Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

THE UCLA MIRROR PROCESSOR: A BUILDING BLOCK FOR
SELF-CHECKING SELF-REPAIRING COMPUTING NODES

Yuval Tamir November 1990
Mike Liang CSD-900040
Titus Lai

Marc Tremblay

The UCLA Mirror Processor: A Building Block for
Self-Checking Self-Repairing Computing Nodes +

Yuval Tamir, Mike Liang, Titus Lai, and Marc Tremblay

Computer Science Department
4731 Boelter Hall
University of California
Los Angeles, California 90024-1596
U.S.A.
Phone: (213)825-4033 E-mail: tamir@cs.ucla.edu
FAX: (213)825-2273

Abstract

Fault-tolerant systems ofien rely on self-checking computing nodes. System
performance and reliability is increased if the nodes can recover locally from most errors
caused by transient faults without requiring system-level recovery. Using a technique
called micro rollback, it is possible to eliminate most of the performance penalty of
concurrent error detection.

We report on the design and implementation of a VLSI RISC MiCroprocessor,
called the UCLA Mirror Processor, which is capable of micro rollback. In order to
achieve concurrent error detection, two Mirror Processor chips operate in lock-step,
comparing external signals and a signature of intemal signals every clock cycle. If a
mismatch is detected, both processors roll back to the beginning of the cycle when the
error occurred. In some cases erroneous state is corrected by copying a value from the
fault-free processor to the faulty processor. We describe the architecture,
microarchitecture, and VLSI implementation of the Mirror Processor, emphasizing its
error-detection, error-recovery, and self-diagnosis capabilities.

Index Terms: Micro rollback, self-checking modules, self-repair, VLSI RISC processor.

T This research is supported by the SDIO Innovative Science and Technology Office, managed by the Office of Naval Research,
contracted to the Jet Propulsion Laboratory under task plan #80-2984: and by Hughes Aircraft Company and the State of
California MICRO program.

November 1990

L. Introduction

The design of computer systems often involves tradeoffs between average performance, real-time
performance, and reliability. In order to provide a high probability of meeting real-time constraints, the
system is under-utilized most of the time, leading to reduced average performance. In order to meet
reliability requirements, fault tolerance is ofien necessary. In fault-tolerant systems, there are many
tradeoffs between real-time and average performance. For example, if error recovery is based on
checkpointing and rollback, increasing the frequency of checkpointing typically reduces average
performance while allowing the system to meet tighter real-time constraints since less work is lost when
recovery is necessary. The goal of our research is to design fault tolerant systems that achieve high
average performance as well as a high probability of meeting real-time constraints.

Fault-tolerant systems which include multiple processors often rely on self-checking computing
nodes [11, 15]. These nodes detect errors as soon as they occur, thus preventing the spread of erroneous
information throughout the system. Such error confinement minimizes the scope of recovery actions.
This reduces system unavailability following an error, while recovery is in progress. Since transient
faults are more likely to occur than permanent faults [1], system average performance and ability to meet
real-time constraints can be increased if the computing nodes recover locally from most errors caused by
transient faults without requiring system-level recovery.

In order to implement concurrent error-detection for the self-checking nodes, checkers are usually
connected in the communication paths between modules. The checkers reduce performance by requiring
either longer clock cycles or additional pipeline stages. As we have previously described [16, 17], this
performance overhead can be minimized if the checks are performed in parallel with intermodule
communication. Each module processes its inputs immediately when they become available. If the data
is erroneous, it is followed, after a delay of a few cycles, by an error indication. If the data processed by
the receiver is later flagged as erroneous, any changes to the state of the system due to this information
must be undone. Hence, it is necessary to back up processing to the state that existed just before the error
first occurred. We call the process of backing up a system several cycles in response to a delayed error
signal micro rollback [17].

We report on the design and implementation of a VLSI RISC microprocessor, called the UCLA
Mirror Processor (henceforth MP), which can serve as a building block for self-checking self-repairing
computing nodes. The Mirror Processor implements the instruction set of the Berkeley RISCII
chip [9, 12]. The basic error-detection mechanism of the MP is duplication and comparison [4]. Two MP
chips, a master and a slave, operate in lock-step, with the slave comparing their results every clock
cycle [3,6]. Local recovery from an error caused by transient faults is accomplished by re-executing the
instruction that resulted in the error [2], and, when necessary, repairing the corrupted state in one MP chip
by copying values from the other MP chip. Each MP is capable of micro rollback of up to four cycles.
Hence, the latency for error detection does not require slowing down normal operation.

The MP chip has been laid out using MOSIS scalable CMOS design rules. The chip contains
52,644 transistors and, with 2pm technology, the size of the chip is approximately 8.4 mm by 6.7 mm.

-3-

The operation of the chip has been checked using simulations at the circuit level, switch Ievel, and
register-transfer level. Based on these simulations, the chip will operate at a peak execution rate of
10 MIPS.

The basic techniques used in the MP have been presented in previous papers. The main
contribution of this paper is in presenting how these techniques can be incorporated in a real
implementation of a complete microprocessor. The Mirror Processor uses a combination of techniques
that, together, result in a practical building block for high-performance fault-tolerant systems. This paper
describes the architecture and microarchitecture of the Mirror Processor, emphasizing its error-detection,
error-recovery, and self-diagnosis capabilitics. We demonstrate the benefits of micro rollback in a real
system, show that it can be implemented in a practical VLSI chip, and evaluate the overhead and design
issues encountered.

SectionIl is a brief description of micro rollback and related terminology. The basic
microarchitecture and timing of the Mirror Processor are presented in Section III. The datapath, with its
special features for micro rollback, error detection, and state repair, are described in Section IV, We have
found that much of the added design complexity of the MP, relative to a conventional RISC
mircroprocessor, was due to the control unit. Section V describes the MP control unit. With most self-
checking modules, there are difficulties in verifying that the self-checking features are operational once
the module is integrated with the rest of the system. Section VI presents special instructions that were
added to the MP in order to facilitate self-diagnosis. The VLSI implementation of the MP is described in
Section VII. This includes the floorplan of the chip, the overhead for detection, repair, and micro
rollback, as well as a brief description of the design process.

