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1 Introduction

As autonomous mobile robots maneuver through unknown terrain under unpredictable
and complicated illumination condition, their visual sensory requirements must be much
more sophisticated than the visual sensory of industrial robots. For example, a cloud
blocking the sun will cast a shadow over the scenery. The changes in illumination can be
many orders of magnitude variations in intensity and these changes happen in seconds.
Currently, vision systems used for manufacturing environment are limited in their ability
to operate over 1 or 2 orders of magnitude of light intensity. Often in manufacturing
environments, huge amount of money is spent on the light structure to ensure that
the scene is evenly illuminated and within the operating range of the imaging sensors.
However, in the natural environments it is impossible to control the lighting condition
which is changing continuously. By contrast, humans can function in normal environment
without a priori knowledge of the lighting condition of their surroundings and in general
are able to perceive almost the same scene in daylight as at night. Vertebrate retina is
able to operate over changing lighting intensity of 10 orders of magnitude. This ability
of maintaining high sensitivity regardless of local or global ambient light level can be
viewed as part of the lightness constancy function.

1.1 What is lightness constancy ?

Lightness constancy is often refered to as brightness constancy. Strictly speaking, the
two are different phenomena. Brightness refers to labeling surfaces as dim or bright
and as such, it involves high level visual functions which use memory and attentive
process. For example, we perceive a piece of white paper in a sunlight as bright and in a
shadow as dim . On the other hand, lightness constancy allows us to consistently assign
the label white to the same piece of paper regardless of the amount of ambient light.
Unfortunately, often the two terms are used interchangeably in the literature.

In analyzing the problem of perception, Helmholtz described the brightness constancy
phenomenon as “...A grey sheet of paper exposed to sunlight may look brighter than a
white sheet in the shade; and yet the former looks grey and the latter white, simply
because we know very well that if the white paper were in the sunlight, it would be
much brighter than the grey paper which happens to be there at the time. ... Colors
have their greatest significance for us insofar as they are properties of bodies and can be
used as marks of identification of bodies. Hence in our observations with the sense of
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vision we always start out by forming a judgment about the colors of bodies, eliminating
the differences of illumination by which a body is revealed to us” [9]. This suggests
that the human visual system does not measure brightness of an object, but the surface
reflectance of the object, which is invariant under different illumination conditions. Some
learning process might be involved in the determination of the color or brightness of
a surface. Hering also thought that experience plays an important role in color or
brightness labeling, “...all objects that are already known to us from experience or that
we regard as familiar by their color, we see through the spectacles of memory color,
and on that account quite differently from the way we would otherwise see them ”
(10]. The Gestalt psychologists, like Kohler, Gibson, and Wallach subscribe to the
theory that human visual systems perceive an invariant property of objects [13,4,23].
Wallach suggested that luminance ratio is an invariant attribute of any scene. When
the overall level of illumination on an array of surfaces is changed, the luminance of a
particular surface is indeed altered, but since all luminances are altered proportionately,
the luminance ratio of any one surface relative to any other in the total array remains
constant.

The luminance ratios are the relative reflectances of the ob jects surfaces. Every
surface has a reflectance, or the albedo coefficient. It is the reflectance of a surface that
conveys the information about that surface. However, our eyes cannot measure this
reflectance directly. The surfaces have to be illuminated and the reflected light carries
the reflectance information about the surface to our eyes. Thus, lightness constancy is
essential for human visual systems to perceive a stable world under different illumination
conditions.

From physics, the light intensity at a point in the image is the product of the re-
flectance at the corresponding object point and the intensity of illumination at that
point, aside from a constant factor that depends on the optical arrangement. The term
lightness is psychophysical correspondence of reflectance. An important distinction be-
tween the two components is that they differ in their spatial distribution. Incident light
intensity or illumination will usually vary smoothly, with no discontinuities, while re-
flectance or lightness will have sharp discontinuities at edges where objects adjoin. The
reflectance is relatively constant between such edges [14].

