Computer Science Department Technical Report
Artificial Intelligence Laboratory
University of California
Los Angeles, CA 90024-1596

THE RHAPSODY PHRASAL PARSER AND GENERATOR

John F. Reeves December 1989
CSD-890064

The Rhapsody Phrasal Parser and Generator

John F. Reeves*
Artificial Intelligence Laboratory

Computer Science Department
University of California, Los Angeles, CA 90024

November 11, 1989

Abstract

PPARSE (Phrasal PARSEr) and PGEN (Phrasal GENerator) are programs for
natural language parsing and generation used with the Rhapsody knowledge represen-
tation package[Turner and Reeves, 1987]. Both programs used a database of knowledge
about language encoded as phrases. Each phrase associates a conceptual object with
a linguistic structure, such as a word, idiom, or syntactic form. The mechanics of
phrasal parsing and generation with PPARSE/PGEN, and issues in phrasal processing
and lexical construction are discussed. A technical description of PPARSE/PGEN is
given, and an annotated sample lexicon and program runs are presented.

1 Introduction

PPARSE (Phrasal PARSEr) and PGEN (Phrasal GENerator} are two programs for natural
language parsing and generation used with the Rhapsody knowledge representation pack-
age[Turner and Reeves, 1987]. Both programs used a database of knowledge about language
encoded as phrases. Each phrase associates a conceptual object with a linguistic structure,
such as a word, idiom, or syntactic form. PPARSE takes as input a natural language sen-
tence as a list of atoms, and uses the phrases to produce a conceptual representation of the
sentence. PGEN does the reverse process; the input is a conceptual object, and a list of
natural language words is produced.

Phrasal parsing integrates syntactic and semantic information during the parsing process.
Phrasal parsing evolved from case grammar(Fillmore, 1968] where syntactic rules were used
to fill in semantic case frames. Functional grammar{Kay, 1979] extended this approach by
using a single kind of formal structure to specify patterns of features, function assignments,
lexical items, and constituent orderings. Different variations of functional grammar have
been proposed, depending on the focus of research and type of formal structure used. For
example, lexical-functional grammar{Bresnan and Kaplan, 1982] emphasizes the role of the
lexicon within a transformational grammar approach, and definite-clause grammars{Pereira

"This work was supported by a grant from the Hughes Artificial Intelligence Center.

1

and Warren, 1980] focus on how to specify lexical and syntactic information in logic. (See
also Winograd [1983, pp. 311-351] for an overview of function grammars.)

PPARSE and PGEN are intended as tools for language analysis and use by programs
using Rhapsody. The aims of PPARSE/PGEN are (1) to provide a simple, extensible mecha-
nism for producing conceptual representations from text (and vice versa), and (2) to provide
a readable, declarative representation for the linguistic knowledge used by the parser and
generator. The restrictions placed on the PPARSE/PGEN user are those of symbolic, frame-
based knowledge representation and computing. PPARSE, PGEN, and Rhapsody were de-
signed to allow the user to specify the knowledge used by their programs, without making a
priori representational decisions about the content of the knowledge that the program uses.
The generality of phrases, the form of the conceptualizations underlying the language, and
the representation of linguistic knowledge are in the hands of the PPARSE/PGEN user.
However, computational models of natural language parsing generation are research topics
and some design decisions in PPARSE/PGEN have been made in the interests of modu-
larity and ease of use, instead of for cognitive validity or optimal performance. Users of
PPARSE/PGEN are encourage to copy and modify the package for their own purposes, and
to offer improvements and alternatives.

PPARSE/PGEN were developed for use in the THUNDER (THematic UNDerstanding
from Ethical Reasoning) project[Reeves, 1988; Reeves, 1989; Reeves, Forthcoming]. THUN-
DER is a story understanding system that reads sentences and short narratives, and answers
questions about the ethical judgments, irony, and thematic aspects of the input. A sample
of THUNDER’s I/O behavior is shown in figure 1. THUNDER uses a hybrid architec-
ture: PPARSE/PGEN are used to apply knowledge about linguistic structure in parsing
and generation, while semantic interpretation and reasoning are done using demon-based
processing. Demons are fired from the phrases to perform disambiguation, semantic attach-
ment, and explanation tasks. The general strategy taken in THUNDER is that the parser
should handle the application of all language-specific knowledge, and that decisions requiring
semantic reasoning, reference to context, or other extra-linguistic knowledge are external to
the parser. In this paper, the knowledge representation and example phrases are taken from
THUNDER, but PPARSE/PGEN are not dependent on the particular representation, task
domain, or overall system architecture. PPARSE/PGEN are also currently being used for
natural language 1/0 in the STARE legal reasoning system|[Goldman et al., 1987], and the
ARIEL analogical reasoning system[August and Dyer, 1985a; August and Dyer, 1985b).

This document is organized in four sections. The first gives an overview of how phrasal
parsing and generation are implemented in PPARSE/PGEN. Section two discusses problem
areas in phrasal parsing, generation, and lexical construction, and how those issues are ad-
dressed in PPARSE/PGEN. The third section is a technical description of PPARSE/PGEN,
and is intended as a user’s manual. Section four provides a sample lexicon and an annotated
trace.

2 PPARSE and PGEN Overview

The implementation of phrasal parsing and generation used in PPARSE/PGEN is based
-on the PHRAN phrasal parser{Wilensky and Arens, 1980; Wilensky, 1981; Jacobs, 1985b:

Input: TO GET THE MONEY TO BUY A NEW CAR *COMMA* JOHN ROBBED
A BANK *PERIOD*

Why is the plan wrong?

IT IS WRONG BECAUSE HE TOOK MONEY FROM THE BANK DEPOSITORS
Additional reasons why the plan is wrong;

BECAUSE HE THREATENED THE BANK TELLER *POSSESSIVE* HEALTH
BECAUSE HE GOT THE CAR BUT HE TOOK MONEY FROM THE BANK
DEPOSITORS AND SAVING MONEY IS-MORE-IMPORTANT-THAN GETTING
A CAR

BECAUSE HE GOT THE CAR BUT HE THREATENED THE BANK TELLER
POSSESSIVE* HEALTH AND KEEPING HEALTH IS-MORE-IMPORTANT-THAN
GETTING A CAR

BECAUSE HE MIGHT GET ARRESTED

Reasons why the plan is right:

BECAUSE HE GOT THE CAR

Inferences from evaluation:

HE BELIEVES-THAT GETTING A CAR IS-MORE-IMPORTANT-THAN THE BANK
DEPOSITORS SAVING MONEY

HE BELIEVES-THAT GETTING A CAR IS-MORE-IMPORTANT-THAN THE BANK
TELLER KEEPING HEALTH

Figure 1: Sample THUNDER I/O — PPARSE/PGEN are used to process the text in capital
letters.

