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Abstract

The unpredictability of events in an unconstrained environment implies that an autonomous land vehicle
{ALV) must be equipped with robust, ”real-time” perceptual system. To realize such a system means to
program it based on the expectation of future, unconstrained events. Hence, there is a need to understand how
to specify a “real-time general purpose” machine vision (GPV) system that is capable of PERCEIVING and
UNDERSTANDING images in an unconstrained environment.

The research undertaken at the UCLA Machine Perception Laboratory addresses this need by focusing on
two specific issues: 1) functional specification of GPV in the domain of computational neurcscience; the long
term goals for machine vision research as a Joint effort between the neurosciences and computer science; and 2)
G framework for evaluating progress in machine vision. The primary motivation behind our approach is that
the human visnal system is the only existing example of a "general purpose® vision system which uses a neural
computing substrate to complete all necessary visual tasks in "real-time”.

1 Introduction

The long term goal of the machine vision effort is to synthesize a real-time general purpose system that can
perceive and understand images in an unconstrained environment. Our approach towards this goal is through
interdisciplinary research involving artificial intelligence and neuroscience. From the Al perspective, we are using
computational modeling as a domain in which to study fundamental problems of image understanding including
knowledge representation, reasoning, problem solving, image processing and analysis. From the neuroscience per-
spective we are using Al techniques to model and understand visual functions and their computational substrate
as discovered in natural systems.

Even the most optimistic guess leads to the conclusion that it will be a long time before we can fully duplicate
human vision abilities. Therefore, our near-term goal is to better understand the meaning of general purpose and
to define a functional block diagram of a GPV system. Since we assume the process to be evolutionary, we expect
that our initial definition of ”general purposeness” will improve with future refinements.

The goal of this paper is to cutline our vision of GPV with emphasis focused on five specific problems: 1)
definition of ”general purpose” vision in terms of a kernel of visual tasks that underlies all visually guided human
behavior, 2) breaking down tasks into routines and algorithms, 3) mapping routines and task to specific functional
modules as constrained by information from neuroscience, 4) specifying connectivity between modules, 5) synthesize
tasks computed by modules in terms of neural structures.



1.1 Interdisciplinary approach to computer vision

In the past, vision research has been carried out disjointly by various disciplines including the neurosciences,
psychology, optics, computer science, and electrical engineering. Recently, attempts have been made to combine
knowledge from these disparate fields. For example, Kosslyn (1,2] and Shwartz’s [3] approach to the investigation
of visual processes at the very high level, combines cognitive psychology, neuropsychology, and aspects of computer
science. In his view, each effort has advantages and disadvantages, but the integration of these approaches provides
an opportunity to use a particular field’s strengths while perhaps circumventing another’s weaknesses. His theory
attempts to mimic the mental events that occur when humans generate and use mental images without detailed
consideration of underlying neuronal mechanisms or the reality of the images. The main claim is that brain
imaging functions are divided into two classes: knowledge structures {active and long term memories) and processes
(IMAGE, PICTURE, PUT, FIND, etc.). Active memory maintains the image being operated on, while long term
memory maintains visual information in terms of images along with nonvisual properties of the images (a hierarchical
description of objects). Processes operate on these structures to generate, transform, or inspect mental images.
This aspect of human image understanding, involves processes of imagining objects and scenes from memoeory. Our
primary interest is in the phenomenon of visual recognition which can be defined as the ability to extract from the
2D retinal input, all meaningfull patterns of light, and to interpret them as representation of objects, scenes and
their properties

Marr [4] offers another example of elucidating, potentialy useful principles for machine vision by constructing
computational models of some low-level visual functions of biological systems. His first work in the area of vision
was an attempt to develop theory based on neurophysiology of the retina [5]. Despite some wrong conclusions
about physiology the approach was to use neural structures to constrain the mathematical model. However in
his later work he switched to viewing perception as an information processing problem where algorithms must be
invented before attempting to understand neurcnal structure.

Our approach incorporates elements of both, early stages of visual processing as weil as some cognitive aspects of
vision. We want to enumerate all visual tasks as high-level processes that comprise the phenomenon of unconstrained
perception and we want to specify the resulting functional modules in terms of underlying neuronal structures that
obey rules of connectivity and interactions.

There are many ways to synthesize models of brain functions. One approach, based on mathematical meth-
ods tries to understand from the mathematical view point the capabilities of neural networks, that might have
no correspondence in biclogical systems. Another way of theorizing about the brain function is exemplified by
artificial intelligence. This is a top-down approach, where hypothesized brain functions are simulated as "intelli-
gent behavior” in the form of a computer program without reference to any underlying neural mechanism. QOur
approach is different from above two methods in that our neural net models of specific brain functions adheres to
current physiological and psychophysical data. Although the model is not identical in details to the reality, we
can learn a lot from achieving functional equivalence [6]. For example, computationally, there are two aspect of
segmentation: 1)physical and geometric constraints of the world and 2)the specification of the computing substrate.
The constraints must be discovered and posed in some mathematical formalism in order to be solved. However,
the selection of the formalisms is constrained itself by the underlying computing architecture. In this sense our
approach is different from the one popularized by Marr [4] where he advocates algorithmic approach to vision;
global brain phenomena, captured by psychology need only to be model by mathematical formalisms, and once in
this form they can be computed by any substrate. We believe that mathematics constrained by the specifics of
neural structures leads to heuristic solutions that are neither mathematically elegant nor computationally optimal.

To simplify the simulation of some of the brain functions we reduce our modeling to static processes. Since neural
events are dynamic the best modeling approach is to use differential equations. This gives maximal information
when the dynamic system is away from equilibrium. Omitting the time component can significantly degrade our
understanding of the computation performed by the neural structure. However, many problems in early vision can
be initially analysed in static form. Because our models are expressed in terms of specific neural architectures we
can characterize our approach as mostly bottom-up. The key principle here is that given the behavior of components
and how they are interconnected, it should be possible by simulation to study and to specify a global behavior of



the system. Following general rules about local connectivity it is possible to achieve the emergence of order out
of seemingly chaotic organization [7]. One benefit of this top-down approach is that by explicitelly specifying the
modeling paradigm we are forced to address many issues that would otherwise be neglected. By studying computer
simulations of the model, we can predict neural phenomena of interest to neurophysiologists and we can investigate
how faithfully the model generates emergent global functions that are analogous to psychophysical data. This will
help to extract most usefull principle for synthesizing computer vision,

[t is conceivable that complexity of the neural structure in the human perceptual function does not have the
same meaning as in machine perception. Namely, biological vision system might use a heuristic solution in the form
of structural additions to genetically inherited architectures which are not decomposable into simpler computing
units. Furthermore, it appears that complete reliance on the neurophysiology of visien when specifying GPV is
subject to the basic “FUNCTION FROM STRUCTURE” problem of neurosciences, namely how to relate the
neuronal computing substrate to the function that it performs. Considering that the brain consists of billions
of neurons, each with perhaps 1000 to 10000 synapses, arranged into varying, task dependent architectures, it is
doubtfull that neurosciences will be able to study in deterministic manner every synapse. Therefore, modelling
studies by computer simulations seem to be all the more significant and perhaps the only reasonable approach to
the problem.

Can we synthesize a general purpose machine vision system without taking advantage of knowledge transfer
from psychology or neurophysiology of vision? Slow progress of the past thirty years suggests that it would be an
extremely difficult undertaking. Which aspect of biological knowledge would be most usefull? Phenomenological
description of visual processes at the global level as offered by psychology or detailed outline of local neural
architectures as described by neurophysiology, or both? One argument posed by psychology (Hochberg [8]) is that
machine vision systems should not be designed to emulate human vision, but it would help if machines knew how
people see; they should not suffer from visual inconsistencies due to depth reversals, illusions, or apparent motion,
The implication is that such illusions represent unwanted byproducts of a very complex and ”general purpose”
system. However, consider the role played by illusory (subjective) contours when we recognize an object presented
as an incomplete figure; illusory contours aid us in completing the missing data and in fact neurons have been
found that specialize in detecting subjective contours {9]. This implies that our ability to perceive illusory contours
is not just a result of visual inconsistencies, but rather a purposeful feature of the system, designed to aid in our
perception of the environment.