1.2 How does Biological Vision System A chieve Lightness Con-
stancy?

In terms of physiology, significant aspect of lightness constancy can be explained as a
result of lateral inhibition in retinal cells. In all vertebrates, the retina is constructed
by five basic types of cells [24]. Within the retina, information is carried by major
pathways. The main path starts with photoreceptors (rods and cones) that transduce
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light to electrical signals. Photoreceptors synapse onto bipolar cells which in turn send
their input to ganglion cells. These cells output their signals through the bundle of optic
nerve fibers that connect retina to visual cortex in the brain.

The horizontal cells and amacrine cells provide the lateral pathway for interactions
with the main path. Horizontal cells synapse onto bipolars, photoreceptors and other
horizontal cells. Amacrine cells, another lateral pathway, form synaptic connections with
bipolars, ganglion cells and other amacrine cells. It is known that Necturus (amphibian)
cones have response range of at most 3.5 log units [15]. More recently it was shown that
cones were able to shift their response ranges along the intensity axis when presented
with different levels of surround illuminations [19]. It is this shifting characteristic of the
receptors which resulted in the effective operating intensity domain of the retina to span
over 10 log units. It has been suggested that perhaps horizontal cells modulated the
response range of the receptors to have maximum contrast sensitivity at the prevailing
light conditions {22]. Similar shifting characteristic is also evident in the bipolar cells’
responses [24]. As a result, in the retina the response range of the cells is adjusted to fit
the ambient light intensity. This makes the retina a high contrast, wide operating domain
sensory array that measures relative light intensity. In the process of measuring relative
light intensity, the retina “discounts the illuminant” in real time and thus achieves one
aspect of lightness constancy.

1.3 Current Vision Systems’ Shortcomings

A typical machine vision system uses CCD (CID) camera. The camera basically controls
the amount of light that is coming through and focuses it onto the CCD array. The CCD
array then produces a logarithmic {maybe linear) response proportional to the incoming
light intensity. There are inherent physical limitations of this type of system. First, the
aperture and shutter of a camera control only the global light intensity over the entire
image. In contrast, the vertebrate retina is able to have local light intensity adjustment.
Another limitation of CCD devices is a limited response range which in turn limits the
domain of intensities. Current CCD can only operate in 2 log units and extendible by
one or two log units with the adjustment of aperture and shutter. The biological systems
took care of this by local adjustment of photoreceptor’s operating point. For example,
in a single scene, two areas in bright sunlight and dark shadow may span 3-5 log units
of intensity. - Clearly, ganglion cells which normally span only 0.1 log units of intensity
must be continuously shifted in intensity domain to be incorrespondence with prevailing
ambient light level. Thus, the key difference between biological receptors and CCD is
the ability of biological receptors to have individual biasing points while the CCD must
be biased globally for the entire array of sensors during the time of fabrication.
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2 Computational Algorithms for Achieving Light-
ness Constancy

2.1 Retinex Theory

Using Mondrian image (a random arrangement of rectangular patches of different gray
levels) as a stimulus for psychophysical experiments, Land developed the retinex theory
about color and lightness. The basic assumption is that there are three independent
cone systems, each starting with a set of receptors most sensitive to, respectively, the
long-, middle-, and short-wavelength regions of the visible spectrum. Each system forms
a separate image of the world in terms of lightness that shows a strong correlation
with reflectance within its particular band of wavelengths [14]. Land has pointed out
that changes due to illuminant are on the whole gradual, appearing usually as smooth
illumination gradients, whereas those due to changes in reflectance tend to be sharp.
This important observation forms the basis of Land’s One-Dimensional and Horn’s Two-
Dimensional algorithms for lightness computation.

2.1.1 Land and McCann’s 1-D approach

Land and McCann [14] in their “two square and a happening” experiment discovered
that the change of luminance at the junction between areas both constituted an edge
and also led to the visual difference between the whole two areas. This led them to
rediscover that our visual sensors measure the ratic between any two adjacent points;
Wallach in 1948 had suggested the same ratio principle. In fact, the simple procedure
of taking the ratio between two adjacent points can both detect an edge and eliminate
the effect of nonuniform illumination.

