Computer Science Department Technicali Report
University of California
Los Angeles, CA 90024-1596

NARROWING GRAMMAR: A LAZY FUNCTIONAL LOGIC
FORMALISM FOR LANGUAGE ANALYSIS

Hau-Ming Lewis Chau September 1989

CSD-890056

UNIVERSITY OF CALIFORNIA
Los Angeles

Narrowing Grammar : A Lazy Functional Logic
Formalism for Language Analysis

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in Computer Science

by

Hau-Ming Lewis Chau

1989

Copyright © 1989 by
Hau-Ming Lewis Chau

The dissertation of Hau-Ming if Chau is approved.
F_\K\ _/

I e

Rajive L. Bagrodia

L//m

Richard R. Muntz

D~

D. Stott Parker, Committee Chair

University of California, Los Angeles
1989

To my parents

Yun-Yin Chow and Lin-Wan Chow

TABLE OF CONTENTS

.. 1

2 Supon 1
1.2 Summary of PAOTREULS s 3
1.2.1 Narrowing R - 3

1.2.2 Interesting Properties of Narmwing Grammar 7

1.2.3 Compih’ng Narrow-ing Grammar ing Prolog Programs ..., 10

1.2.4 Performance CONSIETALONS 12

1.2.5 Comparison with Established Logic Grammars 13

O S 20
Chapter 2 Review O PrEVIOUS WOK vt 21
2.1 Logic Programrm‘ng ... 21
2.2 Logic AALS 24
2.2.1 Definite C1USE GBS .o 25

222 Metamorphosis OFRIELS oo 26

223 Extraposition OEAMDELS oo 27

224 SSBPIG GRS ... 29

2.2.5 Other DO GIORLS ..o 31

23 Rewriting and NETTOWING oo 31
2.4 Lazy Evaluation and Logic Programening ... 33
2.4.1 Lazy EVALBHON oo 33

2.4.2 Lazy Evaluation in Logic Programmjng 34

2.5 Integration of Logic Programming and Rewriting ... 34
2.5.1 Logic Programming with Equality e, eerennne 35

2.5.2 Narrowing ... cereessenernnns et 35

2.5.3 Extended Unification and Functional Logic Languages 36

H0 QORI oo 39
Chapter 3 NATTOWNG LA ..o 40
2 OO s 40
3.2 Formalism of NATOWing GRmMMAr ... 40

iv

3.3 Specifying Patterns with Narrowing Grammarocovervenevernrennen.. 46
3.4 What is New about Narrowing Grammar

3.4.1 New Model of Acceptance in Logic Grammar_. 50
3.4.2 Higher-order Specification, Extensibility, and Modularity 51

3.4.3 Lazy Evaluation, Stream Processing, and Coroutining 52

3.4.4 Limitations of First-order Logic Grammars 55

Chapter 4 Compilation of Narrowing Grammar to Logic Programs 57
4.1 Compilation AIZOTItAMcccrcureverreensersecerrencessessmsens s ssseese e esenn. 57

4.2 Correcmess of the Narrowing Grammar Compilation Algorithm 67
Chapter 5 Completeness Issues and Extension of Narrowing Grammar 75
5.1 INEOAUCHONvvvectrcrenececceensientestestesemssesssssasneemsressasesssessesssesesse e e 75

5.2 Narrowing-Completeness of Narrowing Grammar for Simplified Forms 75

5.3 Compilation Algorithm to Handle Duplicate LHS Variables 89

5.4 CONCIUSIONS ...cuooeeeeceecerrrreratnesesen e cesrssesstsesenesesecsensses s sesese s ses e ssese e 95
Chapter 6 Performance Considerationsooovuovoooooooooooooooooooooooo . 97
6.1 INTOAUCHONcoovrureremrrnriesrecrssesesereesessssessrssssssssssses esssssss e s eene oo 97

6.2 Partial EVAIUGHONc.cvovvirueierierceeecsieceemenessecemtseessesseses e sses s s 97

6.3 Optimization of Algorithm 4.1 by Partial Evaluationo......o...... 99

6.4 Efficient Classes of Narrowing Grammareoooveeveeeeesvosenennonn. 102

6.5 Partial Evaluation to Greibach Grammarooovvueveevevveereesrvoa.. 107
Chapter 7 Comparison with Other Logic Grammarso..co.coovvvnvnoo... 113
7.1 INOGQUCHIONcovvirimrercccrarsinnstassssssenssseese e smssensssssssssssssesensssessasasenssnses 113

7.2 Language ACCEptance VS GENETationeweoveeurevressecmceesmsensenssnnes 115

7.3 The Power of URIfiICAUONccccceeerereremnrecrsensessssssnseseseesnseessssessssseses 120

7.4 Higher-order Specification, Modular Composition and Lazy Evaluationi22

7.5 Transformation of Logic Grammars to Narrowing Grammar 123

7.5.1 Narrowing Grammar and Definite Clause Grammars 124

7.5.2 Narrowing Grammar and Metamorphosis Grammars 126

7.5.3 Narrowing Grammar and Extraposition Grammars 128

7.5.4 Narrowing Grammar and Gapping Grammars 131

7.6 Narrowing Grammar can be More ExXpressivecooveevccercrrecccnnnee, 134

v

--

ACKNOWLEDGEMENTS

I am especially grateful to my advisor, D. Stort Parker, for his valuabie techni-
cal guidance and unfailing enthusiasm. I would also like to thank the members of my

committee, Professors Bagrodia, Keenan, Muntz and Stiny for their participation and

comments.

I would like to acknowledge the remarks of Paul Eggert, Sanjai Narain and
Fernando Pereira on some of my published papers for which this dissertation is based.
[also wish to acknowledge Defense Advanced Research Projects Agency, which pro-

vided continuing support during my graduate studies at UCLA (contract F29601-87-
C-0072).

I am greatly indebted to Professor Chao-Chih Yang who first showed me what
research is, and how to do it. I would like to thank my parents without whom this

work would not have been possible.

Last but not least, I thank all brothers and sisters in Chinese Bible Church,
which we have fellowship every week in the final year of my Ph.D. study. My spirital

life is enriched so that [can live with God’s love.

VITA

July 26, 1961 Born, Hong Kong

1984 Bachelor of Science in Computer Science
The Chinese University of Hong Kong
Hong Kong

1986 Master of Science in Computer Science
University of Alabama at Birmingham

Birmingham, Alabama

1986-1989 Post Graduate Research Engineer
University of California at Los Angeles
Los Angeles, California

PUBLICATIONS

H. L. Chau, Narrowing Grammar : A Comparison with Other Logic Grammars, Proc.
North American Conference on Logic Programming, MIT Press, October 1989.

H. L. Chau, D. S. Parker, Narrowing Grammar, Proc. Sixth International Conference
on Logic Programming, pp. 199-217, MIT Press, June 1989.

C. C. Yang, J. J. Chen and H. L. Chau, Algorithm for Constructing Minimal Deduc-

tion Graph, IEEE Transactions on Software Engineering, vol. 15, no. 6, June 1989

D. S. Parker, R. R. Muntz and H. L. Chau, The Tangram Stream Query Processing
System, Proc. Fifth International Conference on Data Engineering, Los Angeles,
February 1989.

H. L. Chau, D. S. Parker, Functional Logic Grammar : A New Scheme for Language
Analysis, UCLA Computer Science Department Technical Report CSD880097, De-
cember 1988.

H. L. Chau, D. S. Parker, Executable Temporal Specifications with Functional Gram-
mars, UCLA Computer Science Department Technical Report CSD880046, June
1988,

ABSTRACT OF THE DISSERTATION

Narrowing Grammar : A Lazy Functional Logic
Formalism for Language Analysis

by

Hau-Ming Lewis Chau
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1989
Professor D. Stott Parker, Chair

We present a new kind of grammar. It combines concepts from logic pro-
gramming, rewriting, lazy evaluation, and logic grammar formalisms such as Definite

Clause Grammars (DCGs). We call it Narrowing Grammar.

A Narrowing Grammar is a finite set of rewrite rules. The semantics of Narrowing
Grammar is defined by a kind of special oufcrmost lazy rewriting strategy called NU-
narrowing. With some modest restrictions on the use of Narrowing Grammar rules,
NU-narrowing is shown to be complete in the sense that whenever a term can be sim-

plified, it can be simplified by repeatedly applying NU-narrowin g

Narrowing Grammar is directly executable, like many logic grammars. In fact, Nar-
rowing Grammar rules can be compiled to Prolog and executed by existing Prolog in-
terpreters as generators or acceptors. Unlike many logic grammars, Narrowing Gram-
mar also permits higher-order specification and modular composition, and provides
lazy evaluation. Lazy evaluation is important in certain language acceptance situa-

tions, such as in coroutined matching of multiple patterns against a stream.

We compare Narrowing Grammar with several established logic grammars: Definite
Clause Grammars, Metamorphosis Grammars, Extraposition Grammars and Gapping
Grammars, showing how these logic grammars can be transformed to Narrowing
Grammar. We also investigate the versatility of Narrowing Grammar for language

analysis by applying it in several examples.

Characterizing the efficiency of Narrowing Grammar is important. One important
subclass of Narrowing Grammar, Greibach grammar, can be compiled to efficient
Prolog code. Furthermore, Narrowing Grammar rules can, in many cases, be
transformed to Greibach grammar by applying the well-known program transforma-
tion technique called parrial evaluation. As a result, the performance of Narrowing

Grammar can be comparable with first-order logic grammars such as DCGs.

Chapter 1

Introduction

1.1 Motivation

Logic programming is the use of statements of logic (Horn clauses) as a programming
language. It has led to new insights into computing as well as logic. For example,
one very important application of logic programming is in parsing. A logic grammar
has rules that can be represented as Horn clauses which can then be executed for

either acceptance or generation of the language specified.

Rewriting uses some set of rules to simplify objects to other objects. A set of such
rules is called a rewrite rule system. Its usefulness is evident from its appearance in
many branches of computer science. Examples include formal grammars and the

lambda calculus [9).

Lazy evaluation is basically a computation scheme in which an expression is
evaluated only when there is demand for its value. It allows certain computations to
terminate more quickly and also enables computation with infinite structures. Con-

sider the following two rules, defining how lists may be concatenatedt:

?Wemhdquwﬁm&wyhhwﬁmuﬂ. The bead and tail of & list are companents of the functor
namod'.'.wh'chisdudm.T)ns.thsl.ineum‘n'n.dnahu'l'h.(gmwmthnh.mlhohwﬁm[ai. Al-
ematively, the head and taid of s list can be represented o *.*(H,T) or [®]7].

(13,0 =>w,

([UIV],0) => [U|(V,W)].
In one step, the term ((1,2,3], [4,5,6]) rewrites to [21([2,3},14,5,6))).
Only the head of the resulting concatenated list is computed. The tail,
(12,3], [4,5,6]), can then be further evaluated if this is necessary. Demand-driven

computation like this is referred to as lazy evaluation.

A grammar formalism in which logic programming, rewriting, lazy evaluation and
logic grammar are combined can provide considerable expressive power, going
beyond the power of existing first-order logic grammars In particular, it can afford
the expressive power of both functions and relations. At the same time, lazy evalua-

tion can be done within the eager framework of logic programming.

