Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

COMPUTING BOUNDS ON THE STEADY STATE
AVAILABILITY OF REPAIRABLE COMPUTER SYSTEMS

Richard R. Muntz December 1989
John C.S. Lui CSD-890066

Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

COMPUTING BOUNDS ON THE STEADY STATE
AVAILABILITY OF REPAIRABLE COMPUTER SYSTEMS

Richard R. Muntz December 1989
John C.S. Lui CSD-890066

Computing Bounds on the
Steady State Availability of
Repairable Computer Systems*

Richard R. Muntz John C.S. Lui

UCLA Computer Science Department

Abstract

System avatlability is an important reliability measure for computer designers. Most
often Markov models are used in representing systems for reliability/avatlability anal-
ysis. Yet due to the size and complez nature of these systems, the model often has an
unmanageably large state space and it quickly becomes impractical to even generate all
the states in the system model. In this paper, we present a methodology for bounding
steady state availability and at the same time, drastically reduce the state space of the
models that must be solved. The bounding method generates part of the transition ma-
triz at each step and also at each step, computes tighter availability bounds. We also
present an iterative method to refine the error accumulated at each step. This general
bounding methodology provides an efficient way to evaluate reliability models with large
state spaces without generating the entire transition matriz.

*This research was supported by a University of California MICRO grant from IBM,

1 Introduction

Computer system availability and reliability are crucial measures for system designers,
particularly life situation or when large financial loss is possible. System dependability has
long been an active area of research [5,7,9,10,19] and tools [2,3,8,12,20] have built to aide
the specification and evaluation of dependability models. Increased complexity of modern
systems and their sophisticated reliability requirements continue to challenge us to find
effective ways to evaluate their performance and reliability. There are two major types of
dependability measures that are of interest. One type consists of transient dependability
measures, e.g, mean time availability over a mission period, while the other contains steady
state dependability measures, e.g, steady state availability for system that are expected to
operate for a long period of time. In this paper, we will concentrate on the computation
of steady state availability, i.e, the fraction of time that a system is opecrational.

Various methods have been proposed for dependability analysis. This includes com-
binatoric analysis, Markov and semi-Markov analysis and simulation. Continuous time
Markov models are still the most widely used. Unfortunately, due to the complex nature
of real systems (e.g. complex interaction of components, complex scheduling and repair
policy etc), closed form solutions are extremely difficult to obtain. Therefore numerical
solution techniques are widely used. The most pervasive limitation of numerical techniques
for analyzing Markov models is the inability to handle the large state spaces of realistic
models. The Markov models of real systems generally have a very large state space and
they can easily outstripped the memory and storage capacity of current (or foreseeable)
systems [16]. Various methods have been proposed to calculate different performance
and reliability measures from large Markov models. Among these are the aggregation-
disaggregation method for chains with nearly completely decomposable structure (4], the
iterative aggregation-disaggregation method [17,18], and matrix-geometric based methods

[15].

A Markov chain is nearly completely decomposable if the interactions between groups of
states are not comparable with the interactions within the groups. This is usually not the
case for reliability models of computer systems and the aggregation-disaggregation method
is unlikely to yield a sufficiently accurate approximation. The iteration aggregation-
disaggregation method uses a method similar to the Gauss-Seidel iteration technique. One
problem is that the convergence rate may be slow. Also, existence and uniqueness arc
difficult to show. The matrix-geometric techniques require certain regularity of structure
that is often missing from reliability models. In this paper,we will propose a methodology
that provides efficient calculation of bounds on steady state availability by explicitly taking
advantage of the properties of reliability models.

Exact reliability measures are generally not required but rather we are satisfied with
sufficiently accurate approximate results. If the approximate results can be given in term of
upper and lower bounds then this is ideal. Recently, the results reported in [14,11] provided

a method to compute bounds on steady availability for models of repairable computer
systems. In [14], rather than generating all the states in the system model, the approach
calls for generating those states that account for most of the probability mass while all
other states are grouped into a small number of aggregate states. With this approach a
decision is made a priori as how much of the transition rate matrix to expand in detail. In
[11], this approach was extended to a “multi-step” procedure in which successively more of
the transition rate matrix is generated while at the same time obtaining tighter availability
bounds. In this paper, we will present a general bounding algorithm that will include the
“one-step”, the “multi-step” and an iterative error refinement procedure.

We will present the “one-step” and the “multi-step” bounding algorithms in Section
2 and Section 3. The error-refinement process in presented in Section 4. Section 5 will
provide a heuristic algorithm to decide whether to generating more transition rate matrix
or go backward and refine the accumulated errors. The final algorithm for bounding
availability is presented and an illustrative example is given in Section 6.

2 One-step Bounding Algorithm

Many performance and reliability measures can be expressed in terms of a reward function.
If 7(4) is the reward rate for state i, the expected reward rate, M can be expressed as :

M= 3 r(i)n(i) (1)

i€s

with S being the state space of the Markov model and 7(7) being the stationary state
probability for state 7. Availability is a special case in which the “operational” states have
reward of 1 and the “non-operational” states have reward of 0.

Systems are generally designed to have a high level of availability. It is reasonable
therefore to expect that during the life time of the system, most of the components are
operational. With this in mind, we partition the state space of the model into F;, 0 < i < n,
where n is the number of system components and where F; contains all the states that
have ezactly ¢ failed components. The idea is to represent the detailed behavior of the
model for F;, i < K for some small value of K and approximate the remainder of the
model via aggregation.