The mathematical model is as follow. For point a, the luminance is I, x R,, where
I; is illumination and R, is the reflectance.. The ratio between two points a and b
then becomes (‘;::ﬁ: . Assuming the illumination changes on two adjacent points are
minimal, i.e. [, equals I, then the ratio of luminance reduces to the ratio for reflectance.
Therefore, in a Mondrian world, regardless of illumination condition, only detectors along
the edges will produce a ratio that is not unity. Land and McCann in their Retinex
algorithm, chose a random path across the Mondrian world along which they compute
relative reflectance of the patches. This is done by multiplying the ratios along the path
and since the ratios within a patch is near unity, the multiplication simplified to products
of edge ratios. However, this model only computes reflectance ratios, a reference must
be chosen so that an unique value can be assigned to each patch in the Mondrian world.

In order to correctly label all patches with respect to some reference value, Land and
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McCann propose to normalize the image function. They assume that the highest value
of lightness corresponds to white. To compute lightness of the Mondrian world they
use a sufficient number of randomly chosen paths across an image to cover all locations
adequately. In summary, the central problem of lightness constancy is to separate the
two components in an image, namely illumination and reflectance. Land invented a
simple method in one dimension by taking ratios of luminance on any two adjacent
points. Since light intensity of an image is a product of illumination and reflectance,
the first step is to take logarithms to convert the product into a sum. The second step
1s differentiation, which is the equivalent of division in continuous case. The results are
sum of the derivatives of the two components. The derivative of illumination should be
a smooth continuous curve, whereas the derivative of reflectance should result in sharp
pulses. These sharp pulses correspond to intensity discontinuities, or edges.

The next step is to filter out the smooth continuocus curve, which is produced by
illumination, using some threshold method. Here, Land and McCann suggested that in
physiological model, synaptic thresholds take care of this problem. What is left after
the thresholding is the derivative of lightness. To obtain the original lightness up to a
constant, an integration is needed. To fully recover the original lightness, a normalization
is needed to take care of the constant introduced by integration. Since the zero spatial
frequency term has been lost in the differentiation, only an approximation of the original
lightness can be reconstructed. A simple scheme of normalization is just to assume that
the highest value of lightness corresponds to white. However, the algorithm would fail if
light sources are present in the field of view. The same is true for fluorescent colors and
specular reflections.

2.1.2 Horn’s 2-D approach

Horn [11] extended the Land and McCann’s one dimensional algorithm to two dimen-
sions. Horn’s approach consists of differentiation, thresholding, and integration. In
differentiation, Horn introduces a two dimensional center-surround form of differentia-
tion operator, namely the Laplacian. Here, the principle of lateral inhibition in biological
system is used in the algorithm. His model starts with

P'(z,y) = 8'(z,y) x r'(z,y) (1)

where p/(z,y) is the luminance at point (z,y) and &' is the illumination and ' the
reflectance. After a log transform on (1), the product becomes a sum.

p(z,y) = s(z,y) + r(z,y) (2)



where

P(zay) = 108(;0'(-'»‘, y))a 3(Is y) = log(s'(:z:, y))! and 7‘(.’3, y) = Iog(rl(z% y)) (3)

Next, a Laplacian operator is applied to equation (2) to perform a 2D differentiation.

Az, ¥) = L(p(z,y)) = L(s(z,y)) + L(r(z,y)) (4)

The derivative of s(z,y) is &~ 0 because the illumination varies smoothly. Therefore,
a threshold operator, T, can be applied to (4)

T(d(z,y)) = T(L(p(=,y))) = L(r(z,y)) (3)

One unresolved problem is the method for selecting the threshold. The same is true
for Land’s one dimensional case. Horn establishes some bounds which are related to the
smallest intensity step between regions in an image, noise of the optical system, and the
spacing of the sensor cells.

e<yg, e>(axh)<, e>3(2)-1/2s (6)

where e is threshold, g = ¢’ min(1, 2—:;) with ¢’ defined as the smallest step in the log
of reflectance in scene, h is the spacing of the sensor cells, m is the radius of the point-
spread function of the optical system, s is the root-mean-square noise amplitude, a is
the largest slope due to illumination gradient. Among these parameters that determines
a threshold value, both ¢’ and a require global comparison in the entire scene. These
parameters are rather arbitrary, but technically reasonable. Finally, the reconstruction
or integration operator, G, is performed to recover the original lightness.