Arens, 1986]. Lexical entries are associated with functional groups of text—words, idioms,
and syntactic patterns—and are composed of a pattern and a concept (termed a PC pair).
For example, the lexical entry for the word “robbed” could be defined as:

(phrase:define ’ph-robbed
(comment "robbed")

(pattern ’robbed)
(concept (action

type 'atrans

actor Trobber

'object Tmoney

from ?victim

'to Trobber

’time ’past
’in-pschema PS-Robbery)))

The pattern is the surface word “robbed” and the concept is the CD action atrans in the plan
schema for generic robbery PS-Robbery.! The ?variable-name notation is used to denote
variables in the conceptual objects. Patterns can be composed of sequences of conceptual
objects to match syntactic patterns. For example, the entry for the pattern human-robs-bank
using the subject-verb-object syntax form looks like:

(phrase:define ’ph-human-rob-bank
(comment '"<human> <action:rob> <financial-institutiom>")
(pattern ?*robber+Zhuman

{action

'type ‘’atrans

actor 7robber
’object 7money

*from ?victim

‘to ?robber

'time 7tense
*in-pschema PS-Robbery

?*bank+&financial-institution))

(concept (action

‘type ‘’atrans

actor T7robber

'object 7money

‘from (human ’employee-of ?bank)
’to Trobber

’time ?tense

*in-pschema PS-Bank-Robbery)))

The pattern is the three ordered constituents ?robber, the atrans action, and ?bank. The
7*robber+&human notation is used for phrasal variables. The phrasal variable ?*robber+&human

1 The representation system for conceptual objects used in the examples is based on Conceptual Depen-
dency (CD)[Schank, 1973; Schank, 1975]. Atrans is an action primitive standing for abstract transfer of
possession. Plan Schemas (PS) are used to represent intentional information in THUNDER and are based
on Memory Organization Packets (MOPS)[Schank, 1982].

4

will match a conceptual object of the class &human and will bind the variable 7robber to
that conceptual object. Variable matching is done using unification, so variables of the same
name only match conceptual objects that are the same. When the human-rob-bank pattern
is matched, the plan schema is specialized from generic robbery (PS-ROBBERY) to bank
robbery (PS-BANK-ROBBERY).

PPARSE and PGEN both use the same set of phrases. The phrases are stored in dis-
crimination nets (d-nets)[Charniak et al., 1980, pp. 162-176] to quickly access candidate
phrases. For parsing, the phrases are indexed in a d-net by the pattern, and for generation
by the concept. Since patterns and concepts contain variables, the d-net returns a candidate
set of phrases which are then tested for variable constraints and user specified tests before
being applied.

During parsing, words are read and matched against the patterns in phrases. If no
pattern matches, the words are kept in an list in order to match patterns with more than
one constituent. When a pattern matches, its constituents in the list are rewritten to the
concept in the phrase. This process results in the bottom-up construction of a parse tree
where each node is the concept of a matched pattern.

Figure 2 shows how words and constituents are successively re-written for the sentence
“John robbed a bank.” The word “John” matches the pattern for the conceptual represen-
tation of 2 human named John, and “robbed” is represented as an action in the robbery
plan schema PS-Robbery. The word “a” doesn’t have its own phrase, so the parser reads the
next word “bank”, and matches the pattern “a bank” which has the representation object
for financial-institution as its concept. The human-rob-bank pattern then matches the
top nodes of the tree, yielding the action in the bank robbery plan schema as the parsed
representation of the sentence.

PGEN generates an output list of natural language words from a given conceptual object.
PGEN constructs a generation tree beginning with the input concept at the root node. This
object is matched against the concept section of phrases, and new nodes are added to tree
for each of the pattern elements of the matching phrase. This process is repeated depth-first
for each of the new nodes until words (lisp atoms) are reached at the leaf nodes of the tree.
Since phrase patterns generally break apart the concept into constituent parts, this process
is called recursive descent generation.

The generation process can be illustrated by reading Figure 2 from the bottom up:
PGEN takes as input the atrans action with the robber and bank variables instantiated.
This concept matches the human-rob-bank phrases, so new nodes are constructed for the
robber, the rob action, and the bank, with the variable bindings passed to the new nodes.
This process is repeated for the human, generating his first name “John”, and the action
is realized with the word “robbed”. The bank concept re-writes to the article+institution
pattern, which in turn re-writes to “a bank”.

3 Issues in Phrasal Parsing and Lexicon Construction

There are three general problem areas involved in constructing a phrasal natural language
parser/generator: (1) the domain of the parser, (2) phrase definition and lexical construction,
(3) and how the parser handles structural ambiguity. In this section, each of these issues are

“John”

(human ...
(human ...
(human ...

(human ...

™~

“robbed”
(Action Atrans “a” “bank”
in PS-Robbery) \
(Action Atrans “a” (financial-institution ...

in PS-Robbery) \ /

(Action Atrans (financial-institution ...

in PS-Robbery) /

(Action Atrans in PS-Bank-robbery)

Figure 2: Example parse tree constructed by rewriting patterns

discussed, and how they are addressed in PPARSE/PGEN is presented.

3.1 The Doméin of the Parser

What is the separation point between parsing, and inference and reasoning? For example, a

program that reads the sentence:

John wanted a new car, so he decided to rob a bank.

should be able to infer that John is going to get the money from the bank, and use it to buy

a new car.? A high level phrase for for this sentence might be:

Pattern: < goal’®» *comma* so <action >
Concept: <action» achieves <goal>

The concept represents that John is robbing the bank to achieve his goal of acquiring a
new car. However, there is an intervening step between the bank robbery and John getting
the car: John has to take the money and buy the car. The issue is whether the parser should
find the causal chain from bank-robbery => get-money = buy-car = possess-car, or just
recognize that there is an unspecified causal relation between the clauses “John wanted a

car” and “John decided to rob a bank” and pass it on to plan recognition routines.

%A more intelligent program might wonder why John just doesn’t steal a new car, and skip the middleman.

6

The two extreme viewpoints on this issue are taken by (1) syntactic parsers (e.g. [Woods,
1970; Marcus, 1980}), where the output of the parser is a syntactic parse tree which is then
taken as input by a semantic interpreter or inference engine, and (2) integrated parsers (e.g.
[Dyer, 1983]), where the parser has full access to the conceptual structure being produced,
and augments this structure as the text is read. The advantages of syntactic parsing are
that the parser can be modularized, and knowledge about language can be represented and
manipulated independently of the task domain of the program. The disadvantages are that
the parser doesn’t have access to potentially relevant information that makes the parsing
task easier, such as information for reference and disambiguation.

The strategy taken in THUNDER is that parser extracts all of the language specific
information from the input sentences: who the actor is, the action, and the relationships of
the clauses. Phrases that recognize relationships between phrase constituents fire demons
which use semantic information to figure out the and represent the exact relationship.

3.2 Phrase Representation and Lexical Construction

Researchers in phrasal natural language systems have identified the following desiderata for
phrase representation:

» Parsimony: each phrase should represent a specific piece of linguistic knowledge, and
duplication of knowledge should be avoided.

¢ Uniformity: a canonical representation should be used for all linguistic knowledge.

® Processing Independence: the representation of linguistic knowledge should be inde-
pendent of the language tasks that use the knowledge[Arens, 1986].

¢ Extensibility: it should be possible to incrementally add new phrases to the sys-
tem[Jacobs, 1985a).

o Adaptability: the representation of linguistic knowledge should be applicable to new
domains{Jacobs, 1985a).

e Learnability: the phrase representation should, in principle, support mechanisms for
new phrases to be acquired|Zernik, 1987].

Uniformity of representation and processing independence are both provided by PPARSE/PGEN,
but lead to problems meeting the other criteria. PPARSE/PGEN do not make a distinc-
tion between linguistic and semantic data in the representation of phrases, so the knowledge
representation has to support syntactic class distinctions. This problem is particularly ap-
parent during generation, as there is no mechanism for specifying the syntatic environment
(“casting”[Hovy, 1987]) for how an object should be generated, except by changing the rep-
resentation.

