Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

AN OPTIMAL ALGORITHM FOR COMPUTING ALL
REG{}JLAR LINEAR DEGENERACIES OF POINTSETS
INE

Gabriel Robins December 1990
Andrew Kahng CSD-900045

An Optimal Algorithm for Computing All
Regular Linear Degeneracies of Pointsets in E¢

Gabriel Robins and Andrew Kahng

UCLA Department of Computer Science
Los Angeles, California 90024

Abstract

We give an optimal O(n?) time algorithm for the problem of finding
all maximal eqnally spaced collinedr subsets within a pointset in E¢,

Keywords: Computational geometry, algorithm design, combinatorial problems

1 Introduction

Given a pointset P in E4, a collinear subset S of P is a subset of P lying on the
same line. A maximal collinear subset § of P is a collinear subset of P that is
not properly contained in any other collinear subset of P. A maximal collinear
equally spaced subset S of P is a maximal collinear subset of P such that the
points of S are equally spaced along the line that contains them.

When given a pointset in the plane, it is very natural to ask “what is its
largest collinear subset?”

Mazimum collinear Subset (MCS) Problem: For n points in E¢, find the largest
collinear subset of points.

This type of problem occurs in, e.g., line detection for computer vision,
and instances can arise in dimensions greater than two. In practice, bucketing
techniques based on the Hough transform (3] {8] {9) or other duality relations
in the plane are used. However, for dimension d, such methods usually require
effort proportional to (%)d in the desired accuracy ¢, and are unsuitable for
determining exact collinearity as posed here.

The subject of this note is the following very natural variant of MCS:

Mazimum Equally-Spaced collinear Subset (MESCS) Problem: For n points in
E4, find the largest collinear, equally spaced subset of points.

Like MCS, the MESCS problem also arises in many practical applications,
particularly since regularity is in many cases the distinguishing characteristic
of “interesting” regions in an image. For example, one might wish to examine
infrared ground surveillance bitmaps to find equally spaced collinear “hotspots”
(rows of landmines, fenceposts in a region perimeter, etc.) Standard methods for
determining “gross” periodicity in data, e.g., spectral methods, do not extend
to the present domain.

Often, we would like a roster of all maximal (equally spaced) collinear sub-
sets, which means that the output itself can be of size O(n?). In other words,
we want the complete order statistics of the problem on the given input. This
note presents an optimal O(n?) time algorithm for finding the complete order
statistics of MESCS for a pointset in arbitrary dimension.

2 Preliminaries

Solving MCS in E? can be done in O(n?) time using an algorithm due to Edels-
brunner [4]. This algorithm actually returns all mazimal proper degeneracies
for a pointset in E9 i.e., all maximal subsets of points lying in overdetermined
k-flats, and runs in time O(n4). The exponential dependence on dimension is
expensive, except for very small d, and we would like to avoid this cost, particu-
larly since we only wish to find maximal collinear subsets. Furthermore, it is not
clear how the method of [4] extends to satisfy the “equally spaced” constraint.
Indeed, the notion of equally spaced points is difficult to define elegantly in
k-flats with k > 1.

The work of Edelsbrunner and Guibas [6] also implies an O(n?) time al-
gorithm for MCS in two dimensions, but this method does not generalize to
higher dimensions, nor does it seem applicable to the MESCS problem. Avis
and Doskas [1] outline methods that given a set of segments or polyhedra in £¢
determine whether a single hyperplane intersects all of these objects, but their
algorithms are exponential in d, and we are interested rather in the marimum
number of “stabbed” objects.

For both MCS and MESCS, a lower bound may be established by reduction
from the Element Uniqueness problem (i.e., determining whether a given set of
numbers contains duplicates), which is known to require 2(n log n) time (7].

Theorem One: MCS and MESCS both require at least Q(nlogn) time.

