Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

HIGH-PERFORMANCE ADAPTIVE ROUTING IN
MULTICOMPUTERS USING DYNAMIC VIRTUAL CIRCUITS

Yuval Tamir September 1990
Yoshio F. Turner CSD-900026

High-Performance Adaptive Routing in Multicomputers
Using Dynamic Virtual Circuits ¥

Yuval Tamir and Yoshio F. Turner

Computer Science Department
4731 Boelter Hall
University of California
Los Angeles, California 90024-1596
US.A.
Phone: (213)825-4033 E-mail: tamir@cs.ucla.edu

Abstract

An effective message transport mechanism, which provides high-bandwidth low-
latency interprocessor communication, is the key to the ability of muiticomputers to
achieve high performance by exploiting parallelism. For both high performance and high
reliability, it is important for the message transport mechanism to adapt to changing
system conditions and route messages around congested areas or failed links or nodes. In
order to efficiently support short messages, it is desirable to minimize the time to route
and forward messages through intermediate nodes, as well as the required addressing and
control information that must be attached to each message.

We introduce a new message transport mechanism, called Dynamic Virtual
Circuits, that combines the best features of the traditional circuit switching, packet
switching, and static virtual circuits. Routing through intermediate nodes usually
requires only a single lookup in a small table, packets include minimal control
information, and packets are delivered in FIFO order. Due to the ability of nodes in the
middle of a dynamic virtual circuit to break it and later re-establish it through a different
physical path, the system has the full advantages of adaptive routing while maintaining
the virtual circuit semantics. We present the basic algorithms for dynamic virtual circuits
and describe the required hardware support in the context of a VLSI communication
coprocessor for multicomputers.

T This research is supported by the SDIO Innovative Science and Technology Office, managed by the Office of Naval Research,
contracted to the Jet Propulsion Laboratory under task plan #80-2984. Y. Turner is supported by a Hertz Foundation Graduate
Fellowship.

September 1990

1. Introduction

Multicomputers, composed of thousands of VLSI computing nodes, interconnected by point-to-
point links, are likely to achieve the goal of tera-op performance within the next few years[1,4]. Such
systems have the fundamental advantage that there is no single component whose operation is critical to
the entire system and is thus a potential performance or reliability ‘“‘bottleneck.”” An additional
advantage is that the high-speed point-to-point links can be implemented at a relatively low cost, thus
allowing for cost-¢ffective *‘super computing’’ in a wide varicty of environments. High-bandwidth low-
latency communication between processors is critical to the ability of multicomputers to achieve high

performance by exploiting both coarse grain and fine grain parallelism.

The ““message transport’’ mechanism used in a multicomputer can have a dramatic effect on system
performance and on its ability to handle changes in the workload or in the availability of resources. A
packet often passes through intermediate nodes on its way from its source to its destination. For low
latency communication, the delay added by each intermediate node must be minimized. This can be done
using buffers that support virtual cut through [9, 14] and a routing mechanism that can quickly determine
the output port to which the packet should be forwarded [4]. The routing scheme should direct the packet
through the lowest latency path from source to destination. This implies that it should take into account
the topology of the network and adapt to the current load and resource availability on the system to route
packets around congested or faulty areas[12, 10,4]. It is important for the message transport scheme to
minimize the addressing and control information that must be sent with each packet as well as to

maximize the availability of network resources for active connections.

With message transport based on virtual circuits [11,2], packets are sent through pre-established
paths so that there is no need to recompute the route for every packet at each intermediate node, and
packets do not need to include complete routing and control information. The paths are established by
storing routing information in tables of intermediate nodes along the way from the source to the
destination. The physical resources (the links) can be time-shared by many virtual circuits. Since each
virtual circuit maintains first-in-first-out (FIFO) ordering of its packets and most of the routing
information is stored in the nodes, the routing information that must be included with each packet is
minimized.