Another implication of Hochberg’s viewpoint is that we should keep developing vision systems specifically
tailored to handle the particular tasks. In general, it is virtually impossible to apply these highly specialized
systems to new tasks without major redesign. In the past thirty years, this approach has resulted in many excellent
dedicated imaging systems but it did not provide much usefull knowledge on how to build a more robust vision
system; knowing details of an insect vision specialized for detecting ultraviolet radiation in navigation tasks might
not help much in understanding problems of higher level vision in human system.

1.2 A new proposal for a GPV machine implies ability to evaluate existing systems

The current state of affairs in computer vision research is analogous to the "catch-22” situation. There are many
different vision systems, realized or proposed that aspire to become a GPV’s, However, the definition of "general
purposeness” is lacking; there are no guidelines enumerating all visual tasks that GPV must be able to perform.
In other words, we are missing the complete list of goals for GPV. In absence of such definition it is very difficult
to derive common metrics for evaluation of the various systems. And without evaluation it is difficult to propose
new, improved and more general systems. To define generality we need to evaluate current systems and to evaluate
them we need to have a common definition of generality, hence catch-22.

Every existing machine vision systems has been designed for a specific purpose. This means that they can
not perform the same perceptual or categorization tasks. Consequently, evaluating their performance based on
a fixed set of input images is almost impossible. It does not make much sense to evaluate vision systems using
such techniques as figure-of-merits (FOM) [10]; FOM derived from weighted combinations of measures such as



speed, reliability, and accuracy, are not likely to help in deciding which visual tasks are important or generic. After
all, using a FOM to compare a system designed to locate three types of industrial parts in a highly constrained
environment with another system designed to locate a camouflaged target in an unconstrained environment is
meaningless. Such measures might be useful in the image processing domain where for example convolving an
image with some kernel is a well defined procedure, but in vision the result of using FOM for general evaluation
would most likely be misleading. Therefore, one of our research goals is to enumerate and categorize all visual tasks
that a GPV system must be able to perform. This might lead to a framework for evaluating progress in machine
vision systems, useful not so much to judge other systems, but rather to discover what each system has proposed
and where to ditect future efforts.

The remainder of this report begins with a cursory review of fifteen machine vision systems developed during
the last decade in order to elucidate possible categories along which machine vision systems may be evaluated.
This analysis is also intended to search for common, fundamental computational principles used by the different
systems. We would like to endow our general vision system with these samne principles. In the following section
we attempt to justify the use of the human visual systemn as a model for GPVS. Next, we discuss the problem of
comparing the visual performance of humans and machines, and which visual tasks can be used to measure the
obvious gap. The report concludes with an outline of a proposed general purpose machine vision system derived
from integrated analysis of current data in neurosciences.

2 Review of Selected Systems

In an attempt to elucidate principles comprising the definition of a "general purpose” system we first analyzed
fifteen systems built during the last fifteen years (Table 1). We have based our analysis on five dimensions: (1)
image attributes; (2) perceptual primitives; (3) knowledge base; {4) object representation; and (5) control strategy.
For the most part, we tried to use only systems that have either been proposed and partially realized or completely
built.

Most of the systems use one or two image attributes such as edges and perhaps color. Some of them use higher-
level attributes such as texture while a few of the systems use motion. Image attributes can be defined as the most
basic elements of pictorial representation which carry nonredundant information. By independent information we
mean for example that color information can not be obtained from texture or motion. It is clear that a general
purpose machine vision system requires the exploitation of all of the image attributes (Table 1).

Perceptual primitives represent the second comparison dimension. A working definition of a perceptual primitive
might be the abstraction of image attributes into higher level data structures. This abstraction may employ the
use of Gestalt laws of organization [11] such as closure, similarity, proximity, collinearity, common fate, etc. Gestalt
effects can be considered as mechanisms that group regions based on the idea of uniformity.

Analyzed systems use very simplistic perceptual primitives which display very little abstraction and are inti-
mately related to the original image attributes. Two of the most often used primitives are lines and region, directly
related to contours. Most often, image attributes are simply integrated into new data structures. None of the
systems uses more abstract perceptual primitives such as illusory contours.

A third way of looking at these systems is to examine the type of knowledge they use and the way the knowledge
is represented and manipulated. In all of the systems, knowledge is constrained to a very narrow application domain.
It is not immediately obvious how to compile all of the knowledge that relates to unconstrained environments.

We also examined the use and representation of objects. All of the systems use objects almost directly related to
the very lowest levels of image representation. It would seem that some more complex (symbolic) representations,
abstracted from combinations of those primitives would be more beneficial. All of the available representational
schemes such as graphs, frames, production rules, 3D CAD models, and generalized cones are used in various
systems. For example, Hanson and Riseman’s VISIONS schema structure provide a rich symbolic mechanism for
the hierarchical representation of objects. In their method an object could range from being an urban schema,



Principal Image Perceptual | Knowledge | Object | Represen- Control Implemen-
Investigators (Year) Attributes | Primitives Base tation Strategy tation
Ballard, Brown, & Feldman (1978) | 1, 2 1,2 1 1,2 1 1 2b
Hanson & Riseman {1578) 3a, 2,3 1, 2 1 1,2 1d 1,2 1
Nagao & Matsuyama {1978) 1 2 1 1 la 1,2 1
Rubin (1978) 7,3 2 1 3 s 1,2 3
Shirai (1978) 1 1, 1a 1 4 4 1,2 2
Ohta (1980) 3a,2,3 2 1 1 la 1,2 1a
Brooks (1981) 1 2a, 1b 1 5 2 1,2 4
Nevatia & Price (1982) 1, 3a, 3 1,2 1,2 1,2 1b 1 3
Shneier, Lumia, & Kent (1982} 3a,1,3 1,1c 1 5a 5 1a,2a,2b,3 4
Bolles, Hourand, & Hannah (1983} | 1 2 1,3 5a 5 1,2 4
Levine & Nagzif (1984) 3a,3b,3c,2 1,2,2b 1 1,2 3 1a,2a 4
Herman & Kanade (1984) 1,1a,4 le,2¢c,1d 1 8 1c 2 3
McKeown {1985) 2,34 1,2 1 3a T 1,2 1
Tsotsos (1985) 1,5 1f 1 4a 2 1a,2a,2b,3 5
Davis & Kushner (1986) 1,1a,3,5 1,2 1 3b é 1a,2b,3,2a 2a

I'mage attributes: Edges = 1; Point = 1a; Texture = 2; Color = 3: Intensity = 3a; Hue = 3b; Saturation = 3c; Depth = 4; Motion = 5

Perceptual primitives: Line Segments = 1; Curves = la; Ribbons = 1b; Corners = 1c; Junctions = 1d; Verticies = le; Markers = 1f
Regions = 2; Ellipses = 2a; Areas = 2b; Faces = 2¢;

Knowledge base: Dornain constrained = 1; Context constrained = 2; Location constrained = 3

Object: Regions = 1; Lines = 2; 3D map = 3; Airports = 3a; Roads = 3b; Feature values = 4; Heart marker = 4a; Generalized cones
=5; Parts = 5a; 3D wireframe = 6

Object representation: Constraints graph = 1; Relational graph = 1a: Schematic network =1b; Structure graph = 1c; Schemas = 1d;
Frames = 2; Rules = 3; Procedures =4; 3D CAD model = 5; ALV terrain model = 6; MAPS database = 7

Control strategy: Top-down = 1; Data driven control = 1a; Bottom-up = 2; Goal driven control = 2a; Model driven control = 2b;
Temporal driven control = 3

Control implementation: Rule based system = 1; Production system = 1a: Monitor program = 2; Vision executive = 2a; User executive
program = 2b; Procedural = 3; Prediction system = 4; Frames = 5 .

Table 1: Comparison of Systems Along Image Attribute, Perceptual Primitives, Knowledge Base Dimensions,
Object and its Representation and Control.

which is composed of lower level subschemas such as house and road schemas, to simply a car schema. This type
of rich symbolic image data structures is surely required for the development of a general purpose vision system,
although the implementation may vary significantly.

