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ABSTRACT OF THE DISSERTATION

Distributed Systems and Transient Processors
by

Willard Robert Korfhage

Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1989

Professor Leonard Kleinrock, Chair

Distributed systems frequently have large numbers of idle computers and
workstations. If these could be harnessed, then considerable computing power
would be available at low cost. One can envision an environment in which large
distributed programs, simulations, for example, use idle workstations to achieve
a considerable speedup over the same program running on only one workstation.

This dissertation develops three models of such systems. First, we assume
that we have a fixed amount of work to finish, W. We have M processors in a
network, and each processor alternates between being avaslable (for our work) and
non-available. We find that in equilibrium, the number of available processors
is binomially distributed. For systems in which M = 1, we find the Laplace
transform of the distribution of finishing time, and, in a separate analysis as
a cumulative, alternating renewal process, we find that the asymptotic (after a

long time) distribution of the finishing time has a normal distribution.
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To model the more realistic multiprocessor case (M > 1), we model the
amount of work completed over time as Brownian motion with drift, using the
asymptotic results of the single processor case, scaled to M processors, to supply
the mean and variance of the Brownian motion. This yields the distribution of
the time to complete W seconds of work, which is verified through simulation
and by comparison with the single processor models. We develop extensions to
this that allow a variety of different characteristics among the processors.

Following this, we turn to information theory and sorting algorithms. We
examine four sorting algorithms (bubblesort, mergesort, quicksort, and radix
sort) using information theory to understand how entropy decreases as the sorts
progress, and why mergesort and quicksort are such efficient algorithms.

Finally, we examine some parallel versions of bubblesort, to see what potential.

there is for speedup and possible techniques that we may use.
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CHAPTER 1

Introduction

1.1 Background.

Networks of computers are fairly common in business and research environ-
ments throughout the world. Originally motivated by a desire to ease data and
device sharing, many networks have grown in speed and sophistication to the
point that distributed processing can be performed on them. These networks
vary in size from a handful of personal computers on a low-speed network, to
networks consisting of thousands of workstations and a variety of larger machines |
on a high-speed, fiber-optic network. As a typical examplg, consider a network
of workstations on a high-speed network in a research laboratory. Not only are
there many machines, well connected by the network, but the users are likely to
demand more and more computing power.

Networks of workstations have grown in spite of theoretical considerations
that would discourage them. It is well known in queueing theory [Kle85] that a
single server of large capacity shared by many users provides better response time
than many smaller servers with the same total capacity. In terms of computers,

this says that a mainframe will provide faster service to its users than a network



of workstations. Of course, one may argue that for the same amount of money
one can buy more workstation capacity than mainframe capacity, but in many
real-world circumstances, if you compare systems of equal cost, then the network
is still slower. Clearly factors other than speed drive the purchase of workstations,
but we will not discuss these reasons. Instead, what we would like to find a way
to use the network as a single large, shared server and gain back the power of
large, mainframe systems without sacrificing the benefits of having workstations.

The key to this is idle time. On these networks, we often have the situation
that many of the personal computers and workstations are sitting idle, waiting
for their users, and thus being wasted. If we could recover this wasted time for
useful processing, then we would have considerable computing power available
to us at low cost. We refer to these processors, which are sometimes busy and
sometimes not, as transient processors.

Whether this is technically feasible or not depends on a variety of factors,
such as the properties of the communications medium, the properties of the
computers, and the statistical characteristics of the user population.! In all
syste:ﬁs of this type, one concern is that the "owner” of a machine should not
see any t_iegrada.tion in performance because of the background programs. Any
background computation will be aborted when user activity is detected, and not

restarted until the system is sure that the machine is idle. Several systems to

1There are also other important but non-technological factors, such as people’s resistance to
the use of “their” machine, that would determine if and how a distributed system would be
implemented. This dissertation will not examine such matters.

& ¥



perforﬁ:l background distributed computations have been implemented.

At UCLA, the Benevolent Bandit Laboratory (BBL) [FSK89] runs distributed
computations under MS-DOS on a network of IBM PC-ATs. A special shell runs
on each machine, and when a machine is at the operating system prompt level (as
opposed to running a program), it is available for use. If someone runs a program
on a machine currently being used in a background, distributed computation, the
system can select and start a replacement machine from the pool of idle proces-
sors. Because the system was also intended for the investigation of distributed
algorithms, special features, such as the ability to mimic any topology, and some
distributed debugging facilities, have been built in.

Condor ([LLM88}, [ML87a], [ML87b}) is a very successful system running on
workstations at the University of Wisconsin. It allows users to execute jobs at
otherwise idle workstations.

‘The Butler system [Nic87], running on Andrew workstations at Carnegie-
Mellon executes programs remotely on idle workstations. The system uses this
to run gypsy servers, which are network servers that run on idle workstations
instead of a fixed machine.

Worms [SH82] were developed at Xerox PARC for similar reasons. Worms
prowled the network, collecting idle workstations and using them to perform
some action, typically displaying a message or running a diagnostic program.

Note that of these four systems, only BBL and the worms were developed

as distributed systems, whereas Condor and Butler are, at this time, more like



remote job execution facilities.

There have also been ad-hoc attempts to use the idle time on processors. Dr.
Tim Shimeall [Shi89)], during his dissertation research, wrote a program “polite”
that ran a software analysis program on workstations when no one was logged in
and suspended the program when the workstation was being used. He finished
10 CPU years of work in 6 months on 20 workstations using this program. But
again, this was very much a simple remote job execution facility, put together

out of need, and never was it analyzed.

1.2 Outline.

This dissertation contains three topics. The first subject is the analysis of
BBL-type systems, the second subject is an examination of sorting algorithms
using information theory, and the third subject is bubblesort and some parallel
versions of it.

In chapter 2, we examine BBL-type sy;stems, developing three models of these
systems and analyzing them to find the distribution of time to finish a fixed
amount of work.

The first model is a single processor with general available and non-available
times. We examine the number of non-available periods interrupting a program,
and from this we find the distribution of the time to finish a program, its Laplace
transform, and from the latter, the distribution’s mean and variance.

The second model is also a single processor, but it is analyzed as a curnulative,

4%



alternating renewal process. We find that the asymptotic distribution of the
accumulated work (over a long period of time} is normal, with simple expressions
for it mean and the variance,

The third model handles multiple processors and views the amount of work
done over time as Brownian motion with drift. We scale to M processors the
asymptotic mean and variance of the accumulated work (from the second model),
and use this as the mean and variance of the Brownian motion. From this we get
the probability density of the time to finish a fixed amount of work. The mean
and the variance agree very closely, for M = 1, with the first model.

We close this chapter by using the results for the finishing time distribution
in models of the network as a whole.

In chapter 3, we examine sorting algorithms by considering sorting as a
method of decreasing entropy. Bubblesort, mergesort, quicksort, and radix sort
are examined to bound the decrease in uncertainty as these sorts progress, and
from this we learn where the efficiencies and inefficiencies of the various algo-
rithms lie.

Finally, chapter 4 examines some parallel versions of bubblesort, to see what
potential there is for speedup, and what techniques may be of use in this algo-

rithm.






CHAPTER 2

Transient Processors

2.1 Introduction.

Supposed that we wish to run distributed programs on a network of tran-
sient processors. This chapter analyzes the performance characteristics of such
programs; by doing so, we can discover the potential that awaits us in our now-
underutilized networks of workstations.

We first discuss our model of the network and program in section 2.1.1 and
define characteristics of interest to us. Following this, section 2.2 examines the
number of available machines in the network, and we show that this has a bino-
mial distribution. Next we analyze the behavior of a single program in a network
of transient processors and find the proBability density of its finishing time using
three models. The first two models (section, 2.4.3 and 2.4.4) examine a network
consisting of only a single processor; the third model (section 2.5) extends this
to multiple processors by using Brownian motion. We then ease some of our
assumptions is section 2.5.9 and develop extensions to the multiprocessor model
that allow more complex models of programs, and processors with differing char-

acteristics.



C !~ Avaltable
e Not Available
Processor Processor

Non-available Available

Figure 2.1: A processor alternates between available and non-available periods.

2.1.1 The Model.

2.1.1.1 The Network.

Assume that we have a network of M identical processors, each of which has
a capa.citi to complete one minute of work per minute. A processor alternates
between a non-available state (signified by n or na), when the owner is using it
(e.g. typing at the keyboard), and an available state (signified by a or av), when

it is sitting idle. The lengths of non-available periods are independent and identi-



cally distributed (i.i.d.) random variables from distribution N(t), with mean ¢,,
variance o2, and corresponding density n(t); we allow any general distribution
for N(t}), unless otherwise specified. Likewise, available periods are i.i.d, random
variables from a general distribution A(t) with mean t,, variance a2, and density

a(t). At the end of this chapter, we extend the analysis to allow for non-identical

Processors.

2.1.1.2 The Distributed Program.

In general, a program consists of multiple stages of work, each of which must
be completed before the start of the next (Figure 2.2). The time to finish a
program is the sum of the times to complete the individual stages. The time
to finish a stage depends only on the amount of work in that stage, and is
independent of the other stages. This means that the probability distribution of
the {otal time to finish a program is the convolution of the distributions of the
- individual stage finishing times. Assuming that the network characteristics do
not change during the execution of the program, then we only need to analyze
the time to finish a single stage requiring W minutes of work. Using this result
we find the finishing time probability density function of all other stages, and
from there, the finishing time probability density function of the program as a
whole.

We make the simplifying assumption that the work in any stage is infinitely

divisible — it can always be divided evenly among all available processors. We
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Stage

Figure 2.2: Execution time profile of an algorithm.

also ignore overheads that occur in a real system (e.g. communication delays,
processing delays), and thus our model provides an optimistic bound on system
performance. In the conclusion of this dissertation, we discuss a method for

including overhead in our models.

2.1.2 What We Seek.

The purpose of this chapter is to find the function f(¢) that is the pdf of a
program'’s finishing time. Also of interest are its mean, f, and its variance, a%.
In the process of finding these, we will need another function, the pdf of

the amount of work accumulated by a processor or network of processors over



time. We denote this by w(u |t), the probability that after ¢ minutes of time
have elapsed, the processor or processors under consideration has accumnulated v

minutes of work. This function has mean ¥, and variance Var[V;].

2.1.3 Notation.

We use the abbreviations “PDF” to stand for “probability distribution func-
tion” and “pdf” to stand for “probability density function.” Typically we use

capital letters for a PDF and lower case letters for a pdf. If F(r) is a PDF, then
f(z) = £F(z).

Define the following symbols:
a(t) the pdf of the length of an available period.
A(t) the PDF of the length of an available period.
Av*(s) the Laplace transform of the available period pdf.
t, the average length of an available period.
o? the variance of the length of an available period.
n(t) the pdf of the length of a non-available period.
N(t) the PDF of the length of a non-available period.
Na®(s) the Laplace transform of the non-available period pdf.

t, the average length of a non-available period.

10



o, the variance of the length of a non-available period.
Pa =t /(ta + t,),

P =1l=pa=t./(ts+1,),

M the number of processors.

W the total amount of work to do.

w(u|t) the pdf of accumulated work.

Y: the mean accumulated work in ¢ minutes.

Var(Y;] the variance of accumulated work in ¢ minutes.
f(t) the pdf of a program’s finishing time.

f the mean program finishing time.

o} the variance of a program’s finishing time.

We take the unit time to be 1 minute,

2.1.3.1 Example Parameters.

Mutka and Livny, [ML87a), made actual measurements of a network of tran-
sient processors, and they developed models for the available and non-available
period densities. From these measurements, we derive two examples that we use

throughout this chapter.

11



0 50. 100. 150. 200.
t (minutes)

Figure 2.3: Mutka and Livny’s available time pdf.

For the available time PDF, they use a 3-stage hyperexponential distribution:

A(t) = P{length of an available period < t] (2.1)

= 0.33(1 — e /3) +0.4(1 — e /%)) 1. 0.27(1 — e~ /3%9) ¢ >0,

which has a mean of ¢, = 91 minutes and a variance of 02 = 40225 minutes?.
Figure 2.3 shows the corresponding density.
The non-available time, N(t) = P[length of a non-available period < t], is a

2-stage hyperexponential distribution:

0.7(1 — e~ /M) £ 0.3(1 — e~ /5%)) if t > 7
N(t) = (2.2)
0 fo0<t<?

which has mean ¢, = 31.305 minutes and variance of o2 =2131.83 minutes?. The

7 minutes shift in the distribution arises because a processor was not declared



mean

0 ——
0 20 40 60 80 100

t (minutes)

Figure 2.4: Mutka and Livny’s non-available time pdf.

idle until 7 idle minutes had elapsed. Figure 2.4 shows the corresponding density.

We will use Mutka and Livny's distributions where ever possible, but fre-
quently we assume exponentially distributed available and non-available periods.
At such times, we will take the means of these exponential distributions to be the
numbers given above. The use of exponential distributions instead of hyperexpo-
nential distributions will not affect any means that we derive, but any variances
that we find will be lower than if we used Mutka and Livny’s distributions.

Rega;rd.less of which distributions we use, we take W = 1000 minutes and
M =1 for single processor examples, and, W = 10000 minutes (almost 7 days)
and M = 100 for most multiple processor examples. The reason for the large

values of W is explained later in this chapter.

13
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Figure 2.5: Two state model of a processor.

2.2 Distribution of Number of Available Processors.

One question of immediate interest to us is the probability density of the
number of available processors in our network.We will show that any state-based
model of a processor ultimately leads to a binomial density of the number of

available processors.

2.2.1 Two-State Model of a Processor.

The simplest model of a processor is the one given in the introduction: a
processor alternates between available and non-available states at constant rates
(Figure 2.5). Each processor in the network is available a fraction of the time,

Pa =t,/(ta + t,). The probability that k out of M processors are available is

M
PN =k] = (pa)™~*(pa)
k

which is the binomial density. Note that these arguments have been made with-
out reference to the distribution of available or non-available times, only to the
average times. This result, therefore, holds for general available and non-available

time distributions.

14



2.2.2 Multi-State Model of a Processor.

We may wish to make a more complex model of a Processor, with many states
and transitions, as in F igure 2.6. Given transition rates between states, we could
solve for the steady state probabilities p; that a processor is in any particular state
t. For our purposes, a processor is ultimately either available or non-available,
SO suppose we partition the states into two groups: those states in which the
Processor is available, and those states in which the processor is non-available.
If we then think of each group as a state whose probability is the sum of the
probabilities of its constituent states, we have reduced our multi-state processor
model to a two-state model, which we analyzed in the previous section. When
we do this, the rate between the available and non-available states is equal to
the sums of the rates between each group. We can compute this quantity by first
finding p,, the sum of the p;’s for all available state, and similarly p, for non-
available states. To compute the rate of going from available to non-available,
for each available state, 1, multiply the rate from state i to non-available states
by pi, sum over all available states, and divide by p, (to normalize). In Figure

2.6, this would be
Av to Na rate = -plrl + &(n +rg).
Pa Pa

We then do likewise for the non-available states.
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Figure 2.6: Multi-state model of a processor.
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2.3 Time to Finish a Program: Quick Means.

With simple reasoning, we can find the mean cumulative work over time, and
the mean finishing time for a program. Over a long period of time, a processor is
available a fraction of the time p, = ¢, /(ta +t,), and non-available the remaining
fraction of the time, p, = ¢, {(ta + t,). Over a period of ¢ seconds, the amount
of work a processor does is equal to the fraction of time it is available, and thus
we have

(2

Y= Z—:‘t—n t. (2.3)

Similarly, it takes (¢, + tn)/t, seconds to accumulate one second of work, so

the average finishing time for a program on a single processor is

Fotittn g | (2.4)

In an M processor network, we accumulate work M times faster and finish

in 1/M of the time. Thus:
_ M
T (tattn)

_latta 26
f= taM w. (2:6)

t t. | (2.5)

We will use these as a check on the other analyses.
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2.4 The Distribution of Finishing Time for One Processor.
2.4.1 Introduction.

We would now like to find the pdf of finishing time for any particular algorithm
or program. Figure 2.7 shows the individual behavior of five processors as time
progresses, along with a graph of the total number of available processors vs.
time. As an algorithm runs on the system, it accumulates processor time in an
amount equal to the area under the plot in the figure. We wish to know the pdf
of the time it takes to complete the algorithm. This is also known as the first
passage time, the first time at which the accumulated work is greater than some

particular amount (W minutes in our case).

In this section, we analyze the behavior of a program on a single, transient
processor using two methods. The direct method, in section 2.4.3 yields f(¢) for
general distributions, but unfortunately, it does not extend to multiple proces-
sors because these analysis depends upon the system being either fully. available
or fully non-available. In a multiprocessor system, we usually have partial avail-
ability: some of the machines are available and some are not. We also do not
derive the pdf of accumulated work using the direct analysis, but by analyzing
the problem as a cumulative, alternating, renewal process (section 2.4.4), we find
the asymptotic probability density of the cumulative work, w(u |t), as t — oo,

and we use this later in the Brownian motion analysis.
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2.4.2 Related Work.

We can use a variety of approaches to analyze a program on a single transient
processor. In this section, we discuss three such approaches, and their drawbacks:

preemptive priority queueing systems, queueing systems with vacations, and re-

liability analysis.

2.4.2.1 Preemptive Priority Queues.

We may model a transient processor using a preemptive priority queueing sys-
tem with two classes. The high priority class, representing non-available periods,
interrupts the service of the low priority class, representing the distributed pro-
grams. Such systems have been extensively analyzed (see, for example, [Kle76],
or [Sev77] as discussed in [Agr85]), but ultimately this model fails us beca.use‘
it allows queueing of non-available periods. This is not a realistic model of a

transient processor.

2.4.2.2 Queues with Vacations.

In a queueing system with vacations, the queueing server is subject to ran-
domly occurring stoppages lasting for random amounts of time. There are many
varieties of such systems depending upon what restrictions we put on the vaca-
tions (see [Dos86] for a survey). For our model, we require vacations to occur
preemptively and at any time (as opposed to vacations that occur only when the

processor is busy). The first analysis of such systems is in (WC58] and [Thi63],
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but Gaver ([DPG62|) derives the Laplace transform for the finishing time by
assuming exponentially distributed available periods and generally distributed
non-available periods. Federgruen and Green ({FG86]) extend the analysis to
generally distributed available periods, but then find only the first two moments

of the finishing time, and not its distribution.

2.4.2.3 Reliability Models.

Reliability analysis concerns itself with the availability of a system over time,
and some work has been done on cumulative availability, the cumulative amount
of time that a system is available. This corresponds exactly to accumulation of
work in a network of transient processors. For a system with two states, available
and non-available, Donatiello and Iyer {DI87] find the transform of the cumula-
tive availability, and they derive a closed-form expression when the time in each
state is exponentially distributed. However, their closed-form expression is very
complex and unintuitive, and we derive a simpler, more useful, expression later
in this chapter. Also, their two-state model applies only to one processor, and
can not model a network of processors. Silva and Gail [dSeSG89] discuss the
calculation of cumulative availability in systems which can be modeled as homo-
geneous Ma.rkov chains. They use randomization to derive a general technique for
calculating cumulative availability, and further find good methods of numerical
solution for their technique. The SAVE (System Availability Estimator) program

[Goy87] implements these ideas. If we were interested in numerical, not analytic,
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Time

Interruptions
Alone

Figure 2.8: Time for one node to finish W units of work.

results, this would be ap excellent approach.

