FSA) that can perform the Tracker
task. The circles represent states, and the arcs represent state transitions the ant undergoes
as a function of its current state and its sensory input, each of which takes one time step of
the 200 allowed. An arc is labelled with a pair of the form s/a, where s is a 1-bit sensory input
indicating whether the ant “sees” a trail cell (1) or a non-trail cell (0); a indicates which of
four actions should be taken: move forward (M), turn left without moving (L), turn right
without moving (R), and do nothing (N). The FSAs employed in Genesys have up to 32
states.

Figure 3: The state transition diagram for a 4-state FSA that achieves a score of 42 on
the Tracker task. State A is the start state.

This example FSA is achieves a score of 42 on the John Muir Trail, and does so with some
rather clumsy logic. On the first straightaway of the trail it walks along in the following
sequence of states: ABDCDCDCDC. Thereafter, it never enters states A or B again, but
negotiates all turns and straightaways going back and forth from states C to D. Right turns
are made in one move; left turns are made using three right turns. At step 42, where there is
the first break in the trail, the ant stops, spending the remainder of its life turning right in
state C.

In order to be constructed by a genetic algorithm, the FSA must be encoded into a
chromosome-like string of bits. The encoding used in Genesys is shown in Figure 4, where
the FSA of Figure 3 is arrayed in a table in which each state, input, and move has an
arbitrarily-assigned binary value. To define the FSA, it suffices to indicate the initial state
(state A in this example, coded as 00 in binary), and to enumerate in canonical order the New
State and Move columns of the State Transition Table (STT). The genome that encodes the
FSA in Figure 3 is shown at the bottom of Figure 4. It is the concatenation of initial state
and, in canonical order, the last two columns of the STT. Since Genesys FSAs have up to 32

states (requiring 5 bits to encode), and there are 64 lines in each STT, there are a total of
64*(5+2)+5 = 453 bits per genome.

Old New
State Input State Action

00
01
01
10
10
11
11

wmljlolalola

Genome

00 0001 0111 0101 1111 1010 1111 1010 1011

Figure 4: The binary-coded State Transition Table (STT) for the FSA in Figure 3. The
bit string at the bottom is the genome that encodes this organism. Only the initial
state and the last two columns (enclosed in the heavy lines) are part of the
genome. The first two columns need not be encoded because they are in canon-
ical order.

Actual FSAs that arise during evolution are likely, of course, to have fewer than 32 states,
since there is no guarantee that all 32 distinct 5-bit state codes are present in the genome
string; and even if they are, there is no guarantee that they are reachable from the start state.
Some of the rows in the table for a particular FSA may correspond to states it can never
enter, and thus represent “unreachable code”. An FSA may have even fewer “reachable”
states if we consider only those used while traversing the John Muir Trail.

5. The ANN architecture

To represent an ant using an ANN we chose a particular recurrent PDP architecture
(Rumelhart and McClelland 1986, Elman 1988, Servan-Schreiber 1989) with standard sum-
and-threshold logic in the copnection topology shown in Figure 5. There are two input units
with an activation of 1 or 0 according to whether the cell ahead of the ant is on the trail or not.
One is activated when there is trail, and the other is activated when there is not. (This
choice is historical; one input unit could have sufficed.)

Each input unit is connected to each of 5 hidden units and to each of 4 output units. The
hidden units are fully connected among themselves, and also to each of the 4 output units. In
each time step the net receives input from its sensor units, and the activation signals

propagate once along every connection in the network. All of the units have Boolean
thresholds except the output units. Output units have their inputs summed but not
thresholded; instead the ant’s next action is determined by which of the output units has the
highest activation (with an arbitrary rule for breaking ties). Because this is a recurrent net
with 5 Boolean hidden units, it can behave as though it has up to 5 bits of memory about its
past history on the trail. Each ANN is completely deterministic; it does no learning in its
lifetime.

No-op L Turn RTurn Move

Effector
Units

Hidden|
Unlts

Sensor
Units
Trall No Trall
on 1/0

Figure 5: Architecture of the recurrent ANN representing an ant.

To specify an ANN for the trail-following task we must decide on the values of 63 weights, 5
thresholds, and 5 initial activations. In our model the unthresholded activations of the hidden
units are 7 bits each; the weights are 6 bits (ones-complement), and the thresholds are 7 bits
each (the high order bits of an implied 9-bit ones-complement number). The genome
representing an ANN-ant is simply the concatenation of all of the weights, thresholds, and
initial activations, which takes 63*6 +5*7 + 5%7 = 448 bits. The concatenation is done in a
fixed order that was standardized early in the project.