The transition rate matrix can then be viewed as shown in Figure 1 in which submatrix
Qi; corresponds to F;. In this figure the submatrices denoted by 0 contain all zero elements.
This is a consequence of an assumption that there is zero probability of two or more
compounents becoming operational at exactly the same time. Note that this does not
preclude multiple repair facilities or any other common feature of reliability models.

We now summarize one of the results from [14]. Consider three sets of states:

Go = Fo; G = {U.il -7::'}; Gy = {U?=K+1 }—'}

2

[Qoo Qor Qo2 Qon |
Qo Qu Q2 @1in
0 Qun Qxn
0 0 @ Qs
0 Qs Qu
I 0 0 Qn—l,n an "

Figure 1: Transition matrix.

Figure 2 illustrates the transition matrix G in which Gj; is the principal submatrix
corresponding to states in §;. (The submatrix shown as 0 is a consequence of the “nearest
neighbor” property discussed previously.) Now construct a new transition matrix G as
shown in Figure 3. The relationship between the process defined by G and that defined
by G’ is illustrated in Figure 4. Basically, in the new process there are two sets of states
corresponding to the states G, of the original model. Let us call them G, and G/, as shown
in Figure 4. The idea behind this transformation can be explained as follows. Assume the
system starts in the “all components up” state, i.e. Fy. As components fail and are
repaired the system will stay in states in Gy and G/, until the first time that there are
A + 1 or more failed components. At this point the system is in a state of G,. However
when the number of failed components falls to K, the system now enters a state in Gla-
(Now the notation is explainable; “u” stands for “going Up” and “d” stands for “going
Down”. As the number of failed components goes up, the system visits states in G/ and
after K + 1 failures have been reached, it visits the states in G}, as the number of failed
components goes down.)

From the construction it is easy to show that the two transition matrices are such that
the steady state probabilities of the original process(G), can be calculated from the steady
state probabilities of the second process (G'). Specifically, if

[0, 71,y 7", m'5] is the solution of #'G' = 0 and Ewl(i) =1, then
[7'0, "1, + 7'1,,7'5] is the solution of G =0 and ¥ 7(7) = 1

There is a natural mapping of the states in G’ to states in G. In terms of rewards, the
reward function for each state in G’ is the same reward as the associated state in G. It is
clear then that the mean availabilities of the two systems are identical.

Now consider aggregation of the states 7;, i > K 4+ 1 and ¥/, 1 <7 < K as illustrated
in Figure 5. The corresponding transition rate matrix is shown in Figure 6. The results
from [14] show that if the rates indicated by a ‘4’ are replaced by upper bounds (on the
actual values) and the rates indicated by ‘=’ are replaced by lower bounds then bounds

3

Gow Go Go2
G Gn Gp
0 G21 G22

Figure 2: Matrix G.

GOO GDl O G02
G Gu| 0 Gy
G 0) Gu Gr

Figure 3: Duplication of states. Matrix G’.

on the steady state availability, A, can be expressed as:
Srre) s A< ¥ rro+ (1 T) @)
i€D i€D ieD
where (i} = 1 for operational states

= 0 for non — operational states

The D = GoUG], and n'() is the steady state probability for state { in the model with
the indicated replacement of transition rates by bounds.

Since the above result is valid regardless of the set of operational states it follows trivially
that:

7©'(¢) < w(i) V statesic D

thus we can view the results from [14] as providing a means of obtaining lower bounds
on the stationary state probabilities of states in D .

3 Multi-step Bounding Algorithm.

In the “single step” procedure described in the previous section the decision as to the
dimension of the matrix Gy, is made a priori. This implies that once the bounds have been
calculated there is no means provided for utilizing the work that has been already done in
solving the first portion of the matrix to further tighten the bounds. In [11], we presented a

4

Figure 4: Relationship of G and G'.

method (Multi-step Bounding algorithm)that can alleviate these difficulties. The algorithm
allows an incremental generation of the transition matrix. At each step a new portion of
the matrix is generated. Further, at each step the results from the previous steps are used
to form a transition rate matrix whose solution allows us to bound the stationary state
probabilities for an additional set of states. This allows us to incrementally improve the
bounds on availability.

At each step (after the first) there are three sets of states of the original model that we
will need to distinguish.

D' = set of states for which a lower bounds on the stationary state probabilities were
obtained in previous steps.

D = set of states which are the center of attention for this step and for which a lower
bound on the stationary state probabilities will be calculated in this step.

A = the complement of 7’| D.

Figure 7 illustrates this partitioning of the state space in terms of the transition matrix
G. Following the development in [11], we describe a short sequence of transformations to G.
Each transformation is such that in the resulting model, the stationary state probabilities
for the states in D are always (individually) bounded from below. We start by constructing
the matrix G, from G as illustrated in Figure 8. G, corresponds to a model in which the
states in D have been replicated. The set of replicate states (referred to as “clones”) will
be denoted by C. Note that in G, the submatrix Qg is equal to Q@pp. We use the notation
(Qcc because it enhances readability.

Notation: We use the notation 7p Jc; to denote the vector of stationary state probahil-
ities for states in a the set of states D when the transition rate matrix is G;.

In the previous section while reviewing the results from [14] a similar construction was

Figure 5: Aggregation of states.

described. From that discussion it is clear that if
[7Dr /Gy D46y TCGy s TasG,] 15 the solution of m Gy = 0 and ¥ 76, (i) = 1, then
(7D jays TDje, + Ty, Taje,) is the solution of 7G = 0 and ¥ 7(i) = 1.
It follows immediately that 7p,s, < #pq since 7¢/g, > 0.