Parsimony is primarily a function of the underlying knowledge representation, and is
difficult to achieve totally. In PPARSE/PGEN some duplication cannot be avoided because
of the frame-based nature of the representation. The rule “The subject of an active verb
is the actor” is expressed in each clause to action-frame pattern as a variable binding, and

7

thus is the knowledge is duplicated in each phrase. If the phrases are organized in a gen-
eralization hierarchy, general information can be represented in the high level phrases, and
more specific phrases would inherit most of the general information while representing id-
losyncratic exceptions[Jacobs, 1985a; Zernik, 1987]. PPARSE/PGEN use d-nets for phrase
organization and access, which automatically creates some of this hierarchy. Patterns with
variables are indexed higher in the net, while patterns with specific content are indexed
lower. However, other pattern constraints in the phrases are not used by the d-net, such as
the class restrictions on phrasal variables and applicablity test functions.

Extensibility, adaptability, and learnability of phrases are accomplished by systems that
design the phrase representation for integration with the knowledge representation and pro-
cessing tasks(Jacobs, 1985a; Zernik, 1987]. These programs tightly couple the phrase repre-
sentation with phrase organization, defeating the processing independence principle. Since
PPARSE/PGEN are designed to be independent of a specific knowledge representation, in
addition to being independent of processing tasks, phrase organization is not made depen-
dent on the knowledge representation. PPARSE/PGEN are adaptable and extensible, but
only in the sense that the user can incrementally add phrases.

3.3 Structural Ambiguity

Structural ambiguity is a property of sentence that have multiple syntactic parse trees. For
example, in the sentence:

I saw the man with the telescope.

the prepositional phrase “with the telescope” can be attached to the main clause (the tele-
scope was used to see the man) or the object (the man possessed the telescope). In some
cases semantics can be used to resolve the ambiguity. For example, the prepositional phrase
attachment in:

I saw the Grand Canyon flying to New York -

can be done by knowing that “the Grand Canyon” isn’t something that can fly.

Structural ambiguity is a particular problem for phrasal parsers. To handle structural
ambiguity the parser either (1) has to delay phrase application until potentially ambiguous
constructs have been parsed, or (2) has to be able to backtrack when a structural ambiguity
1s recognized.

PPARSE/PGEN do not backtrack. Once a phrase is selected and applied there is no way
to “undo” the effects of phrase application. There is also no way to produce multiple parses
of structurally ambiguous sentences. For example, using the phrases:

Pattern: < humanl » <verb to-see>» <human2®
Concept: (action type:attend actor:humanl object:human2)

Pattern: <action>» <« prep-phrase prep:with object:7object>
Concept: (action instrument:?object)

to parse:

I saw the man with the telescope.
will result in the conceptualization:

(action nil

‘type ’attend
’actor reader
’object the man

‘instrument telescope)

With these phrases, the prepositional phrase “with the telescope” is attached to the
action, instead of to “the man”. Even with the following phrase added to the lexicon:

Pattern: <human>» «prep-phrase prep:with object:?object>
Concept: (human possess:?object)

the human-saw-human pattern would match first, and the result would be the same.
One possible solution would be to add the phrase:

Pattern: <action’» <« prep-phrase prep:with object:?object:>
Concept: (action object: (human possess:?object))

and then use semantic routines called from the applicability tests of the phrase to choose
between the two competing < action» <prep-phrase>> patterns.

The design decision not to allow the parser to backtrack was made for the following
reasons:

1. Backtracking points are difficult to recognize. Since phrases have multiple constituents,
PPARSE has to keep a list of top-level nodes in case the next word or phrase matched
completes a phrase. Also, since PPARSE can be used to produce a list of concepts (a
sequence of actions, for example), it can’t recognize a backtrack point when no phrase
prefixes match.

2. Parsing problems based on structural ambiguity are sometimes the result of too little
semantics to distinguish between phrases. Syntactically ambiguous sentences usually fall
into two classes: (1) where semantics can be used to resolve the ambiguity (e.g. “I saw
the Grand Canyon flying to New York.”, or (2) where there is an ambiguity that can’t be
resolved (e.g. “I saw the man with the telescope”). Backtracking doesn’t work generally for
either of these cases.

3. Having to backtrack during parsing is the symptom of a deeper problem with symbolic
understanding systems. Human readers have the ability to dynamically switch between
interpretations as more information becomes available, whereas symbolic natural language
systems have to commit to variable bindings and stick with them. For example, in:

John kicked the bucket.
His wife was very upset.
He started to clean up the mess.

The interpretation of the phrase “kicked the bucket” goes from “John is dead” after the
second sentence, to the literal interpretation after sentence three.

4. Real backtracking by human readers is fairly rare. The only class of sentences where
human reader consciously backtrack are garden path sentences, such as “The horse raced past
the barn fell.” For most applications, sentence of this type don’t occur, or can be re-written.

9

4 Technical Description of PPARSE/PGEN

PPARSE/PGEN were originally written in T[Rees et al., 1984; Slade, 1987], and recently
ported to Common Lisp[Steele Jr., 1984]. PPARSE/PGEN make use of Rhapsody represen-
tation objects, hash tables, and discrimination nets, so Rhapsody has to be loaded before
PPARSE/PGEN.

The file phrasal load.lisp loads the entire PPARSE/PGEN system. There are three
main packages:

phrase The phrase package contains the phrase definition and indexing functions. The
source 1s in the file phrase.lisp.

pparse The pparse package contains the PPARSE functions and auxiliary routines for pars-
ing with the phrases. The source is in pparse.lisp.

pgen The pgen package contains the PGEN functions and auxiliary routines for generation
from the phrases. The source is in pgen.lisp.

To use PPARSE/PGEN the user has to define a set of phrases use the macro phrase:define.
The two main functions in PPARSE/PGEN are:

(pparse list-of-atoms)
(pgen representation-object)

Pparse returns the representation objects at the root of the parse tree. Pgen returns a list
of output words.

4.1 Phrase Definitions

The macro phrase:defineis used to define the database of lexical and linguistic knowledge
that PPARSE/PGEN use. The format of phrase:define is:

(phrase:define phrase-name

(comment comment-string)
(pattern list of items)
(concept representation object)
(flags list of flags)

(parse-test list of functions)
(parse-proc list of functions)
(gen-test list of functions)
(gen~proc list of functions))

The comment, pattern, and concept sections are required, and all of the other sections
are optional. The phrase-name part of the pattern is an atom that is used to uniquely
identify the phrase. Each section of the phrase definition is described below.

comment comment-string

10

‘The comment-string is used to describe the pattern in parsing and generation traces.
pattern list of items

Each item is one of the following: (1) an atom, (2) a representation object, (3) a simple
variable, (4) or a phrasal variable. During parsing, the items are matched against the values
of the top level nodes in the parse tree. Atoms in the pattern match atoms (using eq).
Representation objects, simple variables and phrasal variables are matched using unification,
so that variables with the same name match the same object. If the phrase is used in
generation, each item is used to build a new leaf node in the generation tree. Atoms are
put into the output buffer as surface words. Representation objects, simple variables, and
phrasal variables are de-referenced, and their values are used as the values of the new nodes.

concept representation-object

The representation object in the concept section is the object that a phrase will re-write
to during parsing, and the object that will be matched during generation. Variables in the
concept are matched and unified with variables of the same name in the concept and pattern.

flags list of flags

The flags sections is a list of atoms that control where the concept and the pattern are
stored. The atoms that can be used in the flags section are:

dont-gen Don’t use this pattern during generation. If this flag is used, the phrase is not
indexed into *pgen-dnet*.

dont-parse Don’t use this pattern during parsing. If this flag is used, the phrase is not
indexed into *pparse-dnetx,

parse-test list of functions
parse-proc list of functions
gen-test list of functions
gen-proc list of functions

The -test and -proc sections provide a way for arbitrary functions to be called during
parsing (sections with the parse- prefix) and generation (sections with the gen- prefix).
The -test functions are used to determine phrase applicability; for the phrase to be used,
all functions in the -test function list must return non-nil. The -proc functions are called
after the phrase has been selected, and can be used to change values in the tree, re-order
nodes in the tree, or to set variable bindings. Each entry in the list of functions is a lambda
with no arguments that is evaluated when the phrase is defined. For some purposes it is
useful to write macros with static parameters for commonly used -test and -proc functions.