Hz,y) = G(T(L(p(z,y))) = r(a,y) + C (7)

where I(z,y) is the computed lightness and G is a convolution with a Green’s func-
tion. Here, Green’s function is chosen to be an inverse laplacian to a partial differential
equation of the form L(p(z,y)) = d(z,y) inside a bounded region. Again, assigning the
highest numerical value in the integrated output to correspond to white is used as the
normalization scheme.



2.1.3 Blake modified Horn approach

Another shortcoming of Horn's method, as pointed out by Blake [1], is that he did
not have an exact equivalent 2.D algorithm to that of Land’s. Horn made two wrong

E = T(F) (9)

where

TE)=t(| FI x| F| =]\ x \)F) with #(z) = 1 if z>o0. (10)

This threshold scheme serves the same purpose as Horn’s, that is to discard the
lumination gradient. However, Blake does this after the vector field and Horg does it
after the laplacian. Thresholding the gradient field, Blake makes sure that the correct

L(:c,y) = E(:""sy) (11)

where L(x,y) is reflectance with a Neumann boundary condition. The solution to the
Poisson equation can be obtained by iterative convolution in a similar way to Horn’s
method.
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2.1.4 Summary of Retinex Theory Approach and their Major Problems

In summary, Land, Horn and Blake all take very similar approach which involves a
logarithmic transform of intensity, followed by a differentiation plus a threshold, and
reconstruction of reflectance by integration. Two major problems arise in this approach
when applied to real images. One is that the mtegration process only produce a re-
flectance solution up to a constant. How can we recover that constant to get the original
reflectance? ( So far, no good solution has been Proposed.) Another problem js the se-

2.2 Intensity Dependent Model

Intensity Dependent Spatial Summation (IDS) model for the photoreceptors [3] rests
the principle of constant volume. Each receptor gives rise to a nonnegative point-

constant. Hence, the area of the base ( that is, the volume divided by the center height) is
inversely proportional to the input intensity, The Image at the outputs of Photoreceptors
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constant volume models is that because of its inherent nonlinearity it does not obey the
principle of superposition. Thus input intensity 2I and I both produce the same outputs
instead of former output being twice the amplitude of the later one. As a consequence,
the effect of an image on the IDS system is not to change its output but rather to redis-
tribute that output in space. In other words, constant volume model has Zero sensitivity
to spatial frequency zero.

The illumination in natural scenes can vary over as much as 10 log units over the
course of a day. Because of shadows, local illumination variation in a scene can span
more than 3 log units. Currently, no imaging medium can readily accommodate such
wide dynamic range. The usual solutions of using filters or amplifier gain changes to deal
with this problem has two fundamental ob jections. F irst, sensitivity to local illumination
variation, for example those caused by shadows, is compromised because using an iris
or a filter reduces the effective luminance of the entire scene by a common factor, which
can reduce the signal level in shadowed regions down into the range of the system noise.
The other objection is that contrast sensitivity can always be improved by increasing the
quantum catch. Thus any gain-control mechanism that simply enforces a fixed quantum
catch, as the use of an iris or a filter does, is bound to become increasingly inefficient as
the illumination level rises.

The IDS mechanism overcomes these two ob jections by compressing all input inten-
sities into an output range extending from zero up to around twice the value of the
constant point-spread volume. The mechanism made efficient use of every photon. As
the image plane illuminance increases, the extra photons serve to decrease the size of
the spatial-summation area, improving spatial resolution while maintaining a fixed re-
Lability of contrast detection. And this effect occurs locally within a single image, so
that in every region the size of the summation area is matched to the illumination falling
upon objects in that portion of the scene. In another word, the IDS can locally adapt
to illumination variation to improve spatial resolution and contrast detection.