Many logic grammar formalisms are firsr-order. Specifically, a nonterminal symbol
in these formalisms cannot be passed as an argument to some other nonterminal sym-
bol. For example, usually Definite Clausé Grammar (DCG) does not permit direct

specification of grammar rules of the form
goal(X) --> X,

This limitation was pointed out as early as {42]. We will discuss later in the disserta-
tion why this is more than just a minor problem, as it affects the convenience of use,
extensibility, and modularity of grammars. Some Prolog systems, including Quintus
Prolog and Sicstus Prolog, have been extended to permit such rules. Also, very

recently Abramson [3] has commented on the problem, and has addressed it by using

a New conswuct, meta(X), to define metarules that go beyond the Limit of first-order
logic grammar formalisms. We propose a lazy functional logic approach to this prob-

lem.

Many logic grammars are also not lazy. Lazy evaluation can be very important in
parsing. It allows coroutined recognition of multiple patterns against a stream. We are
not aware of previous work connecting lazy evaluation and logic grammars, although

the connection is a natural one.,

We propose a new grammar %ormalism that rests on incorporating lazy rewriting
within logic programming. This means that SLD-resolution with left-to-right goal
selection, the proof procedure commonly used in Prolog, will implement this grammar
formalism. That is, grammar rules are written in such a way, that when SLD-

resolution interprets them, it directly simulates lazy rewriting,

1.2 Summary of Major Results

1.2.1 Narrowing Grammar
A new declarative semantics of logic grammar based on lazy narrowing is defined.
The logic grammar rule system is not restricted to be terminating and permits non-

determinism. We call it Narrowing Grammar.

Narrowing Grammar is a formalism for writing rules. It combines concepts from

logic programming, rewriting, lazy evaluation, and logic grammar formalisms such as

Definite Clause Grammar. The semantics of Narrowing Grammar is defined by a spe-
cial outermost lazy narrowing strategy, NU-step, which is different from existing logic
grammar formalisms. In this dissertation, we point out a number of advantages of

Narrowing Grammar for language analysis.

As a brief introductory example, let us show how easily regular expressions can be
defined with Narrowing Grammar. The regular expression pattern g* b that matches
sequences of zero or more copies of a followed by a b can be specified with the gram-

mar rule
pattern => [a]*, [b).
where we also define the following grammar rules:

(X*) => [].
(X*) => x, (x*).
{{1,L) => 1,
([xi11],12) => [X)(L1,12)].
Here +# is the postfix pattern operator defining the Kleene star pattern, and the rules

for +, define pattern concatenation, very much like the usua] Prolog rules for

appand

For instance, the narrowing of ((al#, (b]) to [a,b] along with the rules used in

each step is as follows:

Rewritten term Rule used ip rewriting

({a]*, [b])

= (([a], [a]®), (b)) (X*) => x, (x*).

= ([al ({1, [a)®)], bB]) ([X1z2],22) => (x| (n1,12)].
= (al ({1, (aI™, [B])] ({X1L1],22) => (x| (51,12)],
= [a|([a]*, [b])] ({},L) => &,

= (a1, [d])] (x*) =>],

= [a,b) ((),n) = 1,

In a similar way, all other lists matching the pattern a* b could be produced.

Narrowing Grammar can be used to produce both pattern generators and pattern
acceptors. One approach for pattern acceptance is to introduce a new pair of Narrow-
ing Grammar rules specifying pattern matching. The entire definition is the following
pair of rules for match:

match([],8) => g,

match ([X|L], [X|S]) => mateh(L,S).
Grammar rules by themselves act as pattern generators, when applied with maten,
they act like parsers. Intuitively, match can be thought of as applying a pattern (the
first argument) to an input stream (the second argument), in an artempt to find a prefix

of the stream that the grammar defining the pattern can generate.

As a simple example, consider the derivation illustrating how ([a,b] is accepted by

the pattern ({a]*, [b]) with match:

match(({a]*, [b]), (a,b]))

— match((((a], [al*), (B]), [a,b]))
match (([al ([T, [al*)], [B]), (a,b])
match{fa] (([], (aJ*), [b))], [a,b))
match ((([], (a]*), [B]}, (b})
match(([a]*, [b]), (b))
match(([], [B]), (b))
match([b], [b])
match([], [])

[l

N A

A narrowing grammar is a finite set of rules of the form:

LHAS => RHS

where:
(1) rasisany term except a variable, and ras is a term,

(2) If ras=f(t,,..1,), then each #; is a term in normal form,

For instance, consider the following grammar;

s _abc => ab ¢ // a_be.
ab_c => pair(a,b), [e]v.
a_bc => [a]*, pair(b,ec).
paiz(X,¥Y) => [].
paiz(X,¥) => [X], paiz(X,Y), [T].
This grammar defines the non-context-free language (a”b"c™!n20}) using only

context-free-like constructions. The first rule for s_abe imposes simultaneous con-

straints (a"h"c* ang g*p7,. ") on streams generated by the grammar. // is 4 corou-
tined pattern matching primitive that requires both argument patterns to generate or

accept streams of the same length and is defined as follows:

([XIXs] /7 [x)¥s]) => [X(Xs//¥s].
(1 /77 1) = 3.

The semantics of Narrowing Grammar is defined by a special Outermost narrowing
strategy, NU-step. The lerm p narrows to ¢ in a NU-steporp » q if either (p => q)is
an instance of some rule, or if the replacement of a subterm by the result of 5 NU-step

yields g. Note that the NU-step does not permit a narrowing to begin with variable.

A NU-narrowing is a narrowing p,, ps,... such that for each i, when Piand p; ., both
exist, p; narrows to Pi+1 in a NU-step, A simplification is a NU-narrowing p P2 e,
Pn if pp is simplified and no other p; is simplified,
For instance,
([al*, [b]) - (([a], [a]*), [b])
is a NU-step, and
(taJ*, b]) 5 [4 ({1, ta)=, (b)))

gives the first and last terms in a simplification,

12.2 Interesting Properties of Narrowing Grammar

Consider 2 NU-narrowing of the pattern ab_c // a_be :

ab_c // a_be

—

I S L A R A A T S

(paiz([a}, (b)), [c]™ // a_be

(([a], paixr((a],[bl}, [b]), [el*) // a_be

([a| (pair([a], [b]), [b])], {c]*) // a_be

{(al ((paizr([a], [b]), [B]), [e1®)] // a_be

(al ((paiz([a], (b)), (B]), [c]l*)] // (la}*, pair({b], [c]))
[aj((pair({a], [B]), (b1}, (e]*)) // ((la), [a]%), pair{[b],[c]))
[al ({paiz([a], [b]), [B)), [c1*}] // (lallal*], pair({b], [e]))
(al ((paiz((al, (B]), (b]), [e]*)] // (ai([a]*, pair([b], (c]))]
(af (((pair([a], (b]), [b]), [el*} // ([al*, paiz(([b], (c])))]
(at (C([), (B1), [c1*) // ((a)*, paix([b], (c])))}]

(ai (([B], [cl*) // (lal*, pair([b),ic])))]

[al ([Bl[e]*] // ([al*, pair([b],[c])))]

{al ([bI[e]*]) // (11, paix([b], [c])))]

[a| ({bi[c]*] // paiz([b],{c]))]

(al([Bl[ec]*] // ([b], paiz([b],[ec]), [ec]))]

(ai([bl{c]*] // (b|(pair(([b],[c]), [e]}1)]

(a,Bi(le)* // (pair([b], [c]), [c])}]

[a,bl((le], (e]l*)} // (paiz((b], (c]), [c]))]

(a,Bl({ellcl*] // (paiz((bl,[c]), [ecI))]

[a,bi(lclfc)*] // (1), [eI)]

(a,bl({cllc])*) // (c])]

(a,b,cl(lec]* // (1))

a,b,ei (0] //]

[a,b,c]

Here we summarize several important features of Narrowing Grammar.

(1) Narrowing Grammar permits higher-order specification.

)

(3)

Specifically, Narrowing Grammar is higher-order in the sense that patterns can
be passed as input arguments to patterns, and patterns can yield patterns as out-
puts. For example, the enumeration pattern (_ // _) is higher-order, as its
arguments are patterns. The patterns a_be and ab_c can be used as arguments

to //,asin

a_bc // ab_e.

Narrowing Grammar supports modular composition of patterns.
For example, the pattern (a_bc // ab_e) is composed of patterns /7).
a_bcand ab_c. Each of these patterns specifies a constraint on the stream to be

generated. The global constraint is the composed pattern a_be // ab_c.

Narrowing Grammar permits lazy evaluation,
A specific advantage of lazy evaluation in parsing is that coroutined recognition
of multiple patterns in a stream becomes accessible to the grammar writer. For

example, narrowing of the stream pattern
ab_c // a_be

interleaves the narrowing of (_ // -)r ab_cand a_be. The sample narrow-
ing of a_be // ab_c shows the actual interleaving ~ first ab_e is narrowed for
four NU-steps, then a_be for four NU-steps, then (_ // _) for one NU-step,
then ab_e for three NU-steps, then a_be for four NU-steps, then (_ /7) for

one NU-step, then ab_c for two NU-steps, then a_be for two NU-steps, then (_

// _) for one NU-step, then ab_c for one NU-step, and finally (_ // _) for
one NU-step. The effect of special outermost narrowing of the combined stream

patiern a_be // ab_c is precisely to interleave these three narrowings.

1.2.3 Compiling Narrowing Grammar into Prolog Programs

We describe an algorithm to compile Narrbwing Grammar to Prolog programs. It
turns out that SLD-resolution with left-to-right goal selection, the proof procedure
commonly used in Prolog, will implement NU-narrowing on these programs. The
compilation of a Narrowing Grammar rule into a Prolog clause combines information

about the rule and the control of NU-narrowing when interpreting that rule.

The compilation algorithm consists of two steps:

(1) For each n-ary constructor symbol ¢ (functional symbol that cannot be rewritten),

n 20, and for distinct Prolog variables X |, ... X,,, generate the clause:
simplify(c(Xy,...,Xp), c(Xq,....X0)).

(2) Foreachrule f(L,,...,L,)=>RHS,letA,,... »Am,Out be distinct Prolog vari-

ables not occurring in the rule, and generate the clause:

simplify(f(Ay,...,An),Ouwt) :=
nu narrow(A, L),
nu_narzow(d,, L,),

simplify (RHS,Ous) .

-10-

For instance, given the Narrowing Grammar rujes:

match({[],8) => g,

mAtch([X(L], [XIS]1) => mateh(y,s).
the Prolog programs result from compilation are:

simplify (match (A, B),C) :-
nu_narrow(a, [1),
RuU_narrow(s, 8),

simplity(s,c).

simplify(match(A,B),C) :-
Bu_narrow(A, (X|L)},
Du_narrow(B, {X[8]),

simplify (match (L, $) /C).

simplify/2 guarantees its result (the second argument) will be simplified. That is,
the function symbol of the result will be a constructor. Also, we can show that sim-
Plify/2 behaves like NU-narrowing. We state this more formally by the following

theorem:

Theorem

If X and ¥ are terms such that simplify(X.Y) hasa successful Prolog-derivation, then

there is a simplification from X to ¥,

The converse is also true if Prolog-derivation of sizplify(X.Y) is replaced by SLD-

derivation, and we restrict the use of duplicate variables among arguments on the left

=11 -

hand sides of Narrowing Grammar rules in certain ways,

With the same restriction on duplicate variables as the converse of the theorem,
simplification is shown to be narrowing-complete, in that if a term can be simplified,
it can be simplified by repeatedly applying NU-step. For instance, given the Narrow-
ing Grammar rules:

a =>» g,

b => [].

e = g,

gi(x, [1) => [].
g(a,b) can be simplified to [} by a sequence of NU-steps,
gl{a,b) = g(a, (1) =[]
but the only leftmost outermost narrowing is the non-terminating narrowing

g(a,b), gle,b), gle,b),

1.2.4 Performance Considerations

One of the major challenges is to devise improvements for the implementation of Nar-
rowing Grammar. Efficient implementation is possible in many cases. One possible
way is to apply the well-known program transformation technique, partial evaluation,
to optimize the Prolog programs resulting from compilation of Narrowing Grammar
rules. For instance, partial evaluation alone will cause many nu_nazzow/2 subgoals

to be replaced by unifications or simplify/2 subgoals, and yields substantially faster

.12

code.