The problem with virtual circuits is that the paths are static and cannot be casily changed in
response to changes in the system (congestion or failure). This paper introduces a new message {ransport
mechanism, called Dynamic Virtual Circuits, that has the advantages of virtual circuits but allows

individual nodes to make a local decision to break or reroute an existing circuit. The scheme is based on

keeping at each node sufficient information to re-establish broken circuits while maintaining the FIFQ
ordering of packets through each circuit. Since routing with Dynamic Virtual Circuits is based on tables,
the scheme does not depend on a regular system topology. Hence, efficient routing can be performed

cven after a large number of system nodes or links have failed.

The research described in this paper is part of the UCLA ComCoBB (Communication Coprocessor
Building-Block) project, whose focus is the design and implementation of a high-performance
communication coprocessor for VLSI multicomputers. A critical aspect of the ComCoBB chip design is
support for efficient routing for a wide variety of network topologies. Hence, schemes based on routing

tables [12] must be supported.

Conventional static virtual circuits are described in Section II. The disadvantages of static virtual
circuits are discussed in Section III, where the basic technique of Dynamic Virtual Circuits is described.

The hardware support for Dynamic Virtual Circuits in the ComCoBB chip is described in Section IV.

H. Routing in Multicomputers Using Static Virtual Circuits

The two fundamental approaches to message routing in multicomputers are circuit switching and
packet switching [11,2]. With circuit switching, a static physical path is set up between the sender and
receiver before communication takes place. Once the path is set, data can be transmitted quickly at nearly
the full bandwidth of the links with almost no redundant control information [4]. On the other hand, with
packet switching, the data is partitioned into small packets which are routed independently from source to
destination. The advantage of circuit switching is that, once the circuit is established, data is sent to its
destination with minimum latency and no bandwidth is wasted for transmitting routing and sequencing
control information with each packet. The disadvantage of circuit switching is that physical links are
statically allocated to a particular circuit for the lifetime of the circuit. Even when no information is

being sent through the established circuit, the links cannot be used for other circuits.

Packet switching improves link utilization relative to circuit switching since links are never
allocated to an idle circuit. The links along the paths chosen by a packet are used only during the time
required to send the packet’s bytes across the link. One disadvantage of packet switching is that ecach
packet must contain complete addressing information as well as message and packet sequence numbers.
Since packets may arrive at their destination in any order, they need to be buffered and reordered before
they can be processed by the destination application. Message latency through a packet switching
network is significantly larger than the latency through an established circuit since each packet of the
message must be delayed at each node long enough to determine the appropriate next step on its path to

the destination.

A key advantage of packet switching is that the routing can adapt to changes in the system,
potentially sending different packets with the same source and the same destination through different
paths. With adaptive routing, packets are routed around congested or failed links and nodes, thus
providing higher reliability, higher throughput, and lower message latency than can be achieved with
fixed routing. For example, simulations of 2D and 3D meshes and tori have shown that fixed routing
limits maximum throughput to about 40% of the bisection bandwidth while adaptive routing can provide
up to 80% of the bisection bandwidth [10]. Similarly, adaptive routing on a hypercube has been shown to

provide low message latency as a result of routing around congested regions [4].

Virtual circuits are used for message transport in an attempt to combine the best features from
circuit and packet switching [11,2]. As with circuit switching, paths are established and stored in routing
tables along the way. However, each physical link can be time shared between multiple virtual circuits.
The physical link is logically divided into multiple virtual channels, where a field in the header byte of
each incoming packet indicates the virtual channel number used by the packet. Virtual circuits are paths
through the network consisting of a sequence of virtual channels. At each node, mapping tables describe

the established virtual circuits passing through the node.

To establish a virtual circuit, a source node generates a Circuit Establishment Packet (CEP) that is
then transmitted, as in a packet switching network, to the destination node. At each node along the way,
the CEP arrives on an unused input channel of an input port. Based on the final destination of the CEP,
the node routes it to one of its output ports. In the most general case, this routing utilizes large off-chip
routing tables, which include information regarding the topology of the system with the cost of links
weighted according to recent traffic loads {12,2]. In addition to choosing an appropriate output port, the
routing of the CEP also involves choosing an output channe! from among the currently unused channels
at the output port. The mapping table is then set to route future packets arriving on the same input
channel and input port to the chosen output port and output channel. An example of an established virtual

circuit is shown in Figure 1.