However, one limitation of Cornsweet model is that when the intensity of the input
field is too high, such that the summation area of each receptor is smaller than one
receptor size, the whole system is saturated. This is perfectly all right for Cornsweet
because his model seeks to explain scotopic vision and not photopic vision. In scotopic
vision, operating mainly with rod photoreceptors, spatial summation is needed to im-
prove sensitivity. But in photopic vision, the receptor’s operating range must shift with
the background illumination to preserve contrast sensitivity over wider and higher range
of illumination.
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2.3 Grossberg’s BCS and FCS

Grossberg, Cohen, and Mingolla invented one neural network architecture for form, color,
and brightness perception. Fundamental to this architecture is a principle which they
referred to as boundary-feature tradeoff [2,8,7,5,6]. The principle states that percepts
are synthesized by the integration of two perceptual processes: boundary completion
and featural filling-in. The boundary completion process synthesizes invisible outlines
that corresponds to either “real” or “illusory” boundaries generated by the perceptual
process. The featural filling-in process generates visible featural qualities by spreading
values of brightness and colors. These two parallel processes extract different types of
edge (contour) information from the image. This information is then integrated to form
the final percept.

There are three systems in the model: the Boundary Contour System (BCS): the Fea-
ture Contour System (FCS); and the Object Recognition System (ORS). Two types of
interactions are involved in modeling the form, color, and brightness perception: preat-
tentive interactions from BCS to FCS and attentive interactions between ORS and BCS
and between ORS and FCS. The processing begins with monocular preprocessed signals
(MP) being sent independently to both the BCS and FCS. The BCS pre-attentively
generates coherent boundary structures from these MP signals. These structures are
passed to FCS and ORS for further processing, The ORS, in turn, rapidly sends atten-
tively learned template signals to the BCS. These template signals can modify the pre-
attentively completed boundary structures. The BCS passes these modification along
to FCS. The signals from the BCS organize the FCS into perceptual regions wherein
filling-in of visible brightnesses and colors can occur. This filling-in process is initiated
by signals from the MP stage.

The BCS is triggered by the activation of oriented masks, or elongated receptive
fields, at each position of perceptual space. The output signals from these oriented masks
are sensitive to the orientation and to the amount of contrast, but not the direction of
contrast, at an edge of visual scene. These outputs go through two stages of neighborhood
competition processes to generate discontinuities in edge orientations, end points and
corners. The global oriented cooperation and boundary completion stage then process
the results from the previous stages to form both “real” and “illusory” contours,

The FCS follows a different set of rules for contrast detection than that of BCS. The
process is insensitive to contrast orientation in a scenic edge, but it is sensitive to both the
direction of contrast and the amount of contrast. The reasons being that feature filling-in
involves spatial spreading of featural signals which requires no orientation information:
but computation of relative brightness across a scenic boundary requires keeping track
of which side of the boundary has a larger reflectance. Also, sensitivity to direction of
contrast is needed to determine which side of a color boundary is of what color. It is
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important to point out that FCS’s sensitivity to the amount of contrast removes the
llumination gradients in a scene. This effects of “discounting the illuminant” is based
on the assumption that difference in illumination are small across an edge and therefore,
relative contrast across edges are good estimates of the ob Ject reflectances near the edge.

So far, both of the outputs of the BCS and FCS are edges. A further process is
necessary to recover the featural properties of the scene. Grossberg, et.al., proposed a
featural filling-in mechanism that takes signals from both systems. Grossberg envisions
this mechanism to reside in a syncytium of cells. This is a regular array of intercon-
nected nodes thus allowing for fast and simple propagation of electronic signals between
neighboring cells.

When the feature contour signal activates a node, or compartment, that node rapidly
sends signals activating its neighbors. This spreading mechanism occurs via the “elec-
tronic diffusion” of activity. The rate of diffusion across a compartment is controlled by
a space constant that depends on the electrical properties of the compartment’s interior
and membrane. The boundary contour signals create barriers inhibiting the diffusive
filling-in process from continuing past the boundary contours extracted by the BCS.
The inhibition is implemented by allowing a boundary contour signal to decrease the
diffusion space constant of its target compartment’s membrane.