Efficient implementation is also possible by recognizing efficient classes of Narrowing
Grammar. One such class is Greibach Grammar, which requires the Rras of a rule to
be simplified. Partial evaluation can, in many cases, be applied to transform Narrow-

ing Grammar rules to Greibach form. For instance, the Narrowing Grammar rule
pattezrn => [a]*, [b].

, can be partially evaluated to

-

pattern => [b],

pattern => {a | pattern].

1.2.5 Comparison with Established Logic Grammars

Unlike many established logic grammars which rest on first-order logic, Narrowing
Grammar is a new logic grammar formalism resting on lazy narrowing. This gives
some extra expressive power to Narrowing Grammar and allows higher-order

specification and modular composition.

We show that many established logic grammars can be transformed to Narrowing
Grammar.
(1) Definite Clause Grammars
Definite Clause Grammars (DCGs) are essentially context-free grammars aug-
mented by the language features of Prolog. DCG rules can be translated to Nar-

rowing Grammar rules by changing all occurrences of --> to => and by

-13-

109

3)

including the Narrowing Grammar definition for v

([1,L) => L.
((xIz1],12) => [X|(L1,L2)].

Metamorphosis Grammars

MG [13] permits rules of the form

LHS, T --> RHS

where 45 is a nonterminal and T is one or more terminals, The MG rule can be
read as "rL#s can be expanded to ras if T appears in the head of the input
stream”. We can capture the semantics of this MG rule in Narrowing Grammar

by defining two more rules for *,* as follows (here dalete is a constructor):

(delete (([X(|Z]), [X]|Y]) => delete(2), Y.

(daleta{[]), ¥) => Y.

and transform the MG rule to

LHS => RHS, delete(T).

Extraposition Grammars
One commonly used XG rule is of the form

LHS ... T -=-> RHS,

Here r#s is a nonterminal symbol and' 7 is any finite sequence of terminals or

non-terminals. The XG rule can be read as "z#s can be expanded to rasif 7

-14-

4)

appears later in the input stream", We Can capture the semantics of this XG rule
in Narrowing Grammar by defining three more rules for +, as follows (here

delete_any is a constructor);

(delete_any((x|z]), [X1Y]) => delete(z), Y.
(delete_any([]),) => y,

(delete_any(x), (¥12]) => [y (dalete_any(x), Z)].

and transform the XG rule to

LHS => RHs, delete_any(T) .

Gapping Grammars
Consider a special class of GG rules [16] of the form

LHS, gap(X), T --> gap (X}, RHS.
where r#s is a nonterminal symbol and 7 is any finite sequence of terminals or

non-terminais,

We can capture the semantics of this GG rule in Narrowing Grammar by defining
rules for *, with constructors replace(_,) and replace_any(_,) as fol-

lows:

-15.

(replaca([],R), Y) =» R, Y.

(rnplnco([ltlh],a), (XiY}) =>» replace(L,R), Y.

(:oplac._lny([],n), Y) => R, Y.
(r-plac.__my([)!lr.],n), (X{Y)) => raplace(l,R), Y.
(z.plac._my(!,n), [X1X]) => [xHrcplaca_any(‘r,R), nl.

and transform the GG rule to

LHS => replace any(r, RHS) .,

Example : Left and Right Extraposition

In this example, we show how Narrowing Grammar simulates the left- and right-
extraposition of GGs. The following grammar which is adapted from [17] parses sen-

tences such as "The man is here that Jill saw".

-16 -

8 ==> np, vp.
op -=> dat, n, relative.

ap ==> n,

np -=> (tem{np)].

VP -~> aux, comp.

vpP --> ¥, np.

relative --» r.l_nnth:,r s,

relative --> [].

relative, gap(G) --> gap(G), rxightex.
rel_marker, gap(G), [tam(np)] ~-> rel _Pro, gap(G).
rightex --> rel_marker, s.

comp -=> [hare].

Aux --> [is}.

det --> [the].

real_pro --> [that].

n --> [man],

n --> [4i11].

v ==> [saw].

The left-extraposition GG rulet

rel marker, gap(G), (texm(np)] --> rel _pPro, gap(G).

is transformed to

rel_marker => rel_pro, delete_any([tem(np)]).

and the right-extraposition GG rule

1 This rule is equivalent to the XG rule ‘
rel_marker ... (term(np)] --> rel _pro.

-17-

relative, gap(G) --> gap(G), rightex

is transformed to

relative => replace_any([], rightex).

All other rules can be translated to Narrowing Grammar rules by changing all

occurrences of ~->to =>. Now we illustrate how the sentence

The zian is here that Jill saw

can be generated from the Narrowing Grammar by giving a sequence of terms that can

be produced by narrowing of the Narrowing Grammar start symbol s:

-18 -

X’

1

)

s

1

Y

1

:

-
e

s
e d

—
—_
-
—
-
-3
b
-
-
—_
-3
-3
s 4
—
-—p
-
-

np, vp

(det, n, relative), vp

{{tha], n, relative), vp

[the] (n, relative)], vp

(the| ((n, relative), p) 1

(the | (([man), zelative), vpP)]

(the| { [man|relative], vp)]

(the,man| (relative, p) 1

(the, man] (zeplace_any([], rightex), wp))

{tha,man| (replace_any([], rightex), (aux, comp)))

i{the,man | (replace _any([], rightex) ¢ ([i8], comp))]
(the,man] (replace_any([], rightex), [is |comp])]
[the,zan,is| (replace_any(([], rightax), comp)]
(the,man, is| (replace_any([], rightexz), (here])]

[{the,man, is, here) (replace_any({], rightex), [])]

(the,man, is, hare] rightax)

({the,man, is, here| (rel marker, s))

(the,man, is, hare| ((rel_pro, delete_any((trace])),)]
[the,man, is, hare| (([that], delete_any({trace])), s)]
{the,man,is, here| ([that |daleta _any([trace])], s)]

(the,man, is, hare, that| {delete_any([trace]), s)]

[the, man, ia, here, that| (Geleta_any([trace]), (ap, vp))]
[the,man, is, hare, that | {delete_any([txace]), (n, wp)))
[the,man, is, here, that | (delete_any(([trace]), ([Jill], wp))]
(the,man, is, here, that | (delete_any([trace]), (3ill)wp))]
[the,man, iz, here, that, $111| (delete_any((tzacel), vp)]
(the,man, is, here, that, J111| (delate_sny([tracel), (v, np))]
[t.h.,mh, is,here, that, §il1) (dnll'ot._any([trace]), ({saw], np))]
[the,man, is, here, that, 111 (dalete_any((trace]), [saw|np})]

-19-

~» [the,man,is, hers, that, §111, saw| (delete_any((trace]), np)]

— [the,man,is, hare, that, jill, saw| (dalete_any(([trace]), [trace])]
— [tha,man, is, here,that, jill, saw| (delate (1), 1

— [the,man, is, here, that, jill, saw]

The point to be made here is that commonly used GG rules can be transformed to Nar-

rowing Grammar rules easily.

1.2.6 Summary

Although existing first-order logic grammars have computational power equivalent to
a Turing machine, they are, in general, quite limited in expressive power. A new and
elegant logic grammar formalism that rests on incorporating rewriting within logic
programming is proposed in this dissertation. We call it Narrowing Grammar. The
expressive power of Narrowing Grammar goes beyond existng first-order logic gram-
mar formalisms. At the same time, efficient implementation of certain classes of Nar-

rowing Grammar using Prolog is possible now.

-20-

Chapter 2

Review of Previous Work

2.1 Logic Programming

Logic Programming began in the carly 1970’s as a outgrowth of earlier work in
automatic theorem proving and artificial intelligence. The credit for the introduction
of logic programming goes mainly to Kowalski [38] and Colmerauer [12] because
they pioneered the fundamental idea that logic can be used as a programming
language. The programming language Prolog [60] is an approximate imﬁlcmcntation
of logic programming. Below we summarize the basic concepts of logic program-

ming. For a more full discussion, consult [56].

Logic programming is the use of logic statements as a programming language. The
basic constructs of logic programming, terms and statements, are inherited from logic
[56). There are three basic statements: facts, clauses and queries. There is a single

data structure: the logical term. -

A term is a constant, a variable or a compound term. A compound term comprises a
functor and a sequence of one or more terms called arguments. A functor is character-

ized by its name and its arity (number of arguments)., Compound terms have the form

-21-

f(t1,£2,....84) with functor f/n. Terms are ground if they contain no variables; other-

wise they are nonground.

A substitution is a finite set of pairs of the form <X=r>, where X is a variable and ris a
term, with no two pairs having the same variable left-hand side. For any substitution
B=(<X=f>,...,<X,=t,>} and term s, the term 50 denotes the result of simuitaneously
replacing in 5 each occurrence of the variable X; by 1;, 1<i<n, the term 59 is called an

instance of 5. A substitution 0 is said to be a unifier of terms E and F, if £0 = F8.
A logic program is a finite set of Horn clauses. A Horn clause is a logic sentence of
the form

A«B 1.....8" IIZO.

where A and B,...B, are predicates and all variables in the clause are taken to be
universally quantified. Such a clause is read declaratively as " A is implied by the con-
junction of BB," and is interpreted procedurally as "to answer query A, answer the
conjunctive query B...B,." A and B,...B, are respectively called the head and body

of the clause. If n=0, the clause is a unir clause or fact.

A query is a conjunction of the form
— Ay,..., A

where the A....A; are goals. Variables in a query are existentially quantified.

A computation of a logic program P finds an instance of a given quefy logically dedu-

cible from P. A goal G is deducible from a program P if there is an instance 4 of G

-2 .

where A « B,,..B,, n20, is a ground instance of a clause in P, and the B,.....B, are

deducible from P.

An attempt is made to find the computation using SLD-resolution proof procedure,
SLD-resolution has been shown to be sound and complete for Homn clauses [4, 28].
Given a query « A1,..A;,...A;, k20, and a clause 4 « B,...Bn, n20, where A and 4;
unify with most general unifier 8, the SLD-resolution proof procedure derives the new

query: &« (A .. A;i1.B,...BrAir .. A0,

An SLD-derivation consists of a sequence of queries Q¢,0,,....and a sequence of sub-
stitutions y,0,..., such that Q;,, is derived from Q; and 8;,, is the most general
unifier. If Q; is empty (which is denoted by O1) for some i, the SLD-derivation is suc-
cessful, the composition of substitutions 91,....9; is one answer to Q, and the length

of a derivation of Qg is i.