2.4.3 Direct Analysis.

We lﬁa.ke a direct a.nalysis of the single-processor problem by counting the
number of non-available Periods that interrupt our program before it completes.
If our program starts when the processor is available, as shown in the middle
of Figure 2.8, it will finish at time W + T,, where T, is the additional time the

program spends in the system because of interrupting non-available periods.
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Because we must finish the program in an available period, and because we
assume work starts during an available period; then none of the non-available
periods are truncated, and it is relatively easy to analyze the total length of the
non-avatlable periods during the time T, + W.

We first find the number of non-available periods in 7, + W by examining the
arrival process of these periods. Note that the arrival process for non-available
periods stops during these (non-available) periods. Because the duration of such
periods does not affect the rate at which they arrive, we may take non-available
periods to have 0 length. As shown in Figure 2.9, the number of real non-available
periods arriving in T, + W minutes is the same as the number of zero-length
non-available periods arriving in W minutes. We let p (k | W) be the probability
density that k zero-length non-available periods arrive in W minutes.

Given k non-available periods, the probability density of the amount time

spent in such periods is the k-fold convolution of the pdf of time in one period:

% =n(t)@n(t)® - @ n(t), (2.7)
k times

where ® is the convolution operator. Uneconditioning on k, we get that the

density of T, is

w ift=0
apr() _ | POTY) (2.8)
dt T n(t)@n(t)®---@n(t) p(k| W) ift>0
k times

When we add the W seconds necessary to do the program’s work, the pdf of
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Figure 2.9: Converting non-available periods to 0 length. |

the finishing time for the program is:

p(0| W) ift=WwW
f(t)=

CRant-W)@n(t—W)® - @n(t-=W) p(k|W) ift>W
k :nrmu

(2.9)

Let us now derive the Laplace transform of the finishing time using an anal-

ogous process. The Laplace transform of the density of the length of k non-

available periods is [Na*(s)]*. The conditional Laplace transform of the finishing

time is

F*(s| k) = e""*[Na*(s)]*. (2.10)

Unconditioning, we get

F(s) = e S Na'(s)]* p(k| W)
k=1
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= e‘w'P(Na'(s)), (2.11)

where P(z) = 3722 p (k | W)z is the z-transform of p(k | W).

To find the mean and variance of the finishing time, we could either take
derivatives of the expression above, or view the time spent in non-avajlable peri-
ods as a random sum of random variables. Following the latter course, let 7 and
o; be the mean and variance of of p(k | W); we leave their dependence upon W
as implicit. The time to finish is the sum of a constant W minutes, plus many
i.id. random variables representing the non-available periods. Thus, the mean

time to finish W seconds of work is

T=Pta+ W= W—-—-t":'t", (2.12)

a
where p = W/t, is the average number of zero-length non-available periods (with
an average interarrival time of ¢, minutes) that arrive in W minutes. The variance
is

0} =a2F + t3o? (2.13)

The central limit theorem assures us that when we add many random vari-
ables, the resulting distribution tends toward a normal distribution. We may
note an important consequence of this: asymptotically, for large W, the finishing
time density is normal with the mean and variance given in Equations 2.12 and

2,13.
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2.4.3.1 Example: Exponential Distributions

As a concrete example, let us use exponentially distributed available and
non-available periods.

Because the available periods are exponentially distributed, non-available pe-
riods arrive according to a Poisson process with rate 1 /ts. The probability that

k non-available periods interrupt our program before it completes is given by:

p(k| W) = otemem(W/t), (2.14)

(W/t.)*

!
which has mean and variance both equal to W/t,.

Because the non-available periods are exponentially distributed, the convolu-
tion of the distributions of k such periods is a k stage Frlang distribution with
mean kt,.

We may graphically examine the constructions of the finishing time pdf. Fig-
ure 2.10 plots the Erlang densities that correspond to different numbers of inter-
ruptions, and also plots the Poisson weighting function (Equation 2.14) for these
curves. We multiply the Erlangs by the Poisson and this results in Figure 2.11.

Summing over the number of interruptions (the number of stages in the Erlang

densities) we get the final density of T,, also shown in these figures.

The density of T, is:

_W/‘a . -
dPr,(t) _ | © ift=0 o15)
dt . . .
= (!llt"(!kgiqﬁ! 1e_t/t..) (ngk:.; e W/t.) ift>0
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Figure 2.10: Erlang densities, the Poisson weighting function, and the finishing

time.
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Figure 2.11: Weighted Erlang densities and the finishing time.
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Figure 2.12: Probability density of finishing time for direct analysis.

The term ﬂ%&‘)ﬁt_—le"/ ', a k-stage Erlang density, is the density of T, if we

have k non-available periods. For ¢ > 0, this may be further reduced to

dP Ta.(t)_= 1 Elv_e-t/tne-“’/*or, 2 tW t>0 (2.16)
dt ta V tata t:tn

where I;(z) is the modified Bessel function of the first kind of order 1.

The finishing time density is:

e-W/ta ft=W
f(®) = (2.17)

Y, (M%Me-(“w)ﬂn) (("_Vﬁg):e-W/t.) £t>W

Figure 2.12 illustrates this density using Mutka and Livny’s parameters. The
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mean finishing time is

- t. +t,
f=W T (2.18)
and its variance is
W
0’? = ; . (2.19)

As mentioned before, if W is sufficiently large, we expect many non-available
periods, and under these conditions the distribution of the number of non-
available periods approaches a normal distribution.

The finishing time time density looks similar to a normal density, but it is
asymmetrical. For t less than the mean first passage time, it rises sharply to
a peak before the mean, then drops into a stretched-out tail for large ¢. This
asymmetry is more apparent for small W, and as W grows, the density becomes

similar to a normal density, as one would expect from the central limit theorem.

2.4.3.2 Modifying the Analysis to Compute System Time for Job.

The preceding analysis assumed that the program started during an available
period. In real life, however,the program may arrive during a non-available pe-
riod, and we should account for this. Let the true time in the system be known
as the system time. With probability p, = ¢,/(ts + t,), the job arrives during
an available period, and the distribution of system time is the same as that of
the finishing time from the preceding analysis. With probability p, = 1 — p,,
the job arrives in a non-available period, and waits the residual life of the non-

available period before starting. We define the probability density of this residual
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life as r(t) = (1 — [7_o N(z)dz)/t,, with i'"® moment r; and Laplace transform
R*(s) = (1 — Na*(s))/(stn).

We account for this residual life by adding p,r(t) to the pdf of T,(t), and in
the transform domain multiplying T} (s) by p,R"*(s). The mean of the system

time is then

ta + ty

I=W

+ ta7y (2.20)
and its variance is

o) = 0% + pa(ra — r}) (2.21)
Note that as W gets large, the terms that account for the contribution of the

possible initial non-available period become negligible, and the mean and variance

become identical to Equations 2.12 and 2.13.

2.4.3.3 Conclusion.

In this section we derived an expression for the pdf of a program’s finishing
time, and the Laplace transform of this density. From this expression, we derived
its mean and variance. Unfortunately, this analysis will not extend to multiple
proceséors because it depends upon the system being fully available or fully non-
available. With multiple processors the system is usually partially available.

To continue, we must find the pdf of accumulated work, which we do in the

next section by using a cumulative, alternating renewal process in our analysis.
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2.4.4 Cumulative, Alternating Renewal Theoretijc Analysis.

We continue the single processor analysis using a cumulative, alternating
renewal process. Cox, in his book on renewal processes [Cox62], discusses this
type of process, and this section follows his analysis. We find the asymptotic
(¢ — oo) pdf of accumulated work for generally distributed available and non-
available periods, but we do not find the finishing time density because this is
known from the previous analysis.

We can form a renewal process from the alternating states of a transient
processor by letting a renewal period be a non-available period followed by an
available period. In Figure 2.13 the heavy dots indicate the beginning of each
renewal period. Let X; be the duration of the i renewal period, and within this,
let X! be the duration of the i** unavailable period, and let X” be the duration
of the i*® available period. The time between renewal points is X; = X! + X7,
and has mean ¥ = t, + ¢,, variance ol =1t 1+ 2, and Laplace transform X*(9).
- The X[’s are i.i.d. random variables, likewise the X’s are i.i.d., and the X/'s
and the X”’s are mutually independent. We assume, for the moment, that ¢ = 0

occurs at one of the renewal points.

To form a cumulative process from this, let W; = X/, with mean @, variance

o?, and Laplace transform Av*(s), and let

Y, = )Afw (Ny=1,2,...) (2.22)

=1

=0 (N=0)
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Figure 2.13: Cumulative renewal process.
where N, is the number of renewals up to time ¢. Y; is a random variable equal
to the sum of all the available time up to time ¢, excepting the current available
period, if the process is in such a period at time t. As time goes to infinity,
the asymptotic distribution of ¥; has the same properties as the process that
accumulates the true total available time up to time ¢, but ¥;’s ana.lys%s is more
tractable.

Letting p,. be the correlation coefficient between W; and X;. Cox shows that

E[Y)] ~ gt (2.23)

x

2 - —
_ (a?w L5 2a,crwp,,,w) (2.24)

o3(1-p2) o3 T, T\?
Var[Y,| = [M.*._’_(ﬂ;_pyza ) t

We find p,,:

Pyz =

E[(X' + X")Y] - (ta + t,.)ff

\/ olol
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EX'Y] + E[X"Y] — (t + t,)t,
olol

tnta + 02 + 52 — 2 —~ 4,1,

252
oiold

2
O’y

N ;}agag
= g./\Jod + a2, (2.25)

Applying p,, to Equations 2.23 and 2.24 yields

ta
ta +tn

E[Y] ~

t

8l <

¢ (2.26)

olZ 4 o2y - 27 Ya?
(tﬁ + tﬂ)a
_ ol 4242
T (tatta)?

Var[V]

(2.27)

For exponentially distributed available and non-available periods, the mean

remains the same and the variance may be rewritten as

t2 2
Var¥j] ~ —2ala (2.28)

Of particular interest to us is the fact that the asymptotic pdf of ¥; (for large
t) is normal with mean and variance given by Equations 2.26 and 2.27. Y, is a
sum of random variables, and the Central-Limit Theorem [MGBT4] tells us that
as the number of random variables in the sum approaches infinity, the pdf of
Y: converges to a normal pdf. Thus Y, is well approximated by a normal pdf if
many renewal periods have occurred, or equivalently, ¢ >» ¢, + ¢,. This normal

pdf will be the basis of the Brownian motion model in the next section.
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Let us examine a special case of ¥;: suppose that Y; is scaled by a factor ¢, so
it’s mean is ct,, for some ¢ > 0. The distributions of X! and X” are unchanged.

The Y;'s have a new mean and variance:

Using these, we find that the value for py. is still ¢,/0,.Applying these values

to Equations 2.26 and 2.27, we get:

_ ct,
Sy tnt (2.29)
(o2 + 352
Va.l‘[}/f} = ((t +t )3 )t. (230)

The mean is now ¢ times Equation 2.26, and the variance is ¢ times Equation
2.27. We will use this result in the Brownian motion analysis to model networks

of non-identical processors.

2.4.5 Conclusion.

The important result of this section is that the asymptotic pdf (for large ¢) of
the amount of work accumulated over time is normal with the mean and variance

given in Equations 2.26 and 2.27.

2.5 The Distribution of Finishing Time for M Processors.

In the preceding sections we analyzed the behavior of a program on a single

transient processor. Now we expand our analysis to encompass a network of M
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processors.

2.5.1 Brownian Motion Approximation.

water [Bro28J; the collisions of water molecules made the pollen move in an erratic
fashion. Some years later, Einstein published the first theoretical approach to
Brownian motion [Ein26], and many researchers have expanded the field since
then. See, for example,(Wie76), (IHPMS685], (KT75], [Hid80], and [Har85] for
complete treatments of the subject of Brownian motion,

A stochastic process, Y(¢), that describes Brownian motion has two basic
| properties. The first is that X (¢) has independent increments: Y (t,)— Y(t,) and-
Y(t,;) - Y (¢;) are independent for 0 Slh<t <t <ty <oo. Movement of the
particle in one interval is independent of its movement in another interval. The
second property is that each increment in the process, Y (¢,) — Y(2,), is normally
distributed with a mean and variance proportional to #, — to. If the normal
distribution has mean 0 and variance equal to ¢, — ¢,, then the process describes
atanda@ Brownian motion, which is also known as a Wiener process. Brownian
motion with a non-zero mean s known as Brownian motion with drift.

In our model, the stochastic process Y'(t) represents the amount of work
accumulated by a network of transient processors up to time ¢. In section 2.4.4,

we found that over a long period of time (much longer than ¢, + tn), the amount
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of work done by one transient processor is asymptotically normal with mean and
variance given in Equations 2.26 and 2.27, respectively. If we have a network of
M such processors, and all the processors are assumed to be independent and
identical, then, asymptotically, the amount of work done by time ¢ is the sum
of M independent, (approximately) normally distributed random variables, and
this is itself {(approximately) normally distributed. The mean amount of work

done by time ¢ is:

ta
p= ey Mt = p, Mt (2.31)

and variance of the amount of work done by time ¢ is:

2 _ 2(o3t2 + odt?

a

(ta +ta)

Mt. (2.32)

Thus, Brownian motion with drift is a natural model of our system. From p and
o? above, we define b and o? (b signifies Brownian), the mean and variance of

the amount of work accumulated per unit time:

ts

= —_ a 2-
) oM =M (2.33)
2(0kt? + olt?)
2= 2% T Tata 2.34
Ty (ta +tn)3 ( )

We use b and o7 later in this analysis.

We must still assure ourselves that our stochastic process indeed has indepen-
dent increments. On a short term scale, this is clearly not true. Two consecutive
one-minute intervals are likely to have the same, or at least similar, numbers of
available processors in both intervals, and hence similar amounts of work accu-

mulated in those intervals. However, in two one-minute intervals separated by
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several hours, the number of available processors is quite unrelated (unless the
network has some very unusual statistical properties), and the work accumulated
in one interval is quite independent of the work accumulated in the other inter-
val. Thus we conclude that the- Brownian motion model is reasonable only over
a long span of time, and we insure this by specifying that t, €« W and ¢, < W.
Note, too, that we are using the asymptotic results of section 2.4.4, and these
are valid only for a long span of time, which also requires a large W relative to
t, and ¢,.

The Brownian motion model does allow some behavior that seemingly cannot
occur in a real network: the process is allowed to move in the negative direction,
implying that we can lose work that we have already done. In a network of
transient processors, this is, in fact, a reasonable assumption. It is possible that if
a portion of a program is executing on a processor when it becomes non-available,
some or all of the work completed may be lost. Thus, negative movement of the
particle should not bother us.

What is more troublesome is the fact that there is some non-zero probability
that the amount of work done by a particular time is negative. The program
cannot accumulate less than 0 minutes of work, so this aspect of our model is
clearly incorrect. Given J, ¢?, and ¢, and using the fact that cumulative work

is normally distributed, we can compute the probability of negative cumulative
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work as:

-t 1 -Gt/ /od)
S| —e | = —— -2
( ,_..abzt) 5 f_m e dx (2.35)

where ®(z) is the cumulative density function for a standard normal distribution.
For t near 0, @(-Et/\/;ft) ~ .5, meaning that for very small ¢, our model says
that almost 50% of the time the program has accumulated a negative amount
of work. Clearly, Brownian motion is a poox; model of networks of transient
processors for very small ¢. If we manipulate the expression 7‘% we find it is
equal to —\/ﬂ_"fl_l-"ﬁl—t, and the coeflicient of /% is less than -1 for any reasonable
values of M, ¢,, and t,. Thus as time passes and ¢ moves away from 0 and becomes
large, -\/ﬁ becomes quite negative and Q(V‘E%:) shrinks to near 0. In fact,
for t = 3\/0_3/5, the probability that we have negative work is approximately
0.0023 and drops rapidly thereafter to negligible amounts as ¢ grows. This is
just further confirmation that our model is valid only for relatively large W that
requires more than a short time to complete.

Using b and o} as the parameters for our Brownian motion, and using results
in Karlin and Taylor [KT75], we find the probability density of the time, ¢, that

it takes for M processors to finish W minutes of work is

W (W = Bey?
f(t)= m exp _cht—-] (2.36)
This has mean
7= ‘%’_ = %(tt;t") (2.37)
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and variance
: _Wa

b

Note that for the case M = 1, the mean and variance agree with the direct

N,o—u

(2.38)

analysis of section 2.4.3.

2.5.1.1 Example: Exponential Distributions.

If we assume that both available and non-available periods are exponentially

distributed, then the mean and variance of the accumulated work per unijt time

are:
ta —
= I tﬂM =p, M . (2.39)
2(t tn) 2P2(1 — Pc)lu
2 _ 1]
oy = o t,,)3M T . (2.40)

Applying this to Equations 2.37 and 2.38 yields the mean of the finishing time:

T_: w =_P_V_(ta +tn)

s (2.41)
and variance
Wai owg
O‘} _E_ET -M—?t_; (242)

Note that for M = 1, these results reduce to those of section 2.4.3, Figure 2.14
shows the finishing time density for both the direct and the Brownian motion
analyses with ¢, = 3600,¢, = 300, M — 1, and W = 105. We note the good
concordance between the two analyses,

When we have M = 100 processors, Figure 2.15 shows the pdf of finishing

time for various ¢, with ¢, = 91 minutes and W = 10* minutes. Using ¢, = 91
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Figure 2.14: Finishing time densities for direct and Brownian motion analyses.
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Figure 2.15: Finishing time densities for Brownian motion model for various ¢,.

minutes and ¢, = 31.305 minutes (the standard multiprocessor example), we have
b = 74.4t and o? = 887.2t, which leads to 7 = 0.0134W and o} = 0.00215W.
Our example job of 10* minutes would take about a week to run on a single,
dedicated processor. When run on a network of 100 transient processors, it
would take 134.06 minutes, or about 2.25 hours. This particular finishing time
pdf is in Figure 2.16, which shows the density both enlarged and plotted on a full
time axis (starting at 0). Note that although W > ¢, and W > t,, we have that
W/M, the finishing time if the processors were fully dedicated to the program, is

close to the average length of an available period, and it is remarkable that the

curve is still so symmetrical.
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Figure 2.16: Finishing time density for Brownian motion analysis,
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2.5.2 Example: Mutka and Livny’s Distributions.

Let us use the distributions measured by Mutka and Livny. We have ¢, = 91
minutes, 02 = 40225 minutes?, ¢, = 31.305 minutes, and o2 = 2131.83 minutes?.