6. Comparison of FSA and ANN representations

Since for a long time we were concerned with deciding which of the two representations,
ANNs or FSAs, is “better”, we went to some length to assure that the FSA and ANN
representations of ants are as similar as possible in order to make comparisons meaningful.
First, we made the two representations approximately equally powerful computationally. We
used FSAs that have up to 32 states, the equivalent of up to 5 bits of memory; likewise we
used ANNs with 5 recurrent hidden units, each of which passes on 1 bit of information, so
that they have the equivalent of up to 5 bits of memory as well. Both representations
express deterministic algorithms. And in both cases an ant’s “algorithm” is fixed from birth,
so apart from the fact that it can gather a few bits of information about the trail, nothing
resembling “learning” takes place during an ant’s lifetime.

11

Second, we made sure that the genomes had similar length: 453 bits for FSAs compared to
448 bits for ANNs. This is important because, other things being equal, we would expect
evolution to take longer with a longer genome than with a shorter one because the space
being searched by the genetic algorithm grows exponentially with genome length. If these
lengths were substantially different, then the size of the space to be searched by genetic
algorithm could have been the dominating performance factor making one representation
appear to be superior to the other.

Because the ANN’s are deterministic, with no more than 5 bits of memory, each of them is
behaviorally isomorphic to one of the 32-state FSA organisms. (This fact was very useful in
our study because, once we created a tool to transilate an ANN to an equivalent FSA, all of
our other tools for manipulating FSAs, e.g. for animation or state minimization, applied
equally well to ANNs.) However, the reverse is not true; not every FSA can be translated
into one of our ANNs because there is a great deal of redundancy in the ANN encoding, and
in particular FSA-ants with the largest numbers of states are underrepresented among the
ANN-ants. Hence, we must conclude that our ANN-ants, as a class, are somewhat narrower
and less powerful computationally than our FSA-ants (though this is difficult to quantify)
despite our attempts to make them comparable. There presumably exist tasks, defined by a
trail and time limit, that can be accomplished by some FSA-ant, but not by any ANN-ant with
the same amount of memory.

Many other ways of encodings the FSAs or ANNs into a string could have been used. We
could have placed the rows of the FSA table right to left in the string, or placed the bits of the
integers in reverse order, or stored the table columnwise, or used gray codes for the integers
instead of binary, etc. We could have reordered the weights in the ANN encoding, or chosen
different field widths (e.g. 5-bit weights instead of 6). Technically each of these represents a
distinct “representation of organisms”. The actual encodings we chose were the only ones
we tried, though we have no reason to believe it matters very much. Although there are
undoubtedly linkage effects in the particular canonical encodings we chose, we have not
explored the consequences of other encodings.

7. How difficult is the Tracker task, and how difficult is it to design an ant for the
Tracker task?

The John Muir trail was carefully designed so that wherever a straightaway segment of the
trail ends, its continuation always begins somewhere in a three-cell-wide extension of the
straightaway. The hand-constructed 5-state automaton shown in Figure 6 can traverse the
entire trail. Its strategy is to move forward whenever it sees a cell of trail, but when it
comes to a point where it does not see the trail in the next cell ahead, it turns right (without
moving) and checks for a trail cell there. If it finds one, it moves ahead and continues, but if
not, it turns right again. It will turn right a total of four times looking a trail cell. After that, it
is facing the original direction, and will move forward anyway, even though there is no trail
cell, and will again to search the four directions. We chose a trail that could be traversed this
way to be certain that at least some small FSA existed that could perform respectably at the
task. There is no reason to suppose, however, that this particular FSA, or any one
isomorphic to it, ever actually evolved. And if it did it could not have survived ultimately
because, although it can indeed traverse the entire trail, it requires 314 time steps to do so; it
only gets a score of 81 in 200 time steps.

12

1M

Right2

1/M
o/M

Figure 6: Five state FSA that can traverse the trail in 314 steps, and gets a score of 81
in 200 time steps.

Through evolution we were able to find an FSA with 13 states (the equivalent of less than 4
bits of memory) that can get a perfect score of 89 (see ahead in Figure 10).