After sending the CEP, the source node sends data packets along the circuit. Each data packet
contains in its header byte the input channel number on which it arrives. This is the only overhead
associated with the packet, representing a significant reduction from a pure packet switching mechanism,
At each node, the data packets arrive on input ports and input channels and are routed according to the
entries in the mapping table to output ports and output channels. This routing is much faster than the
routing of the CEP since all it requires is a single lookup in the small on-chip mapping table. Since all

packets are transmitted through the circuit along the same physical path, it is possible to guarantee FIFO

osT, PIF,
Process A P () Vol
SRC table © 1 alid Oport Ochnl

Chnl 2
7/Chnl 13
OST, P£F
Process B -
DST table ©

Figure I: A virtual circuit from process A to process B. The circuit uses channel 3 of
the first link and channel 2 of the second.

order of delivery of packets at the destination. Once the virtual circuit is no longer needed, the source
node removes it from the system by sending a Circuit Destruction Packet (CDP) that traverses the circuit

from source to destination, invalidating the appropriate mapping table entries at each node.

ITI. Dynamic Virtual Circuits

The problem with the traditional virtual circuits scheme is that the paths are static and cannot be
changed in response to changes in the system (congestion or failure). Throughout a virtual circuit’s
lifetime, it occupies the same resources, namely one virtual channel on each physical link the circuit uses.
These resources are allocated for the exclusive use of the virtual circuit, even if the circuit is idle for long
time periods. In addition, circuits may permanently occupy resources if nodes or links fail or if processes
terminate without tearing down their circuits. Since the number of virtual channels per link is limited,
new virtual circuits may be prevented from becoming established on desired links even if idle circuits are

holding resources unnecessarily,
Dynamic Virtual Circuits (DVCs) overcome the limitations of static virtual circuits by allowing

circuits to change the paths they occupy during their lifetimes. This flexibility guaraniees the

establishment of circuits, even when there are no free virtual channels on a desired link. Resources

allocated to idle DVCs are eventually deallocated and used for active DVCs as needed. In addition, if a
particular circuit becomes slow or blocked, due to congestion or failure, a node can make a local decision

to break the circuit and reestablish it using an operational, less congested route.

In the simplest case, the Dynamic Virtual Circuit mechanism is identical to the static virtual circuit
mechanism. When a CEP arrives at a node, it is routed to determine the desired output port. For a
regular network topology, this routing may be algorithmic [3]. For irregular networks, a more complex
scheme, based on large routing tables, may be used [12]. If there is a free output channel on that output
port, it is used by the new circuit. The mapping tables are modified to route future packets arriving on the
circuit to the chosen output port and output channel, and the CEP is sent to the next node. When the
process at the source node no longer needs the circuit, it generates a CDP, which follows the path of the
circuit, invalidating the appropriate mapping table entries at each node. When the CDP arrives, the

destination node releases all node resources associated with that circuit.

If a CEP arrives at a node and is routed to a link with no free virtual channels, the static virtual
circuit mechanism cannot be used. Instead, the Dynamic Virtual Circuit mechanism chooses an
established DVC on the desired link as a victim for temporary destruction. The victim DVC is, ideally,
the circuit whose next packet will enter the node furthest in the future. Once a victim is chosen, the node
generates and sends a CDP along the victim channel, The CDP is marked as nonterminal to inform the
destination node that the circuit is being torn down temporarily from an intermediate node, as opposed to
permanently from the source node. After the generated CDP is sent through the output port, the CEP can
be sent, establishing the new DVC.

When a DVC is first established, information regarding the ultimate destination (node identifier) of
the new circuit is kept at each intermediate node. When a packet arrives, on an established DVC, at a
node where the DVC was previously cut, the information regarding the ultimate destination of the cut
circuit is used to reestablish the DVC. The node chooses an output port on which to reestablish the cut
circuit, creates a CEP, updates the mapping tables, and sends the CEP, reestablishing the circuit on the
new path 1o its destination. The data packet that triggered the reestablishment of the circuit as well as

future packets on the same circuit can then be sent along the new path.