The passive propagation of of signals as modeled by the syncytium of cells results
in integration process which is faster than Horn's iterative method. This is because
Grossberg’s BCS breaks up an image into many smaller regions which in effect converts
the problem to integration processes of many smaller regions in parallel instead of one
large region. However, the problem of normalization is left unsolved by Grossberg also.
Although, his ORS provides a higher level process that could contain some absolute
reference to fully recover reflectance.

In summary, Grossberg, et. al., suggested an extensive model that involves both low
and high level visual processes to simulate brightness, color, and form perceptions. But
he left out many details in the architecture. An important detail of implementation is
the physical properties of the image sensor. His model only assumes a mathematical
model of a sensor that maps input intensity to output response without putting any
physical constraint on the sensor. In fact, Land and McCann, Horn, and Blake all
ignored these constraints. One crucial physical constraint of image sensor is its dynamic
range. No sensor can have unlimited dynamic range. Besides, there is a dynamic range
and response sensitivity trade-off. The following architecture uses physiological results
from vertebrate photoreceptors and from the neural structure of the retina to derive
the physical constraints. These constraints are used as a guide to design a system that
overcomes the dynamic range and response sensitivity tradeoff and uses only low level
visual process to produce a similar Mach Band outputs of previous two models.

13



2.4 UCLA-MPL Approach

2.4.1 Introduction

These connectionist architectures designed by various engineers and scientists infected by
this “NEURONIA”, usually have complete connectivity from every node to every node.
They are limited to three layers and most often are intended to “learn” something.

The visual pathway is a layered and hierarchical structure with divergence at the
earlier stages to convergence at latter stages. This structure s evident in the stack of
five layers of cells in the retina: the photoreceptors responsible for image transduction
and the bipolar, horizontal, amacrine, and ganglion cells,

A distinct feature of human vision system is that a typical neuron has perhaps 2,000
t0 16,000 inputs. The fan-in and fan-out factors are huge. The concept of visual receptive

Divergence is evident in visual cortex. Here, receptive fields of different sizes that
detect features in different orlentations are mapped into hyper columns. Each hyper

receptive fields. Each column of the hyper columns has feature detectors of same orien-
tation but different sizes that vary along the depth of the column (12,16].

Finally, the integral part of the visual system are the neurons. One can model
neuron as a weighted sum and thresholded processor. This means the processor needs
multiplication, summation and comparator functions.

Skrzypek and Shulman (21] proposed a computing architecture that tackles the light-
nhess constancy problem plus the automatjc setting of thresholds. This algorithm is
inspired by the neurophysiological findings in the vertebrate retina. A module based on
hexagonally organized, partially overlapping lateral inhibition operators of different sizes
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Figure 1: A schematic of a neural lightness algorithm that was implemented in SFINX
and tested on realistic, gray level images.
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Figure 2: S-shaped transfer curve for a single “neuron”

consists of four functionally different layers of cells. This spatial preprocessing module for
low level vision will maintain high sensitivity over the whole domain intensities without
interfering with transmission of visual information embedded in spatial discontinuities
of intensity.

In terms of signal hierarchy, counting number of neurons from the input there are
three layers of processing (Fig. 1). The first layer is composed of photoreceptors with
logarithmic transfer function spanning finite domain of intensity. The transfer function
has decreasing sensitivity at the lower end and saturation at the higher end. This §-
shaped I-R curve spans at most three logarithmic units of intensities. To cover the whole
domain of 10 log units, a mechanism is proposed that automatically shifts the response
curves of the photoreceptors to be in register with the prevailing ambient light level
(Fig. 2). Thus the transfer curve is a steep {high-gain) intensity-response characteristics
with the automatic setting of threshold mechanism that is optimally selected by the
positioning of the photoreceptors operating point.

To achieve this automatic setting of threshold, two types of context operators in the
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second layer are introduced. One type are global average operators. The other type are
local average operators. A combination of the global and local responses is feedback to
each individual photoreceptor to reset its own operating point.