In the next several transformations we make use of the fact that it is possible to perform
exact aggregation of a transition rate matrix. We assume that the reader is familiar with
the basic aggregation/disaggregation approximation procedure as described in [4]. Later
we show that exact aggregation is not actually required in the computation of the hounds.
We merely use exact aggregation in the intermediate steps of the development.

Goo Gm |Gokxsr ... Gon
Gm Gll G1K+1‘ < Gln
— 0...0 . + R
0 - e + 4
‘ : 0o - + +

0O — e +
i 0 0...0 0 - * |

Figure 6: Form of transition matrix after aggregation and putting bounds in rates.

Gop Qpp @pa
Gppr @pp Qpa
0 Qup Qua

Figure 7: Initial matrix, G.

Qo Qopp 0 Qpa
Qopr @pp 0 Qpa
Qpp 0 Qcc Qpa

0 0 Qap Qaa

Figure 8: Introduction of “clone” states. Matrix G.

G, (see Figure 9) is formed from G, by exact aggregation of the states in T'. We will
refer to the single state which replaces D’ as d’. Since exact aggregation is assumed we
have that 7p/q, = 7p/g, -

G3 (see Figure 10) is exactly the same as G, except that the transitions from d' to
states in D and C are modified. In G; the submatrices R}, and R, are required to have
non-negative elements and to be such that:

wp + Rye = Rup (3)

A probabilistic interpretation is that the original transitions from d' to states in D are
each ‘split’ so that part remains to the state in D and part goes to the corresponding
“clone” state in C.

From the construction of G it is easy to show that if
(T G2 TDJGa» TC Gy TAJG,) 15 the solution of 7Gy = 0, ¥ 7a,(4) = 1 and

[Tat/Ges TD Gy TC Gy TajG,) 15 the solution of 7G5 = 0, ¥ 7g, (1) = 1 then

e Ryp 0 Raa
Qps Qpp 0 Qpa
@pe 0 Qoc Qpa

0 0 Qap Qaa

Figure 9: After exact aggregation of the states in 7. Matiix G,.

. awp Rypc Raa
Qpe @pp 0 Qpa
@pe 0 Qoo Qpa

0 0 Qup Qua

Figure 10: Modified rates from state d’. Matrix Gs.

TGy = T [Gas
DGy + TC/Gy = TDjG, + ToyG,; and
TAjGs = TAIG,-

The result that we really want is expressed in the following theorem.
Theorem 3.1 7p/g, < TD/G,

Proof: The proof is given in the [11]. O .

Now we consider aggregation of the subsets of states in C and .A. By definition :
D=Ui, Fi C=ULLF; and A=Ulg, 7

where L; and H; are integers associated with the i** step and denote the minimum and
maximum number of failed components for states in D.

We form one aggregate state for each subset F ;in C and F; in A. The resulting matrix
G4, is shown in Figure 11. In this figure we have also interchanged the ordering of the
state d’ and the set of states D. Since we have assumed exact aggregation in forming G
1t 1s clear that

TDIG, = TD/Gy-

Comparing the matrix in Figure 6 with the matrix G4 in Figure 11 we note that they
have the same form. Therefore the result quoted in the Section 2 applies. Specifically, if
the elements shown in Figure 12 as ‘4’ are replaced by upper bounds on those rates and
the elements shown as ‘' are replaced by lower bounds then the solution for the stationary
state probabilities will yield a lower bound for the state probabilitics for states in D, i.e.
TD/Gy S TDJGy-

In summary, 7p;q, < Tpsq, and clearly G5 has a much reduced states space compared
to that of G. A remaining issue is the calculation of the upper and lower bounds on the
transition rates required for G'5. This issue is addressed and a detailed specification of the
multi-step algorithm is given in the following section.

@pp Qpa| O o .- s 0 [Qoa @pa - -+ Qbpa,
’

Rd',D . Td.C, TdCh U ct racy | Td,A Pd'4s " U Td', An
0...0 re, D * oy ,C Tt et reyc; [ToL4r ToLA 0 T ey,
0.. .0 0 TCQ,CL L o o T'CQ,CJ' T'CZ‘AI rc2.A2 U T TCy,4,
0 T'Cs,Cy . Tt T'Cs,Cy | TC5.4, e T Tt F'Cy,Aq

0...0 0 L L T
0...0 0 0 0 0 T TALCy b TA) Ay ' TA) Ay
0 0 0 T Ay, A, ® T Ay, An

0 0 0 0 TA;;,A; . Tt T4;,4x

(0.0 0 | 0 0o 0 -. 0 0 0 o raan, e

Figure 11: Aggregation of states in C and A. Matrix G4

3.1 Description of the Algorithm

The bounds on the transition rates in Gs are of three types. The rates denoted by ‘+' in
Figure 12 are to be replaced by upper bounds. A simple upper bound is easily seen to be
the sum of the failure rates of all components. Similarly, the rates denoted by ‘—' are to
be replaced by lower bounds. A simple lower bound that suffices is the minimum repair
rate of all components. However, as described below, we can do munch better.

Based on the construction of the previous section, submatrix R:i, p In Gy 1s required to
contain lower bounds on the conditional rates from d' to states in D. If Tpisc s the vector
of stationary state probabilities for states in D then (7o) Ziep Tpryclt)) Qoip is the
vector of conditional transition rates to states in D. It follows immediately that if

W’DJ S TpG then

™' pQpp < (Tpiya/ X 7pya(i))Qpp

Thus we have the needed lower bound provided only that a lower bound on 7p /G 1s
available.