One can further analyze the difficulty of the task by asking how many bits of information are
needed to “memorize” the trail perfectly. If we encode a forward move by a 0, a left turn by
the two-bit combination 10, and a right turn by the combination 11, then the entire trail can be
unambiguously encoded as a concatenation of “moves” needed to traverse it. Since there are
89 trail cells and 38 non-trail cells also have to be traversed, and since there are 19 turns,
then the entire trail can be encoded in 89 + 38 + 2*19 = 165 bits. Qur organisms are specified
by 450 bits, so it might appear that the could simply evolve to memorize the trail. However,
this analysis overlooks that fact that the trail could have be made 100 times longer, and the
organisms given 100 times as much time to traverse them. The “information content” of such
a trail would be many times larger, but the same 450-bit FSAs and ANNs would be able to
successfully traverse it. There is a fundamental difference between evolving programs to
traverse a trail, and evolving compact data representations of the trail.

We have come to believe that the Tracker task itself is difficult, but not profoundly so, since it
can be accomplished by a modest-sized FSA. But just how difficult is the problem of
designing or discovering a high-scoring organism? That is a completely different issue. Here
we are concerned not with searching the environment that the organisms live in, but the
searching the space of all organisms. Since the Tracker task is irregular, it does not yield
much to analysis. There is no linearity property, for example, to suggest that it is somehow
twice as “difficult” to get a score of 80 as a score of 40. Presumably a skilled human could
design an 89-scoring FSA for the Tracker task in an hour or two, and an ANN in somewhat
more time, but that is not much of a handle on the difficulty of the design task.

To attempt a quantitative calibration of the design difficulty we decided to sample the space of
all genomes to discover what fraction of them coded for organisms that got each score. We
chose a random sample of over 1.3x109 organisms, of both the FSA and ANN type, and
scored each one on the Tracker task to produce the results in Table 1. (In the interest of
space we reproduce here only the most interesting regions of the distribution.) The first col-
umn shows the score achieved by the animals in the sample. Columns 2-3 show the sample
of FSAs. Column 2 shows the exact number of FSAs from the sample that achieved a

13

particular score. Column 3 shows what fraction that represents of the total sample. Columns
4-5 are similar to 2-3, but refer to the ANN representation. The sample was chosen by
creating random bit strings of the appropriate length (roughly 450 bits each), translating each
string into the appropriate organism, and then running the organism on the Tracker task as
usual to tally its score. Since there are 2430 @ 10134 possible genomes, our sample of ~109 is
an extremely small fraction of the total, but is still large enough to reliably sample all but the
high end of the distributions.

Score Number Fraction Number Fraction
of FSAs of FSAs of ANNs of ANNs
0 557,258,091 413 932,924,367 .683

1 283,207,491 210 122,460,544 0896
2 132,410,979 0981 6,275,613 00459
3 63,272,402 0469 944,545 6.91e-04
4 31,819,298 0236 152,981 1.12e-04
5 18,120,801 0134 345,287 2.53e-04
6 12,985,610 .00962 20,361 1.49¢-05
7 10,063,926 00746 357,592 2.62e-04
8 9,603,340 00712 379,791 2.78e-04
9 8,472,800 .00628 38,531 2.82e-05

10 97,907,623 0726 202,234,068 .1481
40 522,627 3.87e-04 119,459 8.74e-05
41 500,301 3.71e-04 896,204 6.56e-04

42 12,110,275 00897 93,179,890 0682
43 369,162 2.74e-04 7,127 5.21e-06
44 170,037 1.26e-04 22,279 1.63e-05
45 110,622 8.20e-05 2,436 1.78e-06
55 9,505 7.04e-06 365 2.67e-07
56 9,684 7.18e-06 288 2.11e-07
57 10,218 7.57e-06 6,715 491e-06
58 125,296 9.28¢-05 3,875 2.84e-06
59 5,488 4.07e-06 249 1.82e-07
60 842 6.24e-07 2 1.46e-09
75 255 1.89¢-07 3 2.19¢-09
76 51 3.78e-08 8 5.85e-09
77 45 3.33e-08 0 0.00e+00
78 354 2.62e-07 9 6.58e-09
79 188 1.39¢-07 19 1.39e-08
80 64 4.74e-08 19 1.39¢-08
81 10 7.41e-09 21 1.54e-08
82 0 0 1 7.32e-10
Totals 1,349,517,312 1.00 1,366,818,816 1.00