Plugging these into Equations 2.33 and 2.34, we find:
b=744t (2.43)

oF = 6230t (2.44)

This leads to a finishing time mean and variance of:
7 =0.0134w (2.45)

o} = 0.0151W. (2.46)

We note that the finishing time variance using Mutka and Livny’s distributions

is almost an order of magnitude more than for exponential distributions.

2.5.3 The Ratio o;/7.

It is instructive to examine the ratio of o; to f, namely:

? = ‘/‘é—% (2.47)

We note immediately that this ratio goes to zero as W increases. Consequently,

for sufficiently large W, it may be accurate enough to consider the finishing time
distribution as an impulse at the mean finishing time (in the spirit of the law of

large numbers).



Assume that the available and non-available periods have exponential distri-

butions. Then the ratio becomes:

f% = \/% Yi/ta (2.48)

1+t./t,
Because we assumed t, <« W, this ratio tends to be less than 1. If we fix t./W
and let t,/1, go to infinity (which implies ¢, — 0), the ratio goes to 0. We explain
this by noting that for small ¢,, it takes very many available-non-available cycles
before the work is finished. The law of large numbers insures that the finishing
time density, which is the sum of these many periods, will then be tight about
its mean.

If, on the other hand, we let ¢, = oo, the ratio of the standard deviation
to the mean goes to zero once again. When ¢, is large relative to ¢,, the non-
available periods become negligible, as if the processors are always available.
Again, the finishing time density becomes very tight about its mean because
non-available time periods add little variability to the finishing time, and under
some circumstances we may consider the finishing time density as an impulse
located at ¢ = W/M. Using the standard multiprocessor example again, we find
0% = 21.53, and approximating f(t) as a normal density (discussed below), we
find that 90% of the time, programs requiring 10* minutes of work will finish
within 7.6 minutes of the 134.4 minute mean finishing time, which is an interval
3% on either side of the mean. This is very narrow indeed.

We find the peak of Equation 2.48 by taking the derivative with respect to
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_a_g_, _ ta(ta +8.) — 26,1,
o *W—ta(t,, T (2.49)

Setting this equal to 0 yields t, = ¢, as the peak of the ratio, at which point it

takes on the valye o /f= m - The ratio’s value at the peak is small because
of our assumption that tn € W. Note that if we assume ¢, = t,,, but not ¢, <« W,
then we can make the ratio as large as we want, simply by increasing ¢,. If, for
example, t, = ¢, = 1 year, then either the system is available immediately to do
all our work, or else we will have to wait a very long time before jt even starts.
In such a case, the finishing time still has a reasonable mean but an enormous
variance. Another fact to note is that M, the number of processors, does not
affect the ratio o;/F. Even if we have an infinite number of processors, we can
still have great variance relative to the mean. Of course, both the mean and the
standard deviation g0 to zero as M grows, but their ratio remains constant.

In Figure 2.17 we plot o;/f for W = 104, with ta/W fixed for each curve and
varying ¢, to generate the curves, A companion illustration, Figure 2.18, shows
finishing time densities for various ¢,. The x-axis (labeled “Time, Relative to
Mean”) is centered about the mean and plots the distance relative to the mean
(varying from 0.9 times the mean to 1.1 times the mean). We note that the dep-
sity is ﬂaftest and has the greatest spread for t, = t,; at this point ¢ 1/ =0.035,
which is quite small. For comparison, if we use Mutka and Livny’s distributions

at the same point, the ratio is 0.092, which is still srnall. The narrowing of the
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Figure 2.17: os/F with W = 10%, varying ¢, and tn.
density is also illustrated in Figures 2.19 and 2.20. The parameters for both of
these plots are: varying t,, ¢, = 31.305 minutes, M = 100, and W = 10* min-
utes. In the Figure 2.19, the density narrows as t, = 31.305, 150, 300, and 809
minutes. In Figure 2.20, we have ¢, = 31.305, 10, 3, and 1 minute as the density

narrows.

2.5.4 Normal Approximation to the Finishing Time.

The usual form of the central limit theorem states that the sum of n inde-
pendent random variables tends to have a normal distribution as n gets large.

Given this, we would expect the limiting distribution of f(t) to be normal with
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Figure 2.18: Brownian motion finishing time densities with varying t,.
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ta = various f(t)
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Figure 2.20: Finishing time density narrowing as ¢, shrinks.
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mean f and variance o;. Let us call this normal approximation f(¢) :

- 1 -t
ft) = g~ (t=1P/(2e]) (2.50)
211'0'}

Substituting ¢ = f shows that the finishing time and its normal approximation
coincide at the mean:

53/2

) = g =
B .\.;21ra§W3/53 —;;27ra'§W

D = e e =
;;211'0} 2Tt W

= f(5)

Observation shows that f(t) and f(t) also coincide at two more points, but these
are not easily found because they are the solutions to a transcendental equation.’
Numerically, we find that these points appear to be separated by W , and the
distance from the lower point (smaller t) to the mean is very slightly less than
half of the total distance between the two points (varying, but in the range of
49.5% of the total separation).

We need to know when f (t) is a good approximation for f(t) . Observation
(see Figure 2.21) shows that the approximation is good when the mode of the
finishing 'time is close to (within a few percent of) its mean. We find the mode by
taking the derivative of f(t) with respect to ¢, setting it equal to 0, and solving

for t. We end up with a quadratic equation that has a negative and a positive
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root. The positive root is the mode, namely

1 [9(af)? 4W? 3q?
tmode = = + - 2.51
¢ z\J AR R (2:31)

By using the fact that va +3 < v/a + v/, we show that the mode is always less

than or equal to the mean:

Furthermore, if we observe that 9(o?)?/5" is usually much less than 4W? /B, and

we use the approximation va + b = /a + 5/(2y/a) (valid for b < a), then

) .~ W 34} 1_§a§
mede < Tag 4Wh

~ f-= (2.52)

Under almost all circumstances, we may drop the negative term in the paren-
thesis, because when the Brownian motion approximation is valid we also know
that W > a,/b, and in general, W > ;. These would render the term 307 /4W$
negligible. Only under very unusual circumstances would W % o2, and in such
cases we could not drop the term. Excepting such circumstances, Equation 2.52
is quite accurate for all conditions in which our Brownian motion model is op-
erative. Using Equation 2.52, we find that the percent difference between the

mean and mode is approximately 3o, /20W.
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2.5.5 The Finishing Time Density and its Derivation from a Normal

pdf.

We can rewrite the Brownian motion finishing time density, Equation 2.36,
in a form using a normal pdf. Let ¢,,2(z) be the probability that a random
variable, normally distributed with mean u and variance o2, takes on the value

z. Using this, Equation 2.36 becomes

£(8) = 65,03 W), (259

The normal pdf term derives from the underlying Brownian motion; it is the
probability that a total of W units of work have been accumulated by time ¢. As
for the weighting factor of W/¢, no intuitive explanation has yet been found for
this. Figure 2.22 illustrates the relationship between Equations 2.36 and 2.53.
In this figure, the normal pdf of the amount of work done by time z, %,,,E,(:c),
is plotted with thin lines for various ¢t. The shaded plane in the figure picks out
those points on the normal pdf where z = W; the thin line arcing down within
this plane represents W/t. The thick line within the plane is the first passage
time density, i.e. the product of these last two curves. The curves have been
scaled differently to make them fit into one plot, so relative heights, except within

the group of normal curves, are meaningless.
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Figure 2.29. Density of finishing time.
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2.5.6 ngnormal Approximation to Finishing Time.

A lognormal density provides a remarkably good approximation to Equation
2.36. If we equate the mean and variance of the finishing time pdf from the Brow-
nian motion model to that of a lognormal pdf, then we find that the parameters

for the lognormal pdf, y4; and ¢?, must be

1
H o= 111(7)‘5":2

f
- In .
(;Uf/}' +1) (234

o} = ln(a§/?2+1), . (2.55)

where all the logs are natural logs. The actual lognormal pdf then becomes

_ 1 _(n(t) = m)?

As shown in Figures 2.23, when both the Brownian motion finishing time pdf and
the lognormal approximation are plotted, the densities are extremely close. The
plot for large W does, in fact, show both curves, but they lie on top of each other
and only one is visible. When they do differ, it is under circumstances where the
assumptions of the Brownian motion model do not hold (e.g. W small relative
to all of M, ¢t,, and ¢,). In spite of the quality of the lognormal approximation,
it is not likely to be as useful as the normal and impulse approximations to the

finishing time.
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Figure 2.23: Density of finishing time and its lognormal approximation.
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2.5.7 Simulation Results.

We ran simulations for the case of exponentially distributed available and
non-available periods, and some results are shown in Figure 2.24, The model
and the simulation agree very well for large W, as we would expect, and they
deviate as W becomes small. In fact, if we examine a previous figure, Fig. 2.21,
we notice that for very small W (the top two plots) the model claims considerable
probability that the program will finish before the minimum possible finishing
time of W/M (0.1 min. in the top plot, and 1 min. in the middle plot). The

jagged lines in the plot are an artifact of the histogramming process.

2.5.8 Heterogeneous Networks.

Up to this point, we have assumed that we have a network of homogeneous
processors, i.e. all the processors have identical, unchanging characteristics. In
this section we allow t,, ¢,, and processor capacity to differ among processors,
and we allow ¢,, t,, and M to be chosen randomly when the program starts. We
consider the scaled equations Equations 2.29 and 2.30 from the renewal analy-
sis; these are the asymptotic mean and variance of the accumulated work for a
single processor with a processing rate of ¢ operations per second. We give these

equations again below:

t
= 2 t 2.57
t==¢C .+t ( )
2(c2t? + o212
= ¢3 an 3¢, 2.58
Var{Y;] = ¢ . £ 67 ¢ (2.58)
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Figure 2.24: Simulation results.
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Using these, we get scaled expressions for § and of:

ta
= 2
oM (2.59)
2(o342 4 o342
2 _ 2 a’n n‘a
oy =¢ o ) M. (2.60)

These may then be used in the equation for the finishing time distribution

_(W—Et)’]

W
f$)= ﬁ exp [ -y e
27r0'bt3 2a-bt

(2.61)

as before.

2.5.8.1 Non-Uniform Processor Capacity: Static Assignments.

Suppose that the processors in the network work at different rates. Let ci be
the capacity of processor ¢ in minutes of work completed per minute, Assume
all processors are identical, except in their capacity, and their characteristics do
not change. We use the equations above to give us the mean and variance of a
processor’s accumulated work per unit time; then, to find § and o2, we sum over

all M processors:
M

5~§ ta
T E At Lt
M 220t + 0t _ 2Aolty +outd) i’:c?_
~ T (g + ta)? (ta +t0)3 '

i=1

G (2.62)

of =

=1

If ¢; = 1 for all ¢, these reduce to Equations 2.33 and 2.34.

(2.63)

2.5.8.2 Non-Uniform ¢, and ¢,: Static Assignments.

Suppose that each processor has different average available and non-available

periods. Let b; and o} be the mean and variance of the amount of work done

59



per minute by processor i, and let t{) and t{) be the average length of available
and non-available periods at processor i. In general, we can find % and ofi for
each processor and sum over all processors to get 5 and 0. We do not, in general,
know how t{) and t{) affect o2 and 02, so let us pick exponential distributions for
the available and non-available periods. We know from previous arguments that
the amount of work processor ¢ does over time is asymptotically normal with

mean and variance

t”

t(‘) +t(')
2(:('),3('))2
o) = (t__f.‘ tﬁf))"

The total work done by the network is the sum of the individual processor’s work,

therefore:
M t(t

F=Sf=3 to

, (2.64)
=1 =1 t(‘) + t(

Similarly, because all the processors are independent, o¢ is the sum of the ag(,-).

M 9(4li)gli)y2

= L W0y

2.65)
< t(* +t'))3 (

a‘i‘u
ﬁMg

If all processors have identical t{) and t{), these reduce to the definitions of

Equations 2.33 and 2.34.

2.5.8.3 Non-Uniform Processor Capacity: Dynamic Assignment.

Suppose that when a program starts, the capacities of each processor are

chosen from some distribution (possibly different for each processor), and these do
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not change during the program’s execution. We let the capacity, c;, of processor i
be chosen randomly, taking on the value z with probability ¢;(z), and we return to
our usual assumption of generally distributed available and non-available periods.
For processor i, the average amount of accumulated work per minute, given that
¢i = z, 18 T t,/(ta +ts). Multiplying by ¢;(z) and integrating over all z to

uncondition, we find that processor i accumulates, on average,

—dr =7
t+t. t. + L.

?

b= j:o ci(z) z

minutes of work per minute, where & is the average capacity of processor i. We
then sum over all M processors to get b:

ta
ta+tn

b=

% (2.66)

M

[
=R

Similarly for the variance, given that ¢; = z,

22(c2t] + a2td)
(ta + ta)?

a'f(‘.)l(c‘- =z)==<

Uncondition by integrating over all z:

2(0%2 + o2t2

it 2
Ohiy = -/(; ci(z)z OFTRE dz
2("3& + O'E‘tg) 2 C'(I)Iz dr
(ta + ta)? ' '
242 243
= 2(aatﬂ. + antc) E?', (267)
(ta + ta)?

where c? is the second moment of ¢;(z). Letting V; be the coefficient of variation
of ¢;(z), we can rewrite this as

2(o2t3 + o212
Y - a‘n n‘a z‘-j 1 V’_? )
ab(s) (ta + tn)a ( + i )
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Sum over all processors to get of:

2 _ 2(a2t] + it

b T AR YT+ V. (2.68)

=1

2.5.8.4 Non-Uniform Processor Capacity (Dynamic) and Non-Uniform

t, and t, (Static).

Let us combine the previous two analyses. For processor i, ¢l is the mean
available time, #() is the mean non-available time, and its capacity is chosen
randomly when the program starts, but has mean &. We assume M is fixed, and
that available and non-available periods are exponentially distributed. We know
that to account for varying processor capacity, we multiply b; and af(;) by the

moments of ¢;. Applying this to Equations 2.64 and 2.65, we get:

|3 fj te) (2.69)
= Y& -—2— :
ST D
M 2t2 2t2
ol = Y1+ VY) Aayty + (2.70)

= (ta +ta)3

where V; is the coeflicient of variation of the distribution of ¢;. For ¢; =1 and t,

and t, identical for all processors, this reduces to Equation 2.33 and 2.34.

2.5.8.3 M: Dynamic Assignment.

Suppése that when a program starts, the overall number of processors, M, is
chosen randomly and remains at that number until the program completes. Let
m(z) be the probability that our network has i processors, and this pdf has mean

M and variance ¢%,. We resume, for this section, our usual assumption that all
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processors have identical, unchanging characteristics. We now modify b and o?
to get expressions that we can use in the usual Brownian motion analysis. Given
ta+tn

that M = m, the mean amount of work done over time is bt = —ta_mt. We

uncondition to find the overall

b= Zm(z)

=1 t +t d+tﬂ =1 t

(2.71)

The variance of the amount of work done over time is similarly conditioned on

the value of M, and its analysis is analogous to that of b

_ %i (i) 2(a§tﬁ + o2t?) 2(cr"t2 +ait) M S~ mi _ 2(0dt] + o3t?) 17
o (ta 487 (tatta)® = (ta +t.)°

(2.72)
If M always takes only one value, Equations 2.71 and 2.72 reduce to the defini-

tions of Equations 2.33 and 2.34.

2.5.8.6 t,: Dynamic Assignment.

Suppose that ¢, is identical for all processors, but it chosen randomly when
the program starts, taking on the value z (z 2 0) with probability p(z). The
values of the other network parameters remain constant and identical for all
proces;ora, and t, does not change while the program executes. Assume, for this
paragraph, that we have exponentially distributed available and non-available
periods. As before, we derive new values for § and ol

Given that ¢, = z, the mean amount of work done over time is

El(ta=x)=z+t"
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We uncondition by integrating over all possible values of z:

5= [ z
/0 p(a:)z+tnMd:r.

Let us make the substitution u = z + ¢,,. Continuing,

i u—t,
b = M/;" plu—t,) - du

= M[jtoop(u—tﬂ)du -t WMdu]

tn u

- M-, [TREN 4 (2.73)

tn u
At this point we cannot get any farther without using a specific p(z), so sup-

pose t, is exponentially distributed with parameter A: p(z) = Ae~**. We must

=]

manipulate [ ﬂ“:Jl.clu to get it into a more useable form, and we do so with

the substitution y = Au. Let Ei(y) = — JZ, £-dt be the exponential-integral

function.

o0 - —{u=ty)
p(_u..t_n)du o '[°° /\c____du
tn u t

Therefore, if p(z) is exponential with parameter A, we have
b= M + AMt, eMEi(—=At,). (2.74)

We perform a similar analysis for the variance of the amount of work done

" . . . 2
over time. Because we do not, in general, know how changes in ¢, will affect o2,
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we must a specific distribution in our analysis, and, as usual, we use exponential.
Given that t, = z, we find o to be:

2z%42
C’f|(ta=r)=ﬁM-

We uncondition by integrating over all possible values of z:

242
o? _/ oz )( 2:_ :n)aMdz. (2.75)

Again, we make the substitution u = z + ¢,,.
(u - n)’
ol = 2Mtf,f plu —t,) ———
tn

= 2Mt§[ P—(" 2 gy - o1, wp—(“—t") duv el [T Rt du]
u

tn u tn u? tn

We can go no farther without choosing a particular p(z), and again we take p(z)

to be exponential with parameter A. Continuing the analysis:

2t [ = s j = w|  (218)
" tn u2 " u3 ’

tn

o p— AU

oF = IME AN [

tn

Integrating by parts, we find that

~)u At —Au
x g e o« e
/ du = - du
ta U2 ty ta U
e—f\t"

= = + AEi(—=At,)

and
o0 e_‘\u e“Atn A oo e—Au
= - = d
]:.. uld du 22 20, u? “
e~Mn L e-Mn A3
= - — —Ei(~At,).
51 T3 r gDl

When we substitute these back into Equation 2.76 we get

A3
= —=2M13 \ettn [c'““( + --) + Ei(-At,) [

B4 2Mt, + 1” .77
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2.5.8.7 t,: Dynamic Assignment.

Now let us repeat this analysis, but with randomly chosen t, instead of ¢,.
Suppose that t,, is identical for all processors, and when the program starts it
takes on the value x (r > 0) with probability g(z). This value remains constant
throughout the execution of the program, and the values of the other network
parameters remain constant and identical for all processors. As in the previous
section, we must use some specific non-available period distribution, and we
choose exponential. Using this information, and we derive new values for § and
ai.

