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1 Introduction

Although the task of developing perception in a machine is a formidable endeavor,
nature provides some clear directions on how to approach the problem. Evidence from
neurophysiology and other related fields in neuroscience demonstrates that the basic
organization of biological computing substrates is based on a highly distributed network of
neurons. The advantages of this approach are:

real-time performance - Although the individual elements maybe relatively
slow, the network produces the necessary computing power through
massive parallelism, Improved performance does not result from an
arbitrary interconnection scheme, but rather from the synthesis of
functionality from specific connectivity patterns.

fault tolerance - The likelihood of component failure increases with the size
and complexity of the system. Therefore, large complex systems
must be designed to withstand and compensate for the possible
malfunctions of individual components. The distributed nature of
neural systems seems to naturally afford the redundancy of
representation and plasticity needed to produce graceful degradation
in cases of local system malfunctions or erroneous stimuli. This type
of tolerance is not readily realized in centralized, Von Neumann style
machines.

Furthermore, whereas traditional computer science approaches have separated
hardware and software for engineering simplicity, nature has integrated them for
performance and efficiency. Nature has coupled the structure and function of its hardware
t0 maximize its performance, thereby improving odds of survival. This suggests that future
solutions to perception should be based on a close match between function and underlying
architecture. A desired function must dictate the optimal computing architecture. This
paradigm of distributed representation and computation may provide not only
improvements in computing speed, but also the conceptual tools necessary to realize
perception in machines.

Autonomous robots operating in unconstrained environments need to perceive and
interact with their surroundings in “"real-time". To realize these perceptual tasks, the
underlying computing substrates of these systems must be capable of continuously
organizing and interpreting massive streams of multi-sensory data. Attempts to engineer
systems using just a single sensory modality, for example artificial vision, have shown that
current sequential and pipeline computers cannot meet the demands required by real-time
segmentation of natural scenes.

What precisely is meant by a neural networks? Despite considerable progress,
neuroscience does not as yet have a complete explanation of how the nervous system can
produce cognition and perception. Indeed, the technical difficulties in recording neural
activity, not to mention the the sheer complexity of the nervous system, pose a great
challenge to neuroscience. It is becoming clear that one of the ways to accelerate the
progress of neuroscience is to synthesize models of neural networks under the constraints
of current neurophysiological data. In this mode of research, artificial neural networks are



developed and studied by simulating them on digital computers. The insights gained from
simulations suggest future directions of experimentation in natural systems. The success of
this approach depends on close interactions between researchers studying biological
systems and those attempting to build artificial ones.

SFINX, Structure and Function In Neural Connections(X), is a neural network
simulation environment designed to provide the investigative tools for studying the
behavior of various neural structures. It was developed at the UCLA Machine Perception
Laboratory.

1.1 Other Neural Simulators and SFINX

One of the central issues when designing a neural net simulator is to what resolution
a neuron should be modelled. As with any physical phenomenon, there exists a continuum
of abstraction levels. In the case of neural systems, it can range from neurotransmitters
within the synaptic cleft to propagation of action potential in neural membrane to
mathematical or stochastic models representing the overall behavior of a group of
neuronsf1].The appropriate level of abstraction must be based upon the goal of the
modeler.

PABLO is an example of a simulator that provides precise modeling of neurons and
their interactions{2]. Its environment allows for detailed modeling of many known
properties of soma bodies, dendrites, and axons. A probabilistic error generator was
included in each neuron to model the occasional failures of signal transmission through an
axon. PABLO's similarities to neurophysiology allows one to determine the rough
functonality of a neural network that was being analyzed physiologically. PABLQO, written
in Fortran, is a discrete-event simulator and considerable effort must be expended during a
simulation cycle in determining the most critical, next event. Also, it is a batch oriented
system, allowing only for the initial loading of a group of neurons and their
interconnectivity patterns. Finally, debugging functional and/or connection problems is
limited to printer plots of neuron activity.

BOSS, another discrete-event simulator implemented in Fortran, was designed to
investigate large neural networks[3]. In contrast to PABLO, where each individual neuron
was specified and interconnected, BOSS forms a statistical representation of the
connectivity pattern. This allows for relatively fast simulation of large connectivity patterns.
Another useful property of BOSS is that a large network could be generated by using a few
parameters. Consequently, the architecture of connectivity is locally regular. This feature,
while a time saver in synthesizing large networks, placed limits on the connectivity patterns
that could be explored.

The above simulators were both of a batch type. In contrast, ISCON explored the
advantage of an interpreted simulator as a network construction tool[4]. Written in LISP,
users were able to dynamically change network connectivity and restart the simulation.
Unfortunately, the penalty is that even small examples take prohibitively long to execute.
ISCON also offers the clarity of a graphics output environment. Debugging
interconnectivity problems is simplified through the use of time traces on a node's activity
or excitation level. Extending this capability to display the two-dimensional activity of a
layer of nodes as they are processing an image would help in debugging and verifying the
correctness of a connectionist architecture.



To increase speed while maintaining flexibility, ISCON evolved into the Rochester
Connectionist Simulator[6]. RCS is a run-time environment written in C that allows user
written programs to access a ltbrary of connectionist type functions, e.g. building
networks, setting potentials, examining nodes. Users must develop their own graphics
interface and debugging tools. Also, since the network topology is formed by the same
program that runs the simulation, changing the connectivity requires halting the simulator,
editing a C program, and recompilation.

UCLA PUNNSJ7] served as the foundation for the development of SFINX.
PUNNS offers a multifaceted, interactive simulation environment. The underlying
primitive was an idealized, lumped parameter model of a neuron. A language was
developed that defined each individual node by specifying the input to that node and the C
function that would process the converging input. Particular attention was given to
maintaining the temporal consistency of node firing, so that the time varying properties of
neural networks could be explored. After repeated experimentation on realistic, grey-level
images, it was found that PUNNS' focus on individual node definitions resulted in
prohibitively long network load times. The primary bottleneck of loading was in parsing of
the network description language, which was implemented in YACC and LEX.

SFINX is an interactive simulation environment offers tools to investigate the
behavior of various structures of interconnected digital computing elements that operate
synchronously. SFINX accepts networks of arbitrary structures. In addition, the regularity
in connectivity patterns that may exist in large multi-layered networks can be efficiently
defined and simulated using special constructs. SFINX has been implemented in a manner
which allows its user to systematically customize the simulation environment according to
simulation need and the capabilities of available computing environment.

SFINX has been used to simulate neural networks for the segmentation of images
using textural cues[7], color constancy in low level vision{[8], lightness constancy, and
shape recognition[9].



2 Overview of SFINX

SFINX is a simulation environment for studying computation with neural
networks. In simple terms, a SFINX neural network can be viewed as a set of computing
elements called nodes that are connected or linked together. The links define the flow of
data among the nodes. A node is made up of the following components:

memory
Each node has certain capacity to store information. The state of a
node refers to the contents of its memory at a particular instance in
time.

Junction
The node function specifies the node output and how its memory is
modified based upon the node's input and history. A node can
receive input from other nodes to which it is linked or from sources
outside the network,

a set of links
A node may have connections to other nodes, including itself, from
which it receives input. For example, if node A is linked to node B
and C, then the outputs of nodes B and C at time t are the input to
node A at time t+1.

Structure of a network refers to the memory capacity of each node and the
connectivity pattern of the links. State of a network refers to the contents of all the memory
at a particular instance in time.