Finally, we looked at the control strategy that is used to process the data within those systems, All of the
systems use objects almost directly related to the very lowest levels of image representation. In most cases both,
bottom-up and top-down strategies are used but only a few systems have incorporated temporal aspects of the
environment or goal-driven strategies to process the information.

It is extremely difficult to derive detailed conclusions from our preliminary comparisons of existing systems. In
the absence of a common definition and specification for all these systems, and the lack of a good definition for
general purpose vision, comparisons between these specialized systems can be cursory at best. Clearly, these systems
do not use all of the available information from the early stages of processing. The knowledge domain in all of the
systems is highly constrained. The high-level vision components in all examined systems are rather weak and very
much ad hoc. All of the high-level processes are derived from established artificial intelligence concepts (see [12])
that have been borrowed from natural language processing research. It is not clear that processes underlying the
higher levels of vision are identical to processes involved in language understanding; most probably this is not the
case. Although all systems are (implicitely or explicitely) able to perform object recognition task, the evaluation
of this performance by the inventors is inconsistent or completely lacking. Some systems can operate only on
presegmented images of one object only. Others can “interpret” multiple objects but only if certain conditions
are satisfied. These might include: well controlled illumination of the scene, object placed in particular position,



object models developed independently of visual input, etc. In general, the task of object recognition is not defined
and only very simple object are considered. For the most part, temporal aspects of the sensory environment have
not been addressed by these systems. Finally, although every system starts out with the goal to build a general
purpose vision system, either explicitly or by extension, for example see [13], little attempt was made to define the
meaning of a general purpose system, much less the development of such a system. Perhaps this difficulty lies in
the fact that we do not now what a general vision system is and we have never attempted to define strictly what
is vision.

None of the machine vision systems presented in the previous section has the capability to perceive and un-
derstand images in an unconstrained environment. It is conceivable that many problems could be resolved if we
had a specification for a general purpose system. Attempts to build systems using physical laws such as the laws
governing image formation, have proven to be intractable. Another promising approach to ill-posed vision problems
is to reformulate them into problems which either have already been solved or for which a solution can be discov-
ered. The reformulation can be realized only through the introduction of numerous constraints, thereby making
the problem more tractable. However, the constraints often change the problem beyond its original specification.
While this approach has met with some success in low level visual tasks such as edge detection [14], its application
to higher level visual tasks, such as shape from shading [15)] has failed. ‘

All of the realized systems are unique, special case systems that work well in their dedicated application domain.
Hence, it is very difficult or impossible to have a meaningful comparison of a system against its competitors or
different approaches (see also [16]. It is even difficult to decide if all of the domains that have been selected are the
right ones, or even significant ones, or how they contribute to our overall desire to understand and implement a
general purpose system. In this sense the review of existing machine vision vision system did not help in explaining
what general purpose vision is. However, it is expected that machine vision systems under development for operation
in unconstrained environments, such as the autonomous land vehicle research effort, will contribute significantly to
understanding these problems.

3 Human Vision as a Model of General Purpose Vision

Our analysis of 15 existing machine vision systems did not help to better understand the meaning of the term general
purpose. The list of the manifest properties of a general purpose system has never been compiled in the past. Which
characteristics of perception would qualify the system for successfull operation in an unconstrained environment?
Clearly, it must be able to handle a wide assortment of visual tasks, some of which we have considered in previous
sections. There are no rigorous studies that attempt to enumerate and define all visual tasks. Consequently this is
one of our geals in this project.

What can be gained from the analysis of the human visual system? Clearly, it serves as an existence proof of
a general purpose vision system, capable of adapting to the requirements posed by the unconstrained environment
in which we live. Computer vision literature is full of examples where the limits for machine vision performance
are modeled after the limits of human vision [16]. By analyzing the human visual system, the only vision system
that works, we can have a better understanding of what vision is and what are the critical visual tasks that must
be performed by a general purpose system. Along this line, the analysis of visual deficits in the human visual
system may shed some light on the functional organization and the neural mechanisms underlying the performance
of particular visual tasks.

3.0.1 Human visual tasks

We assume that the human perceiver represents general purpose vision system for which we are able to enumerate
most of the visual tasks. Some of these tasks might be very difficult for current implementation of machine vision
systems, others might be trivial. We pose that in human perception, there exists a kernel of visual tasks, a subset
of which underlies most of the visually guided behavior in an unconstrained environment. Having this list of visual
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Figure 2: Sample Question from the Surface Development Test

functions would simplify our task to develop specifications of a “general” purpose machine vision.

One compilation of visual tasks has been developed by the Education Testing Service (ETS) for the measurement
of childhood cognitive development. The underlying mechanisms which permit human vision to succeed in such
tasks are not completely understood. This is an area of active investigation within neuropsychology and cognitive
psychology. Knowing these mechanisms would perhaps allow us to define some of the underlying primitive visual
functions that could be transferred to machine vision. The problem is that we need to select tasks that allow
meaningful transfer from human performance to machine vision.

The Hidden Figures Test CF-1 [17], is an example of a visual task that requires the participant to find a given
shape in some complex picture (the shape undergoes no rotation or size changes when placed in the picture, see
Figure 1). This appears difficult for us because of the cluttered background. Using perhaps very high level processes
of visual cognition, we can usually solve this visual task after starring at it for while. In the process of looking at
it we probable employ such subtasks a boundary tracking, symmetry finding, matching etc. A computer program,
on the other hand, using very low-level processes such as template match on a run-length encoded image could
complete the task in a fraction of a second. Therefore, a comparison between human and machine performance
based on this task entails computation at different levels of processing space and is not be very revealing .

Another example test is called the Surface Development Test VZ-3 [17]. In this case, the task is to fit a given
surface together into a line drawing representation of the three dimensional object (Figure 2). Some tasks of this
type are easy while others are very difficult and might involve very different problems of selecting and representing
models, manipulating internal models of complex three dimensional objects, and finally matching the models against
the data. Some of these problems, such as geometric reasoning, pose a great challenge to Al in general although
they are relatively routine for humanas.

Another task to consider is the Gestalt Completion Test CS-1 [17] which might be closely related to segmentation.
In this task, a subject is given incomplete data such as that presented in Figure 3. The subject must determine
what the data represents. Problems posed by this test include how to match the incomplete data against a set of
models that one has acquired over time. There are many difficult questions to address. What is a model? How
are models represented? How much data is needed? How are models matched against incomplete data? How do
we implement something like illusory contours that would help in the performance of this type of task? Do we
first complete the data by filling in the illusory contours? Biological vision has evolved specialized neurons that
sense illusory contours after proper context has been analyzed. On the other hand computer vision has yet to
demonstrate an algorithm that even can detect the possibility of a contour completion in absence of data.
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Figure 3: Relating a Computational Task with its Computational Substrate

We have begun developing a prototype of a visual task sourcebook. The selected visual tasks range in difficulty
and in their association with low-level or high-level visual processing. Although the sourcebook is far from complete,
1t does provide a more extensive set of visual tasks which should conceivably be handled by a general purpose ma-
chine vision system. An incomplete listing of visual task includes: object recognition, selective attention, emergent
feature configuration, divided attention, visually guided manipulation (pick and place; assembly), visual inspection
(surface; missing parts; relative dimension; sorting; labeling), visually guided navigation (road following, obsta-
cle avoidance, landmark recognition, cross-country navigation), figure-ground discrimination, spatial relationships
between shapes and parts of shapes, inside-outside relationship, Gestalt groupings (good continuity, proximity,
similarity, symmetry, common faith, closure), expectation based on context, boundary tracking, context analysis,
visual counting, model building - intermediate representation, illusory contour detection, and others. Having this
list of visual task required of future GPV we would like to relate them to specific modules the could support such
computation.

3.1 From visual task to neuronal architecture

How can we judge that a selected visual task is fundamental to human visual performance? The answer to
this question requires the combination of knowledge from two subfields of neuroscience. We need to combine
our knowledge of functional neuroanatomy and physiology of the visual system with clinical neuropsychology. The
former provides bottom-up, detailed information about the anatomy and function of neural architectures underlying
a particular visual task. The latter on the other hand generates a top-down, global relationship between various
aspects of the visual task and the coarse structures of the visual system.