Given that t, = y, the mean amount of work done over time is

ta

3|(t,,=y)=t +yM

We uncondition by integrating over all possible values of y and substituting

u=ty+y:

=2}
il

o0 ta
[ e My

o0 t,
M/t. g(u - ta); du

= e, [CHEt) gy (2.78)
ta U

To continue any further, we must pick a specific ¢{y). Let g(y) = Ae™*v.

oo \e—Mu=ta)
Mta / Lm du
ta u

AMta e,\“ /OO :\8_/\15

ta u

b

du

= =AMt Ei(-2At,). (2.79)
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The analysis of o2 is even simpler because ¢, and ¢, are used symmetrically
in the definition of o} (either as t, + t, or t;¢,). Thus we may exchange ¢, and

t, in Equation 2.76, yielding:

oa - 2
o = 2Mt§/ p(u—ta)(it—‘:u—)du

ta

o — o0 — —
= 2Mt§[ A=) gy gy, [T 28— ta) duter [Tt du]

ta u ta u? ta ud

(2.80)

in general, and for ¢, exponentially distributed with parameter A:

o = —2Mt3reMe [e'“"(g + %) + Ei(=Xt,) [

A3¢3
2

+2M, + 1“ . (2.81)

2.5.8.8 M,t,, and t,: Dynamic Assignment.

With the results of the preceding sections in hand, we can allow all of M, ¢,,
and t, to be chosen randomly when program execution starts. Assume that all
processors have identical characteristics, that available and non-available periods
are exponentially distributed, and further assume that ¢, and ¢,, are independent
of M. From the results of section 2.5.8.5, we can account for M’s randomness
by using M in our formulas instead of M. We make this substitution, and find

% conditioned on specific values of ¢, and t,:

5|(t,=z,t"=y)=ziyﬂ.

We uncondition by integrating over all possible values of ¢, and ..

0 00 T
E=_L P(l')]o Q(y);_l_—dey dz.
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If we substitute u = = + y as before, then, using the results of the previous

section:
= > g(u - z)
b= /o Y‘W;r:p(z)/ac — du dz. (2.82)
If, as before, we choose g(y) to be exponential with parameter A, this becomes
O 5 /0 ~ p(z) £ € Ei(—Az) da. (2.83)

At this point, further analysis is intractable.
We follow the same procedure for the variance. Conditioning on specific

values of ¢, and t,:

212!{2

o |(ta =z, =y) = (z+y)

Unconditioning, and using the results of the previous sections, we arrive at:

u—=z
o} = /0 p(z)2Mz? [/ q( )
21:/ q( du +z [ q(u — :c) ] dzx. (2.84)
We can again let g(y) be exponential with parameter A, and get slightly farther:

o, = .[3 p(z)2Mz* e [c (2 + 3 )

3 z?

+Ei(~Az) [/\ +2Az + 1” dz, (2.85)

but analysis is difficult beyond this point.

Notice that all these manipulations of processors capacity, ¢;, ta, and M do
not change the basic form of the finishing time, just its mean and variance. This
implies that the Brownian motion model is quite robust, thanks primarily to the

central limit theorem.
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2.5.9 Random Work and Multiple Stages.

All the preceding analysis examined programs consisting of only a single stage
requiring W seconds of work; when the stage finished, the program was done.
We now allow more general programs, consisting of K stages, and each stage
requiring w; units of work (for i = l,...,K). The finishing time distribution
for a multi-stage algorithm is the convolution of the finishing time distributions
of the individual stages. Let us work with our Brownian motion model in the

transform domain. The Laplace transform of ft from Equation 2.36 is

Fi(s) = e(W/F) (E—, /I’+2eg.)
*(s) =

(2.86)

The transform of the finishing time pdf of each individual stage is this equation
with the appropriate w; substituted for W. Multiplying the transform of each

stage results in the finishing time transform for multiple stages:

Fre) = o Elwted) (yfras)

(2.87)

We see that the number of stages has no effect on the finishing time pdf: a
multistage job and a single stage job have the same finishing time pdf if their
total work is the same. This is to be expected because we made the simplifying
assumption that work can always be divided evenly between all the available
processors — thus at the end of a stage all processors finish simultaneously, and
can start the next stage without waiting for late processors, as would happen in

a real system.
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Suppose the work in each stage is chosen randomly when that stage starts

execution. We define the random variable 1 to be the amount of work in each
stage. The pdf of this random variable is w(z), with mean % and variance o2,
Given that @ = w, the probability density of the finishing time is f(t | ¥ = w).
We integrate over all possible w to find the unconditional finishing time density

for one stage:
g(t) = [ :w(z) F(t| z)dz (2.88)

Let us find the mean and variance of this expression. For the mean, we take

the expectation with respect to ¢:

Elg)] = B[ w(@)f(t]2)ds]

[ w(@) Elf(t | D)l de

= [ @ F 12).ds

= / :)w(:c) (z/8) dz

I

= w/b (2.89)

The variance is similar:

Varlg(t)] = El(g(£))"] - [Elg(t)}’
= E []:ow(w)(f(t | w))? dw] - [E U; w(z)f(t | x)d:c]]z
= [T w(@ Bt | ) de - [~ w(z) Elf¢] ) de

= [T w(eXEIS | 2)) - L] D)) de

= /m w(z) o} dz
=0
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= j zow(:.:) z(03/5) dr

wa? /B (2.90)

It is interesting to note that only the average of w(z) figures into the mean and
variance of the single-stage finishing time.

Now we give each program a random number of stages, i, drawn from a
density A(i), with mean N, variance o}, and Z-transform N(z). We let Fy(s)
be the Laplace transform of the density of the finishing time for a single stage.
Given f = ¢, we have

F*(s |7 =1) = [F(s)]'.

We uncondition by summing over all possible values of 71 to get:

F(s) = SNOF)

=1

N(F7(s)) (2.91)

This is the usual transform of a random sum of random variables. Letting u; and
o? be the mean and variance of single stage finishing time pdf, we use [Kle75] to

find the mean and variance of the finishing time for the whole program:

7= & (2.92)
o} = Noj +oiul. (2.93)

If each stage has a random amount of work, as in the previous paragraph, then

for py and ¢} we use the results of Equations 2.89 and 2.90, respectively, and
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finally get that

N

T

F = - (2.94)
N wo? i}

o} = — Eaa” +a?v(f)’- (2.95)

For a single stage and a constant amount of work per stage, these reduce to the
familiar mean and variance of our initial Brownian motion model, Equations 2.37
and 2.38, respectively.

2.5.10 Multiple Programs in a Network of Transient Processors.

All the previous work in this chapter studied one program that had a network
of transient processors to itself. However, a realistic system is likely to allow
multiple programs to run simultaneously, each getting a portion of idle time of
the processors. In the previous sections, we found four possible models for the

finishing time pdf of a program:
1. The Brownian motion finishing time density.
2. The normal approximation to Brownian motion.
3. The impulse approximation to Brownian motion.
4. The lognormal approximation to Brownian motion.
If we now view each program as a job in a queueing system, and the service

requirements of each job as the corresponding program’s finishing time, then we
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can use these results in a variety of well-analyzed queueing systems to find the
overall network performance, particularly, W, the average waiting time before
the program starts.

The arrival rate to the queueing system is the arrival rate of programs to the
network, and the service time distribution represents the distribution of the time
the programs require from the network. We choose the number of servers to be
the number of programs allowed in the network. A single server model means
that each program gets exclusive access to the network, as was the situation in
the preceding parts of this chapter. A variation on this is a processor sharing
scheme, where each program gets M processors, but their processing power is
evenly divided among all the executing programs. A model with m servers and
m = M/k, for some k and integer > 1, represents a network where each program
gets a fixed number of processors, k, to use. As a special case of this model,
we will discuss bulk-arrival queueing systems. Finally, we could have an infinite
server model, which means that no program ever waits for access to the network,

but this model is uninteresting and we will not discuss it.

Notation. We use A as the average arrival rate in jobs (programs) per minute.
The average service time (running time of a program in minutes) is ¥ = f, and

p = AT/m, where m is the number of servers in the model.
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2.5.10.1 Stability Conditions.

For a queueing system to be stable, it must have p < 1. Because we expect
to be running large jobs, T will be quite large, and as a consequence, A must be
fairly small. Take as an example our standard multiprocessor example, with t, =
91 min., t, = 31.305 min, M = 100, and W = 10%. Each job finishes, on average,
after 134 minutes, which is about 2 hours and 15 minutes. As a consequence, we
cannot have an average arrival rate of more than one job every 134 minutes, and
from a practical point of view, we would prefer not to operate very near p = 1,
and so an average arrival rate of, say, one job every 3 hours (p = .74) might be
better. This means that we allow, on average, 8 jobs per day. This is not a large
number, and in a large institution, it could easily be exceeded. Any practical

system would require monitoring or control to ensure that it remains stable.

2.5.10.2 Single Server Queueing Systems — G/G/1.

A single sever queueing system models the situation where only one program
at a time runs on the network, and it can use every available processor. The
arrival rate process may be arbitrary, but Markovian arrival processes have served
well in many other queueing system models of arrivals to computer systems
(Kle75] [K1e76], so it is likely that such an arrival process would also be suitable
for this situation.

The service time distribution, on the other hand, generally should not be

Markovian (exponential) for best accuracy. The Brownian motion model as-
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sumed, roughly speaking, that each program had much work and would not
finish too quickly, but an exponential distribution has too much probability in
small service times.

We will now quote some of the general results for a single server queue. If
we require that both arrival and service time distributions are general, we do
not have an exact expression for the average waiting time, and the techniques of
chapter 8 in [Kle75] are necessary. We do, however, have bounds on the average

waiting time, W [Kle76]:

P’CE + o(p—2) ol +a}
< < —
-5 WS 22(1 - p)

where o} and o} are the variance of the arrival and service times, respectively,
and C, is the service time coefficient of variation. Note that the lower bound is

valid only for C? > (2 - p)p.

Poisson Arrivals. If our arrival process is Poisson, then we have an expression

for the average waiting time:

_pE(1+C)H AP
VESa= Tx-p

where z7% is the second moment of the service time.

We can further modify the M/G/1 model by allowing multiprogramming of
programs on the network: each program has access to all machines, and each
machine is shared, via round—robin scheduling, between all programs. In a word,

this is a processor-sharing model. Qur average waiting time for a program needing
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r minutes of processing then becomes [Kle76]:

T
W(z) = 1"_p

and the average system time (waiting time plus running time) for an z minute

program is

_z
-_],—p

I(z)

From this we conclude that for small p, multiprogramming does not hurt the
response time very much. However, small p means that either programs arrive
at a very low rate (and the maximum permissible rate is not very high to begin
with), or the average job requires relatively little work. Given the purpose of our
network, the second condition is likely to be untrue. Thus, one must analyze the
job load carefully before introducing multiprogramming of distributed programs

into a transient processor network.

2.5.10.3 m Server Queueing Systems — G/G/m.

If our queueing model has m = M /k servers (k an integer > 1), we model a
network in which each program runs on a fixed number (k) of processors. Why
would we want to restrict the number of processors each program can use if the
object of distributed processing is to use many processors in parallel?

One reason is to model real program behavior. Typically, speeding up a
distributed computation by using more processors works only up to a point, and

then additional processors have little effect on the finishing time. It would be
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very misleading to model a program as running effectively on all M processors in
the network, when, in fact, it makes effective use of only k (k < M) processors
and the remaining M ~ & processors make no contribution to program speed (and
In some cases, may even be a hindrance by causing more network traffic).

Another reason for using k processors is fairness: we want to let several pro-
grams run simultaneously and prevent one program from taking all the computing
resources in the network. As an implementation of this idea, one could split the
processors evenly among all the jobs in the system — if there are j programs in
the system, each runs on [M/j] processors. In this case of dynamic partitioning
of processors, our model is really processor sharing, not multiple servers, and the
round-robin results discussed in the previous paragraph are applicable. When
we have fixed and equal sized partitions of processors, the G/G /m model applies.

The G/G/m queueing model is very difficult to analyze, and the best we can
do is quote bounds on the average waiting time [Kle76]:

PG =p2=p) [m=1)/mla? . _ o2+ (1/m)od + [(m ~ 1)/m]z?
2X(1 - p) 2z =S 2(1 = )/

where p = T/(mf), and o2 and o7 are the variance of the arrival and service time
distributions, respectively, and C} is the squared coefficient of variation of the
service time. The lower bound, although simple, is not extremely useful because

it is non-negative only for

2p
2> -1.
@2 FTETan )

See chapter 2 of [Kle76] for details.
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If the arrival processes is Poisson, then we may use an approximation for the

average waiting time (see [Mal73], [NR76], or [BCHT79]):

(2.96)

where Wu/G/m is the average waiting time an M/G/m system, WG is the
average waiting time for an M/G/1 system with the same service time but 1/m™
the arrival rate of the M/G/m system, and Wy;m/1 and Wy m/m are the average
waiting times for systems with the same arrival rate as the M/G/1 and M/G/m
systems, respectively, but with exponentially distributed service times whose
means are the same as that of the general distribution.

In addition to these results, we know that when C? < 1, the total system
time (waiting plus service) in a G/G/1 system is less than or equal to the system
time in a G/G/m system [Kle76]. Thus to minimize the total system time under
these circumstances, we should allow each program to use as many processors as
it wishes. Figure 2.25 shows these bounds on the waiting time as p varies from 0
to 1 when we have Poisson arrivals, a 2-stage Erlang service time, 10* minutes of
work to do, 100 processors, and each program is given m = 20 processors in the
M/E,;/m case. The solid line is the upper bound for M/E;/m, the dashed line
is the average waiting time if each program gets all the processors (a M/E;/1

system), and the lower bound for M/E;/m lies on the x-axis.
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Figure 2.25: Waiting time bounds for G/G/m and G/G/1.

2.5.10.4 M Server Queueing Systems — Bulk Arrivals.

In a real distributed processing system, a program is not infinitely divisible
between processors, and it is more accurate to think bf the program as a collection
of discrete pieces of work, each of which is not divisible. This leads to a model
- using a queueing system with bulk arrivals. Let a program needing a total of
W minutes of work be broken into W equal-sized tasks, each needing 1 minute
of work. Each bulk represents a program, and the bulk size varies randomly to
model variations in amount of work each program requires. We use an M server
queue to model our M processors, and we wish to find the time it takes before
for the bulk starts service, and the time it takes for the bulk to complete service.
Chaudhry and Templeton [CT83] analyze M/M/m bulk-arrival systems, deriving
an expression for the distribution of time before the first task in a bulk {program)

enters service, From this we derive an approximation for the system time of an
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entire bulk by letting the service time of a bulk of size @ be the distribution of the
time it takes for & tasks to finish service. This is not the true time for a bulk to
finish service because tasks do not necessarily leave the system in the order they
arrived, and conceivably a task from an earlier bulk could remain in service while
several other bulks pass through the system. Furthermore, we do not account
for precedence delays: thus, any results from this derivation will be optimistic.
The final approximation for the total system time of a bulk is the distribution
of time until the bulk first starts service, convolved with our approximation for
the service time of a bulk. The expected system time for a bulk is sum of the

expectations of both constituent distributions, which is

o0
T =Y d®Pyn, + 0%
d=1

where 7 is the average service time for a single task (one fragment of the bulk),
B is the average bulk size, and P, is the probability of there being i tasks in the
system (queue plus servers).

Chaudhry and Templeton also analyze the M/D/m bulk arrival system, which
is better suited to our purposes because we may use our impulse approximation
to the finishing time and take the service time of a task to be deterministic.
Unfortunately, for our purposes they provide nothing more useful than P(z), the
Z-transform of the steady state probability of the number in the system. If we
could invert this, then we could find the system time for a bulk as follows. Let

N(z) be the Z-transform of the number of tasks in the queueing system when a
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bulk arrives. Because we have Poisson arrivals, the Z-transform of the number
of tasks that a bulk finds in the system is equal to P(z). Multiply this by the
Z-transform of the bulk size to get N(z). Let B(s) be the Laplace transform of
the time to service a task. To find F(s), the transform of the time for a bulk
to finish, including its waiting time, we raise B(s) to the j™ power, multiply by
the probability of having ; tasks in the system just after an arrival, and sum
over all ;. This represents a random sum of random variables, and results in
the equation F(s) = N (B(s)). In theory we can invert this; regardless of its

difficulty of inversion, we can find the moments of this distribution.

2.6 Conclusion.

In this chapter, we analyzed the distribution of finishing time for a distributed
program in a network of transient processors. We first found the distribution of
the number of available processors in the network, then made two analyses of a
program running on a single transient processor. The results of this were then
used as the basis for a multiprocessor model using Brownian motion, and from
this we found four finishing time distributions: the actual Brownian motion fin-
ishing tfme distribution, and its normal, lognormal, and impulse approximations.
These distributions, the result of analyzing a single program in isolation, were
then used in several queueing models that allow multiple jobs to be present in
the network.

Our models have several shortcomings that we would like to remove. First,
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the results are really asymptotic results, and valid only over a long period of
time. If we have a relatively small amount of work to do (say, several hours),
then our finishing time distributions are not valid. Their means are acceptable,
but the variance is quite incorrect, and the distributions (except for the impulse
approximation) show noticeable probability that the program will finish in less
than the minimal time required (W/M). Perhaps there is some simple way to
modify the variance expression in our models so they provide acceptable results
for small W,

A second shortcoming is our model of a program. Modeling an algorithm as
sequential, independent stages in very simplistic. Many programs do not have
clear stages, but instead have a more complex internal structure that allows
precedence relationships (between pieces of the program executing on different
processors) which cause additional delays. Modeling these relationships is not a
trivial task, although the work of Belghith [Bel87) may provide a starting point.
Also, we must test the independent stages model against real systems, for it may
provide reasonable results in a variety of situations, and then we need not always
deal with the complexities of precedence.

Third, and of great importance, our network model does not account for the
realities of communications. Communication entails delay, and our model does
not address this issue. It is reasonable to put much of the burden of commu-
nications analysis into our determination of W — each program has different

communication patterns and requirements, so each must be analyzed separately.
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However, we should account for the global communications load because that
affects the communications delays for each program. If a network is heavily
loaded, all communications suffers delays and all programs are slowed. Also, in
lower-capacity networks, a program may provide enough communications load
that it can saturate the network by itself. In the conclusion of this dissertation
we discuss an approach to this problem.

In spite of these difficulties, the very simplicity of the models in this chapter
makes them appealing, and, at least for large W, they do capture the basic

behavior of transient, distributed systems.
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CHAPTER 3

Information Theory and Single-Processor Sorting

3.1 Introduction.

Sorting is one of the most common uses of a computer. Anyone who keeps
a database of any size, large or small, or who even just keeps a simple list of
information, will probably sort the information at some time. Sorting is certain
to be one of the applications running on a network of transient processors. Fast
sorting algorithms, efficient in both space and time, have long been sought, and
many have been proposed. In this chapter we exa.r:ﬁine three of these algorithms.

To sort, we start with a list of keys in random order, and we want to finish
with a list of keys in ascending order. Some sorting algorithms constrain the form
of the keys (e.g. keys are 10 digit numbers), but in general, keys consist of letters
and digits and have a bounded number of characters. Some of our analyses will
assume that the keys are drawn from a known set without repetition, but we
avoid such assumptions whenever possible.