Table 1: Interesting parts of the score distribution for FSA and ANN organisms

14

A glance at Table 1 reveals a number of interesting features. For example, 41% of all FSAs,
and 68% of all ANNs receive a score of exactly zero! 90% of both FSAs and ANNs geta
score of 10 or less, meaning they cannot make it past the first right turn in the trail. (Of
course a small positive score can also be achieved by striking off in an odd direction and
“accidentally” touching a few cells of trail.) By referring to the trail in Figure 1 we can see
that a score of more than 32 indicates the ability to make the first left turn; a score of more
than 42 shows that the animal can get past the first left turn where the corner cell is missing,
and a score of more than 58 shows it can get past the first straightaway double gap (always
assuming the organism is following the trail in the obvious order). About 1 in 100,000 FSAs
can get past 58, while about 1 in 3,000,000 ANNs can do so. Put another way, in a sample of
size 65,536 (the initial generation in most of our evolutionary experiments) there is more than
a 55% probability of encountering at least one FSA that can traverse the trail past the double
gap, while there is only a 2% probability that there will be such an organism in the initial
generation of an ANN run.

The highest FSA score discovered in our sample was 81, of which there were 10 instances.
The highest score found among ANNs was 82, of which there was only one. In our entire
sample we never found an FSA that scored higher than the simple one in Figure 6 would
score in the 200 time units. We should note that we typically evolve an 81-scoring FSA
within 20 generations with a population of 65,536, i.e. after having generated at most
20%65536 @ 106 ants, whereas if we extrapolate from the observed frequency in the sample
(which is dangerous since we are extrapolating from the long tail of the distribution), we
would expect about one FSA-ant in 108 to achieve 81. We can only presume that FSA ants
that score in the upper 80’s are much rarer, though there is no feasible way to estimate their
frequency by sampling.

In Figure 7 we see the frequency distribution for FSA organisms plotted on a logarithmic
scale. There is a clear trend toward exponentially decreasing numbers of organisms as the
score increases; but what is most interesting is the pattern of departures from the trend.
There are a number of scores, such as 10, 32, 42, 47, 52, 58, 64 and 70, where a sharply larger
number of organisms (by a factor of five or more) are clustered than at either neighboring
score. A glance back at Figure 1 will show that those scores exactly mark the most
challenging features of the John Muir Trail, e.g. the first right turn, the first left turn, the first
left-turn-with-gap, the first right-turn-with-gap, the double gap, the first knight’s move, etc.

15

r

9.00

o o

8.00

7.00

6.00

5.00

< Oooeco e -

3.00

- o

2.00

1.00

¢.00
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

@ > WU

Score (max = 89)

Figure 7: Log (base 10) of the number of FSA ants in the sample as a function of their
score on the John Muir Trail.

In Figure 8 we see a similar logarithmic plot of the frequency in our sample of the ANN-ants.
While there is general similarity to the FSA plot, some of the contrasts are striking. From
spikes in this distribution it is still easy to pick out most of the features of the John Muir Trail
at scores 10, 27, 32, 42, 47 and 64, but the ratios by which these spikes overshadow the
neighboring scores are much larger than for the FSA plot. One curious feature is that there
are more ANN organisms that score 57 than 58! We do not know why this should be so, but
it is possible that there is a particularly common erroneous path through the trail that
happens to achieve that score; we have no other explanation. Another striking difference
between the FSAs and the ANNSs is that from scores 60 to 89 the total number of ANN ants
in our sample (183) is 61 times smaller than the total number of FSA ants (11152). This
might suggest that high-scoring ANNs are rarer than high-scoring FSAs. Of course, the
ANN sample may be unreliable at such high scores, but probably not since it still seems
possible to pick out the expected spikes at scores 64, 70 and 74.

16

o r

9.00

8.00

7.00

6.00

5.00

“ o300 cCca 0 =

-y
N
(=]
o

RITRA

0 35 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

0.00

wnZZ>»

Score (max = 89)

Figure 8: Log (base 10) of the number of ANN ants as a function of their score on the
John Muir Trail.