Micro Rollback

error error
occurs detected

cycle 11| cycle 12 | cycle 13 | cycle 14 | cycle 15 cycle 16 [cycle 17

J

snapshot snapshot snapshot snapshot snapshot snapshot

[> fime
Figure 1: Micro rollback of a module — restoring a saved snapshot.

II. Micro Rollback

Micro rollback is based on the idea that a valid system state can be restored by rolling back to a
previously saved checkpoint[10]. A micro rollback of a module (subsystem) consists of bringing the
module back a few cycles to a state that it had reached in the past[17]. In order to be able to perform
such an operation, it is necessary to save a *‘snapshot’’ of the state of the subsystem (checkpoint) at each
cycle boundary [5]. Micro rollback restores the state of a subsystem by overwriting the current state with

a “‘snapshot’’ taken in the past (Figure 1).

Unlike traditional checkpointing and rollback [10], with micro rollback both checkpointing and
rollback are performed entirely in hardware, This allows checkpointing to be performed in parallel with
normal operation while recovery is performed in a few clock cycles. Such rapid checkpointing and
rollback is essential in systems with real-time constrainis, where long delays for recovery are intolerable,
In [17] we presented a comparison between micro rollback and traditional instruction retry [2] as well as
between micro rollback and schemes used for precise interrupts {14, 5).

The swate of a module (subsystem) is the contents of all storage elements which carry useful
information across cycle boundaries. When a rollback occurs, the number of cycles to be undone must be
provided to a rollback coniroller. This number is called the rollback distance. One of the design
parameters of a system with support for micro rollback is the rollback range — the maximum rollback
distance that modules in the system must support. The rollback range is determined by the number of
stored snapshots.

rollback
logic |
I busIR
@Iback meﬂ l J. l .I. external
¢1 Py bus
mem; ™ cond | |py g PLA | | next
| sale |
int
{_post-FSM A T %
y L 4 L 4 b IN pad
! | EIr $ AD
[RFTRAN M-{PsW] MM Y[bimm M [pariN__ |
l CMP
1| o0
SDEC | [busT L. R J Z
RF.DEC - ey — _ “ \
r— l:-!\
busD IN I
] Ly
busA,
A bus$S
busB 1))
L, busR | 5 L) L busOUT
Register File parB parD SHIFT ALU SDR PC MAR parOUT

Figure 2: The UCLA Mirror Processor. All the modules below busIN are part of the
datapath. The control unit is shown above busIN.

.5-

HI. The Architecture of the UCLA Mirror Processor

The choice of the basic processor architecture for the MP was guided by several considerations:
(1) since we were not interested in instruction set design, it was preferable to use an existing instruction
set; (2) in order to have a chance of successful implementation in an academic environment, the basic
processor architecture had to be simple; (3)in order to be a convincing ‘‘proof of concept,”” the
performance of the processor could not be orders of magnitude below the performance of contemporary
microprocessors. Based on these considerations, we chose to use the Berkeley RISC II processor [9, 12]
as the basis for the MP. The RISC II was the basis of the popular Sun SPARC architecture and is similar
to other ‘‘reduced instruction-set computers.”” It is a load/store architecture, where only explicit load and
store instructions access memory. All ALU and shift operations obtain their operands from the register
file and store their results back to the register file. One byte, two byte, and four byte integers are
supported. The memory is accessed as a single, flat 4 GByte segment. The register file has multiple
register banks to support fast procedure calls [9). In the MP, the register file consists of four banks of
sixteen 32-bit registers for procedure stack frames plus ten global general-purpose registers.

% - J—
¢2
w { \
T M\
Py
Memory-sbusINSIR 1 ——J_-H__‘ ' , ’ ‘*,
decodcmslrucnonZ i |)
S E pay CRRNNET s VENENS ¥ oo UINNNS Foss RN
L A e A e SN L Ty §
prchargs ALUS |~ S SRS EEN S S s VAR ¥ SN S B
evaluate ALU 6 .——__.__ﬁ ‘ L,
AR L S A § R U S s
LSS UL S D S e
NXTPC—busOUT—sMemory 9 | SIS RS § a5 p CH S # o E

Figure 3: The timing of register-register ALU instructions. The instruction is fetched
in one clock cycle and executed in the following clock cycle. The result is stored in
the register file in phase 1 of the cycle following the execution cycle.

Figure 2 shows a block diagram of the MP. The datapath, shown below the busIN bus, is almost
identical to the original RISC II datapath [12]. The differences are related to the fault tolerance features
of the MP and will be described later. The memory interface is over a multiplexed data/address bus,
which is used to reduce the number of pins and thus the cost of fabrication and testing. Register-register
instructions are executed at a rate of one instruction per cycle with the bus used every cycle to fetch the
next instruction. Due to the multiplexed external bus, two cycles are needed to execute load and store

instructions.

Pipelining is used in order to maintain an execution rate of one instruction per cycle. Four non-
overlapping clock phases are used 0 sequence operations within each cycle. As shown in Figure 3, the
multiplexed external bus is used to transfer addresses during ¢, and ¢, and transfer an instruction or data
in ¢4 and ¢;. A typical ALU instruction requires reading two registers from the register file, performing
an ALU operation, and writing the result back to the register file. The delayed write buffer [17], which is
added for micro rollback (Section IV), allows the result to be written to the register file module in the
same phase (¢,) that the operands for the next instruction are read.

IV. Fault Tolerance Features in the Mirror Processor Datapath

Duplication and comparison is often used to implement concurrent error detection [4,15,6]. The
Mirror Processor was designed for use in self-checking nodes where error detection is accomplished by
error detecting codes (EDC) in the memory and duplication and comparison for the processor. Two MP
chips are used in each self-checking node. In order to reduce the board chip count and complexity, a
comparator for all the key output pins is implemented in the MP chip. Based on the value of a dedicated
input pin, the chip operates as a master or a slave[3,6]. The slave operates in lock-step with the master,
performing the same operation at every clock phase. However, whenever the master produces an output
(data or address), the slave, instead, reads the value from the bus and compares it to its own, internally
generated value. A mismatch indicates an error.