The spectrum of sorting algorithms may be divided into two families, internal
sorts and ezternal sorts. Internal sorts manipulate data that resides entirely

within the memory of the computer; External sorts manipulate data that resides
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on some input/output (i/0) device, typically a disk or tape. The algorithms differ
because of the use of i/o devices in external sorts. Internal sorts have no ijo
considerations, and minimizing the number of instructions executed maximizes
the speed of the sort. External sorts, however, must deal with the speed of thei/o
devices, which are typically orders of magnitude slower than the processor; for
these sorts, minimizing i/o time is of paramount importance. In both families,
the most interesting characteristics of a sort (from a user’s standpoint) are its
running time, and the amount of memory it requires.

Distributed sorts have characteristics and concerns of both internal and exter-
nal sorting algorithms. Typically the information that any one processor works
with will fit into its core memory, like an internal sort, but the algorithm must -
also deal with delays that arise from communication or task precedence. These
delays, like the i/o delays of external sorts, have a very important effect on the
design and performance of distributed algorithms.

In this chapter we use information theory to examine internal sorting on a
single processor. In doing so, we learn what makes these algorithms efficient or
inefﬁc:iq_t__._. In the next chapter we discuss some distributed sorting algorithms.

Somaf the more common internal sorting algorithms are bubblesort, merge-
sort, quicksort, and radiz sort. The first three are comparison-based sorts: the
basic action is to compare two data items and act according to that result. A
single comparison is taken as the basic time unit of these sorts on a single pro-

cessor, and minimizing the number of comparisons is the goal of an algorithm.
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In distributed systems, this is still true to some degree, but we will also have to
deal with communication and precedence delays if we want a fast algorithm.
Radix sort is a different type of algorithm, in which data elements are not
compared directly, but are put into buckets based on the digit or character in a
certain position in the key. Under the proper conditions, it can be faster than

comparison-based sorts.
In the remainder of this chapter, we first define notation in section 3.1.1
and discuss information theory and entropy in section 3.1.2. Then we examine

entropy reduction in four sorts: bubblesort, mergesort, quicksort, and radix sort.

3.1.1 Notation.

An algorithm is presented with a list of N items to be sorted. The actual
form of the data items, be they numbers or strings, is unimportant. In general,
this list can contain duplicates, but unless otherwise stated, we will ease our
analysis and assume that there are no duplicates. An ordering is defined on the
data items (not necessarily unique if the input list contains duplicates), and the
purpose of the algorithm is to produce an ordered list of the input items. We
refer to the i** item on the list as d[i]. An algorithm starts with all N items in
core men;éry of the starting processor, and ends when all processors have finished
running the algorithm and the sorted list of N items is in the core memory of
the starting processor. For ease of notation, processors will be numbered from

1 to M, where M is the total number of processors, and typically we will let
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processor 1 be the starting processor.

In pictures, a list of data is depicted either in a vertical column, indexed
with data item number 1 at the top of the list, or horizontally with data item
1 toward the left side. The list is sorted when it is in increasing order, that is,
dli] <dli+ 1] for i =1,..., N, where “<” is an ordering function.

We use “Big O” notation, as it is commonly defined. A function f (n)is O(g)
if f(n) < Kg(n) for all n and some constant K.

For comparison-based algorithms, our unit time is the time for a comparison.
Thus, we measure the length of these algorithms in terms of the number of
comparisons. We discuss the time measure for radix sort in the section analyzing
this sort. We use the notation comparison/swap (abbreviated c¢/s) to refer to
a comparison of two data items, possibly followed by a swap of these two data

items, depending upon the results of the comparison.

3.1.2 Information Theory and Entropy.

Sorting may be viewed as a process of reducing entropy. An algorithm starts
with a'list of items in an unknown order, and finishes with the list in a known
order. To do this, the algorithm must discover information about the items in
the list, and reduce the algorithm’s uncertainty about the ordering of the items.
Conceptually, the data given to a sorting algorithm may be any one of N! per-
mutations. By shuffling the data around in an organized fashion, the algorithm

reduces the number of possible permutations of the data. When the data has
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only one possible permutation, the sort is finished. This may be formalized by
using information theory. Shannon and Weaver[SW49] define entropy using the

following expression:

S
E =3 —pilog;pi (3.1)

i=1

where p; is the probability that our system is in a particular state and § is the
total number of possible states. In our problem, the set of system states is the
set of all possible orderings of the input list. We will assume that inputs to an
algorithm are uniformly distributed among all possible permutations of the input
list; in other words, the input does not tend to have some initial order.

When an algorithm starts, the entropy is equal to log; N!. With every action
an (efficient) algorithm takes, it reduces the entropy by reducing the number
of possible permutations of the data, gaining at most 1 bit of information per
comparison. When the entropy reaches zero, which means there is only one pos-
sible permutation of the data, the algorithm has finished. By applying Equation
3.1, we can, at least in principle, quantify the amount of entropy remaining as
an algorithm progresses. In practice this tends to be quite difficult, but we can
often obtain bounds on the entropy or obtain the entropy at particular points
during the algorithm'’s execution.

Some care must be taken in the analysis because simplistic analysis will lead
to incorrect results. Specifically, for comparison-based sorts to gain one bit of

information per comparison, then each comparison must halve the number of
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possible permutations while doubling the probability of the permutations that
remain. For bubblesort-based algorithms (explained in the next section), this
implies that the probability of swapping two data items after a comparison is
1/2. The converse is not true, however, and one can construct an algorithm that
has probability 1/2 of swapping after each comparison, yet does not always gain
one bit of information per comparison.

We may use entropy analysis to bound the performance of algorithms. It
has been proven [AHU74] that the most efficient single-processor sort based on
comparisons cannot do better than O(N log N) time. Typically this is proved
by making a binary tree where each internal node represents a comparison, and
then noting that the tree has N! leaves. Because of this, its height, representing
the time to finish, must be at least log,(N!), which is O(N log N). We see that
information theory makes the same conclusion in a slightly different manner.
The data’s V! possible permutations (assumed to be equally likely) mean that
the entropy of an unsorted list is log,(N!). We cannot gain more than one
bit of information per comparison, so the minimum number of comparisons is
[loga(V!)], which, as we know, is O(Nlog N). Thus, any sort in which we do
no;: gain one bit (or at least some constant fraction of a bit) per comparison
cannot be O(Nlog N).

Much work has been done on optimal sorting algorithms. The Ford-Johnson
sorting algorithm {JJ59], also described as the Ford-Johnson merge-insertion al-

gorithm in [Knu73], has been shown in [HL69] to require at most Nlog N —
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1.329N + O(log N) comparisons, as compared to the information-theoretic lower
bound of [log,(N ] = Nlog, N — 1.443N + O(log, N). This has been improved
on, most recently in [MBMS89] by using the Ford-Johnson algorithm and ap-
propriate merging algorithms. The information-theoretic lower bound can be
achieved for some N y such a8 N < 11, but no sorting algorithm can achieve
this bound for all ¥ [Wel66]. Given the extensive work in this area, this chapter
will not propose new sorting algorithms, but instead will examine some widely-
used existing algorithms to find the source of their efficiency (or for bubblesort,

inefficiency).

3.2 Entropy in Bubblesort.

3.2.1 Description of Bubblesort.

Bubblesort on a single processor has been discussed in a variety of publica-

tions, [HS78] and [AHU74] being typical sources.

Bubblesort works by comparing adjacent items in the input list, and swapping
them if they are out of order. The algorithm makes passes through the list until
it is in order. Figure 3.1 illustrates bubblesort on 8§ data items. In the worst
case, the data list is in reverse order, and moving the it largest data item to its
proper position is done on the ™ pass at a cost of N — ¢ comparisons. Adding
these up, we find that bubblesort takes at most N(N —1)/2 comparisons, which

means it is O(N?). We note that the list data items gradually become sorted,
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Figure 3.1: Single processor bubblesort with 8 data items.
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starting with the largest items, and if the algorithm ever completes one pass
without swapping any data items, it can finish immediately because subsequent

passes will not make any swaps, either.

3.2.2 Notation.

To discuss data items in a symbolic fashion without reference to their actual
location in the list or their particular contents, we will use capital letters (A,
B, C, etc.). That is, think of a data item as a key in a box. The name of the
box is A, B, etc., and its value, Val[A], is the value of the key in the box. As
the sort progresses, we shuffle the boxes around according to the values therein,
but the boxes themselves never change names or contents, just locations. Thus
we may say, for example, that data item A is greater than data item B (or
Val[A] > Val[B] in shortened form), which means that the contents of the data
item (box) which we have symbolically named A is greater than the contents of
the data item (box) symbolically named B.

When a processor starts at the top of the list and compares and swaps data
items down the list until it reaches the end of the list (or until it needs to make
no further comparisons because it knows the remainder of this list is sorted), we
say it has completed a pass. Passes vary in length. In bubblesort, the first pass
goes all the way down the list and requires N —1 comparison/swaps, the second
requires N — 2 comparison/swaps, and the last pass (pass number N — 1) requires

only 1 comparison/swap.
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3.2.3 Analysis.

In this section we bound the entropy of the list at the end of each bubblesort
pass. We analyze the first pass of bubblesort in detail, deriving an open form
equation that tells us the entropy at any time in that pass. Early comparisons
in the pass yield more information than later ones because, as the comparisons
work their way down the list, each comparison is more and more likely to result
in swapping the data items (because the data item we are moving down the
list tends to be larger than the ones to which we are comparing it), and we
gain correspondingly less and less information per comparison. The second and
subsequent passes are likely to act similarly, with each comparison in a pass
reducing entropy less than the preceding comparison in that pass.

We may use simple reasoning to upper bound the entropy at the end of each
pass. At the end of pass ¢, : data items are known to be in their proper place (at
the bottom of the list), so the remaining IV — ¢ data items cannot be arranged
in rmore than (N — ¢}! ways. The maximum entropy of this is then log%(N — )L
The upper curve of Figure 3.2 plots this upper bound for N = 12, and the lower
curve plots the actual decrease in entropy for the first pass (obtained analytically
below) and our conjecture for subsequent passes.

Let us examine the algorithm’s very first comparison in detail. Initially, there
are N! possible permutations of the data; let us denote a particular permutation

as ABCDE..., where each letter represents one data item. Because all permu-
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Figure 3.2: Decrease in entropy as bubblesort progresses.
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tations are possible, our input data might also be arranged BACDE.... After
the first comparison and swap, both these permutations cannot exist: one must
map into the other. If Vial[4] > Vai[B], then the permutation ABCDE... be-
comes BACDE.... Two separate permutations before the first comparison have
now become one permutation that has two chances of occurring after the first
comparison/swap. If we look at all V! permutations of the input, we see that
there are N!/2 pairs of permutations that differ only in the order of the first
two items. After the first comparison/swap, each pair will have merged into one
permutation with two chances of occurring, and we will have N/2 such permu-
tations. Let E(7) be the entropy after comparison i on the first pass. The initial

entropy is

1 1
EQ)=- Y "1\7!'1053 (-m) = log, N!

¥N!
permutations

because each of the permutations is assumed to be equally likely. After the first

comparison/swap, we have

2 2 2
E(l) = — Z mlogz (-.ZVT) = —log, (ﬁ) = Iogg(N') -1
V%’l : : :
permuigtions

because each of the N!/2 permutations has probability 2(1/N!) of occurring.
Thus, this first comparison reduces the entropy by exactly one bit. This means
that we receive the maximum amount of information from the first comparison.

Subsequent comparison/swaps are not quite so simple. First, let us look at

the probability that we do not swap after the i*® comparison. This comparison

95



“%— N data items -

L B ] I J L I

Data kth smallest

ItC_m data item
1

Figure 3.3: Data items ¢ and 1+ 1.
compares the :* item in the list (let us call it I) and the i 4 1 item in the list

(let us call it J), as illustrated in Figure 3.3. Then
Plno swap I and J] = P(J is bigger than all data items 1 through i].

In the following paragraphs, it may also help to refer to Figure 3.7 as a numerical
example,

Suppose J is the &'® smallest data item. For k < ¢, Plno swap| = 0. To see
this, suppose i =4 and k = 1, which means that J is the smallest data item and
in the 5 position (Figure 3.4). Obviously, all the data items in front of J are
larger than J, which means that a swap will always occur after comparing I and
J. The same holds true for any k <i: there aren’t enough small items that could
be in front of J to avoid a swap.

Now éxa.mine k = i+1, which means that the i + 1% data item is also the
¢ + 1* smallest data item. There are only i data items smaller than J y S0 if we
are to avoid a swap, all of these must have initially preceded J in the data list.

What is the probability of this? The probability of data item 1 being one of the
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Figure 3.4: Smallest data item in 5* position.
i*" smallest is i/(N ~ 1), or equivalently, (k — 1)/(N — 1). The probability of
the next data item being another of the i** smallest is k — 2/(N — 2). One can
continue this, and see that the probability of data item i being the last one of the

i*® smallest is 1/(N — i). The final probability of no swap, given that k = i + 1,

(7=1) (7=3) (7=39) - (=) - 2

A similar process will give P[no swap] for k¥ > 1 + 1, and this turns out to be

(+5) (55 (=9 - (2) - ==

Because k! = 0 for k£ < 0, we get

i3

(k= 1)(N =i —1)!
(k—i~1)(N —1)!

P[no swap | i*® comparison, K is k*® smallest] =

The probability that K is the £** smallest is simply 1/N, so

1V i1 (k—1)
SN - (k-i-1)

Pno swap [:*® comparison] =

i,

(N-i-1)!§ k-1
N! k=1
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Figure 3.5: A list of data.

where the sum has non-zero terms only for k > i + 1. If we apply the identity

f: k N+1
k=0 m m+1

to the summation, then we find that
Plno swap |i*® comparison] = 1/(i + 1). (3.3)

This implies that of all the permutations remaining after the (i —1)* comparison,
1/(i + 1) of them remain unchanged and will still be possibilities after the next

comparison. What happens to the other ¢/(i + 1)?

It turns out that 1/i of these map on to permutations that already existed as
possible permutations just before the i*® c/s, and the remaining (: —1)/(z + 1)
each become permutations that did not exist just before the i*® ¢/s. To see this,
let us suppose, as in Figure 3.5, that we have four consecutive data items (G, H,
I, and J), suppose that I is in position 7 in the data list (remember, we number
starting from 0), and suppose that we have done the first i —1 comparison /swaps.

The next action will be to compare I and J. We know that a fraction i/(i +1) of
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Figure 3.6: The data list with H removed.

the time we will swap H and [, giving us “G I H” in the data list. If this happens,
what is the probability that G < I, or in other words, what is the probability
that we map on to one of the permutations that was a possibility before the
't

i'" comparison/swap? If we take H out of the original data list (after all, we

already know it is bigger than G and I) and run the first pass of bubblesort on
the original data so modified (as shown in Figure 3.6), then the probability that
we don’t swap G and I is exactly the probability that G < I. This we know to

be 1/, so we may conclude that after the i** comparison,

. (1_+11'T of the permutations remain unchanged.

(H"_l) 7= t-}+l of the permutations map onto pre-existing permutations.

. -G_;—l)- "".1 = :;—: of the permutations change to “new” permutations.

To complete this, we must show that the permutations that are supposed to
map onto the existing permutations actually do so. Refer once again to Figure
3.5. Because we started off with all possible permutations of data, just before

the i*® comparison, our set of remaining permutations will contain permutations
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Figure 3.7: Example of permutations.

with all possible combinations of G and H such that we have both G < H, and we
have all possible permutations of data to the right of H. After the sth comparison,
the unchanged permutations will contain all possible values of G, H, and I such
that G < H < I, Of the changed permutations, 1/i of them will result in the order
“G 1 H”, with the condition that G < | < H, again with all possible values of G,
H and I. Because both the changed and the unchanged permutations contain all
possible values of three data items in increasing order at these locations, these
changed permutations must be the same as the unchanged permutations. The
remaining (i — 1)/¢ of the changed permutations have G > I < H, or, in other
words, items ¢ — 2 and i — 1 are out of order. No such permutations existed as a

possibility before the i*® ¢/s, so these are the “new” permutations.
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Figure 3.7 shows the first two comparison/swaps using three possible data
values in their 6 possible permutations. When we do the first comparison, 1/2 of
the possible permutations remain unchanged, and 1/2 map into the unchanged
permutations. Note that before the first c/s, all permutations are possible, so we
can not have any “new” permutations. For the second c/s, we see one unchanged
permutation, one changed permutation mapping onto the unchanged one, and
one “new” permutation that was not a possibility after the first ¢/s.

All this is well and good, but it does not yet explain how to calculate the
entropy at any time; we must know the probability of the occurrence of the
permutations. The key here is to note that when one changed permutation maps
onto one existing permutation, the resultant permutation is twice as probable as
before the mapping. This doubling effect implies that the probabilities will have
the form of a power of 2 over N!. Define n; 4 as the number of permutations
occurring with probability 2¢/N! after the k2 comparison/swap. Initially we
have ngo = N!, and n;o = 0 for 1 > 0. After the first comparison/swap, we
have n,, = N!/2 (N!/2 permutations, each having probability of occurrence
2/N'), and n;; = 0 for ¢ # 1. The results given previously imply that after
the second comparison/swap, 1/3 of the permutations remain unchanged, 1/3
map onto the unchanged ones, doubling their probability, and 1/3 change to
something new. As seen in Figure 3.8, this is indeed what happens: we end up

with N!/6 permutations having probability 4/N!, and N!/6 permutations having
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probability 2/N!. In terms of the n’s, we have

M
N2 = ——

6
N1

Ny = —.

6

Look now at the next comparison/swap. Of the high probability permuta-
tions, 1/4 remain unchanged, and 1/4 map onto the unchanged, giving us N1/24
permutations with probability 8/N!. Half of the high probability permutations
map onto something new but still have probability 4/N). Of the low probability
permutations, 1/4 remain unchanged and 1/4 map onto those, giving us N!/24
new permutations having probability 4/N!. Half of the low probability permuta-

tions map onto new permutations but retain probability 2/N!. Again, in terms

of the n's we have

N!
12
3(N1)
24
N!
24

iy =

Naa

N33 (3.4)

We can see a recursion forming here. The permutations with probability
2¢/N! after the i*® comparison are composed of 1) some of the permutations that
had probability 2% /N! after the previous comparison, and 2) those permutations

which were half as probable after the i — 1* comparison but which doubled in
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Figure 3.8: Merging permutations in first pass of bubblesort.
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probability because of the mapping process. More precisely,

t—1 1
H__lni—l,k + —Ni1k-1.

nl', = "
. T+ 1

The final expression for the entropy at any comparison k during the first pass of

single-processor bubblesort is thus

k o 2
E(k) = —Zni,kﬁk’&m

=0

k 2.'
= X nirgllon(N) ~ i) (3.5)

Plotting this (Figure 3.2) we see that we gain the most information at the start

of this (first) pass, but this gain is less and less as the pass continues.

3.2.4 Conclusion.

The decrease in entropy during bubblesort displays a very interesting pattern
during bubblesort’s first pass, and our analysis gives us the entropy at each
 comparison in that pass. Subsequent passes become more difficult to analyze,
but we can bound the entropy at the end of each pass. Bubblesort’é general
inefﬁciency. comes from the way it makes its comparisons: toward the end of

each pass, you get very little information for each comparison.