In the multi-step procedure we describe next, at each step the set of states D' corre-
sponds exactly to the set of states for which a lower bound has been found on previous
steps. Therefore these lower bound stationary state probabilities provide the needed data
for the following step.

The multi-step bounding procedure is as follows:

' Qop Qpa |0 O 0|@pa @pa - - Qpa,
Rd’,D L] + + + + + e s +
0...0 — e 1 + +- + +
0...0 0 — e + + + +
0 - L + + +
0...0 0 20— e + +
0...0 0 0 0 1; — . + +
0 0 O 0 — . +
0 0 0 0 0 0 —) +

| 0...0 0 0 0 0 0 0 0 - o«

Figure 12: Replacement of transition rates with bounds. Matrix Gs.

1. {Step 1) Generate lower bounds on the stationary state probabilities for states Fy
through Fy, using the results from [14]. This provides lower bounds on the state
probabilities of these states as well as an initial set of bounds on steady state avail-
ability. If the bounds are tight enough then terminate.

2. (Step ¢ > 2) Generate the portion of G corresponding to Fr, through Fy,. Construct
the matrix corresponding to G5 described in the previous section. The submatrices
(pp and Qpg are generated from the model definition. Let =}, be the vector of
lower bounds on the state probabilities computed from previous steps. Now sct the
submatrix R'yp equal to 75, Q@pp and solve for 7p sa, which provides lower bounds
on the state probabilities for states in D. Compute upper and lower bounds on steady
state availability using Equation 1 from Section 2. If the bounds are tight enough
then terminate, else repeat step 2.

4 FError-reduction.

In the previous two sections, we have described the one-step and the multi-step procedures
for bounding the steady state availability of a repairable computer system. In these bound-
ing procedures, errors accumulate at each step. These errors can be classified according to
their source :

10

1. by considering the clone states and the aggregate states to have reward of 0 or 1 in
the evaluation of the availability bounds.

2. the difference between the lower bounds and the actual stationary state probabilities
of the “detailed states” in D.

These errors cannot be completely eliminated unless the complete transition rate matrix
is generated and solved (which is what we originally tried to avoid), but we can reduce these
errors and obtain a tighter availability bound. The error reduction process we propose is
iterative in nature. We will first reduce the error in the clone states by finding their
lower bound state probabilities. Once we obtain these lower bound state probabilities,
an improved estimate of the transition rates out of the aggregate clone states can be
computed. With these improved transition rates, we can reduce the error in the stationary
state probabilities of the “detailed states” D. Animportant point is that the error reduction
process does not require generating more of the transition matrix. In section 4.1, we will
present the approach to reduce the error associated with the clone states and in section
4.2, we will present the approach to obtain improved lower bound state probabilities for
the “detailed states”, D.

4.1 Error reduction for the clone states.

Until now, we have assigned a reward of 0 or 1 to each clone state in the computation
of the availability bound. To reduce this source of error, we would like to obtain a lower
bound for the state probability of each individual clone state. We will make use of the
fact that the clone states have exactly the same transition structure as the detail states
D. As we will show, the portion of transition rate matrix for the detail states, which was
generated in the previous step, can be used to compute an improved lower bound on the
state probabilities of the individual clone states.

Assume that in the previous step of the multi-step procedure, we have already obtained
lower bounds on the state probabilities for all detail states that have m + 1 failed compo-
nents and we want to compute the state probabilities for all clone states that have between
k and m failures. Figure 13 depicts the situation. Let nus define the following notation :

Let us define the following :

“m;{) = probability of the i** clone state among those clone states in C;.
|C5] = total number of clone states in C;.

S, = set of states with j failures, it is equal to C, U Fj.

|S;] = total number of states in 5.

9GiGim) = transition rate from the j* state in C; to the i** state in C,,.
9i.(xxy = transition rate out of the 7" state in C.

11

Figure 13: State Transition at k 4 1** step

We can write the flow equations for the clone states in C,, as follow :

[Crl [Cm—1]
‘mm(i) = {Z°7rk(i)9(j,k),(a,m)+-"+ 2 Tmo1(5)9(m=1),(im)
=1

i=1 i
[Sms1] ‘ .

+ Z Tr+1{7)9(,m+1),(i.m) /g(e,m),(.,.) Jor i=1,...,|Cul. (4)
i=1

For clone states in C) where & < ! < m, we have :

[Cxl [Cr_1]
‘m(i) = {Z ‘m(D)9Gman o+ D mot(DgGi-1)60

7=1 I=1
[Cigal

+ > mu (G0 /g(s,z),(.,¢) for i=1,...,|C|. (5)
i=1

And for the clone states in Ci, we have:

[Crt1i
‘me(i) = { > c7rlc+1(.3")9’(;‘.1:4»1),(.‘,::)} /g(-‘,k).(*.*) for i=1,...,|C. (86)

=1

Assume that from the previous step, we have obtained lower bounds on the state prob-
abilities mp,41(¢) and also the transition structure for states that are between k and m
failures. We can then apply the Gauss-Seidel Iterative method for obtaining a lower bound
on the state probabilities of the clone states. Let the initial values be :

qug.o)(z') = 0 for j=k,....mand i=1,...,|C| (M

Note that m,41(7) are constants in this algorithm(the lower bound state probabilities
obtained from the previous bounding step). We can rewrite the flow equations into the

12

Gauss-Seidel form as follows:

[Cm-1]
‘ (n) {Z 1)(j)g(j,k),(£m -+ Z g(],m-l) (4,m)

=1
|5m+1| .
+ Z 7rm+1 J)g(j,m+1),(-',m) /g(i,m),(*,*) for i =1,...,|C.| (8)

for the clone states in C; where & < [< m, we have:

[ormyl
W[(n)(z - {Z g(g,k) (:l)+ -+ Z "T[; J)g(ﬂ 1),(i,0)
i=1
[Cigrl
+ Z ‘n‘lﬂ F)9G1+1),6.0) /g(,z (x,%) for i=1,...,|C]. (9)

And for the states in Cy, we have:

[Crtr]
@) = {Z c?f:(c'fl(j)gu,wl).(ﬂk)} [6. for i=1,...,|C. (10)

i=1

The iterative procedure defined by these equations has the following characteristics :

—

. it converges and converges to a unigque solution.

j]

. it will converge from below.

w

. it converges monotonically.