With the scheme above, there is latency inherent in the error-detection process. Specifically, once
the master generates some value, the value must be driven to the output pins, received by the slave, and
compared with the slave’s internally-generated values. If a mismatch is found, the error signal must be
driven from the slave to the output pin and back to the master. Hence, an error can corrupt the processor
state before it is detected. The MP uses micro rollback to undo such state changes and restore the
processor to its state prior to the instruction when the error first occurred.

A. Support for Micro Rollback

Efficient implementation of micro rollback involves delaying commitment of state changes until the
new values are known to be correct (checking is complete). For the MP, it is sufficient to delay
commitment by four cycles since the latency of the error detection mechanisms used is less than four
cycles. As described in [17], this is accomplished using delayed write buffers (DWBs), as shown in
Figure 4. Updates are made by writing to the left stage of the DWB and setting the corresponding valid
bit. The DWB is shifted right every cycle. After four cycles, the updated value is shifted into the
““permanent storage™ for the register (the right-most register). Updating of the permanent storage is
performed only if the right-most valid bit is set. On a read, the select circuitry determines the most recent
(the lefi-most) value for which the valid bit is set. A rollback of »n cycles is accomplished in a single
phase by clearing the first (left-most) n valid bits so that a subsequent read will obtain an older value.

In [17] we showed that the basic technique described above can be used for the register file. For the
register file, the ‘‘permanent storage’’ consists of 74 registers, as described in Section IIL. In the DWB,

evaluate —| select

¥ x L i~
internal bus L

external bus

Figure 4: A single register with delayed commitment of updates, using a four stage
detayed write buffer (DWB). Writes modify the lefi-most stage of the DWB. Recent
updates are undone by clearing the valid bits. Reads obtain the most recent valid
value.

the select circuit includes a tag with the register number corresponding to the value stored in the data part.
On a write to the register file, the new value and register number are written into the DWB. A read from
the register file involves comparing the register number to all the tags to determine if a recent value
should be obtained from the DWB. Since the lookup in the DWB is performed in parallel with the
permanent register file read, there is little additional delay [17].

As in the Berkeley RISCII processor, there are three registers used for storing the next, current, and
last values of the program counter (PC)[7]. In the RISC II design these registers are organized as a small
FIFO and the following transfers occur during each cycle:

new value — next PC — PC — last_PC
Micro rollback of the PC unit could be supported by treating the three registers as individual state
registers (Figure 4). However, this would result in high area overhead of 12 DWB stages. For the MP we
developed a special, more efficient, mechanism for supporting micro rollback in the PC. As explained
below, this mechanism takes advantage of the original FIFO organization of the PC unit.

The basic organization of the MP PC unit is shown in Figure 5. As with the single tegister
(Figure 4), there are four valid bits, corresponding to the four DWB stages. A rollback of n cycles is
accomplished by clearing the the r left-most valid bits. The key difference between the PC module and
the module of a single register, is the selection circuitry. Depending on whether the read access is to the
next_PC, PC, or last_PC, pass transistor logic, shown in Figure 5, is used to select the registers
corresponding to the first, second, or third valid bits, respectively. Following a rollback, when several of
the valid bits are cleared, this selection process may select one of the permanent registers (npc, pc, or Ipc)

valid.1 valid 2 valid.3 valid.4
_______ Ao 1
! y '
: |
|
select.lpc—‘is3 s3+:——' — "
J
|
select.pc—s2 52+]'_‘ select| Iselect[|select
{ C C C
0—1s1 sl+:——' P - P — P
= |
|
| select < |
L_PC ___ gaepe |
valid.1 valid2[__ valid3 validd___
r-—-—--————=— 1 1 J' J'
[1
| |
selectnpc— s s+ —{selectHselect|-<select
' select ' || BPe npc npe
L_npg _ _ gatenpe | | , ,
gapelgpel g . . . g.npc4g.nic gnpcig.pes g.[i»cﬁ gpc7

[|
—bugNPC :
busOUT 1J-—HII—E_|

Figure 5: Support for micro rollback in the program counter, Three values are
available at any instant: next PC, PC, and last_PC. A four stage DWB is used to
delay commitment of updates to a three stage FIFO queue of permanent storage
registers.

instead of a value in the DWB. The nexi_PC must be read once per cycle since it contains the address to
be used for a subsequent instruction fetch. For some instructions, the value of PC or last_PC is also
needed (e.g. for PC-relative addressing). If only one value at a time had to be read from the entire PC
module, the top part of the select circuitry would be sufficient. However, due to timing considerations,
next_PC and PC may be read at the same time (during ®y) so separate selection logic and a separate
internal bus (busNPC) was required for next_PC.

Starting with a microarchitecture that does not include support for micro rollback, it is clear that
DWBs are nceded for registers that hold values across cycle boundaries [17]. Many VLSI
implementations depend on the ability to store values for a few phases or cycles using the inherent
parasitic capacitance of the circuits for dynamic storage. For example, once a value is asserted on an
internal bus, it may be assumed that the value will remain stable for several cycles, even if the driving
circuit is disconnected. Whenever such dynamic storage is used to store values across cycle boundaries,
support for micro rollback requires the ability to restore the value when rollback is performed.

The problem of rolling back dynamic storage was encountered in the design of the MP. One case
led to the addition of a memory address register (MAR), which was not part of the original
microarchitecture. As shown in Figure 3, the instruction fetch involves driving an address to busQUT

-9-

and to the exiernal bus during ¢, of a cycle and ¢, of the next cycle. This value is obtained by reading
next_PC during ¢, and incrementing it during ¢, of the first cycle. When a rollback is performed to the
cycle boundary (between ¢, and ¢,), the instruction fetch that was in progress at the time must be
re-executed. This requires the address of the instruction to be restored to the external bus. Furthermore,
the processor must allow the memory the same amount of time to perform the restored instruction fetch as
the time to perform a normal instruction fetch. In order to meet these requirements, a memory address
register, with the structure shown in Figure 4, is connected to busOQUT. The value on busOQUT is written
into the MAR during ¢, of every cycle. During ¢, of the rollback cycle, the appropriate number of MAR
DWB stages are invalidated and the most recent remaining MAR value is read. This value is driven onto
busOUT, thus correctly restarting the instruction fetch operation.