Since there are multiple input and output ports operating and interacting concurrently at each node,
the DVC mechanism description above, though accurate at a high level of abstraction, is overly
simplistic. Care must be taken to prevent on-chip components of the chip from entering inconsistent
states due to improper ordering of events or from becoming stuck forever waiting for each other to

complete some operation. These issues are discussed further in Section 1V.

Although DVCs provide most of the advantages and overcome the difficulties of static virtual
circuits, they do not guarantee the physical FIFO packet arrival at the destination node as with static
virtual circuits, For example, a circuit that has been torn down from an intermediate node may be
reestablished on a different path before the nonterminal CDP reaches the destination, In this case, the
packets on the reestablished branch of the circuit arrive at the destination before all the packets on the
torn-down branch arrive. Since proper packet ordering is vital, some mechanism must be provided to
allow the destination node to determine the order in which packets were sent by the source node. Two
such mechanisms, one based on packet sequence numbers and one based on logical timestamps, are
described and compared here. Both mechanisms rely on providing enough information in CDPs and

CEPs to allow the destination node to identify and order arriving branches belonging to the same circuit.

With the packet sequence number mechanism, for each circuit established at a node, a packet count
register records how many packets have arrived at the node on the circuit. A sliding window protocol can
be used to bound the maximum value of the packet counters. Also stored at each intermediate node is
other information needed to uniquely identify the particular DVC, such as source and destination process
and processor identifiers. When a circuit is reestablished, the packet count at the node initiating the
reestablishment is sent to the circuit destination, together with the information originally used to establish
the circuit (source process id, destination process id, etc). The destination node accepts packets on
reestablished circuits only afier its local packet counter indicates that all previous packets have already
been received. The main disadvantage of this scheme is that it requires dedicated hardware at each input

port to store and increment the packet counters.

The timestamp mechanism avoids the use of dedicated packet counters for each incoming circuit at
each input port. The mechanism requires only a small amount of information to uniquely identify
branches, and it updates circuit information at the intermediate node only when a circuit is reestablished
or disestablished from that intermediate node. Because the circuit information is rarely updated, it is not
necessary to store it on-chip or provide dedicated hardware for updating. Each node maintains a count of
the number of nonterminal circuit destructions the node has initiated. This count serves as a logical
timestamp that, in conjunction with the identifier of the node where the circuit was broken, uniquely
identifies the circuit destruction event. The counter has to be sufficiently large (40-64 bits) so that there
would be no danger of the counter *‘wrapping around’’ leading to possible incorrect packet ordering.
When the torn down DVC is to be reestablished, the stored destruction timestamp and the node identifier
arc sent with the CEP. When a circuit branch CEP arrives at the destination node, a matching circuit
branch CDP must be found with the same timestamp and node identifier values. The only such CDP

must be the one terminating the branch to be ordered just prior to the CEP’s branch.

rocessor
Local cache
Memory
routing ComCoBB
processor
mem

Figure 2: A multicomputer node.

IV. Implementation of Dynamic Virtual Circuits

Figure 2 shows a multicomputer node with the application processor, local memory used by the
application processor, the ComCoBB chip, and a special routing processor with its memory. The routing
processor is a general-purpose processor which is used as a dedicated controller to perform some of the
infrequent but complex operation that are needed to support DVCs. Frequent operations, such as routing
and forwarding of a packet on an established circuit, are handled entirely within the ComCoBB chip,
using dedicated hardware. The routing processor handles tasks such as, initiating circuit destruction,
reestablishing a circuit, updating of global routing tables [12], and resolution of deadlocks. It should be
noted that, on a large chip, the routing processor and its memory may be implemented as a dedicated

programmable controller on the same chip with the communication switch.

Tables which are accessed for every packet forwarded through the switch are stored at the input and
output ports of the ComCoBB chip (see Figures 4 and 5). However, less frequently accessed tables are
stored in the private memory of the routing processor. The tables in the routing processor’s memory are:
(1) the Circuit Destruction Table, which records timestamps of circuit teardowns initiated at the node,
(2) the Inverse Output Mapping Table, which maps each valid output channel to the corresponding input
port and input channel number, and (3) the routing table used to determine the path when the DVC is

established. In addition, for DVCs which originate in each node, the node maintains a single Source

Table, which maps logical DVC identifiers to channel numbers for the first hop of the DVCs. At each
node, for DVCs whose destination is the node, there is a single Destination Table, which maintains the
information (CEP and CDP timstamps) necessary for ordering packets arriving over different paths of the
same DVC. On its way from the source node to the destination node, each packet requires one access to a
Source Table and one access to a Destination Table. Hence, the ComCoBB chip’s processor interface

must support fast access to these tables.