All of these tasks at some lower level derive from primitive image attributes that include motion, texture, color,
stereo and perhaps edges and lightness. Specific information about depth for example, can be extracted from a
combination of stereo, motion and lightness or shading. Motion in depth could be obtained from combining motion,
edges and stereo. Lightness, color, depth and motion can teil us about light sources. In this way we should be able
to enumerate all information at different levels that is necessary to support a high level visual task such as obstacle
avoidance. This exercise will also specify, in part, the connectivity between different modules, More significantly
this approach might also eliminate the need for computationally expenssive approaches such as representing visual
functions as mathematically ill-posed problems [18].

To illustrate the relationship between a visual task and its computational substrate, consider the visual task of
Gestalt closure (see Figure 3). We know from studying human vision that a visual deficit in illusory contours, which
may be related to the pathology of area V2, is manifested by a reduced or limited performance in Gestalt closure



Visual Deficit Symptom Damage
Autopagnosia {19] Impaired recognition of body parts Parneta] lobe
Simultanagnosia [20] Only one aspect of an ebject can be appreciated Left hemisphere of Occipital

at a time, e.g. color or shape Lobe

Balint's Syndrome [20] Inability to visually localize objects in space Occipital Lobe

Object Mirror Reversals [21] Use common objects upside down or backwards Area 3% - Parietal-Temporal-
Occipital Association Cortex

Visuoimaginal Constructional Unable to draw a simple object without a model Area 37 - Temporal Posterior

Apraxia [22] Cortex

Charcot-Wilbrand Syndrome [19] | Unable to revisualize images Posterior Temporal Cortex

Anton’s Syndrome [19] Agnosia where a patient denies that they are bind | Area 7 - Panietal Lobe

Gersimann’s Syndrome [19] Disability to calculate, right-left disorientation Area 39 - Parietal Temporal
Association Cortex

Prosopagnosia [20,23,24] Failure to recognize faces and complex objects Bilateral Occipital association
areas

Table 2: Visual Deficits and Corresponding Lesions

tasks. Inability to do Gestalt closure leads to other failures in visual performance related to boundary finding,
Because V2 is considered to be early on in the hierarchy of visual processes this suggests that the Gestalt closure
visual task seems fundamental to many other visual functions. The ability to perform tasks based on Gestalt
closure, translates into the development of a much more general machine vision system.

The end result of our preliminary research is a list of functions that underly the performance of selected visual
tasks. Table 2 presents neuropsychological results that aid us in relating functions and tasks to specific anatomical
structures. The association of visual tasks with their possible neuronal substrate provides us with a methodology for
synthesizing a framework for a general purpose machine vision system. Our map of the functional areas of the brain
is a combination of the results of many studies (25,26,27,28,29,30]. However, since the functional neurcanatomy
of the Macaque monkey is not easily interpreted within the realm of computer science, we simplified this task by
constructing functional diagrams like the one presented in Figure 4. Interestingly, there are multiple hierarchies of
processing stages and the connectivity among various modules, although nonrandom, allows for direct vertical and
horizontal interactions between processing stages which are seemingly distant in function. This is unlike the clear,
single channel, sequential structures of GPV proposed within Computer Vision where only immediately neighboring
stages withing the hierarchy can communicate with each other [13].

4 Elements of GPV

It is impossible to completely specify GPV at the present time. Hence, we will be concerned only with some
elements of GPV which seem to require more attention if progress is to be made. To simplify our consideration
we can make certain ”common sense” assumptions about a natural environment. For example, matter is cohesive,
therefore, adjacent regions stick together in space and time. Most of the object that we manipulate and interact
with are solid. As such one object can occupy only one point in space at one time. Many objects are symmetrical
and they are usnally attached (stand) to some surface. In comnparison to background, objects are small and sur-
face properties are similar within the bounds of the object. To simplify the problem further we can make some
reasonable assumptions about a GPV. Multiple views of the object or a scene are available during the model for-
mation (learning) stage. Vision consists of various complex functions including recognition, model formation, scene
reconstruction, visual task planning, and others. We will emphasize visual recognition which simplfies the problem
by presupposing the existence of memories and world model. Human visual system is able to recognize objects
of various positions/orientations and to describe highly complex scenes depicted in black and white photographs.
This suggests that all of the information necessary for recognition can be encoded in only one variable - intensity



Figure 4: Functional Block Diagram of the Visual System

changes. For computer vision, this is one of the most compelling justification for using human vision as a model of
GPV.,

Our overall philosophical approach to visual recognition problem is that the system consists of hierarchically
arranged modules that incorporate at least three different theories of shape recognition: feature detectors, template
matching and symbolic manipulation. Our approach thus separates the process of visual recognition into partially
overlapping but distinct stages. For example, the lowest levels will always produce boundaries regardless of the
higher processes that recognize boundaries as contours of the shape. Depending on the motivation, some of the
boundaries may be considered to be irrelevant. It is our intent not to assume the availability of the input without
specifying and generating the output from the preceeding stage and to account for every processing step in terms
of an explanation based on neural architectures,

Simple visual functions such as edge detection and textural segmentation [31,32], color and motion processing are
carried out by the early stages. Complex pattern analysis, perceptual organization, short term memory, attention,
spatial perception, context analysis and the formation of visual categories are carried out at the intermediate
levels. The highest levels are concerned with generating goals, specifying tasks, planning their execution, long-
term memory, multisensory interpretation, etc. The whole system is loosely modeled on the two-channel flow of
information from the retina to higher centers. The occipito-temporal path deals with identification of shape - what
is object? The other, occipito-parietal visual path is concerned with spatial perception - where is object?

At the lowest level we have feature detectors [33,34] that produce responses to all image attributes. For example,
V1 contains cells responsible for binocular convergence, color, spatial frequency filtering, pattern specific adaptation,
orientation and direction selectivity. Here, firing of a cell or a group of cells is a neural representation of some
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t of the scene. A
parts of shapes, At this level spatial relationships among features are fixed by the location of detectors within
neural networks. Some functions computed at this level include color [35], lightness [36,37]and size invariance (38],
optical flow, some texture, stereo and motion segmentation, data abstraction as well as illusory contours,

The output of the earlier stages results in flew representations in the form of perceptual primitives or their
combinations that resemble parts of shape. The abstractions of berceptual primitives out of image attributes
involves Gestalt laws of grouping. Gestalt effects are perhaps preattentjve parallel mechanisms that develop through
interactions with environment very early on in life. At the core of all Gestalt laws is a process of grouping, the
result of which may lead to emergence of a new configuration of existing or new shape features. In general, any
Gestalt grouping law implies a low level process without the need for attention. On the other hand perceptual
assembly without grouping requires selective attention for examination [39]. It is possible that some of the grouping
mechanisms extend into higher levels.

The next several levels in our hierarchy can be losely compared to the template theory [40] of shape recognition.
Simply, there exist memories of prior retinal stimulation patterns and they can be used as templates. Superimposing
a memory (template) on the incoming pattern of activity generated by feature detectors or their Gestalt groupings
would result in a match in the presence of the expected shape. Problems due to subjective contours, partial matches
due to changes in distance etc., have been already addressed at the lower levels. For templates to be useful, they
must be manipulated in 3p in order to account for missing surfaces of rotated 3D objects that are projected onto 2D
retina. The information as to which direction to rotate can be precomputed from the response of feature detectors
f41). Also, before tempiates are applied some context information must be analyzed [42] and the figure-ground
segregation must be completed to some degree. These two functions are closely related and are in part responsible
for the so called image segmentation problem which remains unsaclved,