Two other registers with DWBs had to be added to the datapath of the MP to support micro
rollback. When instructions are fetched, they arrive on the chip during ¢, and are decoded during the
latter part of ¢ and the entire ¢,. A rollback to the cycle boundary requires restoring the instruction that
was fetched during the cycle preceding the boundary and driving it onto busIN, as though it was arriving
from the extemal bus. This task is performed by the instruction register (IR). The store data register
(SDR) is used to restore the data of a store instruction if the rollback is 1o the boundary between the two
cycles of the store. The processor status word (PSW) register is, of course, needed even without micro
rollback. A DWB had to be connected to the PSW (as in Figure 4) to allow rolling back its values as
well. Tt should be noted that the external memory (or cache) must also include a DWB [17] so that recent
stores to the memory can be rolled back to maintain a consistent state with the processor,

B. Support for Error Detection and Error Recovery

As discussed earlier, the MP was designed as a building block of self-checking nodes where the
primary error-detection mechanism is duplication and comparison. The basic support for this mode of
operation is the ability of the chip to operate in slave mode, where it does not drive values onto the
external bus. Instead, the slave chip compares the values on the external bus, generated by the master, to
internally-generated values. In addition to the external bus lines, the comparison includes the memory
control signals, a mode bit (system/user), and the interrupt acknowledge signal.

Effective detection of errors in the external memory (or cache) can be implemented using error-
detecting codes at a lower cost than using duplication and comparison. Hence, the master and slave
processors share (read from) the same memory (or cache). The MP uses single bit parity on the external
bus and memory for error detection. The external bus is thus 33-bits wide, all addresses and data
generated by the processor include a parity bit. A *‘compressed’’ tree of static XOR gates [20] connected
to busOUT (parOUT), is used to generate the parity. Data and instructions read from the external
memory must include a parity bit. The parity of these values is checked by a similar circuit (parIN).

The two techniques described above are sufficient if the only requirement is error detection.

However, one of the goals of the MP is 10 be able to recover from all errors caused by a single transient
fault in the processors. When an error is detected, both processors (master and slave) roll back to the

-10-

cycle boundary preceding the likely cause of the error. In the MP, both of the above errors require a
rollback of two cycles. If the error is incorrect parity on the value read from the external bus, the rollback
results in re-executing the memory read operation. If the error is a mismatch in the comparison, for
example due to a transient fault in one of the ALUs, the two cycle rollback results in the re-execution of
the ALU operation. Unfortunately, the above error detection schemes and micro rollback are not
sufficient for recovering from all errors caused by single transient faults. One problem is caused by the
potential for long latencies in detecting errors. For example, if the instruction executed is a register-
register operation, a transient fault in one of the ALUs can result in an incorrect value stored in the
register file. Many cycles later, a store of that register to memory will bring the value to the master/slave
comparator and an error will be detected. At this point, a rollback will not restore a valid state and there
is no simple way for the system to recover.

by by by by by bs bg by bag bag bag b3

e wm R

N e
signature

chains of switching cells

Figure 6: Generating a ‘‘signature’’ of a 32-bit word using four interleaved parity bits.
The parity bits are computed using four interleaved chains of switching cells.

Error detection latency can be reduced by including in the master/slave comparison internal values
that are normally not accessible from the pins. In particular, it can be useful to compare the ALU result
as it is stored into the register file. In order to reduce the number of pins used to facilitate the comparison
of internal values, a much smaller signature [8] of the internal values can be used. As shown in Figure 6,
one possible way to generate a 4-bit signature is to use interleaved parity, where cach signature bit is the
parity of the set of bits consisting of every fourth bit of the original data[20]. A comparison of such
signatures will detect all single bit errors, as well as adjacent bit errors, and numerous other multiple bit
errors. Compact high-performance VLSI implementation of this signature generation circuitry is possible
using chains of switching cells [13] to implement the multiple-input XOR for each signature bit[20]. In
the MP, this basic technique is used to generate, every cycle, a 4-bit signature of the value on busD (32-
bit ALU or shifter result), the 7-bit ““physical’’ register number for the destination register of the
operation (the output of RFTRAN), a bit indicating whether a value is written into the register file (the
valid bit for the DWB), the eleven bits of the PSW, and all four state bits from the controller. The 4-bit
signature is driven, by the master, onto output pins and is included in the master/slave comparison every
cycle.

-11 -

The above use of signatures does not ensure recovery from all possible transient faults in the
processor. Specifically, a transient fault can invert the value of a bit in the register file. Many cycles
later, a read from the register file will obtain the corrupted value. The corrupted value will, of course,
cause a mismatch between the master and slave so that the error will be detected. A rollback of a few
cycles will not correct this error and there is no way to determine which processor, the master or slave,
has the correct value. In order to allow the two processors to determine which one has the corrected
value, a single parity bit is stored with each register in the register file. Whenever the register file is read,
the parity is checked (parB and parD in Figure 2). If a parity error is detected, a rollback of one cycle is
initiated. In addition, the master and the slave communicate to each other the results of the respective
parity checks using dedicated pins. Following rollback, if the results are clear regarding which processor
has the corrupted data, two cycles are used to transfer the value from the fault-free processor to the faulty
processor. If both processors detect parity errors in the same register, no state repair is performed
following rollback (see Section V). Since a transient error in the register file decoder can cause a register
to be stored in the wrong location, the parity stored with each register is calculated over the physical
register number as well as the data. This error will be detected when there is an attempt to read this
register. The state repair mechanism will allow recovery from this error.