11

4.2 Simple Variables, Phrasal Variables and Binding Lists

To find appropriate phrases during parsing, PPARSE matches phrasal patterns to the top
level values in the parse tree using unification. (For a description of a unification algorithm
see [Charniak et al., 1980, pp. 146-149]). The notation used for variables is ?variable-name
(e.g. 7human, Pactor). Variable of this type are called simple variables.

The second kind of variable used in phrasal patterns are called phrasal variables. Phrasal
variables are used to specify variables that will only match conceptual objects in a set of
named classes. The format of a phrasal variable is ?*variable-name+class or ?*variable-
name+(class-list). Phrasal variables work like simple variables during matching, but are
also restricted to only match representation objects of the classes specified. For example,
?*hum+&human only matches objects of class &human, and ?*animate+(Zhuman &cat kdog)
matches objects of class &human, &cat, or &dog.

Phrasal and simple variables that have the same variable name unify with each other.
Variables are scoped over the entire phrase, so that ?actor in the concept section and
7*actor+(&human ganimal) in the pattern must match the same representation object,
which must be of class ghuman or #animate (from the phrasal variable restrictions).

The variable bindings for each phrase are kept in a global hash table called *pparse-b indings*.3
The key of each entry in the hash table is the variable name, and the value of the entry is
the variable’s binding. This hash table is available to be used by phrase’s -test and -proc
procedures. The hash table is cleared before each phrase match, so it only holds the bindings
for the current phrase. In addition to variable bindings, each representation object is put
into the hash table keyed by its name, so that representation objects in the concept and
pattern can be accessed by -proc and -test functions.

4.3 Global Variables

During parsing and generation, PPARSE/PGEN build a tree as patterns are matched and
incorporated. Each node in the tree is an input or output word, an element of a phrase
pattern, or a phrase concept. For some words or patterns, the user may want to reorganize
the tree, or change node values using the ~test or -proc sections of a phrase. The following
global variables are accessible by the user:

pparse-dnet Discrimination net for indexing phrases by their patterns.
pgen-dnet Discrimination net for indexing phrases by their concepts.
pparse-trace Trace object for PPARSE.

pparse-trace+ Trace object for extended, debugging trace of PPARSE.
pgen-trace Trace object for PGEN.

pgen-trace+ Trace object for extended, debugging trace of PGEN.

pparse-root The root node of the parse tree.

3¥pparse-bindings* is a Rhapsody hash table, not a Common Lisp hash table,

12

pgen-root Root node of the generation tree.

pparse-bindings A hash table of the variable bindings used in matching concepts or
patterns.

pgen-node The current pgenode being generated.

pgen-output-buffer List containing the words output by PGEN.

4.4 PPARSE Nodes

Each node in the phrasal parse tree is a structure called a ppnode. Ppnodes have the following
components:

name Unique identifier of the node
value The conceptual content of the node.

prev Pointer to the previous node. The value of ppnode:prev will either be the node that
precedes the node in a phrase, or the parent node for nodes that begin a phrase.

constits For phrases, a list of the constituent nodes in the phrase. In other words, the
children of the node in the parse tree.

lex The entry in the phrasal lexicon used to build the node.

Each component is accessible and settable by the function (ppnode:componentname
node). The function (ppnode:create :rest name) creates new ppnodes. The optional
argument name will be used as a prefix on the name component of the node.

4.5 PPARSE’s Parsing Algorithm

For each word in the input list:
1. Construct a new node for the word.
2. Find and incorporate new phrases into the parse tree:

(a) Make a list of the values of the top level nodes in the parse tree.

(b) Make a list of candidate patterns to match by making a pattern out of the list
of top level values and the successive cdrs of the list. These candidate patterns
are tried in order, so that the parser matches the longest pattern first. The last
pattern tried will be the value of the most recently created node.

(c) For each candidate pattern:

i. Search *pparse-dnet* for candidate phrases. The d-net returns a list of
phrases in order of the specificness of their match with the search pattern.

1. For each candidate phrase:

13

A. Check that phrasal variable restrictions are met.

0

Run the candidate phrases parse-tests.

C. If the restrictions are met and the parse-tests return non-nil, build a
new node for the matched phrase, set the father and next pointers of the
nodes in the pattern matched, and set *pparse-root* to point at the
new node. Repeat step 2 until no new patterns are found.

4.6 PGEN Nodes

Each node in the phrasal generation tree is a structure called a pgenode. Pgenodes have the
following components:

name Unique identifier of the node

value The conceptual content of the node.

father Pointer to the parent node.

constits List of the children of the node, in their lexical order.

next Pointer to the next node to generate. For internal nodes, pgenode:next points to first
child of the node to generate. For leaf nodes, pgenode:next points to the next leaf
node to generate.

lex The entry in the phrasal lexicon used to build the node.

Each component is accessible and settable by the function (pgenode: componentname
node). The function (pgencde:create :rest name) creates new pgenodes. The optional
argument name will be used as a prefix on the name component of the node.

4.7 PGEN Generation Algorithm

Set *pgen-output-buffer* to nil, and build a new pgen node for the input concept and set
pgen~node to point at the node.

For the current *pgen-nodex:
1. If the value of *pgen-node* is nil, and reverse and return *pgen-output-buffers,

2. If the concept of *pgen-node* is an atom, cons it on to *pgen-output-buffer*, set
pgen-node from the next pointer of the current *pgen-node* and repeat, else

3. Search *pgen-dnet* for candidate phrases. The d-net returns a list of phrases in order
of the specificness of their match with the search concept.

4. For each candidate phrase:
(a) Check that phrasal variable restrictions are met.

(b) Run the candidate phrases gen-tests.

14

(c) If the restrictions are met and the gen-tests return non-nil, for each element of
the pattern section of the phrase:

i. Build a new node for the pattern element.
ii. Set the father pointer of the new node to *pgen-nodex
(d) Set the constits component of pgen node to the list of newly created nodes.

(e) Set the next component of *pgen-node* to the first constituent node, and the
next component of each constituent node to the next node in the list.

(f) Set *pgen-node from the next component of the current *pgen-node*, and
repeat.

4.8 Testing and Procedure Functions

The functions described in this section are built into PPARSE/PGEN for use in -test and

-proc sections of phrases. Each element in the ~test and -proc sections of phrases is a

function with no arguments. The -test and -proc sections of a phrase are evaluated when

the phrase is read. All of the routines described in this section return a procedure (lambda

closure) of no arguments that is evaluated when the phrase is applied. The arguments to these

functions are used in the routines to access run-time variables and global data structures.
The following functions can be used in pparse- or gen-test sections of phrases:

(pparse:check-var warichble) Returns true if variable is bound.
(pparse:check-null-var vaeriable) Complement of pparse:check-var.

(pparse:check-class variable class-list) Returns true if the class of the binding of vari-
able is a member of class-list.

(pparse:check-link-on-var variable link) Returns true if the instance bound to variable
has a non null link. ‘

The following functions can be used in the parse-proc section of phrases:

(pparse:add-node-bef wariable) Add a new node before the *pparse-root* node, and
set its value to the binding of variable.