2.1 Outline of the Design

SFINX was developed as a practical tool for investigating various neural structures.
Hence, flexibility and efficiency have been of primary importance in the overall design.
SFINX is organized in a modular fashion, so that additional modules may be systematically
added. A module is a set of commands which make a logical group. For example, a
particular form of a graphics interface maybe seen as a module. Currently, there are various
paradigms in neural network investigations. Investigators with different points of emphasis
may be able to utilize the basic SFINX environment by developing the necessary modules.
Steps for installing additional modules are documented in Section 4.5.

Node functions are implemented as user provided C routines. The user must write
the C routines representing each node function. These C routines are then linked into the
SFINX program. This approach forces greater responsibility upon the user; however, it
also provides maximum efficiency and flexibility. This approach eliminates arbitrary
restrictions placed on the classes of networks available for SFINX. Steps for generating
node functions are documented in Appendix IV and V).



Currently, SFINX supports two different network representations, each with a
trade-off between efficiency and flexibility. The most flexible representation, termed
explicit networks (EN), can encode arbitrary connectivity patterns, but require the most
space and time for simulation. The counterpart, termed function arrays (FA), are suited
for networks with high degree of regularity in their connectivity pattern. In theory, one
form is not more general than the other; however, in practice, FA usually produce
significant improvement in efficiency, but preclude networks with irregular connectivity
patterns.

Node memory is implemented as a set of registers whose type, henceforth called
REG_TP, is one of int, short, float, or double types of the C programming language. All
registers in a network must be of same REG_TP. In order to change the REG_TP, one
must recompile the simulator using an appropriate macro setting (Appendix II).

2.2 System Requirements

SFINX has been specifically implemented to provide clean portability for most
Unixf operating systems, such as System V, Berkeley 4.2 or 4.3, The core module, which
consists of the basic SFINX tools based on a textual interface, requires a standard C
compiler, a paging program (e.g. /bin/more), and signal traps. The core module should be
compilable with little difficulty under most Unix environments. For specific details on
porting SFINX, see Appendix II. Currently, SFINX has been ported to HP 9000 320/350
workstations running HP-UX, Sun workstations running BSD 4.3 and IBM RT
workstations running BSD 4.2,

2.3 Main Data Structures

This section introduces the basic data structures used in SFINX. Familiarity with
these structures may help understanding the pages to follow.

The buffer is a two dimensional array of REG_TP and serves a dual purpose.
First, they can be used as I/O buffers for networks. Second, they are used to represent
function arrays. Commands showbuf and setbuf allow the user to display and set the
contents of the buffers.

In addition to function arrays, SFINX has another network representation called
explicit networks. In this scheme, each network link is explicitly represented in the data
structure. This data structure is composed of several C structures that are highly
interconnected. At this point, it is sufficient to say that there is a single array for each of
these structures. All pointers between these structures are implemented using array indices;
no absolute pointers are used. As a result, since run time dependent values are not used, a
network state can be easily saved and reloaded into the simulator.

When the simulator is invoked, the user must specify the maximum dimension of
the buffers and maximum number of nodes, links, and registers. This approach greatly
simplifies the memory management scheme used in SFINX. In essence, during the initial

¥ Unix is a trademark of AT&T Bell Laboratories,



phase of the simulator, a large block of system memory is reserved for Explicit Networks
and buffer space. If these parameters must be enlarged, SFINX must be reinvoked using
appropriate values.

A list of environment variables is maintained by SFINX. Associated with each
variable is an integer value. These variables reflect the current state of the simulator. Some
variables modify the behavior of commands. The list of environment variables are fixed
during compilation and cannot be modified during runtime. Their values may be displayed
and modified by the command set.

SFINX also provides a separate list of variables called the user variables. Here,
the user may instantiate arbitrary variables. Associated with each variable is a string value.
These variables are intended to provide a flexible way of adjusting the parameters of node
functions. Since it is usually unreasonable to recompile and relink a node function each
time a parameter is changed, the user may write a generalized node function so that its
parameters can be set by predesignated user variables. In essence, a node function would
first check for the existence of certain variable. If it exists, it would override its default
parameter value. This mechanism can be very effective in efficiently simulating a network
with various parameters. The commands setu and unsetu are used to display and modify
this list.

A library of C routines contains all the routines that represent node functions.
Actually, there is a separate library for explicit networks and function array node functions.
The functions in these libraries can be displayed by the commands enfn and fafn.

2.4 Simulation Environment

The basic organizational structure of SFINX is analogous to traditional
programming language compilers (see Figure 1). The first step in SFINX simulations is to
create a network representation. For Explicit Networks, this first step entails transforming a
textual description of a network into an equivalent SFINX binary data structure. This
structure need be generated only once, after which it can be loaded and reloaded into the
simulator. The SFINX ASSEMBLER program (SASS), described in Appendix III,
provides the transformation. Function Arrays can be created simply by placing the
appropriate values in buffer locations.

Compiler ,
,,,,, oegee network
Y .
H ', input
§ !
... ...
5 output
‘ high level low level binary
i textual : textual data
’ s g8 ¥ g
idescription: description structure User
P vrsarrrerersres.

Figure 1. SFINX Environment



One of the goals at MPL is to develop a higher level language for describing neural
networks. In this case, a Compiler would transform this higher level, perhaps functional,
description of a system into a low level structural description of a network. Currently, no
prototype exists. However, continued experimentation with network structures using low
level descriptions may produce enough patterns and consistencies to develop such a
language.

2.5 Basic Steps for Using SFINX

The SFINX user interface is handled by a command line interpreter which can be
run in interactive or batch mode. By changing the initial state of the network, the same
network structure can be re-executed with various parameters. The basic steps of using the
SFINX simulator can be summarized as follows:

1. Define a SFINX network (see Network Representation).
Invoke the SFINX program (see Appendix I).
Load the network into the simulator.
If necessary, modify the initial state of the network.

If necessary, load the input to the network.

Execute the network.

sl Rt Rk W N

Display and/or save the state of the resulting network.
8. If network is to be simulated with different parameters, goto 4.

Usually, a simulation session requires numerous commands and is often
cumbersome to repeatedly retype similar commands. In such cases, the user may create a
text file, called SFINX script file, containing the sequence of commands. Script files are
executed by command exec. These shell scripts act as meta-commands representing a
sequence of low level commands. Also, they are a natural way of recording the precise
actions taken for a simulation.



3 Network Representation

This chapter describes the details of how networks are actually represented within
SFINX. Two types of representations are supported, Explicit Networks (EN) and
Function Arrays (FA). In theory, any network structure can be encoded in either form.
However, in practice, FA format is suited only for those networks whose topology can be
viewed as two dimensional layers of nodes which are interconnected by highly regular
pattern of links. On the other hand, EN can handle arbitrary connectivity patterns, but they
are also less efficient in terms of space and execution time. Thus, whenever feasible FA
format is preferable to the EN counterpart. For networks that contain both regular and
irregular connectivty patterns, it is also possible to create a hybrid network representation
which uses both formats.

3.1 Explicit Networks

Explicit Networks use data structures which closely parallel the network topology.
Each network link is explicitly represented by the data structure. The user should be aware
of the following fields (see Figure 2):

node id
Each node has a unique three integer identification number, which is
assigned by the user when creating the network. It is often
convenient to use these numbers as implicit pointers to buffer
locations.

function register (FR)

FR points to an entry in the node function library. For each node
function, there are actually two C functions: the actual node function
(nfn) and the initializing node function (infn). Infn is executed only
once at the beginning of each simulation cycle, i.e. a single iteration
of all the nodes. The primary duty of this function is to check the
user variables for possibly overriding the default values of the node
function parameters. The duty of the actual node function is to
compute the node's output value. This value is the return value of
the function. The node function may also modify the contents of
GRs and LRs (see below) by side effect.

output register (OR)
OR is a special register containing the value of the node's current
output.

general registers (GR)
During the creation of an explicit network, the user may reserve an
arbitrary number of registers for each node. They are available to the
node function and no restrictions are placed on their usage.

set of links



Each link points to a node from which input is received. It takes
once simulation cycle for the output of the linked node to arrive at
the linking node. Once an EN is created, links cannot be modified,
removed, or added. To simulate the effect of adding and deleting
links, one must first create a network whose connectivity pattern
encompasses all the desirable links. LRs (see below) can then be
used to signify opened and closed links.

link registers (LR)

to Node Function

During the creation of an explicit network, the user may reserve an
arbitrary number of registers for each link. They are made available
to the node function and no restrictions are placed on their usage.
Since both GR and LR are general purpose memory location and are
available to the node function, they could have been collapsed into a
single class. However, this separation may help simplify the
implementation of some node functions. A natural usage of LR is
link weights. They can also be used to implement a queue for
simulating delays.