Proof: Given an instance of EU § = {#1,...,za}, we reduce it to the two-

dimensional MCS problem as follows. Transform each element z; into (i, 7).
The resulting instance of MCS has a collinear subset with cardinality 3 or greater
iff S contains duplicates, and the Qnlogn) lower bound for EU translates into
one for MCS. Similarly, EU is reduced to MESCS as follows. Given an instance
of EU § = {Z1,...,z,}, transform each element T, into y; = (14 ¢/27) . x;,
and form the multi-set §' = {vt, . s vmm, ... +¥n}. Clearly this transformation
destroys any arithmetic progressions that may be present in the original data,
except for the trivial ones that are induced by duplicate elements; that is, S
contains 3 or more “equally-spaced” points (with zero spacing) iff S contains
duplicate elements. The Q(nlogn) lower bound for EU thus holds for MESCS
in £9 d > 0. 0

We close this section with a brief discussion of simple methods for the MCS
problem in all dimensions. Clearly MCS can be solved naively in time O(n®)
by iterating through all (g) lines induced by the pointset, and for each line de-
termining which of the n points lie on that line. The following algorithm solves
MCS in O(n?logn) time: for each of the (’2') lines induced by the pointset,
represent that line by a unique pair of parameters {(e.g., “slope/y-intercept”,
or “angle-of-normal/distance-to-origin” etc.) Next, sort the lines using these
two parameters as primary and secondary sort keys, respectively: this requires
O(n?log n) time. Pass through the list and check for duplicate representations;
these duplicates represent sets of collinear points, with a set of k collinear points

being represented by (g) elements on this list. This solves the MCS problem

within time O(n?log n), and we actually may output the complete order statis-
tics, i.e., all lines induced by the original pointset, along with the number of
points lying on each line, within this asymptotic time bound.

3 The Maximum Equally Spaced collinear Sub-
set Problem

This section develops a succession of progressively improved methods for solving
the MESCS problem. We shall first solve this problem in one dimension.

Begin by sorting the input values. Next, for every pair of numbers z; and
z;j in the sorted list, we try to determine the longest arithmetic progression
starting with z; and z;, i < j, and having a successive element difference of T;
- &i; subsequent elements in this arithmetic progression may be searched for in
the sorted list using binary search at logarithmic cost per element. In order to
avoid duplicate searches in the future, whenever we obtain another element in
an arithmetic progression in this way, we update an auxiliary two-dimensional
matrix, so that a possible future arithmetic progressions {having the same tail

elements as the current one) need not be “chased” again to their end. This
ensures that each pair of elements needs only to be examined once, bringing the
total time for the entire algorithm to O(n?logn). Note that within the same
asymptotic time we computed not only the longest arithmetic progression in the
data, but e/l other maximal ones as well.

Our first approach for solving MESCS in arbitrary dimension computes all
the lines determined by the pointset along with the points that fall of each of
these lines; the one dimensional aigorithm is then used to compute the order
statistics for each line. Intuitively, the approach succeeds because when more
points lie on each line, we must have fewer lines: when we decompose a higher
dimensional instance into a collection of one-dimensional instances, the inverse
relationship between the size of these instances and their number will thus keep
the overall time complexity relatively low. The formal analysis is as {ollows.

Given a pointset, perturb all the points by a tiny amount until no three
are collinear; this is always possible. Now return the points to their original
positions one at a time while observing the quantity

d = Z #points(L)

Le{tines}

Fact: ® takes on its maximum value n-(n—1) when no three points are collinear.

Proof: Moving a perturbed point to its original location on a line that has
already & > 1 points on it will decrease ® by at least k, O

In returning the perturbed points back to their original locations, by the
time we obtain k collinear points on a given line, ® has been reduced by at
least Q(k?). Thus, the number of lines (induced by the original pointset) that
contain exactly k£ points is at most O(®/k*), and in particular this quantity is
never greater than O(n?/k?). Processing a line that contains exactly & points,
using the one-dimensional algorithm above, requires time O(k? log k); the total
time required to process at most O(n?/k?) such lines is bounded by O(n? log k).
Summing this over all values of k (as & ranges between 1 and n) yields a grand
total of O(n3log k) time to solve MESCS.

Observe that for all k between n/2* and n/2'+!, at most O(n?/(n/2'+1)?)
lines may contain k points, and each may be processed using the one-dimensional
algorithm in time at most O((n/2")? log(n/2")). Therefore the time to process
all lines containing between n/2* and n/2+! points each is

O(n?/(n/2%1)?) - O((n/2')* log(n/2')) = O(nlog n)

Summing over i ranging between 0 and log n yields a total of O(n?log? n)

time to solve MESCS in £2.

Finally, note that each of the m lines /; in the configuration, each containing
ki points of P respectively, will reduce & by O(k?). However, ® remains positive,
yielding the bound

Thus the time to process all of the m lines using the one-dimensional algo-
rithm is given by

m m m
> kPlogki < D kllogn = logn - Y" k? = O(n?log n)
=1 i=1 i=1

Thus the approach of processing all lines of the configuration separately will
afford a solution to MESCS in arbitrary dimension within time O(n?logn). The
next paragraphs describe how to reduce the complexity of our solution to O(n?)
in all dimensions.