Finally, the output layer uses two levels of resolution to accurately reconstruct the
original lightness signals and increase the chance of detecting actual spatial discontinu-
ities in intensity. Here, we use the center-surround form of operators with two types
of polarities. One is center minus surround and the other surround minus center. The
result computed by the output layer is then roughly the average second difference of the
input intensities.

In summary, with the assumptions that the photoreceptors converging onto a given
surround, output layer operators are linearly combined and that inhibition is a simple
linear operation our computational structure which performs the lightness constancy
function resembles something as simple as a difference of Gaussians [20].

2.4.2 Architecture Description

The structure was designed and tested using UCLA SFINX simulator [17]. Each layer
of Skrzypek’s architecture has a corresponding buffer array. There are five buffer ar-
rays. The architecture is illustrated in Fig.3. The buffer arrays are represented by the
parallelograms. The links represent data flows. The texts near the links are associated
node_functions that operate on the data links. Keep in mind that each node_function
operates on each element of a buffer array.

The input buffer at the top of figure 3 contains the actual intensity from a scene
to the image sensors. This input buffer is fed through the buffer function, bf.sensor,
which has another input from the feedback buffer.’ The bf_sensor function performs the
log transform and has a sigmoidal response curve. Its function is to simulate the cone
receptor’s behavior, which are endowed with the automatic shifting mechanism. The
output of the bf_sensor function is stored in the sensor buffer. The bflocal function
performs a convolution with a local mask. Typically, a local mask is of sizes 3x3 through
7x7. The output of the convolution is then stored in the local buffer. This local convolu-
tion is equivalent to {20] local average operator. Similarly, the bf_global is a convolution
with a global mask. Again, this function performs [20] the computaion of global average
operator. Global mask is about four-ninth of the image area. The global buffer contains
the outputs of the bf_global function. The bf lincom function takes inputs from both
the local and global buffers to compute the new biases for each of the sensors. These
biases then adjust the operating curves of each sensor’s response function, bf_sensor, to
produce new sensor output values.

The sensor response curve is modeled by the following equation.
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I
R = Rma:(I +" k) (12)

where R is the response, [ is the input intensity, k is the input intensity that yields a
half-maximum response and R, is the saturation response. In this equation, & is the
adjustable bias that is capable of shifting the response up and down along the intensity
axis. During each feedback cycle, a new k is computed from the current & and a linear
combination of the global and local averages using the next equation.

k' = k(le/(Rmas — lc) (13)

where %’ is the new k and Ic is computed as follow.

lc=alxb+a2xe (14)

where al and a2 are constants and b is the global average and ¢ the local average.
After several cycles, the output of the sensor array is stablized when changes in successive
k's is small. [20] suggested a way to use the contents of global averages, local averages
and the sensor outputs to compute an averaged second difference of the input intensities
which emphasizes edges.

2.4.3 Simulations in SFINX

Additional buffer arrays are included to simulate the effect of different illumination
conditions. This is accomplished by the bf_gauss function. This function takes available
illumination functions and convolves it with a gaussian point-spread function. Thus,
a parameter that determines the maximum intensity of the illumination on the image
plane and a sigma parameter that specifies the rate of decay of the gaussian curve are
incorporated in the function. In effect, this function multiplies the input image with
a specified point-spread illumination to produce an output image. If the input image
is taken under evenly illuminated condition, the image is linearly proportional to the
reflectance of the scene. The bf_gauss function, then, produce an output that includes
an controlled illumination component to the input image.

The ability to control illumination conditions is important to simulate the enormous
dynamic range of natural illumination conditions that can be accommodated by our
architecture.
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(a) Original Mondrian (b) Simulated Non-uniform Illumination

Figure 4: Gray level, mondrian like input image (a) was illuminated by a strong spot
light source (b) to simulate various non-uniform illumination conditions.

Artificial Mondrian test images of 64 pixels by 60 pixels were used to evaluate our
architecture (Fig. 4). The evaluation were done in two parts. The first part is to
experiment with the different linear combination of local and global averages. The second
part is to evaluate the constancy of outputs across various illumination conditions.