Figure 2. Explicit Node

3.1.1 Adding EN Node Functions

Steps for adding EN node functions into the simulator library are as follows:

1.

Create a C source file for the node function (Appendix IV).

to Nodes in the Network



2. If needed, create a C source file for the initializing node function. It
is important to remember that all initializing routines in the library
are called for each simulation cycle or time step, even if the node
function is not used in the network.

3. Add these functions to the list_enfn.c file, whose format is
straightforward. If the initializer is unnecessary, then the ienfn field
(see list_enfn.h and list_enfn.c files) can be set to NULL. Be sure to
create a unique node function name and place the new function at the
end of the list. Networks which have been saved contain merely the
index within the library; therefore, the order of the preexisting
functions should not be modified.

4. Add this file into the EN_FNS macro in the Makefile of the Working
directory (see Appendix II).

5. Remake the program.

3.2 Function Arrays

Function Arrays are a very simple way of representing a network whose topology
can be mapped on a two dimensional layer and whose connectivity pattern is highly
regular. In this scheme, various buffer layers are designated as FR, GR, and LR. Whereas
EN links are explicitly encoded in the network representation, FA links are implicitly
defined within each node function. More specifically, the links are represented in terms of
relative position with respect to the coordinates of the node.

For example, a simple 3x3 convolution can be implemented using an FA network,
where the links can be encoded by 9 vectors: <-1, -1>, <-1, 0>, ..., <1, 1>, Thus, if a
node is positioned at [z, 1, 2], then it would be linked to nodes at position [input_level, 0,
1], [input_level, 0, 2], ..., {input_level, 2, 3], where z and input_level are the z-
coordinate of the node and input, respectively. Both of these values can be parameterized
with user variables.

There is one more generalization. When a buffer layer is used to represent FA
function registers, the command runfa is used. However, if an FA layer contains only one
node function and the location of the nodes are evenly spaced throughout the layer, then the
command can be used. This command generates a fictitious buffer layer of FRs. See
runlfa command documentation for further details.

For EN, the simulator gathers the input from appropriate nodes. However, in the
FA version, the node function must explicitly grab the input and save its output at
predetermined buffer entries. In particular, extra care is required for FA with feedback, as
the order of execution becomes critical in these cases. Furthermore, the user must carefully
design the allocation of buffer space for various purposes, and this allocation scheme must
then be well encoded in each FA node function. User variables can be used to parameterize
these values (see Appendix V for an example).

3.2.1 Adding FA Node Functions

Steps for adding FA node functions into the simulator library are as follows:
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Create a C source code for the node function (see Appendix V).

If needed, create a C source code for the initializing node function. It
is important to remember that all initializing routines in the library
are called for each simulation cycle, even if the node function is not
used in the network.

Add these functions to the list_fafn.c file, whose format is straight
forward. If the initializer is unnecessary, then the ifafn field (see
list_fafn.h and list_fafn.c files) can be set to NULL. Be sure to
create a unique node function name and place the new function at the
end of the list. Networks which have been saved contain merely the
index within the library; therefore, the order of the preexisting
functions should not be modified.

Add this file into the FA_FNS macro in the Makefile of the Working
directory (see Appendix II).

Remake the program.
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4 SFINX Commands

4.1 Command Interpreter Syntax

The user interacts with a simulator through the command interpreter! which accepts
a limited number of syntactic forms. The command interpreter takes a single command per
line, except where the \' character is present. The \' character signifies that the command
continues to the following line, and the rest of the line is considered as a comment. The ;'
character begins a comment and also terminates the command line, These mechanisms are
useful for commenting SFINX shell scripts. Each command can have zero or more
arguments. Each argument is one of three types:

numeric value (val)
This field must begin with -, "', or a numeric character.

string value (str)
A string is a sequence of characters beginning with any printable
character other than the characters mentioned above. It may also be
surrounded by double quote characters to include spaces.

node id (nid)
This field specifies a set of nodes of buffer entries. Note that both
EN nodes and buffer locations are specified by three integers. This
convention can be used for conveniently associating between nodes
and buffer entries. Node and buffer specifications has the following
syntactic format:

[first_range, second_range, third_range]
where each range can be of following forms:
empty signifies all possible values.

start . end signifies values between start and
end, inclusive.

start : signifies values greater than or equal
to start.

tend signifies values less than or equal to
end.

number signifies a single value, the number.

1A mdré user-friendly grﬁphical front end based on X Window System is currently under development.
X is a windowing system developed at Massachusetts Institute of Technology.
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Therefore, [,,] represents all nodes. [1, 0 : 127, 40:] represents
those nodes whose first id field equals 1; second field is between 0
and 127, inclusive; and the third greater than or equal to 40. Note
that buffer entries are specified [z, y, x] and not [x, y, z]. This
convention is used consistently throughout the system.

The list of SFINX commands are provided below. Optional arguments are
enclosed in parentheses. Literals are printed in regular font. They maybe entered in upper
or lower case. Italicized arguments, such as numeric values i, j, and val or string values
str, must be replaced by appropriate entries.

4.2 Core Commands

The following is a list of commands that makeup the core module of SFINX.

help
prints out the list of available commands with short descriptions.

exec str (val)
The contents of the file str is executed by the command interpreter val (default; 1)
times. The exec files can be nested, but cannot be recursive.

load str

str must be a SFINX network file created by the SASS program or the save
command. This network is loaded into the simulator memory. The number of nodes
and links must be less than or equal to the maximum specified by the environment
variables MAX_NODES, MAX_LINKS, MAX_REGS. Also, the register type
must be consistent with the REG_TP of the running simulator. If the network is too
large for the current setting, the simulator must be reinvoked using appropriate n, 1,
and r arguments. See Appendix L.

save str
saves the current state of the loaded network into a file str, which can then be
reloaded by command load.

loadb str val

str must be an SFINX buffer file created by the saveb command. This file is
loaded into the simulator buffer at layer val. The size of the buffer in the file must
be same as that defined by the environment variables MAX_BUFX, MAX_BUFY,
and MAX_BUFZ. Also, the register type must be consistent with the REG_TP of
the running simulator. If the buffer size does not match the current settings, the
simulator must be reinvoked using the appropriate x, y, and z arguments. See
Appendix L

saveb s#r val
saves the current values of the buffer layer val into a file str, which can the be
reloaded using the loadb command.

en nid (L)

displays the contents of the loaded network. If the literal argument L is given, then
link information is also provided.
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en nid FR str

sets the function register of nodes nid to point to the EN node function whose
name is str.

en nid OR val

sets the output register of nodes nid to val.

en nid GR i val

sets the ith general register of nodes nid to val.

en nid LR i j val

sets the jth link register of the ith link of nodes nid to val.

buf (nid)

displays the contents of the buffer locations nid textually on the screen. If no
argument is given, all buffer locations are displayed.

buf nid val

sets the buffer entries nid to val.

buf nid str

enfn

fafn

runen

runfa

sets the buffer entries nid to point to the FA node function whose name is str.

displays the list of EN node functions.

displays the list of FA node functions.