Let us reconsider the one-dimensional MESCS problem and the special vari-
ant which looks for an equally spaced triple of points, i.e., an arithmetic progres-
sion of length three. (We can show that this problem, as well as the problem
of determining whether a given pointset contains a collinear triplet, also has
an Q(nlogn) lower bound, using the same reductions as in the proof of Theo-
rem One. Interestingly, for neither of these apparently much simpler decision
problems is an o(n?) time algorithm known (5]

To find all equally spaced triples, first sort the input values. Now assume
that the leftmost point A of each triple is X;, and advance two pointers B and C
beginning at ;4 and Titz respectively. If z;1) —2; > 200 — Z;+1, we advance
pointer &, otherwise we advance pointer B. Whenever the two differences are
equal, we record the corresponding equally spaced triple (A,B,C). Clearly this
process will determine in linear time all equally spaced triples with z; as the
first component of the triple; iterating over all values of ¢ will therefore report all
equally spaced triples in the data within time O(n?). 1t is possible to construct
inputs which have a quadratic number of such triples (e.g., all points equally
spaced), so this method is optimal.

Our final reduction in the time complexity of one-dimensional MESCS is as
follows. Detect all equally spaced triples of points (using O(n?) time), and then
overlap them in order to determine all maximal equally spaced chains. In other
words, we construct a directed graph where for each reported equally spaced
triple x,, z;, and z, we create the nodes < 1,7 > and < j, & > and the directed

edge (< ,j > < j,k >). Each node in this graph has indegree and outdegree of
at most one, so the edge set and vertex set are both of size O(n?). A topological
sort of this directed graph yields all maximal equally spaced subsets in O(n?)
time,

To solve MESCS in higher dimensions, we sort the pointset by the first
coordinate only; i.e., we project onto the z; axis. Without loss of generality,
we can assume that no two points have the same) coordinate (we can always
rotate the pointset by a tiny angle to make the 2, coordinates unique). We then
proceed to solve the 1-dimensional MESCS problem for the sorted, projected
pointset. Equally spaced triplets will correspond to equally spaced triplets in
the projection. However, some equally spaced triplets in the projection will
not correspond to actual equally spaced triplets; this can be easily checked in
constant time per triplet for any fixed dimension. Since the number of equally
spaced triplets is bounded by (g) in all dimensions, our algorithm will run in

time O(n?) for any fixed dimension.

4 Conclusion

We gave optimal algorithms and proved lower bounds for computing all order
statistics of cardinalities of equally-spaced collinear subsets within a pointset in
arbitrary dimensions.

5 Acknowledgement

We thank Alfredo Inselberg for bringing several references to our attention.

References

{1] D. Avis and M. Doskas, “Algorithms for High Dimensional Stabbing Prob-
lems”, Discrete Applied Mathematics 27(1990), pp. 39-48.

[2] R. Cole, J. S. Slowe, W. L. Steigers, and E. Szemeredi, “An Optimal-Time
Algorithm for Slope Selection”, Siam J. Computing 18 (4)(1989), pp. 792-
810.

(3] R. Duda, and P. Hart, “Use of the Hough Transform to Detect Lines and
Curves in Pictures”, Communications of the ACM 15 (1)(1972), pp. 11-15.

(4] H. Edelsbrunner, Algorithms in Computational Geometry, Springer-Verlag,
Berlin, 1987, pp. 278-282.

(5] H. Edelsbrunner, J. O'Rourke, and R. Seidel, “Constructing Arrange-
ments of Lines and Hyperplanes With Applications”, SIAM J. Compuling
15(2)(1986), pp. 341-363.

[6] H. Edelsbrunner and L. J. Guibas, “Topologically Sweeping an Arrange-
ment”, Proc. ACM Symposium on Theory of Computing , 1986, pp. 389-
403,

(7] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduc-
tion, New York, Springer-Verlag, 1985.

(8] T. Risse, “Hough Transform for Line Recognition: Complexity of Evidence
Accumulation and Cluster Detection”, Computer Vision 46(1989), pp. 327-
345.

(9] D. Ben-Tzvi and M. B. Sandler, “A Combinatorial Hough Transform”,
Patiern Recognition Letters 11{1990), pp. 167-174.

Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

AN OPTIMAL ALGORITHM FOR COMPUTING ALL
REGULAR LINEAR DEGENERACIES OF POINTSETS
INE

Gabriel Robins December 1990
Andrew Kahng CSD-900045

An Optimal Algorithm for Computing All
Regular Linear Degeneracies of Pointsets in E4

Gabriel Robins and Andrew Kahng

UCLA Department of Computer Science
Los Angeles, California 90024

Abstract

We give an optimal O(n?) time algorithm for the problem of finding
all maximal equaliy spaced collinear subsets within a peintset in E4.

Keywords: Computational geometry, algorithm design, combinatorial problems

1 Introduction

Given a pointset P in E4, a collinear subset S of P is a subset of P lying on the
same line. A maximal collinear subset S of P is a collinear subset of P that is

When given a pointset in the plane, it is very natural to ask “what is itg
largest collinear subset?”

Mazimum collinear Subset {MCS) Problem: For n points in £<, find the largest
collinear subset of points.

This type of problem occurs in, eg., line detection for computer vision,
and instances can arise in dimensions greater than two. In practice, bucketing
techniques based on the Hough transform [3] [8] (9] or other duality relations
in the plane are used. However, for dimension d, such methods usually require
effort proportional to (el)d in the desired accuracy ¢, and are unsuitable for
determining exact collinearity as posed here.

The subject of this note is the following very natural variant of MCS:

Marimum Equally-Spaced collinear Subset (MESCS) Problem: For n peints in
E?, find the largest collinear, equally spaced subset of points.

Like MCS, the MESCS problem also arises in many practical applications,
particularly since regularity is in many cases the distinguishing characteristic
of “interesting” regions in an image. For example, one might wish to exarnine
infrared ground surveillance bitmaps to find equally spaced collinear “hotspots”
{rows of landmines, fenceposts in a region perimeter, etc.) Standard methods for
determining “gross” periodicity in data, e.g., spectral methods, do not extend
to the present domain.

Often, we would like a roster of all maximal (equally spaced) collinear sub-
sets, which means that the output itself can be of size O(n?). In other words,
we want the complete order statistics of the problem on the given input. This
note presents an optimal O(n?) time algorithm for finding the complete order
statistics of MESCS for a pointset in arbitrary dimension.

2 Preliminaries

Solving MCS in E? can be done in O(n?) time using an algorithm due to Edels-
brunner [4]. This algorithm actually returns all mazimal proper degeneracies
for a pointset in £4, i.e., all maximal subsets of points lying in overdetermined
k-flats, and runs in time O(n?). The exponential dependence on dimension is
expensive, except for very small d, and we would like to avoid this cost, particu-
larly since we only wish to find maximal collinear subsets. Furthermore, it is not
clear how the method of [4] extends to satisfy the “equally spaced” constraint.
Indeed, the notion of equally spaced points is difficult to define elegantly in
k-flats with k£ > 1,

The work of Edelsbrunner and Guibas [6] also implies an O(n?) time al-
gorithm for MCS in two dimensions, but this method does not generalize to
higher dimensions, nor does it seem applicable to the MESCS problem. Avis
and Doskas [1] outline methods that given a set of segments or polyhedra in £4
determine whether a single hyperplane intersects all of these objects, but their
algorithms are exponential in d, and we are interested rather in the mazimum
number of “stabbed” objects.

For both MCS and MESCS, a lower bound may be established by reduction
from the Element Uniqueness problem (i.e., determining whether a given set of
numbers contains duplicates), which is known to require (}(nlog n) time [7].

Theorem One: MCS and MESCS both require at least (nlogn) time.

Proof: Given an instance of EU § = {z1,....z,}, we reduce it to the two-

dimensional MCS problem as follows. Transform each element z; into (i, z}).
The resulting instance of MCS has a collinear subset with cardinality 3 or greater
tff S contains duplicates, and the Q(n log n) lower bound for EU translates into
one for MCS. Similarly, EU is reduced to MESCS as follows. Given an instance
of EU § = {z),...,2,}. transform each element z; into vi = (1+¢€/27) .z,
and form the multi-set $' = {y;, ... yn, Yi:....Yn}. Clearly this transformation
destroys any arithmetic progressions that may be present in the original data,
except for the trivial ones that are induced by duplicate elements: that is, §'
contains 3 or more “equally-spaced” points (with zero spacing) iff S contains
duplicate elements. The Q(nlogn) lower bound for EU thus holds for MESCS
in £4,d > 0.)