In order to isolate the effect of averaging mask size to the output image, feedback of
3x3, 7Tx7, 15x15, and 42x42 convolution averages were applied to the sensors separately.
Mach bands effects were clearly observed at the edges of grey patches. The rate of decay
of the response is determined by mask size. Smaller mask size produces faster decay and
larger mask size gives slower decay. In all cases, large uniform reflectance areas have
middle grey response. This is expected becausé.the feedback mechanism is functionally
similar to a difference of gaussian, which is a form of differentiation. And differentiation
produces no response when no changes are in the input.

After analyzing the independent effects of mask size, we next combined linearly two
different sizes of averaging masks to record the difference. No noticeable difference was
seen that would be different from the outcome of the 15x15 mask size output.

To conduct the second part of the experiment, two images with different illumination
conditions were used. The illumination conditions are varied in two aspects. The first
aspect explores the variation in the position of the light source. As shown in figure 4,
the left one has the light source located at the center of the image and the right one has
the source located at the middle right of the image.
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Figure 5: The results of the Lightness algorithm show that it can compensate for arbi-
trary illumination gradients, thereby preserving useful topological information.

21

Ik 54



The second aspect takes the illumination intensity of the light source as a variable.
The right image’s illuminant is 1000 times that of the left image. In fact, the right
image represents the output of sensors with fixed biasing. Almost the entire right half
of the image is saturated due to the wide dynamic range of the illuminant. Despite
this wide dynamic range, the feedback mechanism of our architecture are able to ad just
their own biasing to adapt to the illumination changes and produce constant outputs as
demonstrated in Figure 5.

A comparison of the two input images and their respective output profiles is also
intensity. shown. The intensity profiles are taken at 50th row of each images. Again
there is no significant difference in the output profiles despite drastic differences in the
input.

2.4.4 Discussions

From our simulation results, we have demonstrated our architecture’s capability to pro-
duce constant outputs with illumination variations in light source location and intensity.
As to the temporal aspect of this architecture, all outputs were produced after 3 to 4
cycles of feedback with the initial biasing of the sensors set at the middle grey level.
We suspect random biasing for the initial condition will delay the convergence of the
outputs, but not significantly.

However, several critical questions arised from our simulations. One is how to com-
bine the multiple resolutions of averaging for the feedback. Another related problem is
how many of these different sizes are needed and at what distance apart. [20] also pointed
out these problems and suggested ways to combine the multi-resolution feedbacks.

Although our outputs are constant, but some-sort of global integration process is
needed to recover the desired lightness. An open question will be how to implement
a bf_output function in our architecture that could utilize the outputs of the averag-
ing operators and the sensor outputs to reconstruct a reflectance map of the artificial
mondrian. Will additional information be needed to solve this integration process?

Horn and Blake used iterative integration method to reconstruct lightness up to a
constant {11,1]. Grossberg proposed a much more elaborated method using his bound-
ary contour system and feature contour system interacting at syncytium to reconstruct
lightness. Horn and Blake’s methods took thousands of iterations which is too slow and
Grossberg’s method is faster but suggest that reconstruction of lightness is much higher
visual processing that is done not at the retina, but somewhere higher up in the visual
cortex.
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3 Summary

The computation required for many early visual functions could be reduced by embed-
ding these functions in the complex network of neurons. Computation at this level should
take the advantege of massive parallelism built into image data. The neural networks
are characterized by three-dimensional highly connected structures that are well suited
to data parallelism. This could satisfy the requirement of recognizing objects in real
time by computing object’s attributes from local information.

The conventional von Neumann architectures are insufficient for the amount of I /0
bandwidth required. The real-time requirement and technical feasibility proliferated the
growth of different parallel architectures. Currently, electronic computing dominates
the implementation of the machine vision architectures. However, the two-dimensional
layout of VLSI chips puts a crucial limitation on the number of interconnections among
processors. This limitation prevented the more interesting connectionist architectures
from being developed in hardware. Optical computing overcomes the connectivity limnit.
Since optical pathways do not interfere with one another even when they are crossed,
optical interconnections provide wider freedom in signal communications. Unfortunately,
optical computing is not practically feasible at this time.
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