Consider the logic program

P(X,2) & q(X,¥), p(Y,2).
P(X,X).

q(a,b).
and the goal < p(x,b) . The following is an SLD-derivation of «— p(X,b) :

& pi{X,b)

~ q(X,Y), p(Y,b)
« p(b,b)

« 0

The answer substitution of the goal &« p(x,b) is (<xma>}.

-23.

Prolog-derivation is a special case of SLD-derivation. Given a query
AvAinAg, k20, instead of choosing an arbitrary goal to resolve against, Prolog’s
execution mechanism always chooses the leftmost one, and replaces the nondeter-

ministic choice of a clause by sequential search and backtracking,

2.2 Logic Grammars

One very important application of Prolog and logic programming is parsing. Prolog
in fact originated from attempts to use logic in expressing grammar rules and formal-
izing the parsing process [56]. A logic grammar has rules that can be represented as
Homn clauses, and thus implemented by logic programming languages such as Prolog.
These logic grammar rules are translated into Prolog clauses which can then be exe-

cuted for either acceptance or generation of the language specified.

Since the development of Metamorphosis Grammar [13], the first logic grammar for-
malism, several variants of logic grammars have been proposed. Some are motivated
by ease of implementation [47], some by a need for more general rules with more
expressive power [16,48], some by a view towards a general treatment of some
natural language processing [29, 41, 55], and others by automating some part of the
grammar writing process, such as the automatic construction of parse trees {2]. Gen-
crality and expressive power seem to have been the main concerns underlying all
these efforts. These logic grammars are first-order and are not lazy, Unlike the logic
grammar forméﬁsm based on lazy narrowing in this dissertation. Now we briefly

review some existing logic grammars in the literature.

-24.

2.2.1 Definite Clause Grammars

The most popular approach to parsing in Prolog is Definite Clause Grammars (DCGs).
DCG is a special case of Colmerauer’s metamorphosis grammar [13]. It extends
context-free grammar in three ways:

(1) DCG provides context dependency.

(2) DCG allows arbitrary tree structures to be built in the process of parsing.

(3) DCG allows extra conditions to be added to the rules, permitting auxiliary com-

putations,

Consider the example which is taken from [47].
noun(N) --> (W], {rootfomm(W,N), is_noun(N)}.

noun (N) is a nonterminal and (W) is a terminal. It can be read as "a phrase identified
as the noun N may consist of the single word w, where N is the root form of wand N

is a noun”.

DCGs syntax is little more than "syntactically sugared” Prolog syntax. There is a sim-
ple procedure for compiling each DCG rule to a Prolog clause. The basic idea is to
add a difference-list argument to each nonterminal symbol, giving the input and out-
put streams (49, 56]. Below is an example of some DCG rules and their compilation

to Prolog:

.25.

a -=>bh, a. a(80,8) :- b(s0,81), <(51,8).
a ~-=> [H]. a{s80,8) :~ connacts (S0,W,8).

a =--> b, {d}. #(30,8) :- b(s0,8), call{d).

The definition of connects/2 is:

cocanacts({H|T],H,T).

Example 2.1 : Power of DCG Parameters
Consider the following DCG rules for the language {a"b"c" | n20}:

s --> a(zero).

a(A) =~> [a], a(suce(A)).

a{A) --> b(A), c(A).

b(suec({A}) ~=> [b], b{(A).

b(zexo) -=-> [].

c(succ(A)) =--> [e), c(A).

c(zexro) --> {].

The power of DCGs is beyond context-free due to its capability of passing parameters.

In this example, the parameters are used as counters.

2.2.2 Metamorphosis Grammars

Mewamorphosis Grammar (MG) [13] generalizes DCGs and permits rules of the form
LHS, T =-=> RHS

where tas is a nonterminal and T is one or more terminals. For instance, the MG rule

-26-

be (present), (not] --> (isat].
allows terminal symbol to be inserted to the head of the stream. Its translation to Pro-

log is:

be {present,$0,8) :- connects (S0, isat, 31), connects (3,not, S1) .

Example 2.2 : Context Sensitive Languages

An example of MGs for the language .[a"b"c" |20} is given here:

8 =-=> [a], b, 8, [e]).

s ==> [a], [B], [e).

b, (a] --> [a]l, b.
b, [b] --> [b], [b].

2.2.3 Extraposition Grammars

In spite of the power of DCGs, it is not convenient for the definition of certain con-
structions in natural languages such as "movement-trace” or “filler-gap" constructions
in which a constituent seems to have been moved from another position in the sen-

tence.

Extraposition Grammar (XG) [48] allows everything found in DCGs and allows, in
addition, rules like the following:

LHS ... T --> RHS.

where RHs is any sequence of terminals, nonterminals, and tests, as in DCGs. The left

-27-

side of an XG rule can be a nonterminal followed by *..." and by any finite sequence

of terminals or nonterminals. The example can be read as “L#s can be expanded to

RrHs if the category T appears later in the input stream”.

This allows for a very natural treatment of certain filler-gap constructions. For exam-

ple, relative clauses can be handled with rules like the following:

np -=> dat, n.

np --> dat, n, relative.

np --> trace.

relative --> rel_marker, s.

rel_marker ... trace --> rel_pro.

ral_pro --> [who].

Example 2.3 : Context Sensitive Languages

An example of XGs for the language {a"b"c"|n20} is given here:

s -=> as, bs, cs.

bs

bs ...

cs

cs

-=> [].
. xb -=> {a], as.
-=> [].
xe --> xb, [b]l, bs.
-=> {1.

-=> xc, [ec], c».

The implementation of XGs is similar to DOGs with two more arguments to hold the

.28 -

extraposition list For XG rule involving ..., everything on the left-hand side after the
first non-terminal is stacked on the extraposition list, and the symbol is marked. Each
subsequent symbol can cause a matching symbol to be popped from the extraposition

list.

2.2.4 Gapping Grammars

Gapping Grammars (GGs) [16] can be viewed as a generalization of XGs. These
grammars permit one to indicate where intermediate, unspecified substrings can be
skipped, left unanalyzed during one part of the parse and possibly reordered by the
rule’s application for later analysis by other rules. Consider the following example,

which is taken from [16].
3, gap(X), b, gap{¥), ¢ --> gap(Y), ¢, b, gqap(X).

This GG rule can be applied successfully to either of the forms a,e £,b,d,cand
a,b,d, e, f,c. Application of the rule yields d,c,b,e,2 and q,e,£,c,b respec-
tively. Therefore, the above GG rule can be viewed as a shorthand for, among others,

the two rules:

a,e, :,b,d'c - d,c,h,.'f

a,b,d,e,f,¢c --> d,e, g, &,b.

Example 2.4 : Context Sensitive Languages

An example of GGs for the language {a"b"c” | 120} is given here:

-20.

s --> as, bs, cs,

as --> {].

as --> xa, [a], as.

bs --> [].

xa, gap(X), bs ~=> gap(X), [b), bs, xzb.
cs --> [].

xb, gap(X), cs --> gap(X), [ec], cs.

Unlike GG rules, XG rules only allow the interspersing of gaps in the left hand side,
and these gaps are routinely rewritten in their sequential order at the rightmost end of
the rule. On the other hand, it seems very difficult to implement an efficient parser for
GGs. The naive method is to implement "gap” as a predicate that allows skipping of

arbitrary strings (gaps). This method can be extremely inefficient due to backtracking.

An example of a GG rule together with its compilation to Prolog taken from [31] is

shown here:

object, [and], gap(X), object --> [and], gap(X), object.

object (S0,8) :-
connacts (S0, and, 51),
append {Gap, 52, 81),
object (82, 83),
. connects (S4,tem(objact),$3), & add dummy nonterminal
appand (Gap, 34, 859), % add "gap"
connacts (S, and, 85) . . §% add "and-

-30-

2.2.5 Other Logic Grammars

Stabler’s Restricting Logic Grammars [55] extend XGs to enhance linguistic expres-
siveness such as natural treatment of leftward and rightward movement. Other exten-
sions to DCGs include the automatic tree building supported in Restriction Grammars
[30] and Modular Logic Grammars [41], and the semantic representation supported in
Restriction Grammars, Modular Logic Grammars and Definite Clause Translation

Grammars [2).

23 Rewﬁﬁng and Narrowing

Historically, the idea of rewriting is an old and useful one. Rewriting uses a set of
rules to transform objects to other objects. A set of such rules is called a rewrite rule

system. Formal grammars [32] are commonly used rewrite rule systems.
In this dissertation we consider only first-order rewrite rule systems. A first-order
rewrite rule system is a set of rules, each of the form:
LHS => RHS
where 14s and Rr#s are first-order terms. A term is either a variable, or of the form

ST 1,..2n), n20, where fis an n-ary function symbol and ¢; is a term.

Let p, g be terms where p is not a variable, and let s be a nonvariable subterm of P
(which we write p = r[s]). If there exists a rule (z#s => Ras) that has no variables
in common with p, for which there is a substitution 8 such that s = r#s 9, and ¢ = [

RS 0] (the result of replacihg s by Rr#s and applying the substitution 8), then we say

-31-

p reduces to q.

Let p, q be terms where P is not a variable, and let 5 be a nonvariable subterm of P
(which we write p =r(s]). If there exists a rule (ZLd5 => Ras) that has no variables
in common with p, for which there is a most general unifier 8 of r#s and s and
q =(r[RHS])O (the result of replacing s by ras and applying the substitution 8), then
WC say p narrows to q. Thus, in reduction only variables of zgs can be bound,

whereas in narrowing variables of both L#is and p can be bound,

A narrowing is a Sequence popy,... such that for all i, whenever p; and Di+; both
exist, p; = piy1. % is defined to be the reflexive transitive closure of —. If py%p,,
and there is no p,,; such that Pn = Payy, then p, is called a normal form of p,. If
whenever py — 41 and pg — g, there exists a term g such that ql—'ﬁq and g, 54,
then the rewrite rule system is called locally confluent. The system is confluent if
whenever po5 ¢, and py% 92, there exists ¢ such that ¢, % ¢ and 425 4. If no
infinite narrowing is possible, the set of rewrite rules is called noetherian or termina-

ing. A terminating, confluent system is called canonical.

Given a term, there can be many narrowings starting with it. Precisely which one is
generated is determined by a narrowing siraregy. A narrowing swategy is
narrowing-complete if for each term, each of its normal forms can be computed

exclusively by use of this strategy.

For instance, given the rewrite rules:

-32-

a=» o,
b => {].
c = c,

g(X, [1) => [].

there is a terminating rightmost outermost narrowing sequence

g{a,b), g(a, (1), [}

but the only leftmost outermost narrowing is the non-terminating sequence

gfa,b}), gle,b), gle,b),

2.4 Lazy Evaluation and Logic Programming

2.4.1 Lazy Evaluation

Lazy evaluation is basically a computation scheme in which an expression is

evaluated only when there is demand for its value. It has at least two advantages:

(1) Irallows certain computations to terminate more quickly.
Suppose we want to determine whether lists A and B resulting from two compu-
tations are identical. We can generate A completely, then generate B completely,
and then compare their elements from left to right. However, A and B may be
very long but may differ at some early position. The effort of generating A and B

beyond that position would be wasted.

-33-

(2) Itallows computation with infinite structures.
Suppose A and B above are infinite, An attempt to generate A or B completely
would never terminate, and we would never know that A and B differ even if they |

do.

Many implementations of lazy evaluation have been proposed for functional
languages. However, in this section, we emphasize lazy evaluation in the logic pro-

gramming context.