Routing Processor Routin
Chnnnnl'l'ﬂbl} Output P°"L i .‘ Interface Iﬁroccsgor
us

Crossbar

Ourpur Port >

Input Port

Input Port <

yyvywyy

yeyvwyw

antrol

Processor
Processor Interface us

Output Por:| | Input Port

Vo

Figure 3: ComCoBB chip components.

The ComCoBB chip consists of four input ports, four output ports, the Processor Interface (PIF) to
the application processor, and the Routing Processor Interface (RPI). The basic chip organization is
shown in Figure 3. The input and output ports each consist of eight data lines and one flow control line.
The input port uses the flow control line to stop the output port from sending data when, for example, the
buffer at the input port becomes full. The RPI translates read and write requests by the routing processor
to both read/write operations on storage ¢lements inside the ComCoBB chip and commands affecting the
behavior of ComCoBB modules. The RPI also fields interrupt requests raised by ComCoBB modules

and passes them on to the routing processor.

-10 -

When a packet arrives, it is placed in the input buffer and routed to determine the desired output
port. Once the packet reaches the head of the buffer, the buffer makes a request to the crossbar for a
connection to the desired output port. After the request is granted, the packet is removed from the buffer

and sent through the crossbar switch and the output port to the neighboring ComCoBB chip.

Flow Routing Processor Bus
Flow «— Contrgl
Control Generation
start bit detect ' Jf to crosshar switch
IP s sync data in 1 DAMQ —-;;—b
8 8 T
:1 i request ready
g | L
Auxiliary finput Mapping Tabld
8 Buifer
1 valid OP OC 8
- Address
; T]
i 5 Addeens
‘ Ervalidaw
CDP
2 |aesection ¥ Taone
Y :
Interrupt|
Routing Processor Control Bus
Routing Processor Address Bus
Routing Processor Data Bus '} S

Figure 4: Input port routing hardware.

An Input Mapping Table at each input port is used to route packets arriving on established DVCs.
The 32-entry mapping table is addressed by the input channel numbers of incoming packets and contains
the output port and output channel numbers the incoming packets are to use. Thus, once a DVC is set up,
all packets arriving at nodes on the established circuit simply access the Input Mapping Table to rapidly

determine the output port and output channel to use.

Figure 4 shows a block diagram of the hardware located at each input port of the ComCoBB. The
figure shows four main components: the Synchronizer[13], the dynamicalty-allocated multi-queue
(DAMOQ) input buffer[14], the Auxiliary Buffer, and the Input Mapping Table. The Synchronizer
produces eight bits of data synchronized to the local clock. These signals are input to both the DAMQ
buffer, which is the main packet buffer at the input port, and to the Auxiliary Buffer, which is a much
smaller FIFO buffer and usually holds the first eight bytes of the most recent packet arriving through that
input port. In normal operation, as packets arrive they are placed in both the DAMQ buffer and the

Auxiliary Buffer. In addition, the header byte of each incoming packet is forwarded to the Input Mapping

11 -

Table for lookup. If the lockup references a valid entry, the header is modified to contain the output
channel number, and the new header is latched into the DAMQ buffer, If the access references an invalid
entry, the Input Mapping Table raises an interrupt for the routing processor and causes the DAMQ buffer
control to use the flow control line to stop traffic into the input port. A packet arriving on an input
channel that has no valid mapping is either a Circuit Establishment Packet or a packet arriving on a
circuit that has been disestablished from this node. In either case, routing processor intervention is

required and incoming packet flow must be stopped.