4. the solution (fixed point) is a lower bound of the exact state probabilities of the clone
states.

The second and third characteristics are especially interesting because they indicate that
we can terminate the iterative process anytime and still obtain lower hounds on the state
probabilities of the clone states. To show the above characteristics hold, we rewrite the
iterative equations into matrix form. Define :

C xm] e
Xm-1 0
Xm-—2 0
X = | xu s and b = 0
L Xk | [0

13

where x; is a column vector for the steady state probabilities for clone states in C; and c

1s a column vector with components ¢; = Eli”l‘“l Tmt1(F)9(,m+1),(i,m) for all clone states in

C,.. The flow equations can be written in matrix form as :

Qm,m Qm—l,m e Qk+1,m Qk,m Xm c
Qm,m—l Qm—l,m—l et Qk+1,m—1 Qk,m—l Xm-1 0
0 Qm-1,m-2 * Qryim-z Qrm—2 Xm-2 0
0 0 e Qk+1,m—3 Qk,m—3 Xm-3 - 0

L O 0 s Qe Qe 1L >k | | O

where Q;; is a diagonal matrix with each element being the rate out from a clone state
in C;, Q,; is a matrix with its elements being the “negated” transition rates from clone
states in C; to clone states in C;. Let this transition matrix be A and in matrix notation,
we have :

Ax = b (11)

Let A = [Djy —La — U,] where D, is a diagonal matrix and L and U, are the lower
and upper triangular matrix respectively. The Gauss-Seidel iteration can be written as :

x® = [(Dy —Lp) 'UAxEY 4 (Dy —Lg)7'b (12)

A necessary and sufficient condition for the above iterative process to converge to an unique
solution is for p[(Da — La)"1U,], the spectral radius of the matrix, be less than 1 [1]. To
prove the characteristics of our algorithm, we need the following definition and theorcm
from [21].

Definition. For n x n real matrices A, M and N, where A=M - N. (M -N)is a
regular splitting of the matrix A if M is nonsingular with M~! > 0 and N > 0.

Theorem 4.1 If A =M — N is a reqular splitting of the matriz A and A1 > 0, then
p[M™IN] < 1

We proceed by showing that Theorem 4.1 can be applied to A. The first step is to show
that A=Y > 0.

Lemma 4.1 A is nonsingular and A~ > 0.

Proof : Let B = AT, Then B = (};;) is a n x n matrix where b;; > 0 for all ¢, b, ; <0 for
all i £ 7, b;; > 3, |b;;| for all i and strict inequality holds for at least one value of ¢. Lot
D3 be the diagonal matrix of B. Since Dy 1s nonsigular, we can express :

C = I-D;'B
Now C is a substochastic matrix with p[C] less than 1. From Theorem 3.10 in [21],

B-! > 0. Since (AT)‘1 > 0, therefore A~1 > 0. O

14

Lemma 4.2 (D — L,) is nonsingular and (Da — La)™1 > 0.
Proof : same as above lemma. O
Lemma 4.3 The proposed iterative procedure converges to a unique solution.

Proof : A and (Da — L) are nonsingular and their inverses are nonnegative matrices.
From the construction, U, is also a nonnegative matrix. Since A = (Dy — La) — U,, it
follows that (Ds — La) and Uy is a regular splitting of the matrix A. From Theorem 4.1,
the spectral radius, p[(Da —La)"'Ua]l < 1. O

Lemma 4.4 The proposed iterative procedure will always converge from below.

Proof : Since the iterative process converges to a unique solution x*. from (12), we have :
x* = [(Da~La)'Us| x* + (Dy —La)7'b

Let e®) be the error vector at k** iteration. Then :

e® = x*—xl

= (DA _ LA)_IUA(X* — X(k—l))
(Dp — Lg) Ua ()

k)

In order to have the solution approach from below, we need e¢(®) > 0 for all k. Since
(Da — LA)"1 and Uy, are nonnegative matrices, if we start with a lower bound vector,
then we always approach the solution from below. O

Lemma 4.5 The proposed iterative procedure converges monotonically.

Proof : To show that we have an improved bound at each iteration, we have to show
x(*+1) _ x(¥) > @ for all k. This can be easily proved by induction.

Basis ; For k = 0. From (7), we see that x(® = 0. From (12), we see that x(!) =
(Das —La)"'b > 0. Therefore x(!) — x(® > 0.

Induction : Assume x**t1) —x®) > 0 for k < n. For k = n + 1, we have:

x(”“) — x("“) = (DA — LA)_IUA(X(n+1) — x(")) 2 0
the inequality holds because (D4 ~ L A)_l and U, are nonnegative matrices. O

Lemma 4.6 The solution of the proposed procedure is a lower bound on the ezact state
probabilities of the clone states.