(val)

simulates the currently loaded explicit network val (default: 1) cycles. If the
environment variable SHOWRUN is set to a positive number, then the simulator
notifies the user each time that that many nodes are simulated. This is useful for
monitoring a simulation of large networks. All EN initializing node functions are
called in each cycle.

(val)

executes a FA of buffer layer defined by environment variable FA_LAYER val
{(default: 0) cycles. If the environment variable SHOWRUN is set to some non-zero
number, then the simulator notifies the user every time that that many buffer nodes
are simulated. All FA initializing node functions are called in each cycle.

runlfa str (val)

executes a single FA node function str as a Function Array for val (default: 1)
cycles. This command creates a fictitious FA where all nodes of the layer have the
same node function. All FA initializing node functions are called in each cycle.The
command fafn displays the list of buffer functions in the library. The following
environment variables are used:

FA_LAYER (default: 0)
defines the z coordinate of the fictitious function array.

FA_XO0 (default: 0)
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FA_YO (default: 0)

define the initial X and Y values.
FA XX (default: 0)
FA_ YY (default: 0)

define the maximum X and Y values.

FA_INCX (default: 1)
FA_INCY (default: 1)
define the incremental value of the valid FA node locations.

SHOWRUN
is set to some non-zero number, then the simulator notifies the user
every time that that many buffer nodes are simulated.

For example, with the following setting:

FA_LAYER =
FA_X0=
FA_Y0=
FA_XX =
FA_YY =
FA_INCX =
FA_INCY =

would produce fictitious node id's of [1, 3, 2], [1, 3, 4], {1, 6, 2], and [1, 6, 4].

WA~ AW =

cpbuf (nid)
copies the contents of the first Current Qutput register to a Buffer Iocation

corresponding to its node id offset by values of environment variables CPB_Z,
CPB_Y, CPB_X (all defaults: 0).

set
Displays the current values of the environment variables.

set str (val)
Sets the environment variable str to val (default: system default value).

setu
Displays the current values of the user variables.

setu strl (str2)
Sets the user variable strl to str2 (default: empty string). If the variable does not
already exist, it is created. These variables are not used by the simulator; they are
provided to allow the user to easily change the parameters of node and buffer
functions. Typically, a these functions have default constants. The existence of a
predesignated variable can be used to override these values.

unsetu str
Deletes user variable s¢r from the system. This is not the same as setting the value
of the variable to a null string.

quit
Exits the simulator.
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! str
Execute a shell command str.

4.3 Additional Modules

Two examples of SFINX modules are provided below. The basic organization of
these modules can be used to implement other custom modules.

4.3.1 HIPS Commands

At the Machine Perception Laboratory, the HIPSTT data format has been used to
store digitized images. These images have been used as input and output to various
networks using the following commands:

rdhips str (num)
Loads a HIPS image file str into the buffer layer num (default: 0). The image is
positioned flush against the upper left corner.

wrhips str (num)
Saves the contents of the buffer layer num (default: 0) as a HIPS image file str.

4.3.2 GRAPHICS Commands

The following is a graphics module for displaying network activation levels in the
form of grey scale images. First, activation levels are placed in a buffer layer. Then, this
buffer layer is displayed on a graphics display. Various spatial and intensity scaling options
are available.

This module was first implemented on Hewlett-Packard workstations using HP
Starbase graphics package. In the HP Starbase version, shell environment variables
SB_OUTDEY and SB_OUTDRIVER are used to locate the graphics device and driver.

This module has also been ported to other graphics environments, including IBM
RT using an Imagraph AGC-1010P card and SUN workstations using a Matrox VIP-1024
card.

clearw
Clears the graphics window.

draw (val)
Graphically displays a buffer val (default: 0). The following environment variables
are in effect:

1 HIPS, an acronymn for Human Information Processing Laboratory's Image Processing System, was
developed at Human Information Processing Laboratory, Departrment of Psychology, New York University
by Yoav Cohen, Michael S. Landy, M. Pavel, and George Sperling. HIPS must be obtained separately
from New York Unversity.
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W_STARTX, W_STARTY specifies the coordinate of the upper left
corner of the display window on the screen.

PIXSIZE specifies the ratio of actual pixel to display pixel. With PIXSIZE
set to 4, each buffer entry is represented by a 4-by-4 array of display
pixels.

MINP_VAL, MAXP_VAL specifies the minimum and maximum
thresholding of the actual image. The displayed image has 128 grey
levels. Those actual image values less than MINP_VAL are mapped
to the lowest intensity; those greater than MAXP_VAL to maximum
intensity; those in between are linearly interpolated between these
values.

4.5 Adding Commands

It may be advantageous on occasions to add customized commands. In fact,
several commands maybe grouped as a logical module, as in the examples above. The basic
steps for adding additional SFINX modules are as follows:

1. Generate a C source file for each command. It will be helpful to
study one of the existing commands, such as runen and en. The
convention for command source code file name is ¢_cmnd.c, where
cmnd is the name of the command. This convention is not enforced,
however, it is an effective way of organizing the numerous files of
source code.

2. Create a MODULE _CMNDS macro for these c_cmnd.o files in the
main Makefile, where MODULE is the name of the module.

3. Create a MODULE_LIBS macros for any necessary libraries which
must be linked in for this module in the main Makefile.

4.  Add the above two macro into the sfinx_core.o line in the Makefile,
5. Add a -DMODULE to the CFLAGS macro in the main Makefile,

6. Include the commands in the file list_cmnd.c, whose format is
straightforward. Be sure to use a unique name.

6. Include any necessary environment variables in the file list_set.c. It
is advised that conditional #ifdef and #endif be used to separate the
environment variables of various modules.

If necessary, add appropriate productions reflecting the syntax of the new command
in the file parse.y. The parsing for command line input is done command by command
using yacc. The productions are straight forward and are available in the file parse.y. In
essence, there are fixed syntactic patterns which are recognized by the parser. If new
syntactic structure is required to implement a new command, corresponding production
must be added in the parse.y and parse.h file.

All command source files should have the include files <stdio.h> and parse.h. If
the command is to modify any SFINX global data structure, it should also include files
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struct.h and extern.h, in that order. The main routine handling the command should look
something similar to:

void c¢_cmnd{cmnd)
CMND_TP *cmnd;
{
/* declare local variables */

case {cmnd.ctype) {

case CMND_?: /* a legal syntactic form */
/* take appropriate action */
break;

case CMND_?: /* another legal format */
/* take appropriate action */
break;

default: /* illegal syntactic format */

/* for this command */

/* print error message */
return;

}

The structure CMND_TP and the constants CMND_? are defined in the file
parse.h. The ctype field defines the syntactic structure used to read the last command.
Depending on the particular syntax structure, various other fields of cmnd structure are set
to the values of corresponding command arguments.
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Appendix I: Invoking SFINX

The simulator is invoked by typing sfinx, plus any additional arguments to
override system's default values. The following arguments are supported:

n=num

I=num

r=num
sets the value of the environment variable MAX_NODES,
MAX_LINKS, and MAX_REGS, respectively, to num. These
numbers correspond to the maximum size of an Explicit Network in
terms of number of nodes, links and registers registers that can be
loaded into the simulator. The default value of this variable can only
be overridden during invocation of SFINX.