The DAMQ buffer normally takes its input from the output of the Synchronizer, but it can also take
its input either from the Auxiliary Buffer or from a packet buffer located at the RPI via the routing
processor data bus. The DAMQ input comes from the RPI when, for example, the routing processor
needs to insert a CDP into the circuit. The DAMQ input comes from the Auxiliary Buffer when
forwarding a CEP which was held in the buffer while the corresponding IMT entry was set up. Care must
be taken to ensure that flow from the input port is halted when the input to the DAMQ buffer is taken

from one of the other sources. Otherwise, packets arriving on the input port will be lost.

In some cases, the routing processor requires information contained in the body of the packet. For
example, when a CEP arrives, the header byte indicates the input channel, and subsequent bytes of the
packet indicate the desired final destination. To access these bytes, the routing processor can read the

Auxiliary Buffer whenever it is not being written by the input port.

The CDP that destroys a circuit is generated by the routing processor. However, circuit destruction
originating in a remote node can be handled without the intervention of the routing processor. To support
this fast handling of CDPs at the input port, an /nvalidate input is added to the Input Mapping Table.
This signal causes the table lookup to mark the entry referenced as invalid. A CDP automatically triggers

this operation.

Figure 5 shows a block diagram of the hardware at each output port. This hardware consists of a
table and logic for picking victim channels. The table is used to keep track of valid and invalid output
channels and to maintain output channel use information. There are 32 entries in the table, one per output
channel. The output port table is normally accessed when packets arrive at the output port from the
crossbar — the entry corresponding to the channel number of the packet is updated. In addition, the table
is accessed by the routing processor when a DVC is established. Each table entry consists of two bits:
valid and use. The valid bit specifies whether the output channel is part of a circuit. The use bit indicates

whether a packet has been sent on the corresponding output port recently.

The information in the output port table drives the circuit that selects a victim when there is a need

-12-

from crosshar switch —
7 p—n —n
3 e |
’ 3 ot
5 s E [Victim Register
5 vand | v [n C L N
als P C
1 L O t
ven | 1| ¢ 0G . O T
<y COP wen | 4 C I D5
2 Ldoea K C
control ren R
beader strobe oW
Intcmrpi J 6
Routing Processor Control Bus
Routing Processor Address Bus [
Ouiput Po‘n_@_ Routing Processor Data Bus

Figure §: Output port logic. Invalidates circuits and picks victim output channels.

to find a free channel for use in establishing or reestablishing a DVC through the output port. The victim
selection module is a combinational circuit that continuously computes the victim output channel
number. The victim number is placed in the Victim Register, from which it can be read by the routing
processor. If there are any invalid output channels (i.e., channels not on established circuits), these are
picked by the victim selection logic. If all the output channels are allocated to established DVCs, one of
those channels is picked and the corresponding DVC is disestablished, starting from this node. The
““clock’’ replacement algorithm, commonly used for page replacement in virtual memory [6], is used to

pick the victim established DVC.

A. Sequencing of ComCoBB Operations

Some of the operations performed by the ComCoBB involve several sequential steps. As
mentioned in Section 111, proper ordering of on-chip events is crucial for avoiding inconsistent states. For
example, when a DVC is established through a switch, it might be necessary to first identify a victim
channel on the appropriate output port, disestablish the DVC currently using the channel, and only then
procced with forwarding of the CEP to the next node. A straightforward but incorrect procedure for
performing this operation would have the routing processor reset the valid bit for the victim channel at
both the Input Mapping Table and at the output port table as soon as a victim is selected. Then, the
routing processor would create a CDP and send it directly out the output port. Once the CDP is sent, the
pending circuit establishment request would be fulfilled.

The procedure above is wrong because there may be packets enqueued in the DAMQ buffer at the
input port used by the victim circuit. If the mapping tables are changed and the CDP sent before these