It should be noted that the state repair mechanism with the dedicated error detection, as used for the
register file, is not required for any other register on the MP chip. The reason for this is that the other
registers are all modified every cycle. Since there is an update every cycle, all stages of the DWBs of
these registers generally contain valid values. If an error occurs due to a corrupted value in one of these
registers (e.g. the value of a condition code bit in the PSW is inverted, causing a conditional branch to
behave incorrectly) the resulting micro rollback will invalidate the corrupted DWB stage. Thus, when the
instruction is re-executed, a valid value will be obtained from the DWB.

V. The Mirror Processor Control Unit

The Berkeley RISC II processor was characterized by a simple small control unit [7, 12]. A single
PLA was used to decode the opcode, producing 39 control bits, which were ANDed with different clock
phases to produce approximately 100 control signals. The Mirror Processor datapath is more complex
than the RISC II datapath due to the support for micro rollback, error-detection, and state repair. Hence,
the number of control bits required by the MP is approximately double the number of control bits in
RISC 1. Furthermore, many of the control bits are dependent on rollback and repair signals in addition to
the opcode. As a result, the MP control unit (Figure 7) is significantly more complex than the RISC II
control.

Instructions are read from the external bus through busIN and are latched onto busIR. A four-state
finite state machine keeps track of whether the processor is executing a normal instruction, executing the
second cycle of a two-cycle instruction, or performing the first or second cycle of state repair. The Next
State Logic block computes the next state based on the incoming opcode and on the repair signals
generated by the Rollback Logic. The next state, plus the opcode and the repair signals, are sent to three

-12-

(ry(state.int)
busIN 12 PADS
cad.IRlatch
b0 Y condition codes _ imermupt X3
Rlatch 4 internal error . ionals {saig.ini)
signals extemnal signals signal 2
$3(gate.IRlatch)) %5 { 10 { 14 dq
Condition initiate rollback I
4 . nterrupt
Code condition bit Rollback Logic rollback amount Logic? %
Logic F-—>initiate shutdown
repair signals
o, I T " EF‘% EI:F%
sIR } 14 .
bu state.rb — state.rb aster/slav state.int
state.int ':] q) m e
wai 3
tuwm 2 2 busOUT }32
state. wait
3
s ¢4‘[lJ
i ‘ 14 S RE DBE b 17)3 1’2 e] s
e - Memory
6. PLA| |0, PLA % PLA | | Logic
3
: l " l:"':l?‘i:j':I
O] ¢]
14 3 r28 3
X 1 b2 l T] 5
T e— & * £ cond.
[Rollback Memory Valid [— state.tb Post-FSM bit
1a Bit —state.int Logic ca
_ﬁj Logic e state wait bit"y
g
- feobo b bbb

Figure 7: The Mirror Processor control unit. Most of the control signals are generated
by the three PLAs. Where necessary, random logic is used for speed.

PLAs that generate the majority of the control signals used by the data path.

During ¢, of every cycle, the control reads the value on the rollback pin and the three roflback
amount pins. All four lines are connected to all the modules which are part of the same rollback domain.
Each module connects to these lines through a bidirectional open drain pad driver. The lines are held
high by external pullup resistors. At the beginning of ¢, of each cycle, any module in the rollback
domain can pull down the rollback line and pull down the rollback amount lines according to the number
of cycles that it needs to roll back. The MP slave determines the results of the master/slave comparison
during ¢; of cach cycle and the result of the parity checks in both MP chips are determined during ¢, of
the cycle. In the simplest case, if a comparison or busIN parity error is found, the chip requests a rollback
of two cycles. If a register file (parB or parD) parity error is found, a rollback of one cycle is signaled.

Since the system is synchronous, when there is a rollback all the modules in the rollback domain
must roll back the same distance. If several modules simultaneously request rollbacks by different
amounts, the entire system must determine the maximum rollback distance requested and roll back by that
amount. The maximum rollback distance requested is determined by a straightforward implementation of
the Futurebus arbitration protocol [18]. By ¢, of a rollback cycle, the rollback distance for all the

-13-

modules is available on the rollback amount lines.,

During a normal cycle, a maximum of two values are read from the register file of each processor
onto the internal buses, busA and busB (Figure 2). Four pins on the chip are dedicated to coordinating
state repair between the master and slave. They signal possible parity errors in the values read from the
register file. Two of the pins are driven by the master and indicate possible parity errors in the values it
reads from its register file. The other two pins are driven by the slave based 10 the parity checks of the
values read from the slave’s register file. These four signals are set during ¢, of a rollback cycle and are
read during ¢,.

During ¢; of the rollback cycle, the appropriate valid bits in the various DWBs are cleared in order
to perform the rollback. At the same time, each processor’s control unit independently determines
whether state repair should be initiated. If none of the repair bits are set, no repair is initiated. If one of
the processors detected an error in the value read on busA while the other did not, the busA repair will
occur regardless of possible errors detected in the values read on busB. If both processors detect errors on
busA, a repair of busA is impossible and none is attempted. If a busA repair is not needed, a busB repair
may be initiated, as appropriate. Two points should be noted: (1) If repair is needed for both busA and
busB, only the busA repair will be done and then normal operation will resume. When the instruction is
re-executed following the repair, the busB error will be detected and, since there is no error on busA, the
busB repair will be done. (2) If both the master and slave detect an error on the same internal bus, no
repair will be done. However, rollback will be done so that the operation will be retried. If the error in at
least one of the processors was not permanent (e.g. a transient on an internal bus), at least one of the
values will be correct when the instruction is re-executed.

external external

state.shutdown state.reset repair rollback
11| clear state.rtb state.shutdown statereset signals signals
4} | Frame [roliback bit J. I_i: 2 &4 ia—f-‘» ;?pli‘;
Counter j—s, 2} |Post-rollback sp| Emable L o ¢ Lach s
Counter f—, Counter o fpu ©s | 3 rollback
— suite.rb [l amoun(
| [Roltback k—64 ' state.rb
2¢ | Counter |Roliback Enable vald
roliback 2 Rollback 4
state.rb amount q)" 1 | Enablo Bit 5
3 4 ,
" external
I sh £ & | internal ﬁ . Internal Rollback Select rgllbr:ck
utdown error signals

| ‘2 6

3
clear
02 'C'f" rollback bit |_Enable Pads [12 Rolfback Amount
21

5] amount

rollback bit l Arbuianon
3
external repair rollback amount
signals pad enable

Figure 8: Rollback and repair controller.