2.4.2 Lazy Evaluation in Logic Programming

One of the carliest proposals for implementing lazy evaluation in logic programming
languages was made in IC-Prolog [10). By annotating variables in the IC-Prolog pro-
gram, the interpreter suspends proving a predication if its arguments were not
sufficiently bound. A similar idea can be found in Sicstus Prolog, which provides a
freeza predicate to suspend interpretation of some goal if certain variables are not

instantated.

An cfficient technique for implementing lazy evaluation in Prolog was presented in
(43,44]. In contrast to previous approaches, this technique does not require any
change to the Prolog interpreter. Instead, pure logic programs are written in such a

way, that when SLD-resolution interprets these programs, it simulates lazy evaluation.

2.5 Integration of Logic Programming and Rewriting

-34.-

2.5.1 Logic Programming with Equality

There has always been a lot of interest in extending resolution theorem proving to
theories with equality. One classical example is Robinson and Wos’s [52] paramodu-
lation. As pointed out in [6], the problem with equality is the complexity of the refu-
tation procedure. It seems that some constraints on equality are needed to achieve the

efficient computational properties of Iogit": programs.

An important approach to implement equality in logic programming has been pro-
posed by van Emden and Yukawa [58]. They investigate how equational rewriting
can be performed within the context of logic programming. They obtain an efficient
Prolog program by compiling the equations 1o a set of Horn clauses not involving
equality. However, this approach is restricted to terminating theories. A similar

approach has also been suggested by Yamamoto [62].

Log(F), an recent approach for combining logic programming, rewriting, and lazy
evaluation has been suggested by Narain [45). It rests upon subsuming within logic
programming, instead of upon extending it with, rewriting, and lazy evaluation.
Log(F) can be used to do lazy functional programming in logic. However, unification
is not fully exploited in this system because reduction (a special case of narrowing)

has been used.

2.5.2 Narrowing

Reddy {51] proposed interpreting rewrite rules using narrowing. Narrowing an

-35.

expression is applying to it the minimum substitution such that the resulting expres-
sion is reducible, and then reducing it, In narrowing, input variables can be bound,
therefore, it can be used as basis for subsuming both rewriting and logic program-

ming. For instance, with the two rules:

append({],2) = g,
ippend([X|Y],2) = (X|appand(Y,2)].

the expression APPend(A, [c]) = (a,b,e], cannot be reduced. However, it can be

narrowed to appand(fa,b], [e]) = [a,b,c], with substitution A = (a,b].

Several proposals to yse equational languages with narrowing as logic programming

languages have been suggested. Some of these include (7,25,51,57,58).

2.5.3 Extended Unification and Functional Logic Languages

Let T be an equality theory interpreted as a rewrite rule system. Given terms ¢, and
t2, if there exists some substitution @ such that 118 =1,6 is a logical consequence of T

and the equality axioms, we say t) and £ T-unify.

Unification in ¢quational theories was first studied by Plotkin [50]. A comprehensive
Survey was given in {20]. We can mention the works of [21, 34, 39] for those equality
theories defined by a canonical term-rewriting system. Fay described in [21] a com-
plete T-unification for equational theories T which Possess a complete set of reduc-
tions as defined by Knuth & Bendix (37]. This algorithm relies basically on using nar-
rowing defined by Lankford [39]. Hullot [34) studied the relations between narrowing

-36-

and unification and gave a new version of Fay’s algorithm,

Integrating functional and logic languages amounts to modifying the unifier to move

from unification in an empty theory towards unification in an equational theory

defined by a term-rewriting system [24].

We briefly classify different extended unification approaches to implementing func-

tional languages into three categories:

(1) The extended unification algorithms use "evaluation" as procedural semantics of

(2)

the functional language. Different algorithms are proposed in the literature.
Some evaluate terms before unification, while others unify terms before evalua-
ton. For instance, given the program

factorial((,i) «.

factorial(NN*M) & factorial(N~-1M).
the goal «factorial(5X) can succeed with the substitution 8 = («X=5*M>}, if
unification with delayed evaluation is used. That is, X unifies with 5*M, and at the
end of the computation, X can be evaluated to 120. On the other hand with this
approach the goal «factorial(5,120) fails because the unification of 120 and

5*M fails,

The extended unification algorithms use "reduction” as procedural semantics of
the functional language [45, 53, 57]. Given two ground terms ¢y and ¢4, the algo-

rithm to determine the unifiability of ¢, and ¢, consists in computing the normal

-37-

form of ¢, and ¢, before unifying them. Unification with lazy reduction is possi-

ble. For example, consider the functional program

cona([]l,X) => X.

conc([X{Y],Z) => (Xjcene(Y,2)].

and the logic program
appand(X, Y, conc{X,¥)) .

The goal «append((1,2, ...,a], [b], [e | X]) will fail after one step of lazy
reduction. cone([1,2, ~..,a], (b]) yields [1 | cone([2,...,n],(b]}],
which fails to unify with (e | x]. This unification fails without evaluating

({2, ...,a], [b)), and therefore, saves many unnecessary reduction steps.

(3) 'The extended unification algorithms use "narrowing” as procedural semantics of
the functional language (8, 19,51). Given two terms r1 and ¢ (which may con-
tain variables), the algorithm to determine the unifiability of ¢, and ¢, consists in
computing the normal form of ¢, and ¢, before unifying them. Different stra-
tegies can be used to compute the normal form(s) of a given term [8,20, 22, 23].

For instance, consider the term-rewriting system defined as follows:

0 + X =>X.
B(X) + Y => 5(X+Y).
0 *»xXxX=>0,

8(X) * Y => Y 4+ (X *7Y),

The unification of ¥ + #(0) and s(s(s(0))) will give the substitution

-38 -

<N=a{a(0))>.

2.6 Conclusions

Many results from different areas has been made. New results can come from combin-

ing known results from different areas in some nice ways.

-39.-

Chapter 3

Narrowing Grammar

3.1 Introduction

Narrowing Grammar is a clear and powerful formalism for describing languages. The
semantics of Narrowing Grammar is defined by a special outermost narrowing stra-
tegy. This approach gives both a compact formal definition of Narrowing Grammar,
and a logic programming implementation. In this chapter we formally define Narrow-

ing Grammar, and illustrate some of its important features with examples.

3.2 Formalism of Narrowing Grammar

Definition 3.1

A term is either a variable, or an expression of the form fir,,...t,) where fis a n-ary
function symbol, n 2 0, and each f; is a term. A ground term is a term with no vari-

ables.

Definition 3.2

A Narrowing Grammar is a finite set of rules of the form:

LHS => RHS

where:
(1) zasis any term except a variable, and r#s is a term.

(2) If rus = fit;,....1,), then each f; is a term in normal form (see definition 3.4

below).

Definition 3.3

Constructor symbols are functors (function symbols) that do not appear as any rule's

outermost rHS functor.

A simplified term is a term whose outermost function symbol is a constructor symbol.
By convention also, every variable is taken to be a simplified term. Note that no ras
of any rule can be a simplified term. In this thesis we will assume the function sym-
bols for lists (namely, the empty list () and cons [_i_], following Prolog syntax) are
constructor symbols. Much in the way that constructors provide a notion of ‘values’

in a rewrite system, constructors here provide a notion of ‘terminal symbols’ of a

grammar,

Definition 3.4

A term is said to be in normal form if all of its subterms are simplified. Since every

variable is taken to be a simplified term, a term in normal form can be non-ground.

.41 -

Definition 3.5

Let p, ¢ be erms where p is not a variable, and let s be a nonvariable subterm of p
(which we write p =r([s]). If there exists a rule (LHS =>RHS) (which we assume has
no variables in common with p), for which there is a most general unifier 8 of LHS
and s and ¢ = (r[RHS])9 (the result of replacing s by RHS and applying the substitu-

tion @), then we say p narzow_togq.

A narrowing is a sequence of ICTIMS P 1, P2, ... Px Such that for each i, 1 S/ <n -1, Di

narrow_top;.;. A narrowing is successful if p,, is simplified.

Generally speaking, a rewrite system will specify a mechanism for selecting a subterm
5 from a given term p, to determine what to narrow. This mechanism is then used suc-
cessively with the actual rewriting mechanism to implement narrowing. Below we

define NU-narrowing, a special outermost narrowing for Narrowing Grammar.

Definition 3.6: NU-step

P —*q, or p narrows to q in a NU-step 1, is defined concisely by the following clauses:

tThe significance of the prefix ‘NU-’ in ‘NU-step’ comes from the fact that we use a special stra-
tegy io select a subterm for narrowing, and this strategy selects terms in an outermost, or Normal
order, fashion. Unification is implicitly used by this strategy.

-42-

nu _step(P,Q) nonavaz(P), (P =» Q).
nu_step(P,Q) noavar(P), (LHS => RHS), not_quitn_unify(?,mS),
functor (P, F,N), functor Q.r.N,

subterm nu_step(p, QL,N).

subtern nu step(?,Q,I,N) ¢ T =< N, arg(I,P,A), arg(z,Q,a),
pPlus(I,1, 11) . -ubt.:n_nu_atcp (P, Q,I1,N) .

subterm nu_step(P,Q,I,N) « I =< N, arg(I,Pp,A), arg(1,Q,m),
nu_stap(A,Bs), unity_rmi.ningtr,q, I.Ny.

unify remaining (NN,
] unify_rmininq(?,Q,I,N) —~ I<N, Plus(I, 1,11), arg(Il,p,a),
arg(Il,Q,A), un.tty__rminlnq(?, QI N).

not_quito_unity(x,r) !unctor(x,l',!l), !unctor(!,l',ﬂ), —unify(x,Y).

Here - is negation as failure [40]. We also write J/] £)q if p NU-narrows to qink

steps, and p & q if p NU-narrows to 4 in zero or more steps.

We can view NU-step as a special outermost narrowing. The term p narrows to qina
NU-step if either (P =>¢) is an instance of some rule (first clause), or if the replace-
ment of a subterm by the result of a NU-step yields ¢ (second clause). Note that the

NU-step definition does not permit a narrowing to begin with a variable,

We have used a logic program to define NU-step mainly out of interest in conciseness.
Note that the definition of NU-step is nondeterministic. Nondeterminism permits
NU-step to act both as an acceptor and as a generator. For instance, given the Nar-

rowing Grammar rules:

-43.

a = o,
b => [].
C = g,

giXx, []) => [].

(1) nu_step/2can act as an acceptor. The following two goals succeed:

¢ nu_step(g(a,b),g(a, [1)). « nu_step(g(a,b),g(e,b)).

(2) nu_step/2canactasa generator. With the goal
& nu_stap(g(a,b),X).

X can be instantiated to either gla, (1) or g(e,b).

Definition 3.7; NU-narrowing

A NU-narrowing is a narrowing py, p,... such that for each I, p; naITows 1o p;,; in a

NU-step. Thus we can treat NU-narrowing as the reflexive transitive closure of NU-

step.

nu_narrowing (X, X) .

Ru_narrowing(X,Y) ¢ nu_step(X, Z), nu_narrowing(zZ,Y).

Definition 3.8; simplification
A simplification is a NU-narrowing p,, p; ,..., p, if Pa is simplified and no other p; is
simplified. Again, we can treat simplification as a kind of reflexive transitive closure

of NU-step.

simplification (X, %) « simplified (X) .
simplification (X,2) « —simplified(X),
hu_steap(X,Y), simplification (Y, 2).