-13-

enqueued packets exit the node, the packets will be forwarded out the same output port and output
channel as the packets on the circuit being established, thus mixing packets of different circuits. Also,
one of the enqueued packets may be a CDP, rendering the creation of a CDP by the routing processor
redundant. When the routing processor needs to pick a victim output channel for use in a new DVC, it
reads the Victim Register, that contains the selected channel number as well as the corresponding valid
bit. If the entry is valid, the routing processor checks tables, stored in its private memory, to ensure that
this channel had not already been reserved for a different DVC destruction. If it had, the routing
processor reads the Victim Register again, to get a different victim. Assuming that the output port table
entry for the chosen victim is valid, the correct procedure for this operation is as follows: (1) the routing
processor stops incoming packets from arriving to the corresponding input port (using the flow control
line), (2)if the corresponding IMT entry is valid, the routing processor inserts a CDP at the tail of the
DAMQ buffer, just as if the CDP had arrived on the victim circuit’s input port, (3) the routing processor
re-enables arrival of packets to the input port, (4) the CDP causes the Input Mapping Table entry for the
victim circuit to be invalidated, and only after all packets previously enqueued for the victim circuit have
been sent does the CDP reach the output port and cause the invalidation of the victim channel, (5)if a
CDP arrives at an output port, causing the invalidation of one of the output table entries, while an
establishment request for that port is still pending, the routing processor is interrupted and it sets the

mapping tables to use the invalidated channel for the establishment.

B. Support for Deadlock Resolution

In general, multicomputer interconnection networks are susceptible to deadlock situations when no
messages can advance towards their destinations due to full buffers in one or more cycles of
communication switches[11]. With a global view of the interconnection topology, it is possible to
guarantee deadlock-free routing by restricting the routing algorithm and the use of the buffers at each
node[7]. When deadlocks do not occur, deadlock-free routing results in inefficient use of system
resources. An alternative approach to dealing with deadlocks is to detect and resolve them when they
occur[8,5]. With this approach there is no restriction on the routing and all network resources are used
for improved performance rather than reserved for eliminating deadlocks. Since Dynamic Virtual
Circuits are designed to support distributed adaptive routing in arbitrary topologies [12], the choice of the

latter approach to dealing with deadlocks is clear.

When an input DAMQ buffer remains full for some time without transmitting any packets, a
deadlock may exist. Following the algorithm proposed in [8], when a node decides that it may be in a

deadlock, it first attempts to determine if there is a cycle of nodes with full buffers which may form a

-14 -

potential deadlock. If such a cycle is found, the packets are rotated along the cycle so that they move
towards their destinations. Eventually, this process leads to one of the buffers becoming not-full, thus

resolving the deadlock. Further details of the basic algorithm {8] will not be described here.

The cycle detection and deadlock resotution algorithms require, at each switch, a fixed amount of
storage that is available even when the normal buffer is full [8]. This Auxiliary Buffer is used to receive
control packets as well as for receiving a data packet during the rotation phase of the algorithm. The
control packets and fragments of data packets can be read by the routing processor from the Auxiliary
Buffer. In addition, it is necessary for the routing processor to be able to send a control packet directly to
a specified output port. All the connection and controls necessary for these operations are provided in the

ComCoBB design (Figures 3, 4, and 5).

The cycle detection and deadlock resolution algorithms require the switch to receive packets even if
the DAMQ input buffer is full. Thus, it is not sufficient to implement a simple flow control line that
inhibits any new packets from being transmitted by the neighbor whenever the buffer is full. Specifically,
when a node is ready to participate in cycle detection or deadlock resolution, it must be possible for the
routing processor to allow transmission of one control packet or one 8-byte fragment of a data packet.
The simplest solution to the problem of enabling and disabling control packet reception, is to use two
flow control lines per port, where one line is used for normal operation and the other flow control line is
used solely to handle enabling and disabling when the DAMQ buffer is full. If pin limitations prevent
this option, then a protocol requiring only the single flow control line per port can be used, with very little
loss in overall performance. Specifically, when an input buffer is full, but the node is ready to receive
eight bytes to be placed in the auxiliary buffer, the node sends a special control message (o its neighbor.
This control message is not placed in the DAMQ buffer or the auxiliary buffer of the receiver. Instead, it
simply sets a single-bit state variable. This technique relies on the ability of the routing processor to
transmit a packet to the output port without using the crossbar. The special control message can be sent
only when the output port is not otherwise occupied. Hence, it may have to wait for completion of the

current packet transmission.