(pparse:add-node-aft wariable) Add a new node after the *pparse-root* node, and set
its value to the binding of variable.

(pparse:set-slot variable slot-name value) Set slot-name on the binding of variable to
value.

(pparse:set-slot-from-var variable slot-name varigble2) Set slot-name on the binding
of variable to the binding of wariable2.

(pparse:set-slot-from-proc variable slot-name procedure) Set slot-name on the bind-
ing of variable to the the value obtained by evaluating procedure. Procedureis a lambda
with no arguments.

15

(pparse:add-link link variable) Add a link-name link from the value of *pparse-root*
to the binding of variable.

(pparse:replace-root-val procedure) Replacethe value of *pparse-root* with the value
of evaluating procedure. Procedure is a lambda with no arguments.

The following functions can be used in the gen-test section of phrases:

(pgen:prev-in-class class-list) Returns true if the class of the value of the previous node
in the generation tree is a member of class-list.

(pgen:prev-not-in-class class-list) Complement of pgen:prev-in-class.

(pgen:prev-eq variable) Returns true if the value of the previous node is eq to the binding
of variable.

(pgen:check-var-slot-val variable slot test-value) Returns true if the slot value of the
binding of variable is eq to test-value.

The following function can be used in the gen-proc section of phrases:

(pgen:replace-place-holder tag wvalue) Replace occurrences of the atom tag in the pat-
tern with value.

4.9 Tracing and Debugging Features

There are four user-settable flags for parsing and generation tracing:

pparse-trace PPARSE trace showing phrase application and the resulting conceptual
object for each phrase used.

pparse-trace+ Shows candidate phrases that are returned from the d-net. Primarily
used for debugging.

pgen-trace PGEN trace showing phrase application and the resulting concepts.

pgen-trace+ For extended debugging trace of PGEN.

Tracing is turned on using the call:
(setf (trace:on trace-flag) t)
And turned off with:
(setf (trace:on frace-flag) nil)

PPARSE/PGEN trace output defaults to standard-output, but can be directed to an-
other output stream with the call:

(setf (trace:stream trace-flag) new-output-stream)

16

The indent level can be set with:
(setf (trace:indent trace-flag) indent-column)

The default is column 0.

The following functions are useful for PPARSE debugging:

(pparse:top-level-nodes) Returns a list of pparse node at the top level of the parse tree.

(pparse:top-level-vals) Like pparse:top-level-nodes, but returns a list of the values
of the top level nodes.

(pparse:dump-tree) Prints the content of each node in the parse tree by traversing the
tree depth-first.

(pparse:map-tree function) Returns a list of the values of applying function to each of
the nodes in the parse tree depth-first.

(pparse:walk-tree function) Like pparse:map-tree, but doesn't return anything useful.
The following functions are useful for PGEN debugging:

(pgen:dump-tree) Prints the content of each node in the generation tree by traversing the
tree depth-first.

(pgen:map-tree function) Returns a list of the values of applying function to each of the
nodes in the generation tree depth-first.

(pgen:walk-tree function) Like pgen:map-tree, but doesn’t return anything useful.

4.10 Packages for Common Linguistic Problems

While PPARSE/PGEN doesn’t presume to have the final word on the proper way to in-
tegrate linguistic and semantic knowledge during parsing and generation, there are two
problem areas that every natural language program has to deal with: (1) pronoun reference,
using pronouns to reference items that have previously been mentioned, and (2) lezical dis-
ambiguation, selecting correct word senses from words that have multiple meanings. Since
these problems occur in almost every natural language sentence, PPARSE /PGEN provides

built-in mechanisms to for the user who wants to work around these problems. This section
describes both problems, and the solutions provided by PPARSE/PGEN.

4,10.1 Pronoun Reference

Pronouns are used to refer to people and things that have been previously mentioned in a
text. There are three types of problems in parsing pronouns:

1. When should the reference be resolved? Should the reference be resolved when the
pronoun is read, or should the parse wait until a sentence or clause boundary is reached in
‘order to exploit semantic constraints? For example, in:

17

John hit Bill, and he ...
... hurt his knuckles.
.. .dropped to the floor.

the contrasting completions of the sentence show that the pronoun ke cannot be resolved
until the end of the sentence. A related question is whether the parser should commit to a
particular resolvent, or find a potential resolvents and wait for more evidence. For example,
in:

John looked at Bill, and he said “Hello.”

the most probable speaker is Bill, but it could be John (this would more likely be written
“John looked at Bill and said ‘Hello’ ™).

2. What strategies should be used to find the reference? Some sources of constraints on
the reference of a pronoun are (1) the pronoun itself, i.e. ke can only refer to male humans,
(2) the range of possible referents that have been mentioned or are currently in focus[Sidner,
1983], (3) semantic constraints, such as that the person hitting will hurt his knuckles, and
that the person hit will drop to the floor.

3. How should forward or null referents be recognized and handled? Some pronouns are
used as initial mentions of people. For example, if a text began:

He was tall, dark, and handsome.

the parser should produce the concept for a tall, dark, handsome, male human, even though
there is no referent for he. And for:

It was a dark and stormy night.

the parser has to recognize that it refers to the time of day, and the sentence is being used
to convey the setting.

To handle pronoun reference, PPARSE/PGEN provide a set of parse-proc and gen-test
functions in the lexref package. These functions save potential referents in global data
structures, fire demons during parsing to resolve pronoun references, and test for pronoun
applicability during generation. To illustrate how the functions work, consider the definitions
of the phrases “john” and “he”:

(phrase:define ’ph-john
(comment "John'")
(pattern ’john)
(concept (human ’proper-namel
'first-name ’john
’gender ‘male))
(parse-proc (lexref:parse-save-ref *lexref-people*))
(gen-test (lexref:not-most-recent-ref
?proper-namel
&proper-namel
*lexref-peoplex))
(gen-proc (lexref:gen-save-ref *lexref-peoplex)))

18

(phrase:define ’ph-he
(comment "he'")
(pattern ’he)
(concept (human ’male-pronouni
'gender ’male
‘number 7num))
(parse-proc (lexref:spawn-resolver-demon
?male~pronounl
’nomative-pronoun))
(gen-test (lexref:most-recent-ref
?male-pronouni
&male-pronouni
*lexref-peoplex)))

The parse-procin the phrase for “John” uses the function lexref: save-ref to save the
conceptualization for John in the global list *lexref-people*. The parse-proc for “he”
uses lexref : spawn-resolver-demon to search *lexref-people* for a concept matching the
concept of the “he” phrase. The reason that a demon is spawned, instead of doing the search
when “he” is parsed, is so that the search function can use the context conceptualization in
which “he” was used.

During generation, gen-test functions are used to decide when to use a pronoun. The
function lexref:most-recent-ref tests xlexref-people* to see if the object being gener-
ated is the most recent object that matches the conceptualization in the phrase. So, if the
conceptual object for “John” is being generated, and “John” is the most recent male human
who has been generated, the pronoun “he” will be used.

The lexref package used the following global variables:

lexref-people List of person references, in order of use.

lexref-things List of “thing” references, in order of use.
The following functions are used in parse- and gen-proc functions:

(lexref:spawn-resolver-demon wvar type) spawns resolver demons defined in the file pparse_demon.
The binding of ver is used as a argument to the demon, and #ype is used to identify
the demon.

(lexref:parse-save-ref list) pushes the content of *pparse-root* in the global variable
list.

(lexref:gen-save-ref list) pushes the content of *pgen-node* in the global variable &st.