15

Proof : Let x’ be the exact state probabilities vector for the clone states. We have to show
that x’ —x* > 0. Let b’ contains the ezact rates into the clone states from states with
m + 1 failed components. Since :

Ax" = b
Ax' S br
b —-b > 0

The above inequality holds because in the exact model, we have the exact state probabilities
for wmy1(7). It is easily seen that :

i

x —x* b'A-! — bA-!
(b —b)A™! >0

Since (b’ —b) > 0 and A~ > 0. O

The algorithm for error reduction for the clone states is stated as follow :

1. let the probabilities for all clone states be zero.

2. apply the Gauss-Seidel iteration until a specified tolerance is satisfied.

4.2 Error reduction for the detail states.

Recall that in computing lower bounds for the state probabilities of the detail states D,
we used upper bound failure rates (e.g: sum of the failure rates) and lower bound repair
rates (e.g: minimum repair rate) for the aggregates. Using the procedure described in
Section 4.1, we can obtain better lower bound estimates of the state probabilities for the
clone states. These in turn can be used to generate tighter bounds on the transition rates
and thereby obtain improved lower bound state probabilities for the detail states.

Let us define the following notation :
r(k, 1) transition rate from the clone aggregate corresponding to Cy to the clone

aggregate corresponding to Cj .
(°mi(i))is lower bound state probability for the :'* state in Cy.

Tk sum of all computed lower bound state probabilities except the clone states
iIl Ck
3 (iek) indicates sum over all states 7 in Cj.

Since we already computed a lower bound state probability for each clone state, the im-
proved lower bound on the “repair rates” between the aggregates is as follow :

Ytier) Ltek-1) () 960 (Lk-1) }

1.0 — 7%

rk,k—1)7 = MAX {minimum repair rate,
(13)

16

while the improved upper bounds on the failure rate from aggregate k to aggregates m is
as follow :

r(k,m)t = MIN{ sum of all failure rates,

>(ick) L(jem) [(C"Tk(i)):b + (1.0 = 7% — Xier) [c”fk(i)]u,)] i k), (Gm) }
2o (ick) Cme(2))

(14)

Equations {13) and (14) follow easily from considering the conditional transition rates
between aggregates based on upper and lower bounds conditional state probabilities. For
example in equation (13):

(7))
(1.0 — 7%) (15)

is a lower bound on the conditional state probability for the i** state in Cj.

4.3 Reduction strategy.

The above error reduction procedure will give us better lower bound state probabilities
for detailed and clone states corresponding to step k of the bounding process. We can
repeat the reduction procedure for detail states and clone states corresponding to steps
k—1, k—2 ..., 1 of the bounding process. Since we obtain a better bound for all
states in bounding step 1, we can go forward again and apply the multi-step bounding
procedure to obtain better state probability bounds for states corresponding to bounding
steps 2,3,...,k. Therefore, the error reduction strategy is :

1. start at bounding step k, reduce the errors in the clone states and then the detail
states, then go to bounding step k — 1, repeat the reduction process until bounding
step 1.

2. repeat the multi-step bounding procedure until step & to obtain better lower bounds
for the detail states in bounding step 2,3,... k4 1.

Clearly this reduction strategy can be applied repeatedly to obtain better availability
bounds. Also, each time we apply the iterative procedure to refine the clone states, the
starting vector for the clone states can be the fixed point solution vector from the previous
iterative procedure. This way we not only minimize the number of iterations but also
preserving the characteristics we claimed in Lemma 4.3 to Lemma 4.6. The presevation
of the characteristics in Lemma 4.3, 4.4 and 4.6 is trivial. In the following lemma, we
show that using the fixed point solution vector from the previous iterative procedure, we
preserve the monotonic convergence characteristic.

Let us define the following :

17

b = be the vector of conditional rates from F,,;; to C,, computed by lower
bound state probabilities my,41(%).

I

m.+1(i) = be a new lower bound state probabilites computed in the last step of the
reduction strategy, where m,, () 2> Ty (i) VY 0.
b, = be the vector of conditional rates from F,,;; to C,, computed by 71':“+1(i).

Lemma 4.7 Using the fized point solution vector from the previous iterative procedure,
the monotonic convergence characteristic is preserved.

Proof : According to the last step of the reduction strategy, we obtained a better lower
bounds for the detailed states in bounding step k + 1, This implies that we have a better
lower bounds state probabilities for m + 1 failed components, T +1(7). Based on these
better lower bounds, we can obtain a new vector by which has the following properties :

b, > b

b, = b—|—b'2 where b;ZO

Similar to lemma 4.5, we have to show x(*+!) — x(¥} > 0 for all k. Again, we proof this
by induction. Let x(°) = x* where x* is the fixed point solution from the previous iterative
procedure.

Basis : for ¥ = 0. From (12), we have :
xM = [(Dy —La) U] x@ + (Ds—La) by
= [(Da-La)"Us| x® 4 (Da—La)7'b + (Da—La) by
= x(*) + (DA — LA)dlb;
Since b; >0 and (D,s — LA)“l > 0, therefore x(!) — x*) > 0.

Induction : The induction step is similar with the induction step in Lemma 4.5. O

Although this reduction strategy can be applied repeatedly, but there is a diminishing
return of refining the errorsin the clone states and the detailed states. One natural question
we have to ask ourselves is when is it better to repeat the error reduction procedure and
when it is better to generate more of the transition rate matrix corresponding to unexplored
states. We provide a heuristic answer to this question in the following section.