We close this section with a brief discussion of simple methods for the MCS
problem in all dimensions. Clearly MCS can be solved naively in time OQ(n?)
by iterating through all ('2') lines induced by the pointset, and for each line de-
tetmining which of the n points lie on that line. The following algorithm solves
MCS in OQ(n?logn) time: for each of the (g) lines induced by the pointset,
tepresent that line by a unique pair of parameters (e.g., “slope/ywintercept”,
or “angle-of-normal/distance-to-origin”, etc.) Next, sort the lines using these
two parameters as primary and secondary sort keys, respectively: this requires
O(n?log n) time. Pass through the list and check for duplicate representations;
these duplicates represent sets of collinear points, with a set of £ collinear points
k
2

being represented by () elements on this list. This solves the MCS problem

within time O(n? log n), and we actually may output the complete order statis-
tics, i.e,, all lines induced by the original pointset, along with the number of
points lying on each line, within this asymptotic time bound.

3 The Maximum Equally Spaced collinear Sub-
set Problem

This section develops a succession of progressively improved methods for solving
the MESCS problem. We shall first solve this problem in one dimension.

Begin by sorting the input values. Next, for every pair of numbers z; and
z; in the sorted list, we try to determine the longest arithmetic progression
starting with z; and z;, i < j, and having a successive element difference of z;
- z;; subsequent elernents in this arithmetic progtression may be searched for in
the sorted list using binary search at logarithmic cost per element. In order to
avoid duplicate searches in the future, whenever we obtain another element in
an arithmetic progression in this way, we update an auxiliary two-dimensional
matrix, so that a possible future arithmetic progressions (having the same tail

elements as the current one) need not be “chased” again to their end. This
ensures that each pair of elements needs only to be examined once, bringing the
total time for the entire algorithm to O(n? log n}. Note that within the same
asymptotic time we computed not only the longest arithmetic progression in the
data, but all other maximal ones as well.

Our first approach for solving MESCS in arbitrary dimensjon cornputes all
the lines determined by the pointset along with the points that fall of each of
these lines; the one dimensional algorithm is then used to compute the order
statistics for each line. Intuitively, the approach succeeds because when more
points lie on each line, we must have fewer lines: when we decompose a higher
dimensional instance into a collection of one-dimensional instances, the inverse
relationship between the size of these instances and their number will thus keep
the overall time complexity relatively low. The formal analysis is as follows.

Given a pointset, perturb all the points by a tiny amount until no three
are collinear; this is always possible. Now return the points to their original
positions one at a time while observing the quantity

P = Z #points(L)

Le{lines}

Fact: & takes on its maximum value n-(n—1) when no three points are collinear.

Proof: Moving a perturbed point to its original location on a line that has
already k > 1 points on it will decrease & by at least k. 0

In returning the perturbed points back to their original locations, by the
time we obtain k£ collinear points on a given line, & has been reduced by at
least Q(k%). Thus, the number of lines (induced by the original pointset) that
contain exactly k points is at most O(®/k?), and in particular this quantity is
never greater than O(n?/k?). Processing a line that contains exactly k points,
using the one-dimensional algorithm above, requires time O(k? log k): the total
time required to process at most O(n?/k?) such lines is bounded by O(n?log k).
Summing this over all values of & (as k ranges between 1 and n) yields a grand
total of O(n?log k) time to solve MESCS.

Obegerve that for all k between n/2' and n/2+!, at most O(n%/(n/21+1)?)
lines may contain k points, and each may be processed using the one-dimensional
algorithm in time at most O((n/2')?log(n/2')). Therefore the time to process
all lines containing between n/2' and n/2'+! points each is

O(n?/(n/2%)?) - O((n/2')? log(n/2')) = O(n? log n)

Summing over i ranging between 0 and log n yields a total of O(n?log? n)

time to solve MESCS in E2.

Finally, note that each of the m lines l; in the configuration, each containing
ki points of P respectively, will reduce ® by O(k?). However, ® remains positive,
yielding the bound

i k? = O(n?)
=1

Thus the time to process all of the m lines using the one-dimensional algo-
rithm is given by

m

m m
Z Zlogk; < Zkflogn =logn - Zk? = O(n?logn)
izl i=1 i=1
Thus the approach of processing all lines of the configuration separately will
afford a solution to MESCS in arbitrary dimension within time O(n?logn). The
next paragraphs describe how to reduce the complexity of our solution to O(n?)
in all dimensions.