Z=num

y=num

X=num
sets the value of the environment variable MAX_BX, MAX_BY,
MAX_BZ to num, respectively. This number corresponds to the
size of the simulator buffer. The default value of this variable can
only be overridden during invocation of SFINX.

istr
run the exec command of the file str before prompting the user.
When more than one i arguments is given, the order of execution
corresponds to the order of the arguments. However, no duplicate
files are allowed. After the file is completed, the user is prompted
using stdin. See command exec for further details.
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Appendix II: Porting SFINX

Two directories are used in the distribution of source code for SFINX version 1.0.
The main directory contains most of the parts including all of the commands. The
Makefile in this directory makes the program sass and a file called sfinx_core.o. This
file is generated by linking all of the components of the simulator, except for the node
functions.

Within the main directory there is a subdirectory called Working, with its own
Makefile. This Makefile links in the node function with sfinx_core.o to create a running
version of the simulator. By combining most of the modules of sfinx in sfinx_core.o, the
user's working directory does not need to contain the numerous SFINX source files.
Usually, each user has his/her own Working directory with a private set of node function
libraries.

The user can define the type for REG_TP by including in the CFLAGS macro one
of the following:

-DI_REG int (the default)
-DS_REG short

-DF_REG float

-DD_REG double

** It is important that this REG_TP definition of the Makefile in the main
directory and Working directory are identical. **

Furthermore, if REG_TP is modified, then all the files must be remade.
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Appendix III: SASS

SASS, short for SFINX ASSEMBLER, converts a textual description of network
structure into a SFINX Explicit Network data format. It receives the textual description
through standard input. The first argument is used as the filename of the SFINX EN file.
Following optional arguments are available:

n=num

I=num

r=num

These numbers must be larger than the number of nodes, links and

registers in the network being compiled. These options must be used
when the default settings are too small.

The format of the network description is as follows:
for each node:
[node id] (initial OR) (# of GR) (values for each GR)
(# of links)
for each link:
[source node id]

(# of LR) {(values for each LR)

The following is an example of 2 node network. The first node has id [1, 2, 3];
initial output value of 4, no general registers, and no links. The second node has id [3, 2,
1]; initial output value of 10, two general registers whose values are 11 and 22; and two
links. The first link is to the first node and has 1 link register of value 21. The second link
is to itself, and has no link registers.

[1, 2, 3] 4 0

]

[3, 2, 1] 10

2 {1, 2, 31 1 21

(3, 2, 1] 0
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Appendix IV: Sample EN Node Function

The following is a sample En node function. This code demonstrates the use of
most of the utility macros and functions available. This function is provided in the
distribution file enfn_sample.c under the Working directory.

/*****‘k*********************************************t**t*********/

/*
/*
/*
/*
/*
/*
/*
/*

*/
This is a pedagogical EN node function. The output of nodes */
with this node function is "constant"” times the sum of input.*/
The default value of the constant is 1; however, it may be */

overridden by the user variable "enfn_sample_constant™. */
Also, various values which are available to the node function#*/
are printed out. */

*/

/*****************************************‘k**********************/

¥include <stdio.h>
#include "struct.h"
#include “extern.h"
#include <math.h>

static double constant;
/t === === === */
void ienfn sample() /* =m=ss===sss=ssssccacsscccccmcccoco=coo==a * /
/* o T ——uma —_ */
{

char buffer(128];

constant = get_uvar val ("enfn_sample constant”, buffer) ?

atof (buffer) : /* returned value */
1; /* default value */

printf ("enfn_sample constant is %d\n", constant);
}
/* */
REG_TP enfn_sample (node, POR, input) /* */
/* O D N A SR SN e e e o TR R e = === L4

NODE_TP *node:

REG_TP POR;

REG_TP *input;
{

int numl, /* number of links in this node */

lent; /* counter variable for links */
int numr, /* number of regs in this node */
rent; /* counter variable for regs */
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int numlr, /* number of regs in this link*/

lrent: /* counter for link regs
REG TP total; /* for totaling input  */
/* print the node id */
printf ("\n\nin nf_sample: ");
pr_id(N_Id(node)); /* a utility routine */
printf ("\n");
/* print the following: */
/*  previous output */
/* number of links */
/* number of registers */
printf (" POR %d; #link %d; #regs %d\n",
POR,

numl = N _NumL(node},
numr = N NumR (node));

/* print register contents */
printf (" REGS: ™);
for (rent = 0; rent < numr; rent++4) {

/* assuming REG_TP = int/short*/
printf ("%d ", N_IthReg(node, rcnt)};
}
printf("\n");

/* for each link print ... */
for (total = lcnt = 0; lcnt < numl; leat++) |

/* print id of source node */
printf (" %¥d: ", lent):
pr_id(N_IthSrcN(node, lcnt));

/* print input value and */

/* number of link registers */
printf (" input %d; %d LRegs: ",

input [lcnt],

numlr = N _NumLR(node, lcnt)):

/* print register values */
for (lrcnt = 0; lrcnt < numlr; lrent++) {

x/

printf("%d ", N_IthLReg(node, lcnt, lrent)):

}
printf{"\n");

/* keep total of input values */
total += inputllcnt];

/* return the output value of this node
return (constant * total);
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First, the initializing function ienfn_sample demonstates the basic method of
writing general node functions whose parameters can be dynamically adjusted by the user.
This function checks the user variable list for the existience of the variable
enfn_sample_constant. If it does not exist, the function get_uvar_val returns FALSE,
in which case the default value of 1 will be assigned to the variable constant. If it does
exist, then the function returns TRUE; furthermore, the char array buffer will be set to the
string value associated with the variable enfn_sample_constant. In this case, the string
is converted to a floating point value via atof() and the resulting value is assigned to the
variable constant.

Note also that the variable constant is declared as static. This serves to hide the
variable from other source files.

The actual node function enfn_sample generates the output whose value is the
constant times the sum of its input. This node output value is returned as the return value
of the node function. The return type of all node functions must be REG_TP.

Each node function is passed three parameters: node, POR, and input. The node
is a pointer to a special C struct used to represent a node in an Explicit Network. The user
does not need to know the details of how it is defined, as macros provide a convenient
interface. POR is of type REG_TP and its value is that of the node's previous output. The
input is an array of REG_TP and the values correspond to the input from the nodes it is
linked to. The order of the input values are that of the links. Thus, the first input value,
input{0], is from the first link.

As a side effect, it prints out various values available to node functions. The output
of this node is similar to that of the en display command. Note that there are three very
similar for-loops: one for going down the list of node registers, another for links, and
finally one for link registers.
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Appendix V: Sample FA Node Function

The following is a sample FA node function. This code demonstrates the use of
most of the utility macros and functions relevant for FA function. This function is provided
in the distribution file fafn_sample.c under the Working directory.

/****************************************************************/

/*
/*
[ *
/*
/*
/*
/*
/*
/*
/*

This is a pedagogical FA ncde functicn. There is a single

input located at the input layer of the Buffer with the same

x-y coordinate. The output location is alsc at the szame x-y

coordinate of the output layer. The ocutput wvalue is constant

times the input value. The input level and output level and

constant make up the three parameters to this functicon and
can be set by user variables fafn_sample_input,
fafn sample output and fafn sample constant, respectively.