Here — is negation as failure [40].
NU-narrowing is not just an outermost narrowing. For instance, given the Narrowing

Grammar rules:

a = g,
b => [].
c => g,

gx, [1) => [],
then there is a simplification
g(a,b) — g(a,[]) - []
but the only leftmost outermost narrowing is the honterminating narrowing:

gia,b), gle,b), gle,),

For the rest of the thesis, unless explicitly stated otherwise, by a narrowing we mean a

NU-narrowing.

Definition 3.9:
A stream is a list of ground terms. A stream pattern is a term that has a NU-

narrowing to a stream.

-45.

3.3 Specifying Patterns with Narrowing Grammar

We illustrate how useful patterns can be developed in Narrowing Grammar with a

sequence of examples.

Example 3.1 : Regular Expressions

As we suggested earlier, regular expressions can be defined easily with Narrowing
Grammar rules:

(X+) => X,

(X+) => X, (X+) .

(X*) => [].

(X*) => X, (X%).

(X:Y) => Xx.

(X:Y) =»> ¥,

({1,L) => .

([X|L1),L2) => [X}(Ll,L2)].
The operators *+¢ and ‘#¢ define the familiar Kleene plus and Kleene star regular
expressions, respectively. ;¢ is a disjunctive pattern operator, while *,+ defines

pattern concatenation, very much like the usual Prolog rules for append.

For example, the narrowing of ((al+, [b]) tOo [a,a,b] along with the rules used in

each step of the narrowing is as follows:

Rewritten term Rule used in rewriting

({a}+, [b])
= {({[a], [a]+), [b]) (X+) => X, (X+).
= ([(al([l, [a]+}]1, [B]) ([X|L1],12) => [X](L1,L2)].
= [al{(L], (al#), (B])] ([XIL1],L2) => [x1(r1,12)}.
— [(a]([a]+, [B))] ({1,L) => L.
- [aj({a],[b])) (X+) => X.
= [a,at([], (b))} {{xiz1],12) => [(x|(r1,12)].
— [a,a,b] ({1,L) => 1,

Example 3.2 : Counting the Occurrences of a Pattern

Suppose we wish to count the number of times an uninterrupted sequence of one or
more a’s is followed by a b in a stream. This pattemn can be represented by the regular
expression ([a}+, {b]), and we can count the number of its occurrences with the

pattern
number{ {([a]l+, [b)), Total)
if we include the following Narrowing Grammar rules for number:

numbar (Pattern, Total) => numbar(Pattern, Total,0).
number (Pattern, Total, Total) => [end of filae].

numbaer (Pattezn, Total,Count) =>

Pattern, numbaer(Pattern,Total,plus(Count,l)).

Here 7otal is unified with the number of occurrences of Patterm in a stream that is

matched with the pattern number (Pattern,Total),and [end of_filae] is a special

-47 -

terminal symbol that delimits the end of stream. We assume plus(x,1) yields the

value of x+1 when simplified.

From the example above it is clear that the Narrowing Grammar rules have a func-
tional flavor. Stream operators are casily expressed using recursive functional pro-
grams. In addition, numbez is higher-order because it takes an arbitrary pattern as an
argument. The definitions for 4+, var, ;¢ « /. etc., above are also higher-order

in that they have rules like
(X+) => X,

which rewrite terms to their arguments.

Example 3.3 : Coroutined Pattern Matching
Suppose we want to specify that b precedes a and e precedes a in a string, but the
relative order of b and c is not important. We can use the pattern

pracedes([b], [a]) // precedes([c], [a])

provided that we also include the following Narrowing Grammar rules:

([X1xs] // [X|Ys]) => [X|Xs//Y¥s].

(11 /77 (1) = [].

precedes (X,Y) => eventually(X), eventually(Y).

eventually(X) => X.

eventually(X) => [_], eventually(X).

The operator // takes two patterns as arguments, narrows them to [X[Xs) and

[X1¥s] respectively, and then yields [x)xs//¥s). Thus // is a pattern matching
primitive that requires both argument patterns to generate or accept streams of the
same length, This example shows that multiple patterns in a stream can be simultane-

ously generated or accepted (i.c., coroutined) easily with 7/.

Example 3.4 : Non-Context Free Languages

Consider the following Narrowing Grammar rulest:

3_abc => ab ¢ // a_be.

ab_c => pair([a], [b]), [c]*.

a_bc => [a]*, pair([b],[c]).

pairz (X, Y) => {].

pair(X,¥Y) => X, pair({X,Y), Y.
This grammar defines the non-context-free language (a"b"c™ 120} using only
context-free-like constructions. The first rule for s_abe imposes simultaneous (paral-

lel) constraints (a”b™c* and a*b"c") on streams generated by the grammar.

3.4 What is New about Narrowing Grammar

In this section we summarize several important features of Narrowing Grammar.
Some of these features are novel in the context of grammar formalisms, while others
are not. The combination of these features is certainly new and interesting, in any

event,

t Femnando Pereira suggested this example.

-49.

3.4.1 New Model of Acceptance in Logic Grammar
Previously, we have described how Narrowing Grammar ruleg operate as pattern gen-
crators or specifiers. In this section, we show that they can also Operate as acceptors.
Our approach for pattern acceptance is to introduce a new pair of Narrowing Grammar
rules specifying pattern matching. The entire definition is the following pair of rujes
for match:

match({],8) => g,

match ([X|L], [X[8]) => match (L, 8) .
match can take a pattern as its first argument, and an input stream as its second argu-
ment. If the pattern narrows to the empty list (], mateh simply succeeds. On the
other hand, if the pattern RAITOWS to [X[1], then the second argument to match must
also narrow to [x)s]. Intuitively, matech can be thought of as applying a pattern (the
first argument) to an input stream (the second argument), in an attempt to find a prefix

of the stream that the grammar defining the pattern can generate,

Pattern acceptance is requested explicitly with match. Asa simple example, consider

the following derivation illustrating how match accepts the stream (a, a,b):

match({[a]+, [b]), (a,a,b])

—

L L A A A A |

match((([a], [a)+),[b]), (a,a b))
match(({a|([],{a]+)],(B]), [a,s,b])
match([a] (({], (a]l+), [P1)], [a,a,bl)
match ((({], {al+}, [(B]), [a,b])
match(({a]+, [b]), (a,b])
match(([a], [b]), [a, b))
match((a|([], [b])], [a b))
match((1, [b]), (b))

match([b], (b))

match(([]1, (])

(1

There is a certain elegance to this; the rules of the Narrowing Grammar by themselves
act as pattern generators, but when applied with match they act like an acceptor, or
parser. This acceptance/generation duality is familiar to users of Definite Clause
Grammar [47], and the ability to employ grammars both as acceptors and as genera-

tors has a number of uses [26].

3.4.2 Higher-order Specification, Extensibility, and Modularity

Narrowing Grammar is higher-order. Specifically, Narrowing Grammar is higher-
order in the sense that patterns can be passed as input arguments to patterns, and pat-

terns can yield patterns as outputs.

For example, the enumeration pattern number(_,) defined in Example 3.2 is

higher-order, as its first argument is a panztﬂ. The whole pattern ([a]+, [b]) can be

-51-

used as an argument, as in:
number(([al+, [b]), Total).

It is well known that a higher-order capability increases expressiveness of a language,
since it makes it possible to develop generic functions that can be combined in 2 mul-
titude of ways [18]. Asa consequence, Narrowing Grammar rules are highly reusable
and can be usefully collected in a library. In short, Narrowing Grammar is modular,
Narrowing Grammar is also extensible, since it permits definition of new grammatical

constructs, as the number and // examples showed earlier.

3.4.3 Lazy Evaluation, Stream Processing, and Coroutining

Leftmost outermost reduction is also called normal-order reduction. This outside-in
evaluation of an expression tends to evaluate arguments of function symbois only on
demand - i.e., only when the argument values are needed. That is, outside-in evalua-

tion can be ‘lazy’.

Lazy evaluation is intimately related with a programming paradigm referred to as
stream processing [46]. Note that in this thesis, a stream pattern is a term that will
narrow to a list of ground terms. We are not aware of previous work connecting
stream processing and grammars, although the connection is a natural one. Lazy
evaluation and stream processing also have intimate connections with coroutining
[27]. Coroutining is the interleﬁving of evaluation (here, narrowing) of two expres-

sions. It is applicable frequently in stream processing. For example, narrowing of the

-52-

stream pattern
match(((al+, [b]), [a,a,b])

interleaves the narrowing of ([al]+, [b]) with the narrowing of match (_-(a,a,b]}.
The sample narrowing of this pattem in section 3.3.1 shows the actual interleaving -
first ((a]+, (b)) is narrowed for three NU-steps, then matech (_-[a,a,b]) for one
NU-step, then ([a)+, [b]) for three NU-steps, then match (s [a,b]) for one NU-
step, then ([}, (b]) for one NU-step, and finally mateh(_,_) for two NU-steps.
The effect of special outermost narrowing of the combined stream pattern is precisely

to interieave these two narrowings. Similarly narrowing of the pattern
((al+, [b])

interleaves the narrowing of [a)+ with the narrowing of (_, (b]).

A specific advantage of lazy evaluation in parsing, then, is that coroutined recognition
of multiple patterns in a stream becomes accessible to the grammar writer. The
coroutining rules

([X1Xs] // [X|¥s]) => [X|Xs//¥s].

({1 77 [1) => [].
make explicitly coroutined pattern matching possible. Essentially // narrows each of
its arguments, obtaining respectively (X|xs] and [x|¥Ys]. Having obtained these
simplified terms, it suspends narrowing of xs and Ys until further evaluation is neces-
sary. An immediate advantage of lazy evaluation here is reduced computation,

Without lazy evaluation, both arguments would be completely simplified before pat-

-53.

tern matching took place; failure to unify the heads of these completely evaluated
arguments would then mean that many unnecessary narrowing steps on the tails of the

arguments had been performed.

As another example, computation with infinite structures, such as stream processing,
can be interpreted more elegantly in the context of lazy rewriting than in that of logic
programming. Suppose we want to determine the first n elements of a stream. In Pro-

log we could write:

first (0, X, []).
first (s (X), (U|V], [U|IW]) :- first (x,v.my.

stream({_[|X]) :- stream(X).

Now, if we want to compute the first element of the list computed by stream/1, we

might be tempted to use the query
?7- stream(X), first(s(0),X,Z).

However, since stream/1 might generate an infinite stream of terms, this query will
not always work. By arranging the subgoals as in Parlog [11] or Concurrent Prolog
[54], stream/1and £irst/3 can be coroutined. That is, whenever a new element is
generated by stream/1, control transfers o first/3. Thus by extending SLD-

resolution to a concurrent form of deduction we can succeed.

On the other hand, we can express this problern more elegantly with Narrowing Gram-

mar, With the definition

first (0, X) => [].

first (s (X), [U|V]) => [U | first(X,V)].
if streamis defined by
astream => [_ | streanm].

then the normal form of first(s(0),stream) is [_]. The problem is easily

addressed within the framework of narrowing,

3.4.4 Limitations of First-order Logic Grammars

First-order logic grammars do not permit direct specification of grammar rules of the

form:
goal(X) =--> ..., %X, ...

where X is a variable. Therefore, it is hard to write grammars that behave like

nunber given carlier. This is a basic limitation.