Finally, at the highest levels of the recognition hierarchy, we assume the existence of a symbolic scene representa-
tion that is the brecursor of a verbal description. The A community has successfully championed a localist symbolic
approach for high-leve] visual reasoning and problem solving. Our symbolic representation differs from traditional
Al by being distributed across the dynamic patterns of neuraj activity. In other words, visual information from
the real world is modeled in the excitation patterns coming from widely distributed, lower-level neural pathways,
Using the convergent properties of self-organizing, adaptable neural architectures, symbols are distilled from the
incoming patterned activity to produce a structural and functional description of the scene. The components of
this symbolic Tepresentation come from lower levels and include categories of templates or short-term memories of
perceived objects, expressed in a behavioral context,. Long term memory is the repository of distributed symbols
measuring meaningful perceptions, each a stored Tepresentation of the actjvities corresponding to the patterned
activity of lower modules, Operationally, the highest level uses symbols residing as Prior memory patterns to mod-
ulate the activity of neural structures and set up expectations of incoming data. Behavioral motivation regulates
the combining of distributed memory primitives to assemble complex expectations and procedures in support of
higher-level visual tasks such as goal directed scanning, sorting, and occluded object recognition. In this approach,
perception is the byproduct of matching the current state of neural structures to an expectation [43],

4.1 Control and hypothesis formation

In case of a goal-directed visual task, the Processing within GPV could begin with the acquisition of the model of the
expected object from the world knowledge base. Model-directed control refines initial hypothesis and some instance
of it perhaps reconfigures the Sensory system in order to find image-based evidence for the objects. Continuous
refinement of hypotheses can be used to make predictions about the next data sample. As new sensory data js
acquired, expectancies (current best guess) can be updated [44). The expectancies derived from 3D models can be
used to generate predictions about 2D projections of objects which in turn predict the expected image features,
Most of the “high-level” processes are couched in Al terminology because the heurosciences can not at the present
time specify the location or the architectures of neural structures underlying hypothesis formation or other aspects
of model-driven control, Inferotemporal cortex cells, known to display longer response latencies are perhaps involved
in hypothesis formation [42].
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Since the system consists of many knowledge sources which specialize in searching/interpreting objects and
events in environment, we need a mechanism that allows the integration of their outputs into a coherent solution.
Various forms of “winner take all” networks have been proposed. Symbol-based approaches to vision use blackboard
mechanisms [45,46] to form hypotheses about potential objects and or relationship between them. In biological
systems such notions might be based on feedback loops from a higher level to a lower level, although not all
top-down pathways are well traced and understood. One conceivable principle of operation involves the existence
of a feedback loop between function that is computed and the neural structure/architecture that computes this
function. Expectation from higher levels act as templates which modulate feedback loops thus filtering out only
relevant information.

Not all of the control issues pertain only to top-down information. Some control can be resolved locally by
specifying rules of interactions between neuronal elements. Since the sensory system encodes relative information,
the signaling is done as "above” or "below” an average level. For a system to avoid saturattion requires the balancing
of inhibitory (OFF) and excitatory (ON) channels. This dichotomy can also provide a phase information. The
redundancy of information is also dictated by the inability of a neuron to generate negative spikes however, this
argument does not apply to graded potential cells. Other local control strategies include time-limited *winner-
take-all” networks, automatic gain control via lateral inhibitory pathways, and others.

4.2 Model manipulation and matching

Matching models with incoming and possibly incomplete image data entails the ability to manipulate object models.
GPV must possess mechanisms with which to maintain and manipulate hierarchical descriptions of object models.
The object models have been represented using semantic networks with nodes representing objects and links
representing constraint relations [47]. This approach is repeatedly used in many of the existing systems and it has
an intuitively obvious mapping onto neural networks. Although, it is not clear whether semantic nets are the best
representation for visual information, especially at the early and middle levels of processing, symbolic nodes could
perhaps be implemented as small neural networks. Even in this case some of the nodes (neural nets) must be able
to represent various aspects of objects in different contexts.

Matching models to data has been attempted in the past using rule-based systems. This is perhaps appropriate
at higher levels of processing. Neural networks can be set up as a rule-based system where connectivity represents
a prediction graph depicting expected objects or their representation in terms of some primitives. Incoming data
then activates all neuronal feature detectors, but those that have been primed by the signal from the prediction
graph generate highest level of activities. Similar notion has been introduced as “spreading activation” models.
Highest activities in turn signify the correct matches. Thus matching is reduced to looking for the maximum
cross section between activities in neuronal subgraphs representing image data and predicted object features. It is
conceivable that some variation of this type of matching mechanism operates in a distributed fashion throughout
all the levels of visual structure. In other words, most of the matching is done perhaps on the local scale using
feedback pathways and error detection implemented by networks of local, graded-potential neurons. This would
mean that in our functional model there is no identifiable module responsible for matching but some abstratcted
results of all matches are recognized as compatible with expectancies derived from the long term memory.

A distributed matching mechanism would help to avoid many difficulties encountered by traditional AI when
attempting to solve the problems of recognition, hypothesis formation, goal seeking, belief maintenance, etc. In all
of these problems final interpretation of the scene depends on matching to establish correspondence between various
representations. The goodness of a match depends on number of features, labels and attributes that are available
for matching. Since we lack a strict definition of a shape, object or a scene, exhaustive search of matching features
can lead to combinatorial explosion. Hence, in traditional Al, to speed up the computation of correspondence,
matching tends to be based on very few key features. In general, it has not been possible to enumerate all such
features for all objects. However, using local matching within the distributed neural network, it could be possible
to discover these features by abstracting from more primitive attributes. The solution to the category formation
problem might be crucial in this task.
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4.3 Adaptation, learning and categorization

Our visual experience is not just the perception of things but rather the perception of categorical meanings such as
cars, birds, flowers etc. Some aspect of recognition perhaps begin at the "basic level category” [48] when a prototype
is selected from initial instances of data. In general the problem of prototypes remains unsolved (but see Grossberg
[49]. Simply, we dont understand which critical features of shape or objects constitute prototypes. Hence, the
difficulty in data-driven selection of prototypes that would represent categories of objects. Another problem with
forming categories is that even if we knew which features/parts should be selected first we still dont know how
should they be organized? Some of these selections are performed by feature detectors and other architectural
structures of the neural network. In terms of neural structures, categorization is a process of adaptive selection of
critical features or patterns of activities which are then stored in short term memory. These patterns of activities
are then recognized by matching them with expectancies. Familiar entities result in successful matches while novel
entities must be formed (via learning) into new categories of knowledge so that new experiences (i.e., new objects)
can be retained for future use.

GPV should have the ability to continually adapt its behavior through its interactions with the environment;
we cannot synthesize a system with a priori knowledge of all possible scenarios that it may encounter. This implies
the ability to learn. Consequently, perception can not just simply be a filtering of incoming data but must be an
active process of continuously matching incoming data to internally represented expectations. This implies that
GPV must be at times data-driven to permit instant response in certain situations, while at other times goal-driven
to permit the execution of requested tasks. ALVEN [50] is an example of a system where the search through its
knowledge base composed of object classes and relationships between them can be: goal-directed; model-directed;
and/or data-directed. In other words, a GPV has to be able to select a prototype from input data, as well as
descend down the categorical hierarchy under top-down control to instantiate the expected perceptual data.

Most of the existing neural models of learning require external teacher. These include Rumelhart et al ”Back-
propagation”, Widrow’s " Adaline” ,and Fukushima’s "Neocognitron”. However, biological systems, especially dur-
ing early stages of development, can perceive patterns (see section on Shape Perception) before they are capable of
recognizing or communicating with a teacher. Hence, self-organization must be one of the principal rules of learning
and adaptation [51,52,7,53,54,55]. The self-organization and self-regulation are well recognized properties of the
brain that have not been captured in any form by any existing machine vision system. The mechanisms underlying
such ability derive from plasticity of the neural nets which in absence of external teacher must involve some internal
controls such as adaptive error control, sensitization based on neighborhood activities, relative instead of absolute
encoding, redundancy of identical information in various representations and Hebbian rules of synaptic interactions.
The organizing principles are probably identical throughout the neocortex, which displays almost identical coarse
architecture from one functional module to another. The flexibility of the cortex to develop feature detectors in
Iesponse to incoming sensory information delivered to any specific part of the brain during some critical period has
been confirmed by Sur et al [56].