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/*****‘k**********************************************************/

#include <stdio.h>
#include "struct.h"
#include "extern.h"
#include <math.h>

static int input, output:
static double constant;
/* s==s======= ===
void ifafn sample() /* ===
/* — ===
{
char buffer([128];
/* define constant */
constant = get_uvar_val ("fafn_sample_constant”, buffer) ?
atof (buffer) : 1:;
/* define input layer * /
input = get_uvar_val("fafn_sample input", buffer) ?
atoi (buffer) : 0;
/* define output laver */
output = get_uvar val("fafn sample output™, buffer) ?
atoi{buffer) : 1;
printf("ifafn: input (%d) output (%d) constant ($£)\n",
input, output, constant);
}
/* =
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void fafn_sample({idz, idy, idx) /* */
/* mama m=== %/
int idz, idy, idx; /* position of the FA node */

/* print the coordinate of ndoe  */
printf("in fafn [%d4, %d, %d)\n”, idz, idy, idx):

/* output = constant * input */
Buffer (output, idy, idx) =
constant * Buffer(input, idy, idx):

First, the initializing function ifafn_sample demonstates the basic method of
writing general node functions whose parameters can be dynamically adjusted by the user.
This function checks the user variable list for the existience of the variable
fafn_sample_constant. If it does not exist, the function get_uvar_val returns FALSE,
in which case the default value of 1 will be assigned to the variable constant. If it does
exist, then the function returns TRUE; furthermore, the char array buffer will be set to the
string value associated with the variable fafn_sample_constant. In this case, the string
is converted to a floating point value via atof() and the resulting value is assigned to the
variable constant. Parameters input and output are handled similarly.

Note also that the variable constant is declared as static. This serves to hide the
variable from other source files.

The actual node function fafn_sample generates the output whose value is the
constant times its input, which is located at the buffer location of z-coord = input, and y-
coord and x-coord is same as the node's. This output value is assigned to the buffer
location [output, idy, idx].

Note that Buffer() is a macro. There is no index boundry checking done.
It is the responsibility of the user to make sure that index values are within the Buffer size.
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Appendix VI: SFINX Macros and Routines

This section provides a list of global variables, macros and utility functions needed
for developing node function routines. Macros are used to hide much of the messy details
of implementations. They can be used both at the left and right hand side of an assignment
statement. However, some values, such as the number of links in a node N_NumL()},
should not be modified as they will create unpredictable results.

V1.1 Global Variables

Max Z
Max Y
Max X
~  These variables contain the current size of the buffer. Their values should not be
maodified.

VY12 Macros

VI1.2.1 Modifiable macros

The contents referred to by the following macros may be modified. Namely, these
macros may appear on the left side of an assignment statement.

Buffer(z, y, x)
z, y, and x should be arithematic expressions. This provides the buffer entry of
coordinate value (z, y, x). Note that through the sfinx simulator, the order of
coordinates used is (z, y, x) and NOT (x, y, z).

N_IthReg(node, rg)
node is a NODE_TP *, and r should be an arithematic expression whose value is
less than N NumR(node) This macro gives the rgth register of this node. The
registers are number starting from 0 up to (N_NumR(node) - 1).

N IthLReg(node, 1n, rg)
node is a NODE_TP *, In and rg should be arithemtic expressions whose values are
less than N NumL(node) and N_NumLR(node), respectively. This macro gives
the rgth register of Inzh link of the node.

V1.2.2 Unmodifiable macros

The contents referred to by the following macros must not be
modified. They must not be used on the left side of an assignment statement. If their
values are modified, the behavior of the simulator is undefined.
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N_Id{node)
node is a NODE_TP *. This macro gives the node id, which is defined as a 3
element array of short. Thus N_Id(node)[0] is the z coordinate, N_Id(node)[1] the
y coordinate, and N_Id(node)[2] the x coordinate.

N_NumlL (node) . . .
node is a NODE_TP *, This macro gives the number of links in this node.

N_NumR {node) . ) . . .
node is a NODE_TP *. This macro gives the number of node registers in this node.

N_NumLR (node, 1ln)
node is a NODE_TP *, In should be an arithematic expression whose values are
less than N_NumlL.(node).. This macro gives the number of registers for the Inzh
link.

N_IthSrcN({node, 1n} . .
node is a NODE_TP *, In should be arithemtic expression whose value is less than
N_NumL(node), respectively. This macro gives the id of the node associated with
the Inzh link,

VI.3 SFINX Utility Functions

The following are a set of utility functions. They are often helpful in writing node
functions.

vold fpr_id(fp, id)
FILE *fp;
NODE DI TP  id;
#define pr id{(id) fpr_id({stdout, id)

The values returned by N_Id() or N_IthSrcN() macro are of type NODE_ID_TP.
This function prints the id in standard notation to fp.

void fpr_ regs(fp, regs, numr)

FILE *fp;
REG_ TP *regs;
int numr;
#define pr_regs(regs, numr) fpr_regs{stdout, regs, numr)

The values returned by N_IthReg() or N_Ith.LReg() macros are of REG_TP. This
function prints the numr register values beginning from the one pointed to by regs.
This routine can handle any of the defined REG_TPs. The output goes to fp. To
print out all node registers, use the statement:

pr_regs( & N_IthReg(node, (), N_NumR(node})

To print out all registers of a link, use the statement:
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int

void

int

pr_regs{ & N_IthLReg{node, 1ln, 0), N_NumLR{(node, 1ln})

-To print a buffer entry, use the statement:

pr_regs{ & Buffer(z, y, x), 1)

get_uvar_wval (var_name, ret val)
char *var_name;
char *ret wal:

This function returns the value associated with the user variable var_name, If the
variable exists, then the function returns TRUE and the value is strcpy()'ed to
ret_val, which must point to a character array with enough space. Otherwise, the
function remurns FALSE, and ret_val is untouched.

setu_val(var name, var_ val)
char *var name;
char *var val;

This function sets the value associated with the user variable var_name to var_val.
If the variable did not pre-exists, then it is created.

get_var_val (var_name, ret_val)
char *var name;
int *ret_val;

This function returns the value associated with the environment variable var_name.
If the variable exists, then the function returns TRUE and the value is assigned to
*ret_val, which must point to an integer variable. Otherwise, the function returns
FALSE, and ret_val is untouched. The file list_set.c contain the list of environment
variables.

-29.



Appendix VII: Sample Explicit Network (EN) Simulation

This section describes a SFINX simulation of a pedagogical network using Explicit
Representation. The network is a modified Hartline_Ratliff [10] backward inhibitor model
of size 1-by-4 (Figure 3). This model exhibits Mach band effects of lateral inhibition.

4 4 4 4 Output
Output Ol 02 03 04 Buffer
Inhibitory
Feedback
Feed- W wl | wr wl | w wl d
back 1,0, 1 1,0,2 1,0,3 1,0,4] ) #04€S
Nodes [ ] [ ) [ ] {1,0, 4] [1, 0, 0:3]
f(I1) f(12) f(13) f(14)
Photo-
receptor nodes
Nodes [(0,0,1]] |i0,0,2]] |i0,0,3} [i0,0, 4] 10, 0, 0:3]
T T T T Input
Input I V) 13 14 Buffer
Figure 3. Modified Hartline-Ratliff backward inhibitor model

The input to this network is a 1-by-4 image intensities. This input image will be
stored in buffer location [input_layer, 0, 0 : 3]. "input_layer" will be defined as a user
variable.
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There are 4 photoreceptor nodes, whose id's are in the range [0, 0, O : 3]. Each
photoreceptor node receives a single input from a buffer location. The z component of this
location is defined by the user variable "input_layer". The x and y coordinates are the
values of third and second node id fields, respectively. For example, a photoreceptor node
[, v, x] will receive its input from buffer location [input_layer, y, x].

The behavior of photoreceptor nodes can be described by the following algorithm:

1f (It > Ot-l)
then
Ol = It
Ck)=1t
t=0
else
0t = 00 e~ At
t=t+1
endif

Where I, is the current input value; O,.; the previous output value; O, the current output
value being computed. Op is the last input that exceeded the output of the previous cycle. At
is the inter-cycle duration and t the number of cycles since Og. Therefore, (t x At) is the total
amount of time since Op. o determines the rate of decay. At and a will be set globally using
user variables. For each photoreceptor node, Qg and ¢t will be stored in first and second

general registers, respectively. The following C code implements the phtoreceptor node
function.