Abramson (3] has addressed this limitation by introducing a meta-nonterminal sym-
bol, written meta(X), where X may be instantiated to any terminal or nonterminal sym-
bol. During parsing, an X is to be recognized at the point where mera(X) is used in a
grammar rule. Abramson suggested two ways to implement meta(X). The first
method makes an interpretive metacall wherever meta(X) is used. (This is a special
case of the approach used by the phrase/3 metapredicate in Quintu._s and Sicstus Pro-

log.) The other approach is to preprocess the rules containing mera(X) so as to gen-

-55-

crate 2 new set of rules with no calls to mera(X). However, this preprocessing can

generate extra nonterminals and rules.

The same problem was pointed out in [42), where Moss proposed a special translation
technique by using a single predicate name for non-terminals. For instance, Moss

translates the DCG rule
goal{X) --> X
to the Prolog clause
nonterminal (goal (X),S0,8) :- nonterminal (X,50,8).

There is one final limitation. Even with the techniques suggested by Abramson and
Moss, the lazy evaluation or coroutining aspects of Narrowing Grammar are not easily
attained with first-order logic grammars. To attain them, a new evaluation strategy is
needed for these grammars, implemented via either a meta-interpreter or a compiler

like that in next chapter.

-56-

Chapter 4

Compilation of Narrowing Grammar to Logic Programs

4.1 Compilation Algorithm

We describe an algorithm to compile Narrowing Grammar to Prolog programs. It
turns out that Prolog-derivation (depth-first SLD-derivation with left-to-right goal
selection and top-to-bottom clause selection with backtracking) wiil implement NU-

narrowing on these programs, The compilation of a Narrowing Grammar rule into a

use of a suitable ‘equality’ predicate.

Algorithm 4.1 : Compilation of Narrowing Grammar to Prolog

(1) For each R-ary constructor symbol ¢, # 2 0, and for distinct Prolog variables X I

- Xn, generate the clause:

simplity(c(Xy,...,X,), ctXy,....X)).

.57-

(2) Foreachrule f(Ly,...,L,)=>RHS, letA 1» .+ . Ap,Ouz be distinct Prolog vari-

ables not occurring in the rule, and generate the clause:

simplify(fiAy,...,An),Oun :-
nu_narrow(A;, L,),

au_narrow(A,,, L,),

simpligy (RHS,Ow) .

Algorithm 4.1 does not deal with ‘impure’ features in Narrowing Grammar rules, such
as cuts. However, it is not difficult to extend the compilation to include such features.

This compilation also requires definition of the nu_narrow/2 predicate:

Definition 4.1 : nu_narzow(x,Y)

nu_narrow(X,X) :- t.
nu_narrow(X,Y) :- simplify(X,Z),

nu_narrow_subterms(Z,Y).

nu_narrow_subterms(X,Y) :-
functor(X,F,N), functor(Y,F,N),

nu_narrow_subtexms (X,Y,0,N).

Bu_narrow_subterms(_,_,N,N).

ny_narrow subterms(X,¥Y,I,N) :-
I <N, plus(I,1,I1), arg(Il,X,A),
aryg (II,Y, B), nu_narrow(A,B),

nu_narrow_subterms (X, Y, Il1,N).

This definition of nu_narrew/2 is an appr;:ximation to the NU-narrowing relation

-58-

defined in Chapter three. Note the ! (cut) is the only impure construct in this
definition. When we view the compiled program as a pure logic program, and Prolog-
derivation is replaced by SLD-derivation, then implicitly this ! will be removed from
the definition. Note also the use of ! in the definition is solely for efficiency. Once a
term (the first argument of a nu_rarrow/2 subgoal) unifies with an argument of s
(the second argument of a nu_narzrow/2 subgoal), it is not necessary (under some
restrictions described later) to consider any other narrowing from the first to the

second argument of nu_narrow/2,

The table below lists some Narrowing Grammar rules together with the Prolog clauses

resuiting from their compilation.

.59.

Narrowing Grammar Rulaes | Proleg Clausas
—_———— —— — —

match({[],S) => §. simplify(match(A,B),C) :-
nu_naxrow(a, []),

nu_narrow(B, 8),

simplify(s,C).
match([X|L], [X{S8]) => aimplify(match (A,B),C) ;-
match(L,8). nu_narrow(Ai, {X|L]),

nu_narrow(B, [X1S]),

simplify (match(L,S),C).

{(X+) => X, simplify((a+),B) :-

nu_narrow(A,X),
simplify(X,B).
(X+) => X, (X+). simplify((A+),B) ;-
nu_narrow(h, X),

simplify((X, (X+)),B).

([1,L) => L. simplify((A,B),C) :-
nu_narrow(a, (1),

nu_narrow(s,L),

simplify (L,C).
([X]11),12) => simplify((A,B),C) :-
[X[(L1l,L2)]. nu_narrow(A, [X|L1]),

nu_narrow(B, L2),

simplify([X|(L1,L2)],0).

Here we also give an example of a simplification together with one of its SLD-

derivations (this SLD-derivation is also a Prolog-derivation):

Simplification:

((al+, [B])
= (([a], {a]+), [B])
= {({al{[], [a]+)], (D))
= [al({(], (a]+), [B])}

SLD-derivation:

-61-

simplify(([a]+, [b]), Out)

simplify([a]+, [X|L1}),
nu_narrow([b}, L2),

simplify([X| (L1,L2)], out)
au_narrow{[(a], Y),

simplify ((Y,Y+), [XIL1]),

nu narrow([b], L2),

simplify([X|(L1,L2)], Out)

simplify(([a], (a]l+), [X|L11]),
nu_narrow(([b], L2),

simplify({X|(L1,12)], Out)

simplify([a]l, [Z|Z1]),
nu_narrow([al+, Z2),
simplify({Z](21,22)}, {X|Ll]),
nu_narrow([b], L2),

simplify([X|(L1,12)], Out)

nu_narrow([al+, 22),

simplify(fa|([],22)], [X|L1]),
nu_narrow([b], L2),

simplify(({X|(11,L2)], Out)

simplify([al([], (a]l+)], [X|L1]),
nu_narrow([b], L2),

simplify({X|(L1,L2)], Out)

nu_narxow([b], L2},

simplify([a] (([], [al+),12)], OQut)
simplify((al (([], (a)+),{b])]), Out)

a

-62-

Note that nu_narrow/2 subgoals are replaced by simplify/2 subgoals in this exam.
ple if the second argument of nu_narrow/2 is a simplified term with only variables as

arguments.

simplify/2 guarantees its result (the second argument) will be simplified. That is,
the function symbol of the result will be a constructor. Also, we can show that sim-
plify/‘z behaves like simplification/2. Consider a. derivation from the goal
simplity(fit}....m), Z) which uses the Prolog clause

sizplifty (f(X1,...,Xpn),0un :-

au_nazrow(X,, Y,),

nu_narrow(X,, Y,.),

simplify (RHS, Oun .
resulting from fiY;....Y) => RHS. In left-to-right Prolog-derivation with this clause,
the nu_narzow/2 subgoals are satisfied first, each effecting either a unification (first
clause of nu_narrow/2) or a recursive simplification (second clause of
nu_narrow/2). These are followed by a derivaton from the subgoal
simplify(RHS,Ow), which also recursively effects a simplification of RHS. Con-
catenating these simplifications, we find that simplify/2 effects a simplification.

We state this more formally by the following theorem:

Theorem 4.1: If X and Y are terms such that simplify(X.Y) has a successful Prolog-

derivation, then simplification(X.Y) has a successful SLD-derivation.

-63-

The proofs of this theorem and a limited converse appear later in this chapter. The
converse of the theorem is also true iff we replace Prolog-derivation by SLD-
derivation, and we restrict the use of duplicate variables on the left hand sides of Nar-
rowing Grammar rulgs in certain ways beyond the restrictions in Definition 3.2. For

instance, consider the Narrowing Grammar rules:

a => 5,

a => [].
The compiled Prolog code generated from Algorithm 4.1 is:

simplify{a,X) :-~ simplify(a,X).

simplify(a,X) :- simplify([],X).

There is a NU-narrowing a — [] but the Prolog query 7- simplify(a,x) loops. It
is well known that the depth-first evaluation strategy of Prolog is not complete, i.e.,
sometimes fails to find a solution even though one exists. The SLD-derivation stra-
tegy, on the other hand, is complete [4,28]. Therefore, in order to make the converse

of Theorem 4.1 true, we must replace Prolog-derivation by SLD-derivation.

To gain more insight about the converse of Theorem 4.1, consider another example,

given four Narrowing Grammar rules:

a =:> o,
b => e,
c m> o,

£{X,x) => [].

with these rules there is a NU-narrowing

f£f(a,b)
— f£(c,b)
- f{e,e)

- [)

With the compiled Prolog code generated from Algorithm 4.1:

simplify(a, Out) :- simplify(c, Out).
simplify(b, Out) :- simplify(c, Out).
simplify(c, Out) :- simplify(e, Out).

simplify (£{(A,B), Out) :- nu_narrow(A, X),
nu_narrow(B, X),

simplify((], Out).
the Prolog query:
?- simplify(f(a,b), Out).
is reduced to the query
?- nu_narrow(a, X), nu_narrow(b, X), simplify([], Out).

The subgoal nu_narrow(a,X) succeeds with x instantiated to a. Now
nu_nacrow(b,a) fails and the query fails because the unification of the first subgoal
au_narrow(a,X) is committed (note the use of ! in the definition of nu_narrow/2).
The cause of the failure of the subgoal ?- nu_narrow(b,a) is that b doesn’t have a
simplified form., .The same goai still fails even if Prolog-derivation is replaced by

SLD-derivation. Therefore, in order to make the converse of Theorem 4.1 true, we

must restrict the use of duplicate variables on the left hand sides of Narrowing Gram-

mar rules in certain ways.

Definition 4.2 : Non-linear Term

A term p is non-linear if for some subterm f (¢4, .. .,s,) of P (including p itself)
there exists a Narrowing Grammar ruef(Ly,...,L)=>RHS such that for j = 1,... m,

¢; unifies witth, but f (t;,...,1t,) does not unify with f (L,, ... vLm).

Definition 4.3 : Non-linear Simplification

A simplification p, soe-Pis-Pn 1S non-linear if for some I, i <n, p; is a non-linear term.

For instance, consider the Narrowing Grammar rules:

a => ¢,
b = o,
c = g.

£(X,X) => [],
Both £(a,b) and £(q,b) are non-linear terms. The simplification
£(a,b) - £(c,b) — £(e,e) - []
is non-linear. However, the goal
« simplify(f(a,b), []).

does not have a successful SLD-derivation. Therefore, in order to make the converse

of Theorem 4.1 true, we also require no terms in the simplification to be non-linear.

Then we state the converse as follows:

Theorem 4.2 : Suppose X and Z are terms. If simplification(X, Z) has a successful
SLD-derivation which does not correspond to a non-linear simplification, then

simplify(X, Z) also has a successful SLD-du-ivation.

4.2 Correctness of the Narrowing Grammar Compilation Algorithm

In this section, we prove Theorems 4.1 and 4.2.

Definition 4.4

Let X and ¥ be two terms. We write X => Y if there is a rule LHS => RHS such that

X0 =LHSO for some @ and Y = RHSS. Otherwise X=>Y.

Theorem 4.1 : If X and Y are terms such that simplify(X, ¥) has a successful

Prolog-derivation, then simplification(X, Y) has a successful SLD-derivation.