3.3 Mergesort

3.3.1 Description.

Mergesort is based on the method of divide-and-conquer: split the data items

into two equal length sublists, sort them separately (using the same procedure
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recursively), then merge the results into one list. Let N = 2*¥. We then split the
data lists k times to reduce it to N lists of length 1. A list of length 1 is already
sorted, so we merge these lists into N/2 sorted sublists of length 2, then merge
length 2 sublists into sorted sublists of length 4, and continuing until we merge

two sublists of length N/2 into the final sorted data list of length N.

3.3.2 Analysis.

We will not examine every comparison in detail, but instead we derive the
entropy at particular times during the sort, specifically at those points when we
have just created N/2° sublists of length 2 by merging 2! lists half that length.
Let us say that we are at “level 1” at such a time. Thus we start at level 0, when.
we have split the data down to lists of length 1 but not sorted anything, and we

end at level k.

N
When we are at level ¢, there are o = ways to arrange
2 2.2 @y
r 1l b
Nf2ttimes

the data into 2' sorted list of equal length. All these arrangements are equally
probable, so the entropy at this level is log,(N!) — (N/2%)log,((2')!). To merge
the lists and move up a level requires a total of N comparisons, so the entropy

after comparison i N is
E(iN) = logy(N!) — (N/2')log,((2))). (3.6)

We plot this in Figure 3.9 for N = 1024.
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Figure 3.9: Decreasing entropy during mergesort.
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Figure 3.10: Bits of information per comparison during mergesort.
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To find the average information gained per comparison at each level, we find
the amount of entropy decreases in a particular level, and divide by N. At leve]
¢, this is

2!
= 7o (7))

which we plot in Figure 3.10. At the beginning of the sort we gain only 1/2 bit

per comparison, but by the final level we gain almost 1 bit per comparison.

3.3.3 Conclusion.

In mergesort we gain information in the merging operation. The efficiency of
this operation arises because each Tnerge operation takes relatively little time, but
greatly reduces the number of possible permutations. It is important, though,
that the merges be relatively balanced (e.g. merging equal-sized lists). The
work involved in merging is proportional to the total number of data items to be
merged, but the amount that entropy is reduced is related to the relatjve sizes of
the two lists, with the greatest reduction occurring for equal-sized lists, and less
reduction if the lists are not balanced. Because mergesort never gains less than
some constant number of bits per comparison (in this case, never less than 1 /2

bit), it finishes in O(N log, N).
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3.4 Quicksort.
3.4.1 Description.

Quicksort is a divide-and-conquer algorithm, like mergesort, but it operates
slightly differently. The basic step is to split the data into two sublists by com-
paring the data to some special splitting value, say A. Data items smaller than
A are put in one sublist, in no particular order, and data items with greater than
or equal to A are put in the other sublist. Sort these two sublists { by recursively
repeating this basic step), then concatenate the two sorted sublists to yield a

completely sorted list of data.

3.4.2 Analysis.

The characteristics of splitting values are very important because quicksort
reduces the number of permutations fastest by splitting the data lists in half.
To see this, suppose that we have a list of V items, and we want to split it. If
we split it exactly in half, then we could have a total of %-!-’2!! permutations of
the ite'ms in the list. If we now take a data item from one list and put it in the
other, we find the number of permutations by dividing the expression in the last
sentence by N/2 (to remove an item from one list) and multiply by 1+(N/2)
(to add an item to the other list). Because 1+(N/2) is greater than N /2, the
net result is to increase the number of permutations. If we continue to shrink

one list and expand the other in the same fashion, we find that the number of
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permutations continues to grow, reaching a maximum of (N-1)! when we split

the data into one list of size 1 and one list of size N-1.

Suppose that we always pick optimum splitting values, Let ¥ = 2% and let
us say that at level i of the sort we take 2° lists of length 2*~% and split them
into twice as many lists each half as long. Thus at level i the number of possible
permutations of the data is (N /2)1% and the equivocation is the logarithm of
this number. Each split requires a total of N comparisons, sc the uncertainty at

comparison iV (at the end of leve] ; ) is
. ; N
E(iN) = 2'log, (2—l) (3.7)

We plot this in Figure 3.11 as the best case curve, and the bits per comparison
in Figure 3.12. Note that quicksort is, in many ways, the reverse of mergesort,.
In mergesort, the information gained per comparison rises from 1 /2 bit to near
1 bit as the sort progresses; in quicksort, the first comparisons net nearly 1 bit
of information per comparison, and it falls to 1 /2 bit at the end of the sort.
Now let us suppose that we pick the worst possible splitting values, and
whenever we divide a list of length !, it splits into one list of length 1 and one list
of length [~1. Each split then acts like one pass of bubblesort, which implies that
quicksort’s behavior in this situation is O(N?). After the i*® split, log,((n — O
bits of information remain to be discovered because N — i data items remain

unsorted. Expanding this, we find that

log;((N-9)1) = logy(N) +logg(N = 1)+ -+ + logg(N-i+1)
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Figure 3.11: Decreasing uncertainty during quicksort, best and worst cases.

i=1
= 2 logy(N - k),

k=0
and thus the i*® split yields log,(IN — i + 1) bits of information. Figure 3.11 also

shows the decrease in entropy for this worst case of quicksort.

3.4.3 Conclusion.

Quicksort gains its efficiency in the splitting operation, and its performance
can be anywhere from O(N log, N) to O(N?), depending upon how the splitting
values are chosen. In the best case, the splitting value is the median, and some
quicksort algorithms sample the data to estimate the median (e.g. [LL89]). How-
ever, the median is not the only possible splitting value for O(NV log, V') quicksort.
Horowitz and Sahni [HS78] prove that quicksort with random splitting values is
O(N log, N). In the worst case of quicksort, each split separates only one data
item, and then the algorithm’s performance is similar to bubblesort. Thus, the

technique for finding splitting elements is very important to this sort.
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Figure 3.12: Bits of information gained per comparison during quicksort.

3.5 Radix Sort.

3.5.1 Description.

Radix sort operates very differently from the previous algorithms. The sort
never makes direct comparisons of data items: instead, it puts data items in
“buckets” based on the character or digit at a particular position in the data
item. Let us suppose that we have unique numeric data items, [ digits long
(with digit 1 being the leftmost and ! the rightmost), and each digit takes on one
of ¢ values, from 1 to ¢ . We use ¢ buckets in the sort. The basic step of radix
sort is to examine one digit, say i, of each data item. If the character at that
digit is z, then append the data item to the contents of bucket z. When all the

data items have been examined, concatenate the buckets in order from 1 to ¢ to
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form a new list of V data items, and then clear the buckets. To fully sort these
data items, repeat this step, starting with the least significant digit, and working
on the next most significant digit at every step. As a short example, suppose we

have a list of 3 data items:

213
312

113

We first put the data items into buckets on the basis of the least significant digit:

bucket 1 | bucket 2 | bucket 3

312 213

113

When concatenating the bucket results in the data item list:

312
213

113

We now put the data items into buckets on the basis of the middle digit. In this

case, all the second digits are 1, so all the data items end up in bucket 1:
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bucket 1 | bucket 2 | bucket 3

312

213

113

This results in the same data item list as after the previous step. To complete

the sorting, we now put the data in buckets on the basis of the most significant

digit:

bucket 1 { bucket 2 | bucket 3

113 213 312

Concatenating the buckets results in the final sorted list of data items:

113
213

312

We note that after step i of the algorithm, the data item list is sorted if you
look at only the ¢ least significant digits of the data items. Thus the algorithm
requires ! steps to complete, and each step requires the manipulation of every
data item, so if we count putting a data item in a bucket as an operation, then
algorithﬁ takes O(IN) operations. Previous algorithms were timed in terms of
comparisons, and, although it depends upon the implementation, it is reasonable
to assume that putting a data item in a bucket takes a constant factor times

longer (or shorter) than a comparison. Thus we can compare the big O results

113



for each sort, and we conclude that radix sort can be faster than a comparison-
based sort. In particular, for N large and ! small, radix sort should perform quite
well, whereas for IV small and / large, say 100 data items, each 100 digits long,
its performance will be terrible. Radix sort does have the additional restriction
that we must know ahead of time the number of buckets to allow, and all data
items must have equal length (or be padded out to equal length). Thus, we
might wonder if these restrictions limit the entropy of the sorted list to less than

log,(N!) bits.

3.5.2 Analysis.

As with the previous sorts, radix sort starts with N data items in one of
N ! permutations (each equally likely), and ends up with N data items in the
one, sorted permutation. Thus the decrease in the number of permutations
corresponds to a decrease in entropy.

Uncertainty arises in radix sort because at any given time {excepting the end
of the algorithm) we have examined only a portion of the digits of each data
item. Thus, if k£ data items’ i least significant digits are identical, then there are
k ! possible arrangements of the data items that we cannot distinguish when we
have examm.ed only the i least significant digits.

Lét a set of data items of whose i least significant digits are identical be
known as a “level ¢ group,” and let g; be the number of level i groups and n;;

be the number of data items in the j*® level i group. After step i of the radix
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Figure 3.13: The data items that reduce entropy the slowest.

sort algorithm, the number of possible permutations still existing is A n;lh
This is highly dependent upon the particular data being sorted. Let us find the
data items that reduce entropy the slowest.

If we have IV data items, then we need at least [d = log,(IV)] digits in our
data items. For simplicity of analysis, assume that N = ¢?. If [ is greater than d ,
then we maximize the number of permutations by distinguishing the data items
only by their most significant d digits, and making the least significant [ —d digits
all identical and equal to, say, 1. Thus for the first [ — d steps of radix sort, we

always have g; = 1 and n;; = N , which mean there are N ! permutations.

Of the most significant d digits, we would like to use as many 1’s as possible
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while still distinguishing the data items. Figure 3.13 provides an example for d =
3. One data item can have 1's in all its d most significant digits. Another ¢ -1
data items can have 2 through ¢ as the most significant digits, and 1's every place
else. The next ¢? — ¢ data items can have any digits for two most significant,
except those already used, and 1's every place else. Continuing this way, we
construct a set of data items such that we have ¢*~' data items with 's in digits

d +i through !, for i = 1,...,d. Using these data items, we can calculate the

entropy, £(i) at the end of every step 1 :

E) = log,(N!) fori=1,...,1-d | (35)
¢l logy () fori=1—-d+1,... W

where, it should be remembered, that we have assumed N = ¢f. If this last ‘
condition does not hold, we can still build a data item set for slowest entropy
reduction by using the same technique described above. This provides a lower
bound on the decrease in entropy. For most sets of data items, the entropy will
decrease much faster. In fact, it will often be the case that entropy will decrease
to 0 before the sort finishes. If, for example, the lower d digits of all data items
are unique, then after d steps, there is only one possible permutation of the data.
However, this permutation is not necessarily sorted, and the algorithm must

continue to completion to ensure the data items’ sorting. This is fundamentally

different behavior from the previous three algorithms we discussed.
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3.5.3 Conclusion.

Radix sorts operates quite differently from the previous sorting algorithms.
Because the sort is not based on comparisons, the notion of entropy that we used
before does not seem to be an appropriate measure of the sort’s progress. In many
instances the entropy will reach 0 before the data items are sorted. Unlike the
other algorithms whose lists of data items gradually become sorted, the ordering
of data items at intermediate stages in radix sort bears little relationship to the
data’s final ordering. This may be related to a phenomenon from the “Rubik’s
Cube” puzzle: it was observed that the fastest method of ordering the cubes (in
terms of number of movements) was not to put them in place one at a time,
but was instead a series of non-obvious, seemingly random, moves from which
order appeared only during the final few movements. Given Rubik’s Cube’s
relationship to mathematical notions such as groups, there many be interesting

underpinnings to radix sort.

3.6 Conclusion.

We have examined four well-known sorting algorithms using information the-
ory to see where their efficiency, or inefficiency lies. Bubblesort makes too many
comparisons that yield little information. This is particularly true toward the
end of the sort, when the list of data items tends to be highly ordered. Mergesort

gains its efficiency because the merging process takes relatively little time but
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reduces the entropy greatly (if you are merging equal-sized lists). Quicksort’s
efficiency arises in the splitting operation, and the splitting value is critically im-
portant. If the splitting value _ig the median, then entropy is reduced the fastest.
Finally, radix sort operates quite differently from the other sorts, and entropy is

not a reasonable measure of this sort’s progress.
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CHAPTER 4

Bubblesorts on Multiple Processors

4.1 Introduction.

In this chapter, we examine four parallel versions of bubblesort. Two of
these versions simply use multiple processors to make the passes found in the
standard, single-processor bubblesort. Another version splits the data among the
processors (but overlapping data between adjacent processors) and the processors
continuously bubblesort their own data. The final version lets processors make
random comparisons.

Single processor bubblesort and the notation we use was described in Section
3.2. For the distributed sorts in this chapter, we assume that core memory on a
processor is large enough to hold the data it deals with, that the computer runs
only one program at a time, and that communication is reliable, with messages
arriving in the order they were sent and with no delay.

The time to finish an algorithm using N processors is denoted by T(N), and

the speedup of an algorithm using N processors is (N) =TQ)/T(N).
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Processor 3

Pass 3 ends’

i NS . Pass 4 ends
Time Pass 5 ends
Pass 6 ends

Pass 7 ends

Figure 4.1: Depth-first bubblesort with 3 processors and 8 data items.

4.2 Depth-First Bubblesort.
4.2.1 Description.

QOur first parallel bubblesort algorithm is very much like the standard, single-
processor bubblesort, except each processor works on a different pass through
the data. For example, in Figure 4.1, processor 1 makes the first pass through
the data, and processors 2 and 3 follow behind, making the second and third
passes. When a processor finishes its pass, it goes to the top of the list and
starts another. This process continues until the list is sorted. The sort is called
“depth-first” because each processor takes each pass as deep into the list as it can
before starting a new pass; this is in contrast to the “breadth-first” scheduling

of the algorithm in the next section.
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We do not allow two processors to work on one data element simultaneously,
which means that consecutive passes operate on consecutive, non-overlapping
pairs of data items. To enforce this, some form of locking or access control
is necessary, but this is easily done if each pass monitors the progress of the

preceding pass and does not overtake it.

4.2.2 Speedup.

To compute the speedup of the algorithm as the number of processors is
varied, we examine the processor that takes the first pass. For purposes of
illustration, assume this is processor 1. Define a superpass as beginning every
time the processor 1 starts a new pass, and finishing when processor 1 makes the
last comparison/swap of that pass. Let a complete superpass be a superpass in
which all processors participate (i.e. all processors start a pass). An incomplete
superpass is a superpass in which not all processors start a new pass, and will
occur aﬁ the end of the algorithm, when there is not enough work for all the
processors.

In terms of superpasses, the algorithm consists of a number of complete su-
perpasses, followed by a possibly incomplete superpass, plus some extra time
for any remaining processors to finish. All processors are kept busy for a num-
ber of superpasses, but there may not be enough data items remaining for the
last superpass to use all the processors. Figure 4.2 shows an example. This

picture contains three complete superpasses and one incomplete superpass. All
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Start Finish

M .
Time
First Second Third Incomplete

Superpass Superpass Superpass Superpass

22277 means the processor participated in a complete superpass
means the processor panicipated in an incomplete superpass

Figure 4.2: Superpasses.
M processors participate in the complete superpasses, but only the first three
processors participate in the last superpass.

To find the algorithm's running time, we compute how long it takes proces-
sor 1 to finish each superpass, and add to it the time for the other processors to
finish the last superpass. We ignore the time required for non-first processors to
finish the initial superpasses because this time is overlapped with the beginning
of processor 1’s the next superpass. Also, we should note that the first processor
will nev& have to wait for other processors before beginning a pass, except for
possibly the last superpass, because until that time, there will always be enough
unsorted data items (more than 2M) to have all the processors working simul-

taneously when the first processor ends its pass. However, the first processor
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Figure 4.3: Superpasses for 2 processors, N odd.

might have to wait before beginning the last superpass, so this time must also

be accounted for. Therefore, we may finally say that

Time to finish algorithm =
time for first processor to finish all superpasses
+ time first processor waits before beginning last superpass

+ time for other processors to finish last superpass.

Let us suppose that we have two processors and N data items; this means
that the first processor makes every other pass, and for odd N, all superpasses
are complete. If N is odd (Figure 4.3), then the first superpass will take NV —1

time units, the second N — 3 time units, and continuing until the final superpass,
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Figure 4.4: Superpasses for 2 processors, N even.

which takes two time units, Processor 1 does not have to wait to finish the last

superpass, and processor 2 takes finishes 1 time unit after one, so we have

W-n _
T(N)=[ > 2='J+1= (¥ li(N“)H, (4.1)

which is proved below.

For N even (Figure 4.4), we have that the first superpass takes N — 1 time
units, the second takes V —3 times units, and continuing until the final superpass
takes 1 time unit. However, processor 1 must wait 1 time unit before beginning

the last superpass, and the algorithm finishes as soon as processor 1 completes
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the last pass. This gives us

(N-1)/2
T(N) = [ 3> 2£—1]+1

i=1

N /(N N
= 3(z-Y)-3+
= w+l. (4.2)

If we examine the case of M = 3 processors, we find the following:

If N = 3k, for some k > 0, then
T(N) = %(N)(N +1)+2.
If N =3k + 1, for some k > 0, then
T(N) = -é-(N —1)(N +2)+2.
If N =3k + 2, for some k > 0, then
T(N) = %(N + (V) +2.

In the general case of M processors, and if N = Mk + ¢, for some k > 0 and

¢c=0,1,...,M —1such that N > 1,

T(N) = -é-lﬁ(N)(N +M-2)4(M~1) forc=0 (4.3)

T(N)

(N 4=V + M=) +(M-1) forc>0 (44)

It turns out that Equation 4.3 is 1 plus Equation 4.4, with c set equal to 0. When

k = 1, neither result applies, because we cannot use all the processors during the
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sort. We can correct this by using M = |N/2|, which is the maximum number
of useful processors.

If we look at the general behavior, we see that it is O(N?/M + M), which
means that we can get linear speedup for small numbers of processors, but per-
formance gain falls off as we throw more processors at the problem. When we
reach M = N/2, then we cannot make use of any additional processors — there
will never be enough work for all of them. The plot in Figure 4.6 shows the
behavior of the speedup as the number of processors increases.

To prove Equations 4.3 and 4.4, we break time into three pieces, as mentioned
before: the time required for the k complete superpasses, the time the first
processor must wait before beginning the last complete superpass, and the time
required for the other processors to finish after the first processor is done.