From the study of these sample statistics we have come to view the problem of designing an
organism for the Tracker task as being not very difficult up to score 81. However, beyond the
score of 81 the design task becomes considerably more difficult, not because the John Muir
Trail is difficult to traverse per se, but because it is difficult to do so in only 200 time steps. It
must take over one third of the time to traverse the last eight steps of the trail. Hence, we
should expect evolution to proceed in such a way that at the beginning there is competition to
evolve logic that is basically competent on the trail; in later generations the competition
should be for refinements that take advantage of particular features of the trail to save time

(steps).
8. The genetic algorithm

The genetic algorithm we used is reasonably standard (Goldberg 1989), though to our know-
ledge GA'’s are rarely attempted on bit strings of this length. We begin with a population of
65,536 strings of random bits, each of which is either 448 or 453 bits long (depending on the
representation to be used). During a generation each genome is decoded into either an FSA
or an ANN, and all 64K ants are executed for 200 time units (in parallel) on separate copies
of the trail. At the end of each generation all of the ants are scored as to their success on the
trail. Those ants scoring highest of their generation (either the top 1% or 10%) are selected

17

for breeding, and all others are discarded. Ties are broken arbitrarily. The new generation is
produced by the following procedure.

a) Mating: 65,536 pairs of genomes are chosen at random (with replacement)
from the selected fraction. No preference is given to those ants scoring higher
than others within the selected fraction.

b) Recombination: From each pair a single bit string is constructed by random
crossover. The crossover probability is typically between 0.5% and 1.0% per
bit, so the mean number of crossovers per ant per generation is 2.25 to 4.5.
Crossovers are performed without regard to the boundaries of semantic units in
the bit string (e.g. state fields in the FSA genome, or weight fields in the ANN
genome).

c) Point mutation: The recombined string is mutated by random bit-flip
operations, again at a rate anywhere from 0.1% to 1% per bit. The mean
number of mutations is thus also 0.225 to 2.25 per ant per generation,

Recombination and mutation are illustrated schematically in Figure 9, where two parent bits

strings .
l g g O Parent0
Crosscver Mutation B Parent1
- -
B Invert

rents Offspring

LA I LI A NN I T I TTIT T ITITIITTI]

P

Figure 9: Two parents produce one offspring by a two-stage process of random
crossover followed by random point mutation.

We performed numerous sensitivity studies to determine that the selection, mutation, and
recombination parameters were reasonable and effective. These rates are in line with those
reported in (Goldberg and Holland 1988) for other genetic algorithms. The qualitative
character of the results are extremely robust over wide variations of the evolutionary
parameters. Subsequent analysis showed, however, that mutation rates 100-fold smaller
would have been just as effective, and in some ways preferable.

18

9. Results of the Tracker evolutions

Figure 10 shows Champ-0, the highest-scoring ant in generation 0 of one run of Genesys with
the FSA representation. Since no evolution has taken place, this is just the highest scorer in
a particular random sample of 65,536 FSAs. The diagram shown here has been simplified in
two ways in order to expose the underlying algorithm: (a) states and transitions that are
coded for by the ant’s chromosome but are unreachable on the John Muir Trail have been
removed; (b) the result was then processed by a state-minimization procedure to remove
redundant logic; and (c) the states were renumbered from 0 to 16.

Figure 10: Champ-0, the champion FSA in generation 0, which scores 58.

Champ-0 gets a score of 58 on the John Muir Trail. It has great difficulty getting around the
first three right turns of the trail, arriving at them in state 7 and taking 10 state transitions in
each case (1,13,14,15,16,14,15,16,14) before completing the turn in state 9. It has even
greater difficulty making the left turn at trail step 32, requiring two executions of the cycle
(8,1,2,3,4,5,6,7) before using the right turn sequence (1,13,...) above. On the straight-away
segments of the trail it takes two transitions per step around the 7-8 loop in the diagram,
which is a very time-inefficient way to travel. Curiously, Champ-0 makes the left turn where
the comner cell is missing at step 42, more efficiently than it makes the earlier left turn at step
32 where the corner is present! Arriving at the corner in state 8, one trip around the cycle
(1,2,3,4,5,6,7,8) makes the turn. Champ-0 runs out of time when it gets to the double gap at
trail step 58.

In Figure 11 we show Champ-100, an FSA-ant that is the product of 100 generations of
evolution starting from the population of which Champ-0 was the champion. The evolution
was conducted with a mutation rate of (.5% per bit, a recombination rate of 0.5% per bit, and a
selection fraction of 1% per generation. Its logic has been simplified in the same way Champ-
0’s was. Although Champ-100 is descended from the same population that included Champ-
0, there is no reason to believe Champ-0 is actually a genetic ancestor of Champ-100, and in
fact it is rather unlikely.