How could an existing neural structure respond to novel patterns? Network plasticity, feedback and short term
memory seem to underly this ability in biological systems. Patterns of activities generated by a hierarchy of feature
detectors can activate dedicated neural structures (AIT or PIT) in a specific manner. Some of the neurons in
these structures would respond in general to the presented input and because of inhibitory links they would inhibit
other neurons over the duration of their refractory period. After this time other sets of neuron could respond
to the persisting input and so on. This implies that general, bottom-up rules on interconnectivity and synaptic
interactions lead to modes of activities in the net that represent the input pattern. These rules could include, final
number of synapses per neuron, local memory through long term potentiation, coincidence of synaptic inputs from
different neurons, gating some synaptic pathways by signals from long-term memories (expectancies), exponential
decay of neuronal potential, time-limited *winner takes all” balance between inhibitory and excitatory inputs and
others. In our scheme, over the course of stimulus presentation, various spatial sets of neurons would respond to
the input. This spatio-temporal pattern of activities could be at the basis of categorization of the inputs. The final
result would be that a network learned to categorize and input pattern by having a set of neurons that consistently
display higher activity to this pattern.
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Another way to imagine the process of categorization is to picture the pattern of activities in a sheet of neurons.
In absence of input the activity is on the average unifrom. In presence of an input many neurons initially respond
in a non-unique fashion. This would cause spatial, rounded-hill like bumps in the activity profile of the sheet.
Because of various synaptic mechanism, in time, some of these bumps would disappear while in other places more
pronounced, sharp-peak profiles would appear. The initial rounded bumps represent general categorization while
later specific peaks represent detail recognition of input. This is consistent with the notion that context analysis
must preceed final recognition [42).

Multiple presentations of the same input could lead to architectural changes in the net and perhaps short term
memory. Thus few presentation of the input could lead to very detailed categorization that is temporarily stored
in the form of structural changes of the net [57,58]. A neural mechanism that could support the requirement of
memorizing input, presented only a few times in association with other neural activites is long term potentiation.
A network of neurons displaying LTP is also the most probable structure underlying categorization {59]. LTP is a
cooperative mechanism that shows persistent increase in synaptic efficacy. LTP can be induced rapidly and it is
known to outlast other forms of synaptic enhancement. LTP can be found in many areas of the brain, it can last for
weeks [60], appears to be the result of increased synaptic contacts [61], and can take place only when presynaptic
activities are associated with postsynaptic depolarization [62].

Finally, a GPV must be able to learn and categorize object based on limited number of presentation (58]. This
suggests that GPV must be able to analyze context, in parallel with or even perhaps before the final categorization
of the input stimulus. It does not seem that a computation of a context is a trivial problem and possibly it requires
computing resources comparable to the ones needed for the analysis of the target. This problem of maintaining
correspondence between the data and its modelbecomes clear when considering recognition and categorization of a
moving object; besides the possible change in the appearance of an object due to rotation, translation, foreshortening
etc., its background from one frame to another might also undergo a drastic change. For these reasons it seems
desirable to have a match based on a few invariant, critical features. However, since we cant enumerate all such
critical features under all possible conditions, perhaps some form of adaptive learning is involved in selection of
category prototypes.

4.4 Context analysis

One of the principles of processing is that visual system seems to incorporate a primitive but general function
that permits the active investigation of a scene’s topological organization before the analysis of details. When
visual conditions are poor, figure-ground discrimination is easier to perform than the extraction of detailed shape
information. This is consistent with the view that perception of details is easier in presence of context. As such,
context must be computed before the attention to details {42]. The context might include orientation of the figure
which in turn affects the perception of its 3-D surfaces. In tasks that depend on texture discrimination local
processes might be used to find discontinuities [32] but to complete the object’s boundaries the system seems to
utilize global configuration clues; detailed featural analysis of a shape takes place after top-down processes uncover
the global configuration of a pattern. Why is this global structure so important? It seems that this information
must be available to preattentive processes so that selective attention may be used in decisions such as where
to position the next saccade, when the system must attend to and at least coarsely analyze the image structure
outside of the fovea in order to decide the future foveal fixation points. It is possible that some global analysis
of the image, including perhaps figure-ground discrimination is performed by the low-resolution, phylogenetically
older, pulvinar-striate cortex path [63]. The geniculo-striate pathway, phylogenetically more recent, is dedicated
to high-resolution analysis of the shape, once the target has been selected. This implies that perceptual features
are hierarchically organized and processed into objects beginning with figure-ground discrimination that perhaps
drives selective attention. This is followed by the analysis boundary information and finally details existing inside
of the boundaries.

Perception must involve processes such as discrimination, identification, matching; all performed in some mo-
tivational context. The context derives from correlates of expectations and resulting actions. It is not difficult
to imagine that one part of the perceptual system must be dedicated to internal representation of the external
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world. This consists of known cortical areas including V1 through V5, where features corresponding to instances
of external world are adaptively organized into some representations. This part of the perceptual system receives
bottom-up sensory input and is continuously under top-down control of processes concerned with goals and plans
set by the system. A difficult task in analysing perceptual system is discovering what kind of neural structures
would support the processes of planning and goal setting. In our approach we subscribe to the idea that some part
of the visual system is involved in continuous model building activities of the external world (64]. The activities
of planning, task specification and goal setting are part of these processes. Contrary to the traditional practice in
the AI community, it is probably incorrect to arbitrarily divide the phenomenon of vision into high-level cognitive
processes that can be investigated independently of early stages of visual processing. Meaningfull perception at the
higher level implies proper architectures and activities at the lower levels. Higher-levels dont deal with external
world the way we see it but they operate on a representation of this world, derived from patterns of activities in
some specific neural structures of earlier stages. And the modeling and interpretation that higher levels perform is
realized in terms of manipulating activities and connectivity patterns of lower-levels neural nets.

4.5 Attention

At the highest levels, the cooperation between the task specifier, goal generator and planner results in the moti-
vationally selected design of routines necessary for the completion of a task. This ”vision executive” [65] controls
the focus of attention mechanism for sensory data processing and attempts to verify and extend the sensor-based
model of the environment (the scene model). The planner is also responsible for strategy selection, i.e. the ordering
of focus of attention rules and monitoring performance of the lower-level processes, such as segmentation. The
physiology of these very “high-level” functions of planing and specifying goals and tasks is not known except for
the possibility that the frontal cortex might be involved. Attention on the other hand has been analyzed in more
detail.

One top down control process underlying attention operates by feedback pathways from higher levels where
signal changes are gated by adjusting properties/shape of the receptive fields at lower level neurons (66]. A general
principle of operation is that in a free running mode, the system always has some expectancy about the environment.
This is one input to the mechanism that controls focus of attention. Any changes in the environment that are not
predicted by the expected representation must be attended to. The attention mechanism can be focused on a small
region of the environment without loosing data. Simply our world is highly structured, events are highly localized
in time and therefore a few “well chosen™ (by adaptive learning) samples of the environment can provide all of the
information necessary to maintain the match with the predicted model.

The attention mechanism could operate according to two functional principles: it must actively reduce the
irrelevant information and it must purposelly direct the focus of attention to next important sample. This is
done by changing the resolution of the incomming representation. Minimal resolution that is sufficient for a
given task reduces the amount of information to be analyzed. Another method useful in reducing the amount of
the processing is the use of variable diameter window of analysis; not all of the scene needs to be viewed at all
times. Abstraction in the form of gestalt groupings is an additional measure that further minimizes the amount
of data. Finally, attentional mechanisms do not work directly on the raw image but rather on the higher ievel
representations. These might include intrinsic images, perceptual primitives, perhaps short-term memories as well
as some integrated representations that include information from other sensory modalities.