5 Decision for backward iteration or forward genera-
tion

Although we will be able to obtain a tighter availability bounds by either going forward
(i.e., by generating more of the matrix) or going backward (i.e., by reducing the errors

18

accumulated in the previous steps), the computational cost and potential gain for these two
choices are quite different. For the forward algorithm, we have to consider the following :

¢ computational cost for state generation.
¢ storage cost for the newly generated transition matrnx.

e computational cost for evaluating steady state probabilities in the detail states.

For the backward algorithm, the transition matrices were generated in the previous steps,
therefore the only cost is the computation cost of the error reduction process.

In order to decide between the forward and backward algorithm, we have to also compare
their respective potential gains. We define the potential gain as the improvement in the
spread between the upper and lower availability bounds. For the backward algorithm,
the potential gain comes from the error reduction of the detail states and clone states.
For the forward algorithm, the potential gain comes from the ability to obtain a better
lower bound for the reward contributed by the newly generated states. Although we can
apply the backward algorithm repeatedly to reduce the errors, the potential gain for each
successive application exhibits diminishing returns : the potential gain for each application
decreases geometrically. On the other hand, the forward algorithm will generate more
states. But since the state probabilities of the system is skewed (states with more failures
will have much smaller probabilities), therefore these newly generated state may not have
a significant contribution to the system availability.

Based on the above discussion, we see that the problem of making an optimal decision
for either applying forward or backward algorithm is not trivial. The decision algorithm
should clearly be much less costly than the forward and backward algorithms themselves.
Also, since we always obtain bounds regardless of the decision, there is no serious danger
in using a heuristic that sometimes makes a suboptimal decision. The worst possible effect
is some inefficiency. Next we will propose a simple heuristic algorithm for deciding the
next step in obtaining bounds. The algorithm is as follow :

1. apply the backward algorithm (or the error reduction algorithm).

2. compute the gain (reduction in spread between the upper and lower bounds) we
acquired from step 1.

3. if the potential gain is greater than the estimated state probability of the first unex-
plored aggregate, go to step 1, else apply forward algorithm.

In essence, the decision algorithm is biased toward reducing the accumulated errors from
the previous steps. By doing this, it also avoids the state generation cost and the storage
cost of the forward algorithm. It will apply forward algorithm only when the projected
potential gain is less than the reward of the unexplored states.

19

Lastly, we define the global bounding algorithm. One important note is that the algo-
rithm can be terminated at any phase depending on the user requirement, this is due to
the fact that at all phases, we are providing bounds to the system availability. The global
algorithm 1s :

1. apply one step algorithm. If the bound is satisfied, stop.

o

apply multi-step algorithm. If the bound is satisfied, stop.

e

apply the error refinement algorithm, if the bound is satisfied, stop.

>

apply the decision algorithm, then either go to step 2 or 3.

6 Example.

In this section, we will present an example to illustrate the versatility of the bounding
algorithm. The example incorporates the general bounding procedure and a tight bound
is obtained. The example is a heterogeneous distributed database system as depicted in
Figure 14. The components of this system are: two front-ends, four databases and four
processing subsystems consisting of a switch, a memory and two processors. Components
may fail and be repaired according to the rates given in Table 1. If the processors of system
A and B fail, they will have a 0.05 probability of contaminating the Database A and a. If
the processors of system C and D fail, they will have a 0.05 probability of contaminating
the Database B and b. Components are repaired by a single repair facility which gives
preemptive priority to components in the order: front-end, databases, switches, meinories,
processors set 1 and lastly processor set 2. (Ties are broken by random selection.) The
database system is considered operational if the at least one front-end is operational, at
least one database is operational, and at least one processing subsystem is operational. A
processing subsystem is operational if the switch, the memory and at least one processor
are operational. Also, this system is in active breakdown mode, meaning that components
fail even when the system is non-operational.

In Table 2, we present the bounds on steady state availability. We note that for each
step, the bounds of the availability are significantly tightened. In step one, we apply the
one-step bounding algorithm with detail states that are between 0 to 2 failures. In step
two, we apply the multi-step bounding algorithm with detail states that have between 3
to 4 failed components. In step three, we apply the backward/forward error reduction
algorithm for states that are between 1 to 4 failures. In step four, we apply the multi-step
bounding algorithm with detail states that are between 5 to 6 failures. In step five, we
apply the backward/forward error reduction algorithm for states that are betwcen 1 to 6
failures.

20

@ @ front-end

Br1 processoer C-1

processor| A-1 processor

memory A
switch B

memory B

switeh A switch C

processor D-2

database A dataise a database B database b

Figure 14: A fault-tolerant heterogeneous distributed database system.

A-2 processor C-2

processor processor Bi2

7 Conclusion.

We have developed a methodology for computing bounds on the steady state availability
of repairable computer systems. The method provides an efficient way to overcome the
large state space problem in evaluating realistic computer systems. We showed that by
modification of the original model, bounds can be obtained with much less cost and also
state space cardinality was drastically reduced. Depending on the tightness required, the
user can tradeoff tightness of the bounds with computational effort.

The development in the paper is couched in terms of models of repairable computer
systems and determining bounds on availability. However the methods appear to Lave
promise for other applications. The important property of availability models that was
used was that the equilibrium state probabilities were concentrated in very few states.
It is reasonable to expect that this same property will hold for example, in models of
probabilistic protocol evauation [6,13] and load balancing. In this case of load balancing,
there is presumably a policy for balancing the load on the resources in the system. Thus
we expect that a large number of possible states of the system will have “small” probability
since the scheduler will be biasing the system toward a small number of preferred states.
Research into such applications is ongoing.