-14 -

Figure 8 shows the rollback and repair controller, which is part of the MP control unit. It controls
the operations described above and includes many features for handling multiple faults and system-level
recovery from massive errors. The rollback controller consists of two parts. The first part monitors the
the error signals generated by the parity checkers and comparators and pulls the external rollback line if
an error is detected. It also determines the distance to roll back and recognizes conditions where local
recovery is not possible (see below). The second part of the rollback controller monitors the external
rollback, rollback amount, and repair lines and sets internal rollback signals.

As discussed earlier, the MP was designed to recover from errors caused by single transient faults.
However, several features were added to allow recovery from some multiple faults. For all the registers
the DWB storage is implemented using dynamic latches. Hence this storage is susceptible to transient
faults. If the value in a DWB stage is corrupted, il is possible for a rollback to restore an erroneous state
in the master or slave. This will be detected one or two cycles later, triggering a rollback. Unfortunately,
without a special mechanism for dealing with this case, the second rollback may restore the erroneous
state. In order to prevent this situation, the rollback controller includes the post-rollback counter
(Figure 8), which counts the number of cycles since the last rollback until it exceeds three cycles. Based
on the value of this counter, the internal rollback block can determine whether a rollback will restore the
state just restored, several cycles earlier, by a previous rollback. If this situation is detected, the select
logic is used to determine how many DWB entries must be invalidated in order to invalidate the state
restored by the previous rollback. This determination is done based on a 4-bit shift register, into which
a 1 is shifted every normal execution cycle. During rollback of n cycles, the n most recent entries in this
shift registers are cleared. Hence the shift register contains a record of which of the last four cycles was a
normal execution cycle which has not been rolled back.

It is possible for the master/slave comparison to detect errors from which recovery is not possible
using micro rollback and the state repair mechanism discussed above. For example, if two bits in one of
the registers of the register file are inverted, a store of that register will bring the erroneous value to the
output pins, causing a master/slave mismatch to be detected. In this situation, the parity checks on values
read from the register file cannot indicate which register file is at fault. The mismatch will trigger a
rollback. However, when the instruction is re-executed, the same error will be repeated. Without some
additional mechanism, the processors will continuously execute the same two cycles followed by a
rollback. No repair will be made and there is no way for the node to participate in system level recovery
that might allow normal operation to resume.

In order to better handle the situation of useless repeated rollbacks, the node must have the
capability of detecting when local recovery is impossible. In the MP, this is handled by detecting that the
fourth rollback is being attempted within the last 16 cycles and causing the processor to trap to an error
handling routine instead of performing the rollback. In the rollback controller, the frame counter is a
simple O to 15 counter which is incremented every cycle. The rollback counter counts the number of
rollbacks within the current frame. The rollback counter is cleared whenever the frame counter
reaches 0. If a rollback is initiated and the value of the rollback counter is 3, the shutdown logic initiates

-15 -

detect
%4 error
busA, busB
busOUT "\ busIN, CMP
¢4—0;| roll back 1 roll back 2 [—> o repair
set appropriate check = rollback
repair signal post-rollback amount roll back b4t
¢4_¢1 counte_l- one more 4 1
not equal
O4—¢, jencode rollback amount
pull rollback & repair lines
if lose arbitration,
$1—92 |release rollback amount
— %2 Latch rollback
¢4 |check repair signals|* & repair signals; invalidate DWBs |,
set state.rb
L » other chip needs busA/B:
send busA/B to other chip
set
N -rollback
next | this chip needs busA/B: & poscto:l(:nel'f\ ¢
state other chip sends busA/B
t0 this chip / \ o
> one chip needs busA, other check check |4
needs busB: repair busA | rollback rollback pull shutdown line [¢,
counter amount
) 3
L» both chips need same bus: <3 4
no repair
increment rollback counter take shutdown tra
4| increment frame counter Pl ¢,

l

next state

Figure 9: The sequence of operations for micro rollback.

-16-

a shutdown trap. As with any interrupt or trap, the shutdown trap causes the processor to begin executing
code in a pre-determined address. The code stored in this address can, for example, perform self-
diagnosis and then, if the node is operational, integrate the node back with the rest of the system. In a
multiprocessor system this self-resetting capability [15] is essential since system-level recovery
procedures require active cooperation from every operational node.

VI. Support for Periodic Self-Diagnosis

In any design of self-checking modules, there is the problem of preventing latent faults from
remaining undetected for long periods. If faults remain undetected, multiple faults can eventually exist in
the system simultaneously and cause the concurrent error-detection mechanism to fail, leading to an
undetected error. One solution to this problem is for the system to periodically perform self-diagnosis
whose purpose is to flush out latent faults. Generally, the probability of multiple faults occuring between
diagnosis runs can be reduced to the required level by adjusting the frequency of the self-diagnosis runs
appropriately. In a general-purpose processor, self-diagnosis can be accomplished by an operating system
that periodically suspends normal execution and runs programs that were designed specifically to exercise
all the features of the processor. This approach can be quite successful for simple RISC processors,
where relatively short functional tests can be expected to achieve high fault coverage [19].

With the MP, there is a special problem of how to test the circuitry for error detection, micro
rollback, and state repair. This circuitry is designed to be transparent to the application and is generally
not exercised unless there is an error and rollback is initiated. Special hardware and dedicated
instructions were added to the MP in order to permit self-diagnosis of the error-detection, repair, and
rollback circuitry. The new instructions are all priviledged instructions which can only be executed in
kernel mode. An unusual feature of these instructions is that they perform different actions on the master
and slave processors. Furthermore, a primary consideration in the design of these instructions was to
minimize the complexity of hardware modifications needed to support them. Low priority was given to
the generality or “‘elegance’’ of these instructions.