#include <stdio.h>
#include "struct.h®
#include "extern.h"
#include <math.h>

static
double alpha, delta_t:

static
int input layer;

/% - */
void ienfn pr() /* s==ssssssssssoscosossssssSSSSSSsossSSSssso=ss */
/* —— e t/

{
char buffer{128]:;

alpha = get uvar val("alpha", buffer}) ?
atof (buffer) : /* returned value */
0.9; /* default value */

delta t = get_uvar val("delta_t", buffer) ?
atof (buffer) : /* returned value */
0.9; /* default value */

input_layer = get_uvar val("input_layer", buffer) ?
: atoi (buffer}) : /* returned value */
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0; /* default value */

if (get_uvar_val("pr_debug", buffer)) |
printf("ienfn pr: i_1(%d) a(%£f) d_t (%£f)\n™,
input_layer, alpha, delta_t);

/* */
REG TP enfn_pr(node, POR, input) /* == ssesmessssas= %/
/¥ memmmm e mm s s mssssssssssssss=ss=s========= == */
NODE_TP *node; /* pointer to node structure
*/f
REG_TP POR; /* previous output value */
REG_TP *input; /* current input values */
i
REG TP intensity, /* input intensity from buffer
*/
beta; /* initial value prior to decay */
int num cycles; /* of decay */
intensity = Buffer (input_layer, /* z-coordinate */
N Id{necde) [1], /* y-coordinate */
N_Id{nocde) [2]): /* x-coordinate */

/* check if new input exceeds */

/* previous output. */
if (intensity > POR) {
/* initial decayving value */
N_IthReg(node, 0) = intensity;
/* initialize decay clock */

N_IthReg{node, 1) = 0;

return (intensity);

/* retrieve initial decay value */
beta = N_IthReg(node, 0);

/* retrieve and increment decay */
/* clock. */
num cycles = ++N_IthReg(node, 1);

return (0.5 + beta*exp(-alpha*num cycles*delta_t));

Actually, the above implementation of exponential decay may be streamlined in two
ways. First, by computing the product of alpha and delta t in the initializing function
this multiplication operation can be done only once per simulation cycle. Second, the
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exponential decay can be implemented by O, = Oy.; e-*&, This method eliminates the need
for maintaining Og and t separately. Furthermore, since O, is available through the por

parameter and e-®At js simply a constant, no general registers are needed. However, the
original implementation is provided to explicitly demonstrate a usage of general registers.

There are 4 feedback nodes, whose id's are in the range [1, 0, 0 : 3]. The output of
a feedback node is the input from the photoreceptor node minus the weighted sum of the
input from its immediate neighbors. By representing the photoreceptor weight as 1 and the
lateral weights as negative numbers, the function becomes simply the weighted sum of its
inputs. The following C code implements the feedback node function.

#include <stdio.h>
#include "struct.h"
#include "extern.h"
#include <math.h>

/* the following parameter is used to */
/* scale the weights */
static
int weight_factor;

/* == */
void ienfn fb{) /* =======——=c=====c==ssoooo==samzm===== */
/* smsssaaaa ========= %/

char buffer[128]:;

weight_factor = get_uwvar val("weight_ factor", buffer) ?
atoi{buffer) : /* returned value */
100; /* default value */

if (get_uvar_val("bd debug"™, buffer)) |
printf("ienfn bd: output_layer(%d) weight_factor{%d)\n",
output_layer, weight factor);

T — */
REG_TP enfn_fb(node, POR, input) /* === */
/% S - */
NODE_TP *node; /* pointer to node structure */
REG_TP POR; /* previcus output value */
REG_TP *input: /* current input values */
{
int  lent; /* counter for links */
int  numl; /* number of links */
REG_TP total = 0; /* totaling weighted input */

numl = N NumL (node) ;

/* accumulate weighted input */
for {lcnt = 0; lcnt < numl; lecnt++) {
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return

total +=

/*
/*
/*

({total

input [lent] * N_IthLReg(node, lecnt, 0);

place the output value in the */
appropriate buffer location */
weight_ factor/2 term is for rounding  */

+ weight_ factor/2) /weight_factor);

The structure of the network is defined by the following SASS input file:

(o,

(o,

o,

(o,
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(1,

(1,

0,

0,

0,

0,

0,

0,

0]

1]

2]

3]

0]

1]

2]

3]

w oo N o SN O O NO oo oNO

o

[\ = ]

(o,

fo,
{1,
(1,

(o,
(1,
{1,

[0,
[1,

0

0

0

0
0, 0} 1 0
0, 1] 1 0
0, 11 1 0
0, 01 1 0
0, 21 1 0
0, 2] 1 0
0, 1] 1 0
0, 3] 1 0
0, 31 1 0
0, 23 1 ]
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For small networks, such as the one above, the SASS files may be created
manually on a wordprocessor. However, this process is usually too tirne consuming and
mistake prone for networks with many nodes. In such cases, it is often invaluable to
develop a utility program to generate the SASS files. For example, the gen_hr program
below produces arbitrary length network structures of the modified Hartline-Ratliff model
described above. The length of the network is specified by the command line argument.
The above SASS file was produced by the gen_hr program. Normally, the output of the
utility program can be piped directly into the SASS program, thereby eliminating the
creation of the intermediary textfile. For example the unix command gen_kr 4 | sass
hr.s will create a file called "hr.s" containing the explicit representation of the modified
Hartline-Ratliff model of length 4.

main{argc, argv)
int argc;
char **argv;

int i;
int numn = atoi{argv(l]):

for (i = 0; i < numn; i++) {
printf ("\ [0, 0, %d\] ¢ 2 0 O\n", 1):
printf (" o\n™);
printf ("\n");

for (1 = 0;: i < numn; i++) {
printf("\[1, 0, %d\] 0 O\n", i):

printf (" ¥d N[0, 0, %d4\] 1 O\n",
({(i-1<0) |} (i+1>=numn)) ? 2 : 3, i);

if ((i-1) >= 0)
printf (" A1, 0, %d\] 1 O\n", i-1);

if ((i+l1l) < numn)
printf (" VI, 0, %d4d\] 1 O\n", i+l);
printf {"\n");

Once the network representation is made and the node functions have been linked
into the simulator, the network can be loaded into the simulator and executed. The
following SFINX script file contains the basic series of commands used to simulate the
Hartline-Ratliff network. Note that the script file has been written to work with networks of
arbitrary size. This example assumes that the graphics commands clearw and draw are
available. If graphics modules are not available, then these commands must be commented
out. Nevertheless, the results may be displayed textually with the en command.

load hr.s

exec locad hr image ; load image into the input_layer
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setu
setu
setu

input_layer "QV
alpha 10"

delta_t ".001"

setu output layer "0"
setu weight_ factor "100”
setu

en [0, , ] FR photoreceptor

en [1l, , ] FR feedback
en [0, , 1 GR OO

en [0, , 1 GR 1O

en [1, , ] LR 0 ¢ 100
en [1, , 1 LR 1 0 =20
en [1, , 1 LR 2 0 =20

clearw
set pixsize 8

set w_starty 100
set w_startx 100
draw 0

set w_starty 140
runen 1

cpbuf

draw 1

set w_starty 160
runen 1

cpbuf

set w_starty 180
exeCc one_cycle

set w_starty 200
exec one_cycle

e Wy

LT

~

LT

wy

set user variables for
photoreceptor nodes

set user variables for
feedback nodes

set function pointers of nodes

initialize photoreceptor registers
for exponential decay

set the weights for feedback links

clear the graphics display
set drawing scale

draw input image

set the window position
simulate one cycle and
display result

continue simulation and display

This file also refers to a script files "load_hr_image". This file will be dependent on

the size of the network. This file is of the form:

buf [0, ,
buf [0, .,

:1] 96
2:] 160

enter input intensity into
input area of the buffer

Finally, to run the simulation, invoke SFINX and simply issue the command exec

hr.sfinx.
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Appendix VIII: Sample Function Array (FA) Simulation

This section describes a SFINX simulation of a pedagogical network using
Function Arrays. The network is a simple feedforward network which performs a 2-
dimensional convolution on an image.