Variable diameter analysis window principle is based on the comparison of size of the viewed object size versus
the size of selective attention field [67,68]. Analogous to a variable diameter spotlight beam, focus of attention
can be narrowed to view only one object with very high resolution or to view the whole field at low resolution.
A small object can be viewed by the combination of appropriate receptive fields. Active exploration (scanning)
is activated only when size of an object exceeds the size of the high-resolution area at the center of gaze. During
active exploration information about shape could come from the centers which control eye motion by integrating
information about successive foveations ("where I was”}. However, it is possible to redirect visual attention while
eyes remain stationary. These attentional mechanisms for analysis for visual patterns are possible in the context
of different strategies such as: 1) discriminatory learning of pattern cues, 2)context driven selection of cues, and
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3)selective attention to cues regardless of background or visual space. First two strategies have been localized to
temporal lobe while the third seems to be associated with parietal neurons [69]. Tt is conceivable that there are
some contributions due to a secondary, phylogenetically older pathway for processing form that involves Superior
Colliculus to the Pulvinar to Inferotemporal Cortex,

The focus of attention module manages the task of selecting the particular visual target or data against which
the knowledge is to be matched, and determines the ordering of knowledge rules for various regions of analysis.
The selection of targets must be done in a proper coordinate system with respect to the spatial representation of
the environment. The GPV should be able to perceive an object in environmental coordinates. This means that
in some situations a GPV on a mobile platform must be able to discount image motion due to retina-motion or
self-motion. Hence, a subsystem is needed that translates the information from retinal coordinates to egocentric
coordinates and finally into environmental coordinates. A mechanism of selective attention based on target motion
or spatial position seems to be closely related to the physical characteristics of the stimulus. These functions are
computed by a dedicated module that atiends to extrapersonal” space. Selective attention based on the content
of the stimulus (foveal attention) seems to be a more difficult problem that requires at least partial prior solution
to shape recognition and context analysis.

How should a battery of high resolution sensors be directed to a target and how is it decided what is important
to look at? One strategy is to look only at changes in time and space. Static information is redundant. For this
reason peripheral vision must be able to detect temporal changes and send information about spatial changes to
processing centers that could foveate on the change. It is also important that attention be paid to the most critical
events first. Peripheral motion in fronto-parallel plane is less critical then object motion toward the viewer. The
top-down control should operate on a preselected model, using the current hypothesis about the scene to direct the
next area to view. The strategy here is to initially perform coarse processing and if warranted, follow it up with
fine analysis. Thus the foveation decision is in large part a function of bottom-up, low resolution information from
peripheral vision that is supplemented by high level information from the planning system in conjunction with
short term memory of previous foveations.

What is the best representation to drive the attention system? It must include only relevant information;
it cannot be low level image attributes. The information should, for the most part, be created by bottom-up
processes, that enhance the areas of some average or minimal complexity. These areas should attract attention,
while areas of extreme complexity should be omited. Additionally, features that "stick out” should be attended
to, such as yellow banana in a bowl full of blueberries. Features that are completely novel and dont match any
existing models or appear to be out of context, such as seal sunbathing in the middle of Sahara desert should
have priority of attentional mechanism. Under some conditions such as while concentrating on the task at hand,
irrelevant peripheral information should be suppressed by higher centers so as not to distract from the central
problem. This is perhaps controlled by the Limbic system which modulates the general level of arousal. Another
suppressive strategy is habituation which allows a system to discount repeated events while simultaneously drawing
attention to rare occurences.

Many models of attention have been studied in the past [68,70,71] and our model no doubt incorporates various
features from these proposal. However our most important, distinguishing feature is consistency with the neurop-
physiological findings that context must be processed before attention to details. It is proposed that at any time,
the surrounding environment is represented as a spatial map at some higher level(s) in parietal cortex. This map
is continucusly updated with information about past foveations and saccades. These, in turn, are associated with
objects (scene) details, as represented in the association areas of InferoTemporal Cortex. The details about shapes,
etc. in the IT are integrated with data available in intrinsic images or feature maps of Barlow (see also [72]. Thus,
the attention mechanism, driven by input from either short or long term memory, specifies the next location on
the spatial map to process and only then are details available from the specific intrinsic maps. Integration of these
features and their subseequent matching to some expectancies in long term memory represents the final step of
perception (recognition). Of course not all visual tasks require attention. Preattentive processes which produce
intrinsic maps are performed in parallel and are not affected strongly by motivation or behavior. Visual attention
on the other hand is a top-down process that influences how sensory information is to be processed by determining
the view/target priorities. At minimum, this requires short term memory, and cells have been found in the IT that
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remember behaviorally significant sensory information [42].

4.6 Space perception

From the very start, the visual system seems to be divided into two specialized and parallel channels of processing
information peripheral vision, which computes localization of object and provides information that directs the
fovea to the target and the foveal system which is concerned with shape recognition. The flow of information is not
continuous. There are saccades (see [73]), lasting about 100 ms during which the eye executes the movement to the
next target and the information flow to higher centers is suppressed. The target is then viewed for about 2000msec.
So that new portion of the visual space is sampled every 300msec. What directs the eye to any particular point in
space and how are these samples put together to recreate a percept of an object? These questions remain to be
answered but we do know that the sequence of scanning a shape is often very similar for different observers [74].
It is conceivable that each glance produces a partial description of an object in the short-term memory and only
after a while can all parts be put together into a unified picture. This would support the idea that objects are
classified into categories, implemented as spatio-temporal activities of neural nets [58]. The sequence of samples are
integrated perhaps by using information about previous saccades and fixations, the topology of which are preserved
in a spatial map maintained within the parietal cortex. Markers from such a map represent information like "where
was 7, which in many instances may be sufficient to recover shape.

Parietal cortex involvement in space perception includes: spatial relations between objects, movement in space,
spatial representation of the environment and command/control of all motor activity (for review see [75]). Neu-
rons in the Inferior Parietal Lobe are active during, looking at, detecting, reaching for, a motivationally relevant
object [76]. The posterior parietal area has "motivational” inputs from the Limbic areas, sensory inputs from the
association cortex and pulvinar and attentional inputs from the reticular formation that regulates cortical acti-
vation according to sleep/awake states. The middle parietal cortex is involved in the integration of multisensory
information and memory as well as some verbal processes related to description of spatial relations. The Frontal
Eye Fields and Striatum is crucial for visual scanning, visual orienting, exploration with head/eye system and
reaching for objects. Area 8 of the frontal lobe is involved in saccadic eye movements. Combinations of Limbic
and Sensory inputs permit motivational significance to be associated with sensory events as for example, increased
neural activity to danger when being pursued. Finally, the addition of reticular input may permit regulation of
vigilance, Thus the distribution of attention is regulated by three representations of extrapersonal space: First,
the sensory map located in posterior parietal cortex, second, the motor map for scanning, orienting and exploring
located in FEF and finally, the motivational map in cingulate cortex.

There are three sources of information about depth in space: binocularity, stationary cues and motion. Binocular
disparity perspective has limited depth range and the reference point is the point of fixation. Motion perspective
comes from image motion due to the eye/head system and object motion. Eye movement is important for searching
of the scene, despite the fact that the same point can be scanned bydifferent combinations of receptive fields. Head
movement, on the other hand, adds motion perspective information; objects closer to the retina move across faster
than objects further away. Stationary cues about perspective come from sources such as textural segmentation
where surfaces have a definite texture gradient, as for example ground receeding into distance. This information
about perspective is of paramount importance because aimost all projections on the retina are subject to perspective
transformation. However, if we are viewing a flat photograph, we can still perceive the perspective although motion
information and the binocular inputs dont tell us anything about perspective. In this case, all of the information
about depth comes from local cues, derived from the arrangements of objects/surfaces in the picture. Since the
system can compute correspondence from motion information, it is possible that binocular vision is a recent neural
structure for very precise computation of point by point correlation between two images and only within very
limited range of depth.

One of the principal problems in space perception is to compute motion/location of objects in their proper
spatial relationship to the rest of the scene. The visual system seems able to detect point to point correlation
between images to give local apparent motion. There is also evidence for another strategy which avoids pixel
by pixel correlation; distinguishing features such as boundaries are used to capture pixels belonging to otherwise
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featureless regions [77]. The motion aftereffects can be made contingent on color, intensity, pattern, etc. Instead of
processing absolute values the system operates on relative values by utilizing various forms of simultaneous and/or
successive contrasts. The former operates on qualities that can be compared /differentiated in space at one point
in time; enhance edges, compress dynamic range of the stimuli, remove redundancies, encode efficiently. The later
operates in the temporal domain and can be demonstrated through various aftereffects.