The additional instructions provide two key facilities: (1) the ability of code to force apparent errors
by storing incorrect parity or performing a different operation on the master and slave, and (2) the ability
of code to determine whether a micro rollback has occured since a flag was last cleared. A single
rollback bit register was added to the control unit. This register can be explicitly cleared (sce below) and
is set to 1 every time there is a rollback. The dedicated instrictions for self-diagnosis are as follows:
Clear Rollback Bit

chrrbm
clrrbs

Clears the rollback bit in the rollback controller. clrrbm clears the
rollback bit on the master, while clrrbs clears the bit on the slave.

-17-

Add with Bad Parity Functions as a normal add instruction, except that an incorrect parity bit
addbpm S$1,52,Rd is stored in the destination register of one of the processors. addbpm
addbps S1,52,Rd stores the bad parity in the master, while addbps stores the bad parity in

the slave. This instruction is used to force parity errors on busA and
busB.

Jump if Rollback Bit Is Set If the rollback bit is set, a PC-relative jump is performed, using the
jmprbm Rs1,Rs2,Rd contents of register Rs2 as the offset for the jump, while, at the same
jmprbs Rs1,Rs2,Rd time, the contents of register Rs! are stored in the destination register Rd.

If the rollback bit is not set, the branch is not taken, and either Rs/ or Rs2
is gated onto busD and stored in Rd, depending on the instruction and
mode: for jmprbm, the master stores Rsl, and the slave stores Rs2; for
jmprbs, the slave stores Rsl, and the master stores Rs2. Since the
branch offset can have only a few limited values, there are two separate
instructions to allow both the master and the slave to gate any value onto
busD in order to exercise the busD state compression logic. This
instruction is used to force state compression comparison errors as well
as to verify that a rollback has occurred.

Store Bad Data Similar to a normal PC-relative store instruction. If the rollback bit is
strbdm Rs, X set, both processors will store the contents of Rs into location X; if the
strbds Rs, X rollback bit is cleared, one of the processors will store the contents of the

MAR instead. For strbdm, the master will store the bad data, while for
strbds, the slave will do so. This instruction is used to force a
comparison error on the data portion of a memory write.

Load with Bad Parity Similar to a normal PC-relative load instruction. If the rollback bit is set,
ldrbpm X ,Rd both processors will load Rd with the contents of location X; if it is
1drbps X,Rd cleared, one of the processors will gate the Ioaded data onto busiN with

an incorrect parity bit. For ldrbpm, the master will load a bad parity bit,
while for ldrbps, the slave will do so. This instruction is used to force a
parity error on busIN.

As an example of using these special instruction, we consider testing of the handling of a parity
error in the register file. The test program can use the addbpm or addbps instructions to store incorrect
parity in a register of the master or slave, respectively. The rollback bits of the master and slave are
cleared using c¢lrrbm and clrrbs. Then, an instruction that reads the register stored with incorrect parity
is executed. If everything is operating correctly, this instruction should cause a rollback of one cycle
followed by the repair of the register. To check whether a rollback has occurred, the jmprbm or jmprbs
instruction is used. In this use of the *‘jump if rollback’’ instruction, the Rs1 ficld is set to the same
register number as the Rs2 field, so that there will not be a master/slave mismatch if the rollback bit was
no set. If a rollback has occurred this is an indication that the rollback mechanism is working. The next
step of this test is to clear the rollback bits again, read the register originally stored with bad parity, and
check the rollback bits. In this case a rollback should not have occurred if the state repair mechanism
operated correctly the first time.

It is also possible to test the master/slave comparison of the signature of internal results

-18-

(Section IV). This is done by clearing the rollback bits and then using the jmprbm or jmprbs instruction
to store different values to the destination registers. Since different “‘ALU results’” will be transmitted
over busD, the signatures of the master and slave will differ, triggering a rollback of two cycles. After the
rollback, the execution cycle of the jmprbm or jmprbs instruction will be repeated. However, now the
rollback bits will be set, causing the branch to be taken. Thus, reaching the target of the “‘jump if

rollback”’ instruction, is an indication that the signature comparison operated correctly.

VII. VLSI Implementation of the Mirror Processor

We have completed a full-custom CMOS VLSI layout of the Mirror Processor, using the MOSIS
scalable CMOS design rules (SCMOS). All the features discussed in this paper are fully implemented.
The chip contains 52,644 transistors, fits in an 84 pin package (76 pins are used), and, assuming 2 pm

technology, the size of the chip is approximately 8.4 mm by 6.7 mm.

JOodogogooododbobibbik
]]
[_n - - ext [[:'
I:] clock e . I ohila ohilb cond padenb [:!
|:| l———| cudata ﬁ% phid ir D
l___| ns | " ; lalgh D
[] . valid post I S]
g PN ot busIN and busIR 1.
D s . - TTTTTRmmmmsressesssssssorososseeessssnoseeeseod D
l:l ir tran imm [l_l
O = o Il
l:] o sdec Py [r—_—]
] par < bar]
] = —l
[:I register file [I:[
% shift alu sdr pe mar E
(]

g patB ‘g‘ij:};‘ parD weg . rOUT_Tbg:SgD
]

=000000000000000000006

Figure 10: The floorplan of the complete Mirror Processor chip. This floorplan was
extracted from the actual layout. All modules are drawn to scale. The ‘‘white space’’

is occupied by interconnections between modules and to the pads.

We have used the switch-level simulator bdsim to simulate the entire chip executing several test
programs. A phase-by-phase register-transfer-level (RTL) description of the chip was written in Zycad’s

-19-

ISP' hardware description language. The results of RTL simulation of the chip were compared, phase-
by-phase, with the results of the switch-level simulations in order to verify the operation of the chip.