19

Champ-100 gets a perfect score of 89, demonstrating that it is indeed possible to traverse
this trail in 200 steps. In fact, Champ-100 takes exactly 200 time steps to finish the trail.
Since the scoring function does not give any extra credit for reaching the end sooner, there is
no selective pressure for any further improvement in performance.

We can observe a number of fascinating features in Champ-100’s logic. First, it traverses the
straightaway portions of the trail by staying in state 0 or in state 9, thereby taking one unit of
time per trail step rather than two. Second, it makes a right turn from state 0 using the
(1,12,0) cycle, a far more efficient mechanism than Champ-0 used, though not optimal. Third,
the left turn at trail step 32 is accomplished by three right turns. We deliberately placed three
right turns in the trail before the first left turn precisely to see if there would be an
evolutionary bias toward more efficient right-turning. In this case, apparently, there was.

The state sequence (9,10,11) is extremely versatile. It is used in four critical places along
the trail: at step 42 (left turn with missing corner), at steps 58 and 74 (straightaway double
gap) and at step 64 (forward right knight’s jump). Likewise, the sequences (12,7,8,3,4,0)
and (6,4,0) are used repeatedly to traverse the “stepping stone” part of the trail from step 78
to 89. Such efficient logic seems exquisitely adapted to the features of this particular trail,
and suggests that evolution has had the effect of “compiling” knowledge of this environment
into the structure of the organism.

Figure 11: Champ-100, the champion FSA in generation 100, which scores 89.

In Figures 12 and 13 we chart the evolutionary progress of the entire population in the
Tracker task, one chart for FSA ants and one for ANN ants. These are runs typical of many
we have made, and are chosen for presentation here because their parameters are identical.
In both cases the mutation and recombination rates are 1% per bit per generation, and the
selection fraction is 5% per generation. Both runs evolve a population of 65,536 for 100
generations. Each took about one hour on a 16K-processor Connection Machine (CM2).

20

Figure 12 is a graph of the progress of an evolution with FSA ants. The horizontal axis is the
generation number, and the vertical axis is the score on the Tracker task. Four population
statistics are plotted as a function of generation:

(a) the maximum score achieved by any ant in the generation
(b) the mode (most frequent) score

{c) the mean score

(d) the standard deviation of the scores

Initially the mean score was somewhere around 3, but the maximum score was 58, consistent
with the statistics given in Section 7. After 15 generations of selection the maximum score is
already in the 80's, and by generation 52 perfect-scoring ants are always present in the
_population, and are the most common score by generation 70. However, the mean score
never approaches the maximum score, hovering around 56 for the last 75 generations, and
there is always a high standard deviation. The high variance and the great difference
between the mean and the max scores is, we have learned, a consequence of the relatively
high mutation rate of 1% per bit. We can get the same max score in the same number of
generations with a mutation rate two orders of magnitude smaller, and then the mean score
reaches the 80's. With a high mutation rate shown here, a large fraction of successful parents
have offspring that are destroyed by mutation and hence bring down the average score.

Figure 13 is a similar graph except that the ants are represented as artificial neural nets. All
evolution parameters are the same as in Figure 12. We see similar features in Figure 13, i.e.
the maximum score starts low (this time at 46) and quickly reaches the 80's (by generation
18). It then takes a long time to reach 89 (generation 94). As in Figure 12, there is a large
gap between the maximum score and the mean score, and for the same reasons. Comparing
Figure 12 to Figure 13 we see that evolution proceeds somewhat more slowly in the ANN
representation than in the FSA representation, for reasons unknown. This result was
consistent over hundreds of executions with many different parameters.

10. Discussion and conclusions

This research clearly shows, as we had hoped, that it is computationally feasible to produce
artificial organisms that can exhibit complex behavior, and to produce them by evolution. And
evolution can act on the entire text of the program representing the organisms, at least with
populations of 64K organisms and genomes of 450 bits. In that sense the exercise was a
success.

Rather than decide which of the two representations was “better” for the study, we
concluded that working with two representations was extremely important for completely
different methodological reasons. First, it tends to eliminate the potential problem that we
might observe an evolutionary phenomenon which is merely an artifact of the representation,
and not a genuine feature of evolution. If we perform each experiment many times, with
different representations and different environments, etc., and if we observe the same evolu-
tionary phenomenon in all cases, then we can be more certain that whatever phenomenon we
observe is a property of evolution itself, and not an artifact of the representation. Second, it
focuses attention on a fundamental issue that all similar studies must face in the future:_ just
what is a good computational representation of living organisms? We expect that this issue
will continue to be of fundamental importance in future artificial life studies.