(lexref:parse-search-for-ref lst) searches global variable list for a concept matching
the contents of *pparse-root*, and replaces *pparse-root* with what it finds.

(lexref:gen-search-for-ref list) searches global variable list for a concept matching the
contents of *pgen-node*, and replaces *pgen-node* with what it finds.

19

The following functions are used in gen-test functions:

(lexref:most-recent-ref var matcher list) returns true if the binding for varis eq to the
most recent object in list that matches matcher,

(lexref:not-most-recent-ref wvar matcher list) isthe complement of lexref :most-recent-ref.

(Lexref:not-mentioned war list) returns true if the binding for varis not contained in lst.
This function is useful for using phrases that generate full descriptions of objects the
first time that they are generated (e.g. “a large white cockatoo” vs. “the bird”).

(lexref :mentioned war list) is the complement of lexref:not-mentioned.

Example pronoun definitions are given in the file pptest_pronoun.lisp, and sample pro-
noun resolution demons are defined in the file parse_demon.1isp. The function pparse:run-demons
is used to run demons spawned by the lexref package.

4.10.2 Lexical Disambiguation

To integrate top-down information into the parsing process, PPARSE uses special processing
to match ambiguous words. For example, the word “bank” can be a river bank (as in “the
west bank of the Mississippi”} or a financial institution (as in the kind of bank John robs).
This ambiguity is represented by a special representation class called ambigucus-word which
holds the competing senses of the lexical item. The entry for “bank” is:

(phrase:define
(comment "bank (ambiguous)")
(pattern ’bank)
(concept (ambiguous-word
’sense0 (location
'of ’river
’prep ’next-to)
’sensel (financial-institution
‘name 7name))))

When an attempt is made to match an element of a constituent pattern against an ambiguous
word, each of the senses of the word a matched. If any of the senses matches, that sense
is selected and the pattern is used. For example, the parse tree for “John robbed a bank”
before the application of the human-rob-bank pattern above is shown in figure 3. Since
the human-rob-bank pattern matches if the financial-institution sense of bank is used, the
human-rob-bank pattern is used to construct the meaning of the sentence. The resulting
parse tree after the human-rob-bank is matched is shown in figure 4.

The representation class ambiguous-word can hold up to 10 word senses, labeled sense0
- sense9. Phrases and concepts can treat concepts of the ambiguous-word class just as any
other representation class; they can be included in patterns, concepts, and phrasal variables.

20

(Human (Action (Ambiguous-word
name: John) type: ATRANS sensel: (Location

actor: Trobber of: river
object: 7money prep: next-to)
from: Tvictim sense2: (Financial-institution
time: past name: 7name)
in-pschema:) ref: indef)
PS-ROBBERY)
Y 4’

John robbed a (Ambiguous-word
sensel: (Location
of: river

prep: next-to)
sense2: (Financial-institution
name: 7name))

bank

Figure 3: Example Parse Tree Before Matching the Syntax Pattern

5 Example Lexicon and Trace

This section contains sample lexical entries for the sentence “John picked up the ball and
put it in the box”, and a trace of PPARSE/PGEN parsing and generating the sentence.

5.1 Lexical Entries

Basic noun patterns map the words to their associated concepts. The gen-tests for regular
nouns test for an unbound ?ref variable to make sure that the article has been generated.

;33 John

(phrase:define ’ph-1
(comment "John'")
(pattern ’john)
(concept (human ’ph-i-con
’name ’john
‘gender ’male)))

;1) ball
(phrase:define ’ph-5

(comment "ball")
(pattern ’ball)

21

(Action

type: ATRANS

actor: (Human name: John)

object: Tmoney

from: (Human employee-of:
(Financial-institution

name: name)
in-pschema: PS-BANK-ROBBERY

time: past)
(Human (Action (Ambiguous-word
name: John) type: ATRANS sensel: (Location
actor: 7robber of: river
object: 7money prep: next-to)
from: ?victim sense2: (Financial-institution
time: past name: 7name)
in-pschema:) ref: indef)
PS-ROBBERYV\
y |
John robbed a (Ambiguous-word
sensel: {Location
of: river

prep: next-to)
sense2: {Financial-institution
name: Tname))

bank

Figure 4: Example Parse Tree After Matching the Syntax Pattern

22

(gen-test (pparse:check-null-var ?ref))
(concept (phys-obj ’ph-5-con

'ref Tref

‘type ’game-obj

‘name ’ball)))

;33 box

(phrase:define ’ph-12
(comment "box'")
(pattern ’box)
(gen-test (pparse:check-null-var ?ref))
(concept
(phys-obj ’ph-12-con
'ref Tref
'type ’container
‘name ’box)))

The pattern for “it” doesn’t have a concept. Instead, the parse-proc searches the parse
tree for the most recently seen phys-obj, and uses it as the value of the phrase.

33 1t

(phrase:define ’ph-it

(comment "it')
(flags ’dont-gen)
(pattern ’it)
(parse-proc

#’ (lambda ()

(let ((node (pparse:pronoun-search (list &phys-obj))))
(and node
(setf (ppnode:value *pparse-root*)
(ppnode:value node))})))))

The representation class verb is used to hold the type of verb and associated modalities
(tense, number, etc.)

;35 picked

(phrase:define ’ph-2
(comment "picked")
(pattern ’picked)
(concept (verb ’'ph-2-con
'name ’to-pick
’tense ’past)))

23

;15 put

(phrase:define ’ph-9
{comment "put")
(pattern ’put)

(concept
(verb ’ph~9-con
‘name ’to-put)))

The pattern for the verbal “picked up” is the verb to-pick with a variable tense followed

by the word “up”. If there were patterns for various verb modalities, this pattern would also
be used for “pick up”, “had been picked up”, etc.

;33 <verb:to-pick> up

(phrase:define ’ph-3

(comment "<Verb:to-pick> up")

(pattern (verb ’ph-3-verb
'name ’'to-pick
’tense 7Ttense)

Jup)

(concept (verb ’ph-3-con
’name ’to-pick-up
’tense 7tense)))

The articles “a” and “the” are represented as with different types with different types,

so that the article class can be used to recognize the beginning of noun phrases.

;53 the

(phrase:define ’'ph-4
(comment '"the")
(pattern ’the)
(concept (article ’ph-4-art
’type ’definite)))

s &

(phrase:define ’ph-4a
(comment "a'")
(pattern ‘a)
(concept (article ’ph-4-arta
‘type ’indefinite)))

The next two patterns put together noun and prepositional phrases, respectively. The

pattern for the “in object” prepositional phrase uses a phrasal variable to restrict “object”
to members of the representational class phys-obj.