21

" Components | Mean Failure Rate] Mean Repair Rate ”

Front-end A 1/4000 2.1
Front-end B 1/8000 2.0
Processor A-1 1/500 2.5
Processor A-2 1/400 2.0
Switch A 1/750 2.7
Memory A 1/750 2.5
Processor B-1 1/450 2.3
Processor B-2 1/450 1.8
Switch B 1/625 2.6
Memory B 1/750 2.4
Processor C-1 1/600 2.3
Processor C-2 1/450 1.7
Switch C 1/625 2.6
Memory C 1/600 2.4
Processor D-1 1/450 2.1
Processor D-2 1/450 1.5
Switch C 1/600 2.1
Memory C 1/600 2.5
Database A 1/5500 2.5
Database a 1/5000 2.2
Database B 1/5000 2.5
Database b 1/4500 2.3

Table 1: Failure and repair rates(per hour).

” Step Number | Lower Bound | Upper Bound | Difference in Bounds ”

Ot W N =

0.986456955373
0.990023127431
0.999995763421
0.999999246581
0.999999952345

0.999999999655
0.999999999029
0.999999987643
0.999999975211
0.999999952972

0.013543044282
0.009976869598
0.000004224222
0.000000728630
0.000000000627

22

Table 2: Upper and lower bounds on steady state availability of the database system.

References

1]

2]

(3]

[3]

(6]

[9]

[10]

Richard L. Burden, J. Douglas Faires. Numerical Analysis, PWS-KENT Publishing
Company, 1988.

J.A. Carrasco, J. Figueras, METFAC: Design and Implementation of a Software Toll
for Modeling and Evaluation of Complez Fault-Tolerant Computing Systems, Proceed-
ings of FTCS-16, pp. 424-429, July 1986.

A. Costes, J.E. Doucet, C. Landrault, and J.C. Laprie, SURF: A Program for De-
pendability Evaluation of Complez Fault-Tolerant Computing Systems, Proceedings of
FTCS-11, pp. 72-78, June 1981.

P. J. Courtois. Decomposability — queueing and computer system approzimation. Ace-
demic Press, New York, 1977.

E. de Souza e Silva and H.R. Gail, Calculating Cumulative Operational Time Distri-
butions of Repairable Computer Systems, IEEE Transactions on Computers {(Special
Issue on Fault Tolerant Computing), vol. C-35, no. 4, pp. 822-332, April 1986.

D.D. Dimitrijevic and M. Chen. An Integrated Algorithm for Probabilistic Protocol
Verification and Evaluation, IBM Tech. Report RC 13901, 19885.

R. Geist and K. S. Trivedi, Ultra- High Reliability Prediction for Fault-Tolerant Com-
puter Systems, IEEE Trans. Computer, C-82, 12, pp. 1118-1127, Dec. 1985.

A. Goyal, W.C. Carter, E. de Souza e Silva, S.S. Lavenberg and K.S. Trivedi, The
System Awvailability Estimator, Proceedings of the 6'" Annual International Symposium
on Fault-Tolerant Computing Systems (FTCS-16), Vienna, pp. 84-89, July 1986.

A. Goyal, S.S. Lavenberg and K.S. Trivedi. Probabilistic Modeling of Computer System.
Availability, Ann. of Oper. Res., vol. 8, pp. 285-306, 198¢.

P. Heidelberger and A. Goyal, Sensitivity Analysis of Continuous Time Markov Chains
Using Uniformization, Proceedings of the Second International Workshop on Applied
Mathematics and Performance/Reliability Models of Computer/Communication Sys-
tems, Rome, Ialy, May 1987.

John C.S. Lui, R. R. Muntz. Evaluating Bounds on Steady State Availability from
Markov Models of Repairable Systems, First International Workshop on the Numerical
Solution of Markov Chains, 1990.

S.V. Makam, and A. Avizienis ARIES 81: A Reliability and Life-Cycle Evaluation
Tool for Fault Tolerant Systems, Proceedings of FTCS-12, pp. 276-274, June 1982.

23

[13] N.F. Maxemchuk and K. Sabnani. Probabilistic Verification of Communication Pro-
tocols, in Protocol Specification, Testing and Verification, VII, ed. H. Rubin and C.H.
West, Elsevier, 1987, pp.307-320

(14] R. R. Muntz,E. De Souza Silva, A. Goyal. Bounding Availability of Repairable Com-
puter Systems, SIGMETRICS 1989, pp. 29-38, also to appear in a special wssue of
IEEE-TC on performance evaluation, Dec. 1989.

[15] M. F. Neuts. Matriz-geometric solutions in Stochastic Models — an algorithmic ap-
proach. John Hopkins University Press, Baltimore, MD, 1981.

[16] William J. Stewart, Ambuj Goyal. Matriz Methods in Large Dependability Models.
IBM Research Report, 11485, Nov 4, 1985.

[17] Y. Takahashi. Some Problems for Applications of Markov Chains, Ph.D. Thesis, Tokyo
Institute of Technology. March 1972.

(18] Y. Takahashi. A lumping method for numerical celculations of stationary distribu-
tions of Markov chains, Research Reports on Information Sciences, Tokyo Institute
of Technology, No.B-18, June 1975.

[19] K.S. Trivedi, Probability & Statistics with Reliability, Queuing and Computer Science
Applications, Prentice Hall, 1982.

[20] K.S. Trivedi, J.B. Dugan, R.R. Geist, and M.K. Smotherman, Hybrid Reliability Mod-
eling of Fault-Tolerant Computer Systems, Comput. Elec. Eng., Vol. 11, pp. 87-108,
1984.

[21] Richard Varga. Matriz Iterative Analysis. England Chffs, N.J., Prentice-Halls, 1962.

24