-

P ———— .
80 s 4 /

s -

- - - -

Date: Apr 26, 1989
Execudon Time: 0:53:11
Population: 65536
Random Seed: 8276342
lteranons/Generauon: 200
Environment: 32 x 32

Chromosome Length: 5§20
Fracdon Selected: 0.050000
Mutation Rate: 0.010000
Crossover Rate: 0.010000
Decision Maker: fsa

FSA Suates: §

Figure 12

22

23

e I

R I

L L R

.

(=}

~”

100

80

e e e ma-a-
.

Score
Mean
Std. Dev
Maximum - -----
Mode 1

g8
P
ssmm
£S5 3
< Mwmwmw &
3 I g g
83333
&hr <
§28%
§822¢
MMcmw
~ 2m
~ h
o 9k
2 gne Lo
.&fmuw.m S P
TEEngE
W..Dnmnn
AWIO.OO
..C.mu.d—uwu
Y onch>
o ¥ O 9 W C
OQuwa =l

Figure 13

(a)

(b)

{c)

(d)

(e)

()

The paradigm must be what we refer to computationally complete, i.e. it must be
possible for any bounded-memory (finite state) algorithm to be encoded in it, provided
that the size of the representation is large enough. If such organisms are intended for
an infinite environment, and have the ability to move around and read and write into it,
then the paradigm is Turing-equivalent.

It should specify a simple, uniform mode! of computation so the interpreter can be small,
and so there is minimal chance to bias the system by choosing a programming model
that happens to rich in the VErY Operators or strategies needed to adapt to a particular
environment. Furthermore, if the goal is to have a simple model for studying complex
natural systems, it is important that organism programs should be manipulable and
understandable.

It should be syntactically closed (or nearly so) under the genetic operators. Mutation
and recombination operators must not (usually) transform legal programs to illegal
ones. In practice, we have designed our Tepresentations so that all bit strings (of the
appropriate length) encode for some legal program. With this approach we get the
added benefit that we can start evolution with a population of “random™ organisms by
just producing a set of random bit strings, a simple and indisputable way of avoiding
bias in the initial population from which evolution starts.

It should be well-conditioned under the genetic operators. This requirement is not very
formalily defined, but essentially requires that “small” mutational changes in the
program should (usually) cause “small” changes in its behavior, and that a crossover of
two parent programs should usually produce an offspring program whose behavior is in
some sense a “mixture” of the parents’ behavior. These requirements are probably
necessary for evolution to have a chance to succeed in realistic adaptive landscapes. Of
course, occasional jumps or discontinuities can be tolerated, and are likely even
necessary.

It should specify one time unit of the organism'’s life. This basically means that one
execution of an organism’s program should (a) accept input from its sense organs (both
external and internal), (b) possibly change its internal state, and (¢) possibly take one
or more actions through effectors. An organism'’s life, then, is the jterated execution of
its behavior program.

It must scale well. This means that the size and time complexity of an organism’s
program is a modestly-growing function of the size of the input to or output from it.
(Finite state automata (FSAs), at least as we formulate them in Section 4, fail this
test. It takes a transition table with 2m+7 rows to specify an FSA with m bits of state
and n bits of input, so if the entire wransition table is encoded in the genome, then the
genome length grows exponentially with the size of the Organism’s sensory apparatus,
which is unacceptable for all but the smallest m and n.)

In RAM (Taylor et al, 1989) both organisms and the environment are represented as pro-
grams. The behavior and evolution of the population in the environment is simulated by the
co-execution of all of the organism programs and environment programs. One of the good
things about this design choice is that it allows the environment to be just as “active” as the
organisms are, and it makes a statement that the line between organism and environment is
often arbitrary. It also allows each organism to be part of the environment of the others, so
that competitive and cooperative relationships can evolve. Organisms are not of different
fundamental stuff than the environment: all are represented as programs, and have a
symimetric, coequal status in the simulation. But, however attractive this point of view is
from a modeling perspective, it does not properly capture the true relationship between
organisms and their environment in natural life. For in RAM, organism and environment
programs are defined separately, interacting as though each is “outside” the other, whereas
in natural life organisms are definitely “inside” the environment, and part of it. This
distinction between environment and organism is manifest in the fact that while organisms
“move” and “reproduce”, these actions are treated as primitive, and do not occur as the re-
sult of any lower-level processes. The organism’s behavior function says “move” and, as if
by magic, the location coordinates of the organism change; the behavior function says
“reproduce”, and as if by magic a full copy of the organism (complete with modified genes),
appears in no time on a neighboring location. Organisms in RAM do not really have a simu-
lated “physical” body whose natural activity produces motion and reproduction. In natural
life, however, both “environment” and “organism” are epiphenomena arising from the same
physics below,