24

;33 <article> <phys-obj>

(phrase:define ’ph-6

(comment "<article> <phys-obj>")

(pattern (article ’ph-6-art
’type Tref)

(phys-obj ’ph-6-obj

'name Tname
‘type 7type))

(concept (phys-obj ’ph-6-con
'ref Tref
'type Ttype
'name 7name)))

;35 in <obj>
(phrase:define ’ph-11

(comment "in <phys-obj>")
(pattern ’in 7*obj+&phys-obj)

(concept
(prep ’ph-11-con
‘name ’in

Jobj 70bj)))

The following two patterns put subject-verb-object clauses together into actions.
;33 <7human> <verbal:pick-up> <7obj>

(phrase:define ’ph-7
(comment '"<human> <pick-up> <phys-obj>")
(pattern ?7xhuman+&human
(verb ’ph-7-verb
'name ’to-pick-up)
?*0bj+&phys-obj)
(concept
(action ’ph-7-conl
'type 'grasp
’actor 7human
‘object 7obj
’instr (action ’ph-T-con2
‘type ’'move
*actor T7human
’object ’fingers
’to 70bj))))

25

;i human <to-put> objl <in obj2>

(phrase:define ’'ph-13
(comment “<human> <put> <obj1> <in obj2>")
(pattern ?*human+&human
(verb ’ph-13-verb
’name ’to-put)
?xobj1+&phys-obj
(prep ’ph-13-prep
‘name ’in
’obj 70bj2))
(concept
(action ’ph-13-con
'type ’ptrans
'actor Thuman
’object Tobjl
'to 7obj2
’instr 7instr-act))
(gen-test (pparse:check-null-var ?instr-act)))

The next pattern fills in the actor in the second clause of the sentence. When this pattern
is matched, “John picked up the ball” has been parsed into an action, and “put” has matched

the verb concept. The parse proc adds a node before the *pparse-root*, so act-and-verb
is transformed into act-and-actor-verh.

133 <act> and <verb>

(phrase:define ’ph-8
(comment '"<act> and <verb>"

"Fill in the elliptical actor of the second act")
(pattern

(action ’ph-8-act
’actor Thuman)
'and
7*verbl+&verb)
(parse-proc (pparse:add-node-bef ?human)))

The next pattern recognizes the sequence of acts, and puts them together in an instru-
mental relation.

(phrase:define ’ph-14
(comment "<grasp-act> and <ptrans-act>"

"The Grasp is inferred to be instrumental to the Ptrans')
(pattern (action ’ph-i4-actl

type 'grasp

actor T7human
'object 7objl
'instr “7actl)
'and
(action ’ph-14-act2
'type '‘ptrans
’actor Thuman
‘object 7objl
‘to 7obj2)})
(concept
(action ’ph-14-con
'type ’ptrans
’actor 7human
‘object 7obj1l
‘to 7obj2
’instr (action ’ph-14-con2
type ‘grasp
’actor Thuman
’object ?obji1
’instr “?acti))))

5.2 Program Trace

The call to pparse will create a concept from the list of words, returning the concept. The
call to pgen will take that concept, and return the generated list of atoms.

> (pgen (pparse ’(john picked up the ball and put it in the box)))

Trying phrase #{ph-1}

Found Phrase: #{ph-1}

Created Concept:

(human &human.3
name john
gender male)

PPARSE works in a cycle adding words and applying phrases. The Trying phrase. ..
message is printed for each phrase that is returned from the *pparse-dnet#*.

" Processing word: picked

27

Trying phrase #{ph-2}

Found Phrase: #{ph-2}
————— > Picked <-----

Created Concept:

(verb &verb.7
name to-pick
tense past)

Trying phrase #{ph-3}

Found Phrase: #{ph-3}

Created Concept:
(verb &verb.8
name to-pick-up
tense past)
Trying phrase #{ph-7}

Once human-pick-up has been recognized, calls to the dnet returns the potential pattern
human-pick-up-object (ph-7). Since the object is not a phys-obj, the pattern in not applied.

Trying phrase #{ph-7}
Trying phrase #{ph-4}
Found Phrase: #{ph-4}
Created Concept:
(article &article.S
type definite)
Trying phrase #{ph-7}

28

Trying phrase #{ph-5}

Found Phrase: #{ph-5}

Created Concept:
(phys-obj &phys-obj.5
ref “?ref
type game-obj
name ball)
Trying phrase #{ph-6}

Found Phrase: #{ph-6}
----- > <article> <phys-obj> <-----

Created Concept:
(phys-obj &phys-obj.6
ref definite
type game-obj
name ball)
Trying phrase #{ph-7}

When “the ball” is parsed into a phys-obj, the clause pattern is applied.
Found Phrase: #{ph-7}

Created Concept:
(action &action.12

type grasp

actor &human.3
object &phys-obj.6
instr &action.13)

Trying phrase #{ph-8}
Trying phrase #{ph-9}

Since PPARSE tries to find the longest phrase it can at every point in the parse, it tries
the action-and-verb pattern before the “put” pattern. The phrasal variable ?*verbi+&verb

29

in the pattern of ph-8 is indexed as a simple variable in the d-net, which is why ph-8
is returned. The class constraint from the phrasal variable is tested after the pattern is
returned, and ph-8 is rejected because the atom “put” is not of class verb.

Found Phrase: #{ph-9}

Created Concept:
(verb &verb.9

name to-put)
Trying phrase #{ph-8}

Found Phrase: #{ph-8}

Created Concept:
(verb &verb.9
name to-put)

Trying phrase #{ph-it}

Found Phrase: #{ph-it}

Created Concept:
(phys-obj &phys-obj.6
ref definite
type game-obj
name ball)

Trying phrase #{ph-11}

Processing of “the box” is the same as for “the ball”, so the trace is deleted here, up the
where the prepostional phrase pattern matches.

Trying phrase #{ph-11}

Found Phrase: #{ph~11}
————— > in <phys-obj> <-----

30

Created Concept:
(prep &prep.3

name in

obj &phys-obj.8)
Trying phrase #{ph-13}

Found Phrase: #{ph-13}
————— > <human> <put> <objl> <in obj2> <=-===-

Created Concept:

(action &action.14
type ptrans
actor &human.3
object &phys-obj.6
to &phys-cbj.8
instr 7instr-act)

Trying phrase #{ph-14}

Found Phrase: #{ph-14}

Created Concept:

(action &action.l15
type ptrans
actor &human.3
object &phys-obj.6
to &phys-obj.8
instr &action.16)

Processing Complete

Result of Parse

(action &Zaction.15
type ptrans
actor &human.3
object &phys-obj.6
to &phys-obj.8

instr &action.16)

The result of the parse is the action &action. 15, which is then the argument to PGEN.

Generating:

31

(action &action.15
type ptrans
actor &human.3
object &phys-obj.6
to &phys-0bj.8
instr &action.16)
trying phrase #{ph-13}
trying phrase #{ph-14}

The phrase ph-13 is rejected on generation by the gen-test, which checks for a null
instrumental action. When ph-14 is applied, the generated is recursively called on the
constituents in the phrase pattern.

Applying phrase: #{ph-14}

————— > <{grasp-act> and <ptrans-act> <-----
————— > The Grasp is inferred to be instrumental to the Ptrans <-----
Generating:
(action &action.18
type grasp

actor &human.3

object &phys-obj.6

instr &action.13)
trying phrase #{ph-7}

Applying phrase: #{ph-7}
----- > <human> <pick-up> <phys-obj> <-=---
Generating:
(human &human.3
name john
gender male)
trying phrase #{ph-1}

Applying phrase: #{ph-1}

Generating:
{(verb &verb.10

name to-pick-up)
trying phrase #{ph-3}

Applying phrase: #{ph-3}
Cmmmm- > <Verb:to-pick> up <-----

32

Generating:
(verb &verb.11
name teo-pick
tense 7Ttense)
trying phrase #{ph-2}

Applying phrase: #{ph-2}
----- > Picked <-----

A e

Generating:
(phys-obj &phys-obj.6
ref definite
type game-obj
name ball)
trying phrase #{ph-5}
trying phrase #{ph-6}

Applying phrase: #{ph-6}

Generating:

(article &article.7
type definite)

trying phrase #{ph-4}

Applying phrase: #{ph-4}

Generating:
(phys-obj &phys-obj.9
name ball
type game-obj)
trying phrase #{ph-5}

Applying phrase: #{ph-5}

33

After recursively descending through the grasp act, PGEN generates the second con-
stituent of ph-14, which is the atom “and”. After that, the ptrans action is generated.