The first superpass of processor 1 takes N —1 time units because it must make
N —1 comparisons. Following this, every complete superpass takes M time units

less than the preceding one. Thus superpass j ends at time

t; = Z;(N ~1-iM)=j(N-1)- j(J—-;—l-)-M (4.5)

We compute the time the first processor spends waiting before beginning its
last sup@u by noting a structure to the movement of the processors: because
two processors cannot compare the same data item simultaneously, we end up
with processors comparing adjacent pairs of data items (as in Figure 4.1) Thus,

we need a minimum of 2M data items if we are to have all the processors busy.
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Figure 4.5: Computing T(N).
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When processor 1 finishes the second-to-last superpass, it puts the (M +¢)*® data
items in its place, leaving M + ¢ — 1 data items still unsorted (2M — 1 unsorted
if ¢ = 0). This is not enough to keep all the processors busy, so processor 1 (and
possibly others) must wait. We may find this waiting time by imagining that we
do have 20 data elements (the data elements labeled 0 and smaller in Figure
4.5). Time spent in any comparisons with imaginary data elements is time that
would be wasted. If we have ¢ = 0, we need one imaginary data element, which
means we wait one time unit. If ¢ = M —1, we need two imaginary data elements,
which means we wait two time units. In general, we wait M — ¢ + 1 time units,
given ¢ # 0.

Finally, we must compute the time required for all the other processors to
finish the remaining incomplete superpass. Note that after processor 1 finishes
its pass, one pass finishes each time unit until all M processors have returned to
the top of the list. Therefore, if we have ¢ data items, ¢ > 0, it takes ¢ — 1 time
units for processor 1 to finish its pass, and (c—1)—1 time units for the remaining
processor to finish their passes, giving a total of 2¢ — 3 time units for the last
passes. For the case of ¢ = 0, Equation 4.5 already counts the time for processor
1 to finish its last pass. The other processors must finish M — 1 remaining data
elements,‘ which takes M — 2 time units after processor 1 finishes.

Adding all this information together, we find

T(N) =kN-1)-2UMiM—-1 forc=0 (4.6)
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T(N) =k(N-1)— UM 4 M4c—2 fore>0 (4.7)
From Equation 4.6, we get

T(N) = k(N—1)~ k=1

2
M(k
= i-z-f’l)-HMq

N(k+1)
gL L Y
N(ME+M) - 2Mk
°M
N(N + M —2)

= — +M-1

M+M-1

M-1

Similarly from Equation 4.7

k(k —1)

T(N) :

k(N -1) - M+M4bc—2

MKk(k
= (Tm-k(c-nwuw—z

_ MKMk+ M)  2Mkc—1)
= s T o teTitM-l

_ (Mk+2(c-2;})(Mk+M)+M_l

Mk -2 k -
_ ( +ec+¢ ;S\I;I +c+ M C)+M_1

_ (N4c=-2)(N+ M-
= Wi +M-1

This proves Equations 4.3 and 4.4.
To compute the speedup, S(V), we divide the time it takes one processor to
finish the sort by the time it takes N processors to finish the sort. One processor

takes
& NWN-1)

2.7 5

i=1
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comparison/swaps, Dividing this by Equations 4.3 and 4.4, we get

MN(N - 1)
S(N) NN T M —2) 1 2M = 1) fore=0 (4.8)
S(N) = MNN - 1) fore>0.  (4.9)

(N+c—2)(N+M—c) +2M(M - 1)

Figure 4.6 plots Equation 4.9 for N = 2000 and M varying from 1 to 1000 (you
get no further speedup for M > N/2). This data is identical for breadth-first
bubblesort, which will be discussed in the next section. A little manipulation
shows that S(N) is O(M/(1+ M?/N?)), which is almost linear for small M, but

gives decreasing performance as M grows.

4.2.3 Processor Utilization.

The processor utilization varies with time. Initially, not all the processors
can be used, and every two time units a new processor can enter the data list.
This causes the utilization to ramp up until all processors are being used. When
the processors reach the end of their passes, one processor finishes a pass every
time unit, and goes back to the top of the list to start again. Note, however,
that although processors finish their passes at the rate of one per time unit,
they start new passes at the rate of only one every two time units, and thus we
expect some processors will have to wait before starting a pass. This behavior
may be seen in the plot of processor utilization versus time (Fig. 4.7), where the
downward spikes in utilization are caused by one series of passes ending and a

new series of passes beginning. As the passes get shorter, these spikes get closer
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Figure 4.6: Speedup of depth-first and breadth-first bubblesort.
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Figure 4.7: Utilization vs. time for 250 processors.

together, although the backlog remains the same. At the bottom of each spike,
we are using only half of the processors (N processors have finished, but only
N /2 processors have started the next pass). As some point, there is so little data
left that not all the processors can be used, and the utilization gradually declines
until the algorithm ends. We will discuss the plots for breadth-first bubblesort
in the next section. If M = N/2 then we get no spikes (Figure 4.8) because
we can use all the processors for only one comparison, and thereafter utilization

declines.
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Figure 4.8: Utilization vs. time for 1000 processors.
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4.2.4 Conclusion.

From a practical point of view, this algorithm is quite hopeless in a loosely
coupled distributed system. The need for a global data structure, and the small
amount of data transfered in each one of many messages makes the algorithm
quite inefficient. Even in a shared memory system, which is much more suited
to this type of algorithm, there are other algorithms just as easy to implement
that run considerably faster. Akl [AkI85], for example, gives a parallel quicksort
algorithm that is Q(N? log N) using N'*¢ processors, where 0 < b < 1. Thus, the

algorithm described here is of only theoretical interest.

4.3 Breadth-First Bubblesort.

4.3.1 Description.

Our second algorithm is another version of bubblesort, called breadth-first bub-
blesort. It is similar to depth-first bubblesort, and in fact has the same running
time, but the processors are used differently. In the depth-first sort, each proces-
sor takes a pass and works on that pass until it is completed; in the breadth-first
algorithm processors start a new pass whenever possible, rather than continuing
an older, unfinished pass. One may think of the processors as trying to stay at
the top of the list in breadth-first bubblesort, whereas they try to run to the
bottom of the list in depth-first bubblesort, Figure 4.9 illustrates this sort. Note

that as soon as it can, processor 1 stops working on the first pass and starts the
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Pass 3 ends
Pass 4 ends

Pass 5 ands
Pass 8 ends

Pass 7 ends

Figure 4.9: Breadth-first bubblesort with 3 Processors and 8 data items.

fourth pass. Processor 2, working on pass 2, eventually runs into the incomplete
pass 1, and must advance pass 1 by one data item before the progress of pass 2
can resume.

For a given number of processors and a given number of data items, this
algorithm takes the same time as depth-first bubblesort. What changes is the
utilization. Instead of there being spikes in the utilization as processors end a pass
and start a new one, the utilization ramps up as fast as depth-first bubblesort,
then stay_u constant with all the processors fully utilized, and finally ramps down

as the passes become so short that not all the processors can be used.
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Data Array of Comparisons
First Stage Second Stage Third Stage

Time (ticks) ~———p»
N=14 B Processor 1 makes a comparison.
M=3 Processor 2 makes a comparison.

Processor 3 makes a comparison,
A comparison waiting to be made.

Figure 4.10: “Trains” developing in breadth-first bubblesort.

4.3.2 Speedup.

To analyze the speedup, we examine three distinct stages in the algorithm.
In the first stage, processors enter the algorithm. This is similar to the starting
| bottleneck noted in the depth-first algorithm. One processor enters every other
time unit until the first pass has made its 2 comparison/swap. Once this
occurs, the second stage of the algorithm starts, in which we get “trains” of
passes growing longer and longer. This stage ends when the first pass ends. In
the final stage of the algorithm, one pass ends every time unit, and fewer and
fewer processors are used. Refer to Figure 4.10 for the example below.

For convience during the analysis, let N = M ky+¢+1 where k, =0,1,2,...

and ¢, = 1,2,..., M such that N > 1. This differs from the definition of the
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previous section but makes the analysis clearer. We will show that the speedup
results in this section are the same as the depth-first speedup results.

Also, assume the processors are synchronized, and at every “tick” of a clock,
each processor makes a comparison/swap.

Because processors cannot compare the same data element simultaneously,
we will observe “trains” of passes. A “train” is defined as a number of passes,
each of which cannot proceed until the one ahead proceeds. The pass at the head
of a train is not blocked, and may proceed whenever it wishes.

We will examine the time to finish only for N > 2M +1. If N < 2M, it takes
N —1 ticks for the first pass to finish, and it takes N — 2 ticks for the remaining

N — 2 passes to finish, for a total T(N) = 2N - 3.

4.3.2.1 First Stage: Forming M + 1 Trains of Length 1.

We define the first stage as the time required to form M +1 trains of length 1.
For the 2M — 2 ticks of the algorithm, processors are still entering the algorithm.
On tick 2M — 1, M processors compare items 1 & 2,3 & 4,5 & 6, ..., 2M -1
& 2M, creating one train of length 2 at the top of the list, and M — 1 trains of
length 1. Another tick and the heads of the trains all move down one, creating

M + 1 trains of length 1, ending this stage. The total time in this stage is 2M.
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4.3.2.2 Second Stage: Trains Advance.

What we want to find in this stage is the number of ticks it takes for the frst

pass to finish, which is the first time that a processor compares data items N ~ 1
and V.

What interests us now is the number of ticks it takes for the leading train
(with pass 1 at its head) to move down one comparison. Let us generalize and
suppose that we have a leading train of length 1 and M trains of length ¢ (see
Figure 4.11). Only the top M trains move at the each tick, because we have
only M processors, so the bottom train stays where it is. After i ticks, the top
M trains have completely shifted forward by one comparison, and the lowest of
these “ran into” the stationary train of length 1. At this point we have a lowest
train of length i + 1 and M — 1 trains above it of length i. One more tick allows
the lowest comparison to move forward, for a total of i + 1 ticks to move the
lowest comparison down one.

This gives us a configuration of: one train of length 1, a following train of
length ¢ + 1, and M — 1 trains of length : (again, refer to Figure 4.11). After i
more ticks to shuffle the top M trains forward (again, the second train merges
with the first), and one more tick to move the lowest pass forward, we find that
we have two trains of length i +1 (the lowest of the top M trains). As we continue
this process, every i + 1 ticks we expand another length ¢ train into length ¢ + 1.

Thus, it takes a total of M(i + 1) ticks to convert M trains of length i and one
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Figure 4.11: “Trains” developing in breadth-first bubblesort.
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train of length 1 into M trains of length i + 1 and one train of length 1, moving
the lowest pass down one comparison every i + 1 ticks in the process.

When the second stage begins, we have trains of length ¢ = 1, which means
that moving the first pass down another M comparisons (it has already made
2M comparisons) will take 2M ticks. At this point, we have trains of length
¢ = 2, and to move the first pass another M comparisons will take 3 ticks, and
so on, with 1 = 3, 1 = 4, etec. Remembering that N = Mk, + ¢; + 1, we see that
it takes M + Y271 iM ticks to make Mk, comparisons, plus k¢, ticks to move

the lowest pass an additional ¢, comparisons and finish the second stage.

4.3.2.3 Third Stage: Finishing Passes.

After the first pass finishes, passes end at the rate of one every clock tick
during this final stage. By definition the first pass has completed, so N — 2

passes remain, and it takes a total of N — 2 clock ticks to finish this stage.

4.3.2.4 Total Time for All Stages.

The total time for all stages is

ky=1
T(N) = M+ ziM+kbcb+N—2
i=1
Mky(ks — 1)

M+ 5

+ ke, + N =2 (4.10)

We now verify that this is identical to the time to finish for depth-first bubblesort

with the same number of processors and data (Equations 4.3 and 4.4).
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The caseof N = M k,k=1,2.  inthe depth-first section should correspond

to the case of ¢, = M — L ks =k —1in this section. Let us verify this:

k— -
T(N) = prq Ml ?“ 2)+(1=—1)(A/.r-1)+N—2
N2-3NM+2oM? 4NM

= 5M T k-1
NN + M -2)
5 +m+k-k-1
N(N + M —29)
oM +m-—1,

which is the same as Equation 4.3,
For N = Mk +1 in the depth-first section, we have ¢; = M and ky = k—1

in this section. We verify their equality:

) = M+ 2EZD N
L MR -Skt24ok) aM(v -3
B 2M 2M

M2 — M% 4+ 2MN — 201

= o +M -1
_ MEME+M)
= T+ M -1
_ W=DV +M-1)
- A + M1,

which is the same as Equation 4.4 for ¢ = 1.
Fina.ll'y_, for all other values of N = Mk + ¢ in the depth-first section, we can
usecy =c—1and k, = k. We verify the equality of the time to finish depth-first

and breadth-first sorts:

T(N) = M+£Ji’;'—”+k(c-1)+zv-2
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M+ (N —c)((N -¢e)/M -1) + 2Mk(c—1)

2 St + N =2
_ (N=o)(N—c—M) 2Mk(c—1) 2MN —2M
M e YT o tM -l
N2 N((M - - - -
_ (M0 +(c=2)+e-DM=0), ,
oM
(N +c—2)(N+ M-
oM +M-1,

which is the same as Equation 4.4. Thus we have, in rather lengthy fashion,
shown that depth-first and breadth-first bubblesorts take the same amount of

time. Refer to Figure 4.6 for speedup and average utilization plots.

4.3.3 Processor Utilization.

Processor utilization vs. time is plotted in Figures 4.7 and 4.8, along with
the corresponding plot for depth-first bubblesort. Examining the plot for breadth
first sort, we can see that the utilization goes through three stages, and these
correspond to the stages we used in our speedup analysis.

In the first stage, utilization ramps uiJ. We have already noted in a previous
section that we can add only one processor every two time units. If we are using
many processors, this could take a fair amount of time.

In the second stage, we have 100% utilization of processors. Because each
processor works on its own train of passes, there is never any conflict that requires
one processor to be idle.

In the third stage, utilization ramps down. We can use only as many proces-

sors as we have trains, and, conceptually, we shift trains off the top of the list as
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Figure 4.12: Traings shifting off.

the algorithm winds down, and therefore Processor utilization must decrease.
When the first pass is poised to make its last comparison, we have 65 trains
of length &y and M — ¢ trains of length k; - 1, plus one additional comparison
in the top train because there is always a Pass waiting to start (see Figure 4.12).
The total length of these trains, plus the intervening spaces, should equal NV —1

the maximum number of COmPparisons in one pass. As a check:
cbkb+(M—-cb)(k5—1)+M——1+1=Mkb+cb=N-—1.

As we make comparisons, we may think of the trains as shifting up, off the
top of the data list, and the algorithm finishes when the last train shifts off. Thus
it takes ky ticks to shift off the topmost train of length k, — 1 (remember, the top
train is always lengthened by one because of the waiting pass), at which point
we have only M —1 trains left and oneé processor must be idle. After another k;

ticks, another train has shifted off, and we need only M - 2 processors. After
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the top ¢; trains have shifted off, it then takes k; + 1 ticks to shift off each train,
and the process continues until the final train shifts off the top.

Referring back to the graph in Figure 4.7, we notice that both depth-first
and breadth-first bubblesort start in the same fashion, but once all processors
are busy, breadth-first bubblesort makes more efficient use of them, and it can
release processors sooner in the last stage of the algorithm. Thus, we would

prefer this algorithm to its depth-first version.

4.3.4 Conclusion.

Compared to depth-first bubblesort, breadth-first bubblesort makes better
use of processors because it does not leave processors idle, waiting for other

processors to move passes forward. However, it does not sort any faster, and

remains an O(N?/M + M) sort.

4.4 Split Bubblesort.

4.4.1 Description.

One problem with the depth-first and breadth-first bubblesorts is that ac-
cessing individual data pairs for comparing and swapping is inefficient if commu-
nications takes a relatively long time. Furthermore, synchronizing processors so
that they make comparisons in the proper sequence requires additional time and
communication. In general, we prefer that processors work mostly on data that is

local to themselves and communicate with others only occasionally. Let us then
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Figure 4.13: Data split 4 ways.

split the data among the processors and let each processor perform bubblesort
on its own data, as in Figure 4.13. To allow communication, these lists overlap
with shared data: the data item at the b‘ottom of one processor’s list is the same
as the data item on the top of the next processor’s list. If one processor changes
a shared data item, it is communicated to the other processor. To sort all the
data, eac_ﬁ processor continuously sorts its data, and the sort terminates when
an external mechanism finds that all the data is sorted, at which point all the

data must be sent to processor 1 and concatenated.

We choose to make the processor’s lists as even as possible. Possibly we
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would want to distribute the data on the basis of the amount of activity in each
section of the list. In particular, the ends of the data list see less activity than
the middle (as the ends become sorted, less data Passes through them), so we
may wish to concentrate processors in the middle of the ljst. This is a reasonable
optimization in a practical system, but it does not change the fundamental nature

of the algorithm, and we will not analyze this alternative.

4.4.1.1 Concurrency Control.

We cannot allow two processors to swap the same data item simultaneously,
and thus we must have some form of concurrency control on overlapped data
items. We can use either optimistic or pessimistic concurrency control. In the
former case, if a processor swaps a shared data item, then it sends the new data
item to the other processor; unless otherwise notified, it assumes that the new
data was accepted. In the pessimistic case, a processor must lock the shared
~ data item before it is examined, and release it when it has done. When com-
munications takes a relatively long time, as it does in a distributed system, then
the optimistic method is better by far. It may take several orders of magni-
tude more time to request and release a lock than it does for a processor to
make a pass through its data, and ultimately most processors spend their time
waiting for communications. We implemented split bubblesort using pessimistic
concurrency control on the BBL system [FSK89], and it took intolerably long to

rum.
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However, optimistic concurrency control as described above may be a bit too
optimistic because it requires keeping information so it can undo data swaps.
This brings with it the possibility of cascading undos: processor 1 must undo
a swap, invalidating a swap with processor 2 , which must in turn invalidate a
swap that processor 2 made with processor 3, and so on. When the sorting first
starts, it is likely that most shared data item swaps will have a conflict, and at
this point, pessimistic concurrency control would work better then optimistic.
Later in the sort, such swaps are unlikely to conflict, and optimistic concurrency
control would then be the choice. As a compromise, one could limit a processor’s
actions after swapping shared data, making it pause if it tries to do anything
affecting another processor, but this includes acknowledging swaps initiated by
other processors. Although this prevents cascading undos, we would get the
same sort of delays as locking: processor 2 waits for an acknowledgement from
processor 1 that its swap was ok, and meanwhile processor 3 wait for 2, 4 waits
for 3, and so on. We will, it seems, always have delays, be they for locking or for

undos.

4.4.1.2 Termination.

Depth-ﬁrst and breadth-first bubblesort require global knowledge of the progress
of the passes to know when the sort has finished. There is no such global data
knowledge in split bubblesort, and we must resort to other methods. If all the

processors are synchronized, and make comparisons simultaneously, then we can
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compute a maximum time to finish, as in the speedup section below. However,
we would prefer not to rely on this because it is unlikely that processors work
in true synchronization, given varying delays for concurrency control, and it is
quite likely that the data will require less than the maximum time to be sorted.
Thus, we must turn to more active methods of detecting termination.

Much work has been done in the area of termination detection ([AS87],
[Mis83], [DS80], [Fra80], [FR82]). Misra’s marker algorithm [Mis83] is partic-
ularly well suited for this sort. The algorithm depends on “painting” the proces-
sors: white if they are sorted, black if they are not sorted. A marker traverses
the processors, keeping a count, m, of the number of white processors it sees.
When this count reaches 2(N — 1), the data is sorted. The algorithm is quite

simple:
1. Every processor is initially black. Processor 1 starts the marker with m = 0.