Genesys has these limitations of RAM and others as well. While the organisms are repre-
sented as programs in Genesys, the environment is almost completely static.

Theoretically it would be extremely fruitful to correct this modeling deficiency, but we know of
no way to do that and still retain the principle that an organism is a program. The only really
satisfactory way we know to remove the separation between organism and environment is to
invent an artificial physics, such as a huge cellular automaton, in which both the organisms
and the environmental processes are represented as interacting patterns of activity in the
same playing field. For the size of population and the complexity of simulation that we
envision today, that is computationally out of the question.

As a result, in Genesys, and all succeeding systems that we envision, we will continue to
simulate each organism by a program. We will continue to simulate not the organisms them-
selves, but their behavior, in their environments. We may, at a later stage, endow organisms
with a “body”, e.g. arms and legs, so that the primitive operations are reduced from “move
organism” 10 “move leg”. But for the foreseeable future in our research there will always be
a level at which the organism “interfaces™ with the environment, or “communicates” with it,
instead of participating in it.

Acknowledgements
This research was funded in part by a grant from the W. M. Keck Foundation and by National

Science Foundation Biological Facilities grant number BBS 87 14206. We also thank Jon
Bentley for extremely detailed correction and comments.

25

Bibliography

Collins, Robert J. and Jefferson, David R. (1990) AntFarm: Towards simulated evolution,
submitted to Arrificial Life I, Langton, C. G., Farmer, D., Rasmussen, S. and Taylor, C.
(eds.), Addison-Wesley

Elman, J. L. (1988) Finding structure in time. CRL Tech. Rep. 8801. Center for Research in
Language. University of California, San Diego

Gibson, Robert, Taylor, Charles, E., and Jefferson, David R. (1990) “Lek formation by female
choice: a simulation study”, Journal of the International Society for Behavioral Ecology, 1(1),
36-42.

Goldberg, D. E. (1989) Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley

Goldberg, D. E. and Holland , J. H. (eds.) (1988). Machine Learning. Vol. 3, Nos. 2-3, Special
Issue on Genetic Algorithms, Kluwer Academic Publishers

Hillis, W. D. (1985) The Connection Machine. MIT Press, Cambridge, Mass.

Holland, John (1975) Adaptation in Natural and Artificial Systems, The University of
Michigan Press

Holldobler, Bert and Wilson, Edward O. (1990) The Ants, Harvard University Press

Koza, John R. (1990) “Genetic Programming: A Paradigm for Genetically Breeding
Populations of Computer Programs to Solve Problems”, Stanford University Computer
Science Dept. TR No. STAN-CS-90-1314, June, 1990

Langton, C. G. (ed.) (1989) Artificial Life, Addison-Wesley

Rumelhart, D. E. and McClelland, J. L. (eds.) (1986) Parallel Distributed Processing, Vols. 1
and 2. Bradford Books/MIT Press.

Servan-Schreiber, D., Cleeremans, A. and McClelland » J. L. (1989) Learning Sequential
Structure in Simple Recurrent Networks. In D. S. Touretzky (ed.) Advances in Neural
Information Processing Systems 1, pp. 643-652

Taylor, Charles E., Jefferson, David R., Turner, Scott, and Goldman, Seth (1989) “RAM:
Artificial life for the exploration of complex biological systems”, in Langton, Chris (ed.)
Artificial Life, Addison-Wesley

Taylor, Charles E., Muscatine, L., and Jefferson, David (1989) “Maintenance and Breakdown
of the Hydra-Chlorella Symbiosis: A Computer Model”, Proceedings of the Royal Society,
London, Series B, B238, pp. 277-289

Taylor, Charles E., Jefferson, David R., and Burla, Hans, (1987) “Habitat-dependent
dispersal of Drosophila obscura and D. subobscura”, Genetica Iberica, 39, p. 547

26