V. Summary and Conclusions

Dynamic virtual circuits combine the best features of the traditional circuit switching, packet
switching, and static virtual circuits. This new message transport mechanism minimizes the addressing
and control information sent with each packet and the latency of forwarding packets through each
intermediate node. Unlike static virtual circuits, DVCs can adapt to congestion or failures in the system

by allowing nodes to make local decisions regarding the possible need to reroute the circuit through a

-15-

different physical path. We have presented the basic techniques for allowing circuits to be broken and

reestablished while maintaining the semantics of traditional virtual circuits.

We have presented a brief overview of the hardware necessary to support DVCs in the context of a
complete communication coprocessor for multicomputers. Dedicated hardware is used on-chip to handle
the critical frequent case, while an off-chip routing processor is used for more complex but less frequent
tasks. The proposed hardware supports a deadlock resolution algorithm that does not require limiting the
flexibility of the routing scheme and leads to efficient utilization of system resources during normal

operation.

Acknowledgements

Some of the ideas presented in this paper were explored by Gregory Frazier and Tiffany Frazier in
course term projects at UCLA in 1988, Tiffany Frazier suggested the idea of using logical timestamps for
maintaining packet ordering. Helpful suggestions regarding this work were also made by David Rennels,

Bill Smith, and Vance Tyree.

References

1. W. C. Athas and C. L. Seitz, ‘‘Multicomputers: Message-Passing Concurrent Computers,’’
Computer 21(8), pp. 9-24 (August 1988).

D. Bentsekas and R. Gallager, Data Networks, Prentice Hall (1987).

M.-S. Chen, K. G. Shin, and D. D. Kand!ur, *‘Addressing, Routing, and Broadcasting in Hexagonal
Mesh Multiprocessors,”’ IEEE Transactions on Computers 39(1), pp. 10-18 (January 1990).

4. E. Chow, H. Madan, J. Peterson, D. Grunwald, and D. Reed, ‘‘Hyperswitch Network for the
Hypercube Computer,”” 15th Annual International Symposium on Computer Architecture,
Honolulu, Hawait, pp. 90-99 (May 1988).

5. 1. Cidon, J. M. Jaffe, and M. Sidi, ‘‘Local Distributed Deadlock Detection by Cycle Detection and
Clustering,”” IEEE Transactions on Software Engineering SE-13(1), pp. 3-14 (January 1987).

6. F. J. Corbato, ‘‘A Paging Experiment with the MULTICS System,”” Project MAC Memo
MAC-M-384, MIT, Cambridge, MA (July 1968).

7. W. I. Dally and C. L. Seitz, ‘‘Deadlock-Free Message Routing in Multiprocessor Interconnection
Networks,’’ IEEE Transactions on Computers C-36(5), pp. 547-553 (May 1987).

8. J. M. Jaffe and M. Sidi, ‘‘Distributed Deadlock Resolution in Store-and-Forward Networks,”’
Algorithmica 4(3), pp. 417-436 (1989).

9. P. Kermani and L. Kleinrock, ““Virtual Cut Through: A New Computer Communication Switching
Technique,’” Computer Networks 3(4), pp. 267-286 (September 1979).

10. 1. Y. Ngai, ‘A Framework for Adaptive Routing in Multicomputer Networks,”” Computer Science
Technical Report 89-09, California Institute of Technology, Pasadena, CA (May 1989).

11

12,

13.

14.

-16-

D. A. Reed and R. M. Fujimoto, Multicomputer Networks: Message-Based Parallel Processing,
The MIT Press (1987).

W. D. Tajibnapis, ‘A Correctness Proof of a Topology Information Maintenance Protocol for a
Distributed Computer Network,”* Communications of the ACM 20(7), pp. 477-485 (July 1977).

Y. Tamir and J. C. Cho, “Design and Implementation of High-Speed Asynchronous
Communication Ports for VLSI Multicomputer Nodes,”’ International Symposium on Circuits and
Systems, Espoo, Finland, pp. 805-809 (June 1988).

Y. Tamir and G. L. Frazier, ‘‘High-Performance Multi-Queue Buffers for VLSI Communication
Switches,”’ 15th Annual International Symposium on Computer Architecture, Honolulu, Hawaii,
pp. 343-354 (May 1988).