Let us reconsider the one-dimensional MESCS problem and the special vari-
ant which looks for an equally spaced triple of points, i.e., an arithmetic progres-
sion of length three. (We can show that this problem, as well as the problem
of determining whether a given pointset contains a collinear triplet, also has
an (nlogn) lower bound, using the same reductions as in the proof of Theo-
rem One. Interestingly, for neither of these apparently much simpler decision
problems is an o(n?) time algorithm known [5].

To find all equally spaced triples, first sort the input values, Now assume
that the leftmost point A4 of each triple is X;, and advance two pointers B and €
beginning at r;,; and Ty tespectively. If 2iyy — z; > z;42— 2,4, we advance
pointer C, otherwise we advance pointer B. Whenever the two differences are
equal, we record the corresponding equally spaced triple (A,B,C). Clearly this
process will determine in linear time all equally spaced triples with r; as the
first component of the triple; iterating over all values of i will therefore report all
equally spaced triples in the data within time O(n?). 1t is possible to construct
inputs which have a quadratic number of such triples (e.g., all points equally
spaced), so this method is optimal.

Our final reduction in the time complexity of one-dimensional MESCS is as
follows. Detect all equally spaced triples of points (using O(n?) time), and then
overlap them in order to determine all maximal equally spaced chains. In other
words, we construct a directed graph where for each reported equally spaced
triple z;, ;, and r, we create the nodes < 1,7 > and < j, k£ > and the directed

edge (< i,j >, < j,k >). Each node in this graph has indegree and outdegree of
at most one, so the edge set and vertex set are both of size O(n?), A topological

sott of this directed graph yields all maximal equally spaced subsets in O(n?)
time.

To solve MESCS in higher dimensions, we sort the pointset by the first
coordinate only; i.e., we project onto the z, axis. Without loss of generality,
we can assume that no two points have the same z; coordinate (we can always
rotate the pointset by a tiny angle to make the z, coordinates unique). We then
proceed to solve the 1-dimensional MESCS problem for the sorted, projected
pointset. Equally spaced triplets will correspond to equally spaced triplets in
the projection. However, some equally spaced triplets in the projection will
not correspond to actual equally spaced triplets; this can be easily checked in
constant time per triplet for any fixed dimension. Since the number of equally
spaced triplets is bounded by ('2') in all dimensions, our algorithm will run in

time O(n?) for any fixed dimension.

4 Conclusion

We gave optimal algorithms and proved lower bounds for computing all order
statistics of cardinalities of equally-spaced collinear subsets within a pointset in
arbitrary dimensions.

5 Acknowledgement

We thank Alfredo Inselberg for bringing several references to our attention.

References

(1) D. Avis and M. Doskas, “Algorithms for High Dimensional Stabbing Prob-
lems”, Discrete Applied Mathematics 27(1990), pp. 39-48.

[2] R. Cole, J. S. Slowe, W. L. Steigers, and E. Szemeredi, “An Optimal-Time
Algorithm for Slope Selection”, Siam J. Computing 18 (4)(1989), pp. 792-
810,

[3] R. Duda, and P. Hart, “Use of the Hough Transform to Detect Lines and
Curves in Pictures”, Communications of the ACM 15 (1)(1972), pp. 11-15.

(4]

(5]

[6)

(8]

(9]

H. Edelsbrunner, Algorithms in Computational Geometry, Springer-Verlag,
Berlin, 1987, pp. 278-282.

H. Edelsbrunner, J. O'Rourke, and R. Seidel, “Constructing Arrange-
ments of Lines and Hyperplanes With Applications”, STAM J. Computing
15{2){1986), pp. 341-363.

H. Edelsbrunner and L. J. Guibas, “Topologically Sweeping an Arrange-
ment”, Proc. ACM Symposium on Theory of Computing , 1986, pp. 389-
403.

F. P. Preparata and M. . Shamos, Compultational Geometry: An [ntroduc-
tion, New York, Springer-Verlag, 1985.

T. Risse, “Hough Transform for Line Recognition: Complexity of Evidence
Accumulation and Cluster Detection”, Computer Vision 46(1989), pp. 327-
345.

D. Ben-Tzvi and M. B. Sandler, “A Combinatorial Hough Transform”,
Pattern Recognition Letters 11(1990), pp. 167-174.

-1