Generating:

{action &action.17
type ptrans
actor &human.3
object &phys-obj.6
to &phys-obj.8)

trying phrase #{ph-13}

Applying phrase: #{ph-13}
Generating:
(human &human.3

name john

gender male)

trying phrase #{ph-1}

Applying phrase: #{ph-1}

Generating:
(verb &verb.12

name to-put)
trying phrase #{ph-9}

Applying phrase: #{ph-9}

Generating:

34

(phys-obj &phys-obj.6
ref definite
type game-obj
name ball)
trying phrase #{ph-5}
trying phrase #{ph-6}

The text “the ball” is generated in the same way as before. For brevity, trace is deleted
here.

Generating:
(prep &prep.4

name in

obj &phys-obj.8)
trying phrase #{ph-11}

Applying phrase: #{ph-11}
————— > in <phys-obj> <~----

Generating:

(phys-obj &phys-obj.8
ref definite
type container
name box)

trying phrase #{ph-12}

trying phrase #{ph-6}

The text “the box” is generated in the same way as “the ball”.
Processing Complete
{(john picked up the ball and john put the ball in the box)
References
Arens, Y. (1986). Cluster: An Approach to Contertual Language Understanding. PhD

thesis, Computer Science Division, University of California, Berkeley. Report UCB/CSD
86/293.

August, S. E. and Dyer, M. G. (1985a). Analogy recognition and comprehension in editori-
als. In Proceedings of the Seventh Annual Conference of the Cognitive Science Society
(CogSci-85), pages 228-235, Irvine, CA.

35

August, S. E. and Dyer, M. G. (1985b). Understanding analogies in editorials. In Proceedings
of the Ninth International Joint Conference on Artificial Intelligence (IJCAI-85). pages
845-847, Los Angeles, CA.

Bresnan, J. and Kaplan, R. M. (1982). Lexical-functional grammar: A formal system for
grammatical representation. In Bresnan, J., editor, The Mental Representation of Gram-
matical Relations. Cambridge University Press, Cambridge, MA.

Charniak, E., Riesbeck, C. K., and McDermott, D. V. (1980). Artificial Intelligence Pro-
grammaing. Lawrence Erlbaum, Hillsdale, NJ.

Dyer, M. G. (1983). In-Depth Understanding: A Computer Model of Integrated Processing
for Narrative Comprehension. MIT Press, Cambridge, MA.

Fillmore, C. (1968). The case for case. In Bach, E. and Harns, R. T., editors, Universals in
Linguistic Theory, pages 1-90. Holt, Reinhart and Winston, Chicago, IL.

Goldman, S. R., Dyer, M. G., and Flowers, M. (1987). Precedent-based legal reasoning and
knowledge acquisition in contract law: A process model. In Proceedings of the First

International Conference on Artificial Intelligence and Law, pages 210-221, Boston,
MA.

Hovy, E. H. (1987). Generating Natural Language Under Pragmatic Constraints. PhD thesis,
Computer Scienice Department, Yale University, New Haven, CT. Research Report 521.

Jacobs, P. S. (1985a). A Knowledge-Based Approach to Language Production. PhD the-
sis, Computer Science Division, University of California, Berkeley. Report UCB/CSD
86/254.

Jacobs, P. S. (1985b). Phred: A generator for natural language interfaces. Technical Re-
port Report UCB/CSD 85/198, Computer Science Division, University of California,
Berkeley.

Kay, M. (1979). Functional grammar. In Proceedings of the Fifth Annual Meeting of the
Berkeley Linguistics Society, pages 142-158.

Marcus, M. P. (1980). Theory of Syntactic Recognition for Natural Languaguage. MIT Press,
Cambridge, MA.

Pereira, F. C. N. and Warren, D. H. (1980). Definite clause grammars for language analysis—
a survey of the formalism and a comparison with augmented transition networks. Arti-
ficial Intelligence, 13(3):231-278.

Rees, J. A., Adams, N. I., and Meehan, J. R. (1984). The T manual Computer Science
Department, Yale University, New Haven, CT., fourth edition.

Reeves, J. F. (1988). Ethical understanding: Recognizing and using belief conflict in narrative
understanding. In Proceedings of the Sizth National Conference on Artificial Intelligence
(AAAI.88), St Paul, MN,

36

Reeves, J. F. (1989). Computing value judgements during story understanding. In Proceed-
ings of the Eleventh Annual Conference of the Cognitive Science Society (CogSci-89).
Ann Arbor, MI.

Reeves. J. F. (Forthcoming). Computational Ethics: A Process Model of Belief Conflict
and Resolution for Narrative Understanding. PhD thesis, UCLA Artificial Intelligence
Laboratory, University of California, Los Angeles.

Schank, R. C. (1973). Identification of the conceptualizations underlying natural language.
In Schank, R. C. and Colby, K. M., editors, Computer Models of Thought and Language.
W. H. Freeman, San Francisco.

Schank, R. C., editor (1975). Conceptual Information Processing. American Elsevier, New
York.

Schank, R. C. (1982). Dynamic Memory: A Theory of Learning in Computers and People.
Cambridge University Press, Cambridge, MA.

Sidner, C. {1983). Focusing in the comprehension of definite anaphora. In Brady, M. and
Berwick, R., editors, Computational Models of Discourse, pages 267-330. MIT Press,
Cambridge, MA.

Slade, S. (1987). The T Programming Language: A Dialect of Lisp. Prentice-Hall, Inc,
Englewood Cliffs, NJ.

Steele Jr., G. L. (1984). Common Lisp: The Language. Digital Press, Bedford, MA.

Turner, 5. R. and Reeves, J. F. (1987). Rhapsody user’s guide. Technical Report UCLA-AT-
87-3, UCLA Artificial Intelligence Laboratory, University of California, Los Angeles.

Wilensky, R. (1981). A knowledge-based approach to natural language understanding: A
progress report. In Proceedings of the Seventh International Joint Conference on Arti-
ficial Intelligence (IJCAI-80), Vancouver, British Columbia.

Wilensky, R. and Arens, Y. (1980). Phran: A knowledge-based natural language under-
stander. In Proceedings of the 18th annual meeting of the Association for Computational
Linguistics (ACL-80), Philadelphia, PA.

Winograd, T. (1983). Language as a Cognitive Process, Volume 1: Syntar. Addison-Wesley,
Reading, MA.

Woods, W, T. (1970). Transition network grammars for natural language analysis. Commu-
nications of the ACM, 13(10):591-606.

Zernik, U. (1987). Strategies in Language Acquistion: Learning Phrases from Language in
Context. PhD thesis, UCLA Artificial Intelligence Laboratory, University of California.
Los Angeles. Technical report UCLA-AI-87-1.

37

Stephanie Sandberg, 10:52 AM 10/25/19, CS Technical Report

From: Stephanie Sandberg <Stephanie.Sandberg@efi.com>
To: "bramirez@cs.ucla.edu™ <bramirez@cs.ucla.edu>
Subject: CS Technical Report

Date: Mon, 25 Oct 1999 10:52:43 -0700

X-Mailer: Internet Mail Service (5.5.2650.21)

Hi,

I'm a graduate student at San Francisco State, 'm looking for a

copy of CSD-890064 "The Rhapsody Phrasal Parser and Generator” by
John F. Reeves.

Is there any way to get a copy of this paper electronically?

Thanks,

Stephanie Sandberg

Printed for Brenda <bramirez@cs.ucla.edu>