A depth analysis module included in our GPV system, has inputs from the primitive Feature Processing Module,
from the Motion Form Analysis and Illusory Contours and it can compute range information by integrating input
sources from ” Depth from X” (X = texture, motion, shading, occlusion) and binocular vision, It is not clear how the
information from various sources can be best, integrated but some abvious strategies are available from examples of
neural interactions in other areas of the nervous system. Noisy and weak signals among many neurons/modules can
be agonistically averaged thus eliminating random noise and enhancing signal. Weaker signals such as depth from
shading can be inhibited by a strong signal from the stereo neurons. Ambiguity about depth between conflicting
signals from other sources such as motion and texture can be resolved locally by information from occlusion and Jor
stereo. Synaptic transmission carrying a signal about depth from, for example, texture could be potentiated by
similar depth information from other source like motion.

4.7 Shape perception - perceptual organization and segmentation

The ability to recognize, classify and identify objects from projections on the retina is a process that develops over
time and it involves learning and structural changes to neural architectures. For example, one month old infants
prefer to look at grating patterns, and this preference changes after two months to bulls eye pattern [78]. With time,
more and more complex patterns are prefered, which implies increasing ability to process details with higher spatial
{requencies. The principles behind the development of mechanisms that underly perceptual organization, i.e. the
organization into meaningful segments of an image are not well understood but it appears that most of the Gestalt
principles are fully developed within one year after birth. For example proximity (neighboring element most-likely
represent the same surface} develops at seven month of age, common fate (neighboring elements that move in
the same direction belong to the same rigid(?) body) is present at one month, subjective contour perception is
detectable at four months[79] and symmetry (grouping elements that are symmetrical) is detectable at five months
[80]. This suggests that perceptual organization is not innate but must be learned through interactions with the
environment. Similar conclusion can be extended to generalization. For example, the ability to perceive constant
shape of varying size develops within the first year of life (81]. Furthermore, this implies that transformation from
the viewer center coordinates to an object centered representation, is a necessary prerequisite to discount object
changes as the viewer moves around the environment.

Object recognition is one of the fundamental tasks in perception and yet we lack an acceptable definition of an
object. Various proposals for representing objects are abundant however [16,12]. Most representations developed
within Computer Vision are not general enough to allow easy description of sculpted surfaces. One exception is so
called Surface Boundry Representation (SBR) [12] which conveys the information about a 3D surface in the form
of triangle faced polyhedrons. More complex techniques using quadrics and higher order polynomials have also
been developed. It is conceivable that some variation of this representation would be well suited for neural network
architecture.

It appears that we easily categorize perceived things although it is not clear how categories are formed. One
intuitively obvious approach is to define members of a category by their parts and their spatial relationships. How
parts are joined together to form a notion of an object? This problem is not just image segmentation resulting
in different, coherent regions of the scene. Grouping parts into objects must be somehow guided by meaningful
relationships between parts that may or may not be distinct regions of an image. It is possible that this process
is partially guided by expectations. In this case recognition of one part of an object could direct the attention to
another expected and meaningful part. Another strategy is to complete the analysis of the context which perhaps
contains information about the regularities or constraints of our world. These in turn could direct the grouping of
parts into meaningful objects.
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Knowledge about the physiology of shape perception is limited to early stages of visual processing up to V1. At
higher levels our knowledge becomes more general. For example, we know in general that lesions of upper parts of
V2 and V3 degrades pattern discrimination and visual acuity, while lesions in lower part of these structures affects
recognition of patterns and objects. However, we lack the detailed knowledge of receptive fields and synaptic
interactions at this level. We know that at the level of V4 and V5 retinotopic mapping is encoded in the cell
response. All higher level areas are specialized for nontopographic processing of separate attributes of the image
{82]. Some form of linking based on similarity of information in texture, color, motion, collineraity, disparity,
figure/ground and others must also take place in nontopographic representation. The underlying principles of
linking are not well understood. Linking is important in the segmentation process because often, specific intrinsic
images might not have enough information to be interpretable.

The fundamental problem of segmentation is that it cannot be considered as only a bottom-up process or as
only top-down process, Segmentation seems to involve both strategies, continuously interacting and penetrating
each other to different depths, depending on the task. Can local information be sufficient for segmentation and
interpretation? 1t is probably sufficient for partially guiding segmentation. To have the interpretation we need
also to include global information. The difficulty is that except for trivial cases, it is not clear what makes up the
global information is and how to compute it. For example, segmentation based on the similarity of features within
a region can be completed to a degree using only local information. However, it is not completely clear how similar
the regions must be. Considering camouflage, similarity is not equivalent to identity. Hence, the question of which
similarity parameters are most important in any specific situation might be guided by some global information.

Robust image segmentation will also reduce potential errors in higher level processes like planing and match-
ing. Image segmentation can be based on cooperative/competitive relaxation algorithms [83] applied to all image
attributes as well as to integrated representations of intrinsic images. The segmentation process must take ad-
vantage of all available top-down strategies based on applicable knowledge. Some initial plans can be generated
by bottom-up, coarse region segmentation. Such a plan could produce a set of large areas within each intrinsic
image that become refined by integration with information from different image attributes. Eventually, a top-down
process, initiated by the focus of attention module, segments the scene into background and target objects which
can be examined for detailed structure in the context of large patches that might have already been interpreted as
background.

4.8 Constancies and generalization

Why are constancies important? All of the listed problem can be simplified if the system has the ability to deal
with color, motion, shape, size, and lightness constancies. In some respect we can view constancy mechanisms
as precursor of generalization. For example light and color constancy helps to generalize across variations of
illuminants. Size constancy allows to generalize across varying shape sizes. Having constancy built into neural
network reduces the complexity of object recognition and minimizes storage requirement. The implication of this is
that the process of categorization is simplified. It is conceivable that this form of generalization applies also to other
attributes of shapes such as motion and texture. The concept of constancy also applies to shape but at a higher
functional level. Thus we are able to generalize across the birds or vehicles despite their often drastic differences
in details. [t is conceivable that at this level the constancy might apply to spatial relationships among parts of the
category members. In all of these cases the underlying concept is that constancy is a form of generalization that
discounts the variation in the object caused by environmental changes. It seems intuitively clear how to implement
some constancies with neural elements for example lightness [84] and color constqancy [35]. The basic principle here
is to enhance and compare variation that are above or below the average of the neighborhood. Shape constancy
however, is a difficult problem that might require cooperation among many complex distributed processes, including
memory in order to produce the final percept,
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Figure 5: Proposed Framework for a General Purpose Machine Vision System

5 Conclusions

The goal of developing a general purpose machine vision system has been decomposed into the series of subgoals.
The analysis of existing computer vision systems elucidated not only the lack of truly robust machine vision, but
also the need for a good working definition of a general purpose vision system. This analysis also demonstrated the
need for collaboration between the neurosciences, computer science, and psychology. We have looked at the human
visual system for hints regarding the underlying mechanisms necessary for the development of general purpose
vision. A collection of visual tasks was generated and whenever possible, their corresponding neuronal substrates
were noted. Although this list is far from complete, it serves to illustrate the tremendous scope of problems that a
general purpose vision system must not only address but also solve.

Starting with existing data from functional neurcanatomy, we synthesized a prototype framework for a general
purpose vision system. This framework was then used to synthesize a more elaborate functional block diagram for
a general purpose machine vision system (see Figure 5). Two strongly shaded areas are emphasized because we
know more about them from neurophysiology and we also have some understanding of how to model their func-
tionality in computer science. However, other areas are less well known. For example, categorization, constancy,
matcher/recognition, and short-term memory, are perhaps equivalent to visual areas like the posterior inferotem-
poral cortex (PIT) and the anterior inferotemporal cortex (AIT). A difficulty that remains in this attempt to
synthesize a general purpose machine vision system is to determine where to place the homunculus that will finally
decide what is being seen. Currently, our homunculus sits in the boxes labeled goal generator, task specification,
and planner. These functions have received more attention in Al studies and very little is known about their phys-
iology. Some of their aspects may be analogous to parts of the frontal cortex and the limbic system. Our model
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is evolutionary and will improve with the collection of new experimental data from the simulations in conjunction
with a continuous analysis of neuroscience literature.

Having a specification for a general purpose vision system will hopefully permit us to develop successful eval-
uation methods that will perhaps be used as standards or guidelines for proposing new machine vision systems.
It is clear that such a development of such specifications will require collaborative efforts ameong neurophysiology,
neuropsychology, computer science and cognitive psychology.
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