The code below is a general convolution node function, where the size of the
convolution mask may be dynamically set. As usual, the initializing function sets the global
parameters, such as input and output buffer layers. In this implementation, when the user
variable "convolve_wfile" is set, its value is used to open an external file which contains
the description of the rectangular convolution mask. The first two integers of this file
defines the y and x length of the mask. Following these integers, (y length) times (x length)
floating point numbers are read in as the weights in row-major (or y-major) order.

If the user variable "convolve_wfile" is not set, then the built-in default mask is
used. Note that the dimensions of the mask size must be odd in order to insure that the
center of the kernel! is well defined.

#include <stdio.h>
#include "“struct.h"
#include "extern.h"
#include <math.h>

#define MAX M (64) /* define maximum mask size  */

static

int input_layer, /* input output layers */
output_layer,
bug_flag, /* flag to indicate error */
ylen, /* for size of the mask */
xlen;

static

double mask [MAX_M] [MAX M]; /* mask matrix */

/* default mask */
static

int def_ylen = 3,
def_ xlen = 3;

static
double def mask([3][3] = {
-1.0, -1.0, -1.0,
-1.0, 8.0, -t.0,
-1.0, -1.0, -1.0
bi
/% R
void ifafn_conv() /* mmss=== */
l* S sms s s=ssssssssssssssoo===ssse=s=== */
{
int i, 32
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char buffer{l128};
char fname([128];

/* define input laver */
input_layer = get_uvar_val("convolve input", buffer) ?
atoi (buffer) : 0:

/* define output layer */
output_layer = get_uvar val("convolve output", buffer) ?
atoi(buffer) : 1;

bug flag = FALSE;
/* see if weights are defined */

/* in an external file. */
if (!get_uvar_ val("convolve_wfile", fname}) {

/* use default mask * /
strepy (Ename, "™);
ylen = def ylen;
xlen = def xlen;

for (1 = 0; i < ylen; i++)
for (j = 0; 3 < xlen; j++)
mask{i] [j] = def mask([i](3]:

/* read weights from file */
} else if (!readweights{fname)) {
printf ("convolve: error in reading file (%s).\n",
fname) ;
bug_flag = TRUE;

if (!get_uvar_val("convolve_debug", buffer))
return;

printf ("convolve: in{%d) out(%d) wfile(%s) bug(%s)\n",
input_layer, output_layer, fname,
bug_flag ? "ON" : "OFF");

if (bug flaqg)
return;

printf ("MASK y(%d) x(%d):\n\n", vlen, xlen);
for (1 = 0; 1 < ylen; i++) {
for (J = 0; 3 < xlen; j++) |
printf("%106.3f ", mask[i]l[j]):
}
printf ("\n");
}
printf ("\n™);
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/* */
static

int readweights (fname) /* === */
/* */

char *fname;

{
int i, j:
FILE *fp = fopen(fname, "r"):;

if ('fp) |
printf{"convolve: cannot open file (%s).\n",
fname) ;
return FALSE;
}
/* read the size of the mask */
fscanf {fp, "%d4d %d4d", &ylen, &xlen):

if ((ylen >= MAX M) || (xlen >= MAX M)) |
printf ("convolve: vlen(%d) and xlen(%d) %s %d.\n",
vlen, xlen,
"must be less than", MAX M);
return FALSE;

}

if ({(ylen < 1) || (xlen < 1)) {
printf{"convolve: ylen(%d) and xlen(%d) %s.\n",
yvlen, xlen,
"must be greater than zero"):;
return FALSE;
}

if (!(ylen % 2) || !(xlen % 2)) |{
printf ("convolve: ylen(%d) and xlen(%d) %s.\n",
ylen, xlen,
"must be odd numbers™);
return FALSE;
}
/* read the mask */
for (1 = 0; 1 <€ ylen; i++) ({
for (3 = 0; J < xlen; j++) {
if (fscanf(fp,"%1f", mask([i]+]) == EOF) {
printf{"convolve: %s.\n",
"premature EOQOF");
return FALSE;

}
}
return TRUE;

/* === === * 7
void fafn conv{idz, idy, idx) /* ============= */
/ * === =E==s==s===s=s==Se=msSss=a===== oraromem K /

int idz, idy, idx;
{
int X, ¥7
double tot = 0.0;

-30.



int xwidth xlen /2,
ywidth = ylen /2;

/* if error occured, do nothing */
if (bug_flag)
return;
/* check if node position is */
/* out of boundry */
/* if yes, just return zero. */
if ((idx < =xwidth) || ({Max_X-idx) <= xwidth) ||
(idy < ywidth) || ((Max_Y-idy) <= ywidth)) {
Buffer (output_ layer, idy, idx) = 0;:
return;
}
/* compute the weighted sum */

for (y = -ywidth; y <= ywidth; y++)
for (x = —-xwidth; x <= xwidth; x++)
tot += mask[y+ywidth] [x+xwidth] *
Buffer (input_layer, idy+y, idx+x);

/* if REG_TP is int or short, */
/* then return value should be */
/* rounded. */
#ifdef S_REG
Buffer (output layer, idy, idx) = tot + 0.5:
#else '
#ifdef I_REG
Buffer (output_layer, idy, idx) = tot + 0.5;
#else
Buffer (output layer, idy, idx) = tot:
#endif
#endif

}

Note that the node function checks for the boundry condition in terms of the image
location. The simulation may run significantly faster if this portion of the code is
eliminated. To do so, the user must ensure that this function is not called with an illegal idy
and idx parameter. This can be acheived by properly setting the environment variables
fa_x0, set fa_y0, set fa_xx and set fa_yy when using runlfa command. When
using runfa, the buffer layer used for node function must be set to 0 for illegal boundry
positions,

Once the above function is linked into the SFINX simulator, then the following
script file can be used to simulate the convolution network. This script file uses graphics
commands; therefore, those systems without the graphics module must first comment out
the graphics commands.

setu convolve_input "0" ; define input layer

setu convolve_output "1¥ ; define output layer
setu convolve_wfile "mask" ; define weight file

setu convolve debug 7 turn debug mode ON

setu
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buf [0, :15, :15] 64 ; enter input image
buf [0, :15, 16:] 96
buf [0, 16:, 16:] 128
buf (¢, 16:, :15]1 160

clearw ; clear display window
set pixsize 4 ;! set drawing size

set w_starty 200 ;! position display window
set w_startx 100

draw 0 ; draw the input image
set fa x0 0 .+ define node tesselation
set fa _y0 0

set fa_xx 30
set fa_yy 30
get fa_incx 2
set fa_incy 2

runlfa convolve ; simulate network

set minp val -256 ; adjust drawing parameter
set maxp wval 256

set w_startx 400 ; reposition window

draw 1 ; draw result

The above script file assumes that the buffer size and hence the input image size is
32 by 32. This can be done by invoking the SFINX simulator with the parameters y=32
and x=32. The command runlfa is used to create a ficticious layer of nodes. The
tesselation of the network can be easily modified by adjust the 6 environment variables
associated with the runifa command.
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