All the modules in the chip were simulated, at the circuit-level, using a version of the SPICE circuit
simulator (HSPICE), assuming 2 pm technology and using pessimistic (slow) values for the device
parameters. The timing analyzer crystal was used to determine the critical paths for each phase. Based
on SPICE simulations of the critical paths, the chip will operate correctly using a 100 ns clock, with 25ns
¢, and ¢35, 15ns ¢, and ¢4, and a 5ns non-overlap distance between phases. At this clock rate, power
consumption is expected to be approximately 0.9 W per chip. The chip includes circuitry to generate the
clock phases described above from an extemal 50% duty cycle, 40 MHz signal. This circuitry also
requires an external 10 MHz signal, which is used to ensure that the master and slave execute the different
phases in lock-step.

The area overhead for the error detection and recovery capabilities of the chip is significant. In
particular, we estimate that by removing all the features for fault tolerance, the width of the chip could be
reduced from 8.4mm by approximaiely 1.8mm and the height could be reduced from 6.7mm by
approximately 1.5 mm. On the other hand, very little performance overhead is incurred. Specifically, the
only additional delay is caused by a slightly larger capacitance to be charged during register file reads due
to longer buses across the register file DWB and parity circuitry. This increases the clock cycle by less
than 3 ns.

VIII. Summary and Conclusions

We have presented the design and implementation of the UCLA Mirror Processor — a VLSI RISC
microprocessor with extensive capabilities for fault tolerance. Our implementation of the MP
demonstrates that micro rollback is a practical technique for minimizing the latencies normally associated
with concurrent error-detection. A self-checking module, implemented with two MP chips operating in
lock-step, can recover from most errors caused by transient faults. Micro rollback is used for re-execution
of cycles (as opposed to instructions) during which errors are generated. For those cases where a transient
fault may petmanently modify a stored value, we introduce the use of rapid, hardware-supported state
repair. Since local recovery is not sufficient for all possible errors, our design supports node self-reset,
which guarantees that the node will re-establish a ‘‘sane’’ state from which it can participate in system-
level recovery. The problem of latent faults in the detection and recovery mechanisms is addressed by
special instructions that facilitate periodic self-diagnosis. The extensive fault tolerance features of the
Mirror Processor involve significant chip area overhead but only negligible performance overhead.

References

1. X. Castillo, S. R. McConnel, and D. P. Siewiorek, ‘‘Derivation and Calibration of a Transient Error
Reliability Model,”” IEEE Transactions on Computers C-31(7), pp. 658-671 (July 1982).

2. M. L. Ciacelli, ““Fault Handling on the IBM 4341 Processor,”” 11th Fault-Tolerant Computing
Symposium, Portland, Maine, pp. 9-12 (June 1981).

10.

11,

12.

13.

14.

15.

16.

17.

18.

19.

20.

-20-

Advanced Micro Devices, Am29000 Streamlined Instruction Processor User’s Manual, 1987,

R. W. Downing, J. S. Nowak, and L. S. Tuomenoksa, *‘No. 1 ESS Maintenance Plan,” Bell System
Technical Journal 43(5), pp. 1961-2019 (September 1964),

W. W. Hwu and Y. N. Patt, *‘Checkpoint Repair for Out-of-order Execution Machines,’* 14th
Annual Symposium on Computer Architecture, Pittsburgh, PA, pp. 18-26 (June 1987).

D. Johnson, ‘‘The Intel 432: A VLSI Architecture for Fauli-Tolerant Computer Systems,’’
Computer 17(8), pp. 40-48 (August 1984).

M. G. H. Katevenis, ‘‘Reduced Instruction Set Computer Architectures for VLSL,*’* CS Division
Report No. UCB/CSD 83/141, University of California, Berkeley, CA (October 1983).

E. J. McCluskey, ‘‘Built-In Self-Test Techniques,”” IEEE Design and Test 2(2), pp. 21-28 (April
1985).

D. A. Patterson and C. H. Séquin, ‘A VLSIRISC,"* Computer 15(9), pp. 8-21 (September 1982).

B. Randell, P. A. Lee, and P. C. Treleaven, ‘‘Reliability Issues in Computing System Design,”’
Computing Surveys 10(2), pp. 123-165 (June 1978).

D. A. Rennels, ‘“‘Architectures for Fault-Tolerant Spacecraft Computers,”” Proceedings IEEE
66(10), pp. 1255-1268 (October 1978).

R. W. Sherbume, M. G. H. Katevenis, D. A. Patterson, and C. H. Séquin, ‘‘A 32-Bit NMOS
Microprocessor with a Large Register File,”” IEEE Journal of Solid-State Circuits SC-19(5),
pp. 682-689 (October 1984).

M. Sievers and D. A. Rennels, ‘““An LSI Totally Self-Checking Hamming Coded Memory
Interface,”” International Symposium on Circuits and Systems, Rome, Italy, pp. 1176-1179 (May
1982).

J. E. Smith and A. R. Pleszkun, ‘‘Implementing Precise Interrupts in Pipelined Processors,’” IEEE
Transactions on Computers C-37(5), pp. 562-573 (May 1988).

Y. Tamir and C. H. Séquin, ‘‘Self-Checking VLSI Building Blocks for Fault-Tolerant
Multicomputers,” International Conference on Computer Design, Port Chester, NY, pp. 561-564
{(November 1983).

Y. Tamir, M. Tremblay, and D. A. Rennels, ‘‘The Implementation and Application of Micro
Rollback in Fault-Tolerant VLSI Systems,”’ 18th Fault-Tolerant Computing Symposium, Tokyo,
Japan, pp. 234-239 (June 1988).

Y. Tamir and M. Tremblay, ‘‘High-Performance Fault-Tolerant VLSI Systems Using Micro
Rollback,”” IEEE Transactions on Computers 39(4), pp. 548-554 (April 1990).

D. M. Taub, *‘Arbitration and Control Acquisition in the Proposed IEEE 896 Futurebus,”” [EEE
Micro 4, pp. 28-41 (August 1984),

S. M. Thatte and J. A. Abraham, ‘“Test Generation for Microprocessors,’” IEEE Transactions on
Computers C-29(6), pp. 429-441 (June 1980).

M. Tremblay and Y. Tamir, “‘Support for Fault Tolerance in VLSI Processors,” International
Symposium on Circuits and Systems, Portland, OR, pp. 388-393 (May 1989).