2. Assume processor ¢ receives the marker. If this processor is black, set
m = 0. Otherwise set m = m + 1. In either case, send the marker to
the next processor only when this processor becomes sorted. We want the
m_arker to travel from processor 1 to 2 to ... to N, and then in reverse, to
N-=1to.. to2to 1, repeating this sequence ed infinitum. Therefore, send
the marker to processor i — 1 or i + 1, as is appropriate to maintain this

sequence,

3. If processor i ever becomes unsorted, it paints itself black.
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It is important to note that when a shared data item is in the process of being
swapped, both processors sharing the data item cannot guarantee that they are

sorted, and therefore, they must paint themselves black.

Misra proves that this algorithm guarantees termination if the marker passes
over all the links in the network and finds that all the processors have been con-
tinuously white (sorted). We count each shared data item as two unidirectional
links between adjacent processors, and by bouncing back and forth between pro-
cessors 1 and N, we continuously traverse all the links. When the marker count
reaches 2(N — 1), then all the processors have remained sorted during one com-

plete pass over the links, and the entire list of data it sorted.

4.4.2 Speedup.

The actual time to sort the data is highly dependent upon the initial distri-
bution of the keys. We will look at a worst case: every data item must bubble
to its proper location from the first (top) position in the list of data. This is the
worst case because, as sorted data fills up the bottom of the list, the remaining
unsorted data becomes more orderly — data items cannot help but be pushed to-
ward their proper locations. Once i data items have been sorted into the bottom
i positions in the data list, the farthest we can force the ¢ + 1* item to travel is
through N — i — 1 comparisons, and we do this by starting that data item from
position 1.

Let N = (I — 1)M + 1, which means that each of M processors has a local
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data list containing ! data items total (including shared data items). Studying
general N would not change our basic conclusions, but would complicate the
analysis. Also for analytic tra.cifability, assume that processors are synchronized,
and all make a comparison at the tick of a clock.

Each processor requires | — 1 = (N -1)/M comparison/swaps to make one
pass through its local data, and assume, for simplicity, that each processor always
makes complete passes through its data (after all, it does not know when the top
or bottom data item will change). To bubble the largest data item from the top
of the list to the bottom requires one pass through each of M processors. After
the largest data item leaves the first processor, the second largest data item can
start downward through the first processor, and it arrives at its final location in
the next pass of the processor. Subsequent data items act similarly, and we have
a pipeline effect (Figure 4.14), with one data item finishing in each pass. Thus
we require M passes of each processor through its local data to put the largest
data item in place, and we require N — 1 additional passes to put the rest of the
data items in place. The total time to finish is T(N)=(M+N-1)(I-1) =
(M + N —1)(N —1)/M, which is O(N?/M + M). The worst case finishing time
of the split bubblesort algorithm is, unfortunately, of the same order as the other
parallelized bubblesorts we have discussed. To find speedup, we divide T(1) by

T(N) and find:

S(N) < — M

S W TITD (4.11)
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largest data item

2"largest data item

[/ Processor 2

Figure 4.14: Pipelining of data movement.
and we note that if V >» M —1, then this expression becomes approximately M /2.
Thus, in an ideal situation, with no delays for communication or concurrency
control, speedup is roughly linear until the number of processors is N/2 (beyond
which further processors are not useful), and simulation results (Figure 4.15)

bear this out.
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Figure 4.15: Speedup (from simulations) of split bubblesort, depth-first bubble-

sort, and random bubblesort.

4.4.3 Processor Utilization.

Processor utilization appears to be very high. According to the algorithm,
processors are never idle, but this is misleading. Some of the processor work is
“wheel spinning” — a processor continues to make passes through its data even
when nothing changes, and the processor might as well remain idle. Furthermore,
a real system will have processors idled because of concurrency control (e.g.

waiting for locks or acknowledgements).

4.4.4 Conclusion.

Split bubblesort is attractive, as bubblesorts go. It requires no global data

structures, unlike depth-first and breadth-first bubblesort. Much work is local to
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each processor and can be done without communciations. Finally, each processor
communicates with no more than two adjacent ‘processors, and a linear or ring
topology is ideally suited to this pattern. Simulation results do show that this
sort can run twice as fast as depth- and breadth-first bubblesorts when commu-
nication is instantaneous, and relative performance should be even better when
accounting for real communications delays. Unfortunately, there is a need for
concurrency control, which can cause considerable slowing in a real system. Fur-
thermore, messages sent in this sort will tend to be small, leading to relatively low
communications efficiency. Split bubblesort is a good distributed bubblesort al-
gorithm, but other distributed sorting algorithms, such as distributed quicksort,

are inherently faster.

4.5 Random Bubblesort.

4.5.1 Description.

From a theoretical point of view, it would be interesting to let procéssors pick
random pairs of adjacent data items to compare and swap, rather than force
them to follow the normal patterns of bubblesort phases. Such a sort avoids the
need for coordinated action among processors, but now requires a termination
mechanism. To detect a sorted list it is sufficient to have one processor check the
entire list periodically; however, to prevent the checking processor from missing a

swap, we must force all processors to stop swapping during the check. This would
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be bad in a real system, but because this algorithm is really for comparison with
the other bubblesort algorithms, and not a seriously proposed implementation,
we won't let its overall poor performance deter us from some analysis.

We assume that the probability of picking any pair of adjacent data items to
compare and swap 1s uniform over all choices. For better performance, we might
want to vary this distribution: as the sort progresses, the ends of the data list
tend to be more sorted than the center, so it makes sense to have more processors
working on the center data items than on the ends. However, we will retain our
simple uniform assumption.

As before, we cannot allow two processors to compare and swap the same
data item simultaneously. For purposes of simulation and analysis, we assume
synchronous processors that all make {or attempt to make) a comparison/swap at
the tick of a clock. However, at each tick, we sequentially assign the processors
to random comparisons, and if any processor would conflict with a previously
assigned processor, then one of these processors is idle for this clock tick. We

repeat this procedure at every clock tick.

4.5.2 Speedup.

It is, 'unfortuna.tely, difficult to derive an expression even for the expected
time to finish a random bubblesort. There are many possible sequences of com-
parison/swaps that are guaranteed to lead to a sorted list, and there are many

ways each sequence can occur during the random comparison/swaps of the par-
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ticipating processors. If we could determine the various minimal sequences of
comparisons necessary to guarantee that the data is sorted, then we could statis-
tically add the extra, unnecessary comparisons that will occur in a real system,
and use this to find the finishing time. However, the number of minimal valid
sequences that guarantee a sorted list seems very large and difficult to count. As
an example, if comparisons occur in the same order as standard single-processor
bubblesort, then we are guaranteed that the list is sorted. However, we may also
sort the list by completely sorting data items 2 through N, and then comparing
data items 1 and 2, then 2 and 3, ., then N~1land ¥ (thus bubbling data
item 1 into its proper place). There are yet more sequences of comparisons that
guarantee the list is sorted, but they get very complex, and counting them is

difficult. Instead, we must rely upon simulations to get an idea of performance.

Figure 4.16 shows the speedup (over standard, single processor bubblesort )
and average utilization for N = 500 and varying numbers of processors. We
notice that as the number of processors becomes large, speedup of the random
bubblesort gradually rises to about half that of depth-first bubblesort. This is
because we get ideal depth-first bubblesort speedup when we make N/2 compar-
isons a$ every clock tick, but we must make “odd comparisons” {compare data
items 1&;, 3&4, etc.) on one clock tick, and the “even” comparisons (compare
data items 2&3, 4&5, etc.) on the next clock tick. When we make random

comparisons with many processors, we will make close to N /2 comparisons, but,

lacking a mechanism to ensure that the processors make the necessary compar-
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Figure 4.16: Speedup of random and depth-first bubblesorts.
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isons, only about half of the comparisons will be useful. Thus we would expect
random bubblesort’s speedup to approach half the maximum speedup of depth-

first bubblesort.

4.5.3 Processor Utilization.

Processor utilization varies randomly with time, but we can estimate it by
assuming a synchronous system, with processors making a comparison/ swap si-
multaneously, at the tick of a clock. Given N data items, then we have N — 1
possible comparisons to assign to each processor. We make the maximum num-
ber of comparisons, N,pm,, by assigning one processor to every other comparison,
yvielding Nemaz = [(NV — 1)/2]. However, if initial processors are assigned every
third comparison, then we can make a maximum of only Newin = [(N - 1)/3]
comparisons (because a single, untouched data item is between every pair being
compared). Thus the maximum number of possible comparisons is determined
by the assignments of the initial processors, and this dependency makes it dif-
ficult to find a distribution for the number of busy processors. If we assume
we have found the maximum number of possible comparisons, N,, then we can
find the distribution of busy processors as follows. The total number of ways
to let each of M processors pick one of N, comparisons is NM. Of these, the
number of ways that M processors can pick exactly ¢ comparisons (i < M) is

(N)(Ne = 1).. . (N. =i +1)S(M, 1), where S(M,1) is the Stirling number of the
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Figure 4.17: Distribution of number of busy processors.
second kind'. Dividing this by NM, we get the probability of i busy processors.

(NJ(N.—1)...(N.
NM

c

~i+ Do), (4.12)

P[i busy processors] =

If we sum this for i = 1, ..., N,, an identity in [GKP89| verifies that this is equal
to 1. Figure 4.17 shows this probability density for N = 100, N. = Ngnaz = 50,
and M = 50, which is a best-case estimate for the processor utilization.

We note that this density is quite narrow about its mean, thanks to the law
of large numbers. When we plot the actual utilizations from a simulation (Figure

4.18) we see that the utilization does, in fact, vary mainly within a narrow band.

4.5.4 Conclusion.

Random bubblesort is not a realistic algorithm for implementation, but it isan

interesting idea from a theoretical viewpoint. Performance is, not surprisingly,

1S(M,i) = the number of ways to partition M elements into i non-empty subsets.
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Figure 4.18: Utilization during a run of random bubblesort.

the worst of all the parallel bubblesort algorithms, and exact analysis of the

algorithm is surprisingly difficult.

4.8 Chapter Conclusion.

In this chapter we examined four parallel versions of bubblesort. One of
them, split bubblesort, gives impressive, almost linear speedup for up to N/2
processors, and it has the desirable property that each machine’s interaction is
limited to one or two other machines. The other sorts generally performed worse,
and are only of theoretical interest. It remains to be seen how split bubblesort
compares to distributed versions of inherently efficient sorts, such as quicksort,
but it is likely that quicksort and its ilk will always perform better than any

version of bubblesort.
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CHAPTER 5

Conclusion

In this dissertation, we have examined three topics:

1. Models for the distribution of time to finish a program on a network of

transient processors.

2. The application of information theory to several sorting algorithms.

3. Parallel bubblesort algorithms.

The first of these topics still has a variety of interesting extensions that we discuss
in the next section. The second topic is interesting for the illumination it gives to
familiar algorithms, but single-processor internal sorting is a well trodden field
with, it seems, mainly esoteric work remaining. There are sorting algorithms
that are extremely close to the information theoretic lower bound for comparison-
based sorting, certainly close enough for any practical purpose, but there is still
room for minute improvement on these and other researchers continue to work
on this topic. Finally, the last topic, parallel bubblesort is, quite clearly, not
very practical, and any further work in this area should start with algorithms
that are inherently faster than bubblesort, such as quicksort and mergesort. A

distributed radix sort would also be interesting, and distributed ezternal sorting
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is a topic that has not been widely addressed.

5.1 Future Work with Transient Processors.

There are four areas in which to extend the analysis of transient processors:
¢ Better Brownian motion approximations.

® Analytic models of networks of transient processors, and not approxima-

tions.
e Models of overhead in distributed processing,.

¢ Measurements to compare the models to real processors and networks.

We discuss each in turn.

5.1.1 Better Brownian Motion Approximations.

There are several ways to extend the Brownian motion model. The first is
to find a new expression for the variance of the underlying Brownian motion
(0f) so that the model provides reasonable results for small W. We know that
under such conditions the Brownian motion model indicates more variance in

the finishing time than actually exists, and there may be some method to reduce

this excess.
A second extension is to allow multiprogramming on the processors in the

network. Instead of getting either all the processor or none of it, one may receive
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a fraction of its capacity. If the available capacities are a finite set (e.g. O, f1,
f2, and 1, where 0 < f1, f2 < 1), then this can probably be done by reducing
the capacity of all processors to the lowest non-zero fraction available (e.g. f1)
and increasing the total number of processors to M/ f; so that the total capacity
remains constant. If the available fraction is a continuous function, then other
techniques must be used. This should be compared to the results of G/G/1

processor-sharing analysis.

5.1.2 Analytic Models of Transient Processors.

Deriving analytic models of transient processors is not a simple problem be-
cause, when viewed as a whole, the network has a varying service rate. The
system point method, discussed in [BP77] and [BP81] may well be useful in this
situation. Brill and Green, in [BG84], analyzed jobs that required a random num-
ber of servers (again, using the system point method), and this may be another

starting point for modeling.

5.1.3 Models of Overhead in Distributed Processing.

Overhead is an unfortunate fact of life that detracts from the rosy picture our
analysis has given us. Although we potentially have enormous computational
resources available to us, because of overhead and the resulting delays, we might
get relatively little use out of these resources. This inefficiency arises from both

the communications medium and the program structure, and from the way these
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two entities interact. All these inefficiencies we refer to as overhead, and we
briefly examine them to see how much delay they cause us and lay out a path
for future research.

We attack the problem of overhead by analyzing algorithm performance.
Among other things, a distributed algorithm is typically analyzed for its speedup,
which we have defined the ratio of the time to execute on one processor to the
time to execute on M processors. The speedup thus found is usually quite ide-
alized because the analysis does not account for communications delays or the
realities of processing. This is quite understandable because communications
delays vary not only from network to network, but they also very over.time on
any particular network. It would be impossible for a general algorithm analysis
to account for such unknowns, therefore authors frequently ignore them. What
we now do is take the idealized speedup function for an algorithm, and deter-
mine how to modify it to account for the characteristics of a particular network,
yielding a more realistic prediction of algorithm performance.

The first task is to separate processing from communications. A distributed
program spends its time either communicating or processing’. Define a program’s
critical path as the sequence of events that determines T(M), a program'’s exe-
cution time on M processors. Of this time, the algorithm spends T,(M) seconds

processing, and T.(M) seconds communicating, thus T(M) = T,(M) + T.(M).

! We subsume all non—communications delays, such as disk I/0, into the processing time.
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The speedup function then becomes:

Ty
SM) = ran o0

(5.1)

Although we must ultimately analyze the realistic communications delay, let
us assume, for the moment, that we have an ideal network with capacity C, bits
per second, and that the time to transmit a packet of X bits is K /Cn seconds.
If we know that the number of bits transmitted by events along the critical
path is given by a function B(M) (because communications might vary with
the number of processors), then we can claim that T.(M) = B(M)/C, seconds
(assuming communications and processing are not overlapped for events on the

critical path). This provides us with a restatement of the previous equation:

T(1)

S = sane, +T,an

(5.2)

We must consider, though, what capacity we really want to use for C,. In
typical networks that connect workstations (e.g. Ethernet and token rings), the
basic network has far more capacity than any one machine can use. Because of
their computation requirements, the high-level protocols (e.g. TCP/IP, X.400)
limit the throughput at any one machine to a fraction of the network’s maximum
possible throughput, and if the network is run well, this is the primary limitation
on comn-mnication, not the raw network capacity. Thus, it is better to use
the protocol’s limits and capacities as our model of the network, rather than
capacity of the underlying real network. Through measurement or analysis, one

may find the maximum speed, in bits per second, of communication between two
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processors, Cy, and use this in our formula for speedup:

_ )
~ B(M)/C, + T,(M)

S(M) (5.3)

In deriving Cp, we assume that there is no other traffic on the network (we
account for that in the next paragraph), and we assume that C, is the same
between any pair of processors. Note that we need not model the protocol as
a queueing system (although we might do so in order to find C,), because any
waiting is caused by the transmission of other data (on the critical path), and
this time is counted in the term B(M)/C,.

We do not, in general, have only two processors communicating over the
network, but instead have many processors, some of which are involved in the
algorithm and some of which are not. We must find the total load on the network,
apply this to a model of the underlying communications network (e.g. Ethernet)
and determine how much the total traffic slows down communication along the
critical path. Let G,(M) be the load, in bits per second, that the algorithm
places on the network while executing on M processors, and assume that traffic
from other processors on the network adds a constant additional load of G, bits
per second. With a load of G,(M)+G,, use the network model to find the factor
by which the transmission time increases with load, and call it L,(M). What
would take t seconds to transmit on an unloaded network takes L.(M)t seconds

because of the actual network load. Our communications time must be increased
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by a like amount, so our new speedup becomes:

EEL (M) + T30 (54

We should note, though, that protocol delays are primarily caused by processing,
not by network transmission, and high network loads may not affect the protocol
processing times. A local area network without broadcast packets is an exam-
ple of such a situation — the network hardware screens out irrelevant packets.
Broadcast packets in the network, however, would require processing time that
would slow down the protocol processing. We should multiply G, by a factor
f, 0 < f <1, that tells how much of the global load really affects transmission
time, then use G,(M) + f G, to determine L.(M).

We have now accounted for communications overhead. We can continue this
analysis to account for transient processors and the effect of multitasking with
other programs on the processors. Assume that the processors are statistically
identical. We know from chapter 2 that Phe delay caused by transient processors
is practically deterministic in many situations. If so, we may then divide the
algorithm’s processing time by p, to account for the transient processors. If the
processors are multitasking, and if the distributed program gets only a fraction
fm of the processing time, we should multiply the processing time by 1/f, to
account for this. Our final expression for speedup is:

T(1)
M= .
S(M) B L, () + B0

(5.5)

With this equation in hand, we can then model real algorithms and real
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networks to see if it is accurate. This is one of the most important areas for

future research.

5.1.4 Measurements to Compare the Models to Real World.

One noticeable gap in this dissertation is the lack of measurements compar-
ing the transient processor models to real machines. It is not for lack of intent,
because one of the purposes of the BBL system was to provide a testbed for
measurements. However, MS-DOS is not a sophisticated networking environ-
ment, and it is difficult for two programs to use the network simultaneously from
one machine. In particular, a widely-used remote file access program was quite
incompatible with BBL, so most users could not have BBL running on their
machines. Furthermore, laboratory machines, such as those used for the sys--
tem, are heavily used when the lab is open and completely idle when the lab is
closed, giving them markedly different usage patterns from a typical workstation
in someone’s office. For measurements we really need a new system, built in a

good networking environment, to provide a testbed.

5.2 Closing Words.

The use of transient processors is a developing field and plenty of work re-
mains to be done. Given the needs of many people for large amounts of com-
puting capacity, it is a shame that systems to use transient processors are not

more widespread. However, the field of distributed processing is still relatively
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young, and high-speed networks with many powerfy] machines are 3 relatively

new feature in the computing world, so we hope to see proper use of transient

processors in future networks.
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