Plan of Proof : Induction on the length of a successful Prolog-derivation of
simplify(X, ¥). We show that in this derivation there is some subgoal simplify(Z,
Y), for some term Z not equal to X, such that nu_narrowing(X, Z) has a successful
SLD-derivation. Since simplify(Z, Y) has a successful Prolog-derivation, by the

induction hypothesis, simplification(Z, Y) has a successful SLD-derivation. So

-67 -

simplification(X, Y) has a successfui SLD-derivation.

Proof : By induction on the length k of a successful Prolog-derivation starting at

simplity(X, 1). If k= 1 then there is a clause
simplify(ClAL, ..., Ap), ClAr,...,A))

such that simplify(X, Y) unifies with this clause. Thus X is simplified ang

simplification(X, Y) has a successful SLD-derivation,

simplify(X, Y) succeeds, there is a clause

simplify(f(A;,.. +Ag), B) :-
au_narzow(d;, L),
nu_narrow(A,, L),

aimplify(RHS, B).
which is the compilation of a Narrowing Grammar rule
fiLy,...,Ly) => RHS.

Moreover, 8implify(X, Y) unifies with the head of the above clayse with m.g.u. 1 =
(<Ay=t;> .. cr <Ap=t,> <B=Y>) and (nu_narrowd;, L) ,...,
nu_narrow(d,,, L), simplify(RHS, B) yt has a successful Prolog-derivation of
length k- 1. |

There are two possibilities:

(1) If X => RHSt, then in this case the subgoals nu narzow(t;, L;) all succeed with

@

just unifications, using the first clause for au_narrow/2. By the induction

hypothesis, simplification(RHST, Y) has a successful SLD-derivation. Hence

simplification(X, ¥) has a successful SLD-derivation.

If X #> RHS*, consider nu_narrow(f;, L;) for some i.

(a)

(b)

If L; and 1; are unifiable, then nu_narrow((;, L;) leads to a unification, that
is, nu_narzowing(s;, L;) has an SLD-derivation,

If L; and ¢ are not unifiable, the Prolog-derivation of nu_narrow(l;, L;)
leads immediately to the goal (simpligy(r;, W), nu_narrow_subterms(W,
L;)) where W is a new variable. Since the length of successful Prolog-
derivation of simplify(r; W) is less than k, by the induction hypothesis,
simplification(t;, W) has a successful SLD-derivaton with some binding
O. Now, consider nu_narrow_subterms(W, L;)0, First notice that both Wa
and L;c are simplified (L; cannot be a variable, otherwise case (a) will
apply. L0 cannot be non-simplified, otherwise, the goal
nu_narrow_subterms(WL;) will fail). Let Wa = c(hy,...h) and LG =
chy’,...hy) where ¢ is a constructor. Thus Prolog reduces
nu_narrow_subterms(W.L;)0 to (nu_nazzrowhy, 5,")0 ..., au_narrow(h;,
k)G), and each of these nu_narrow(h, i,) for any r either leads to a
uniﬁcatibn or recursively calls (simplify(h, ,Ounc,
nu_narrow_subterms(Outh,"\G).. This recursion is finite and must ter-

minate. Since the length of the Prolog-derivation of simplify(h,.Ouf)c is

-69 -

less than k, by the induction hypothesis, simplification(h, Ounc has a
successful SLD-derivation. Similarly nu_narrow_subterms(Out.h,)G
reduces under Prolog-derivation to a finite number of simplify/2
subgoals, and each of these subgoals has a successful Prolog-derivation of
length less than &. By the induction hypothesis, each corresponding sim-
plification/2 has a successful_ SLD-derivation. The concatenation of
these simplifications is a NU-narrowing, that is, nu_narrowing(W.L,) has a
successful SLD-derivation. Therefore, together with the fact that
simplification(r;W) has a successful SLD-derivation, nu_narrowing(s;,
L;). has a successful SLD-derivation with accumulated binding 8;. Since
S&yntivdm) #> RHST, and L; does not unify with r;, therefore,
nu_narrowing(fit|...livdm)s S olivdm))®; has a successful SLD-

dertvation.

This argument can be applied to each nu_narrow(l;, L;) subgoal, for j & {1,...m].
Applying the argument sequentially we obtain nu_narzowing(fity,...m), AL 1...Ln)0

where 6 is the accumulated set of bindings 6, ...9,,.

In both possible cases, simplify(RHSO, Y) succeeds and the length of its Prolog-
derivation is less than k. By the induction hypothesis, there is a successful SLD-
derivation simplification(RHS®, Y). Since AL....L,)0 => RHSO, hence there is a

successful SLD-derivation for simplification(X, Y).

Q.E.D.

.10 -

Theorem 4.2 : If simplification(X, Z) has a successful SLD-derivation which does
not correspond to a non-linear simplification, then simplify(X, Z) also has a success-

ful SLD-derivation,

Plan of Proof:

Induction on the length of simplification(X,Z). We show that there is some Y, not
equal to X such that an SLD-derivation of simplify(X, Z) contains the goal
simplity(Y,, Z). Since simpliification(Y;, Z) has a successful SLD-derivatiqn,
then by the induction hypothesis, simplify(Y;, Z) has a successful SLD-derivation.

Hence simplify(X, Z) has a successful SLD-derivation.

Proof:

By induction on the length £ of the SLD-derivation of simplification(X,Z2).

If n =1 then X is simplified. In particular, X = ¢(¢{,....t,,) Where ¢ is an m-ary con-
structor symbol, and ¢4, .. . ,t, are terms. There is a clause

simplify(c(A1,..Ap) C(A . dAm))
where each A; is a distinct variable, so simp1ity(X, Z) has a successful SLD-

derivation.

Let n > 1 and X = fiz,,....5), where fis a non-constructor symbol and each ¢; is a

term. Assume the theorem holds for all simplifications of length less than n.

Here X is not simplified. Letting X=Y, we know the simplification has a correspond-

-71-

ing SLD-derivation that has the intermediate goals nu stepX,Y}), nu_step(Y,,¥ 2)

v OU_step(¥,_, Yk).limpliticntion(l’k. Z) where k is the least index such that
Yeop => Y, ie, 085 <k—~1, 7 #> Yi.1. Hence ¥;_, = fi81,....5m) for some terms
S11-:4Sm» and nu_narrowing(t;, s;) has a successful derivation for each i e (1,..m}.
Since Yy_; => ¥, there is some rule f(Ly,...,Ly) => RHS such that ¥;_, and
f&y,...,Ly) unify with m.g.u. 0, and Y, = RHSE. Therefore, s; and L; unify for

eachie (1,....m)}.

Therule f(Ly,...,L,)=>RHSis compiled into the Horn clause

simplify (f(Ay,...,An), Outy :-
nu_narzow(A;, L;),
nu_narrow(d,, L,),

simplity (RHS, Our) .

in accordance with the compilation rules stated in Algorithm 4.1

Consider the goal simplity(X, 2), ie., simplify(f(t),..tm), Z). It unifies with
simplify(fiA...A,), Our) with m.g.u. t=[<A1=:1>,...,<A,,,-—:r,,,>,<0u:—-2>} and its
immediate descendant in a Prolog-derivation is ¢ nu_narrow(d;, L) ..,
nu_narrowd,, L), simplify(RHS, Oun)), ie., (nu_narzow(ty, L;) ...,
nu_narrow(ly, L,), simpligy(RHS,Z)).

Since ll.np.lificntion(x. Z) does not correspond to a non-linear simplification, if for
§= L.....m, #; unifies with L;, then fi¢,,...t) unifies with the left hand side of a rule,

ALy,....Ly). Consider nu_narzrow(!;, L;) for some i.

-72-

(1) IfL;and ¢ are unifiable, au_narrow(y;, L;) has a successful SLD-derivation.

(2) If L; and r; are not unifiable, SLD-derivation reduces nu_narzow(l;, L,) to (
simplify(t;, T), nu_narrow_subtemms(T, L;)) where T is a new variable. Since
nu_narrowing(l;, 5;) has a successful SLD-derivation and its length is less than k
(L; is not a variable, otherwise (1) will apply. L; is simplified, otherwise non-
linearity property holds or (1) will apply. Since L; and s; unify, and therefore 5
is simplified), by the induction hypothesis, simplify(s;, T) has a successful
SLD-derivation with substitution © where To s simplified and
nu_narrowing(T5;)C has a successful SLD-derivation. Let To=c(hy,...h;) and
Lio=c(hy’,....,h;") where c is a constructor. Now, which SLD-derivation reduces
nu_nazrow_subterms(T, L;)C, 10 (nu_narrow(hy, i) .., nu_nazzowh;, A).
Each of the au_narrow(h,, h,") subgoals either leads to a unification or recur-
sively reduces to (simplify(h,.Oup), nu_narrow_subterms(Ouzhi,”)) in the
derivation. This recursion is finite and must terminate. Since
nu_narrowing(T.L;))G has a successful SLD-derivation of length less than k, by
the induction hypothesis, each of the simplify/2 subgoals or unifications
derived from nu_narrow_subterms(T, L;)d has a successful SLD-derivation,

and therefore, au_narzow_subterms(T, L,)G has a successful SLD-derivation.

By repeating the same argument for each au_nazrow(s;, L;), an SLD-derivation start-
ing at simplify(X, Z) contains simpiify(RHSO, Z) as a member where 8=0, - - - 6,,.
But RHSO® = Y;. Hence the SLD-derivation starting at simplify(X, Z) contains

sizplify(Y,, Z). Since the length of the SLD-derivation of simplification(Y},Z)

-73 -

is less than n, by the induction hypothesis, simplify(Y,,

2) has a successful SLD-
derivation, Thus, the

SLD-derivation of simplity(X, Z) succeeds,
Q.E.D.

-74 .-

Chapter §

Completeness Issues and Extensions of Narrowing Grammar

s.i Introduction

We would like to prove the 'completeness’ of NU-nan_'owing for Narrowing Gram-
mar. That is, whenever a term can be simplified, we wish to prove it can be simplified
by repeatedly applying NU-step. In chapters three and four, we defined Narrowing
Grammar and proposed the compilation Algorithm 4.1 to implement it. We then
showed Theorem 4.2 could be proven if we prevented simplifications from being
non-linear. It turns out that a similar requirement is necessary in order to prove the
Narrowing-completeness of Narrowing Grammar for simplified forms. We state and
prove the completeness of Narrowing Grammar for simplified forms and extend Algo-

rithm 4.1 to handle some non-linear simplifications.

5.2 Narrowing-Completeness of Narrowing Grammar for Simplified Forms

The choice of a narrowing strategy has an important bearing upon the issue of com-
pleteness. A strategy is narrowing-complete if whenever a term can be simplified to a

simplified form, it can be simplified by the use of this strategy.

-75-

We first give an example showing unrestricted use of duplicate variables among argu-

ments on the left hand side of Narrowing Grammar rules can result in "in-

completeness”. Given a set of Narrowing Grammar rules:

£2(X,x) => [].

a => b(d).

c => ba).

b(X) => b(X).

a=>d,

then £(a,c) can be narrowedto [J]:

£{a,c)
narrow_to
narrow_to
narrow_to

narrow_to

2(b(d),c)
£(b(d),b(a))
£(b{(d),b(d))
(1.

However there is no corresponding NU-narrowing. In fact, any NU-narrowing starting

at £(a, c) must be non-terminating;

£(a,c)

= £(b(d),e)

- £(b(d},b(e))}

= £(b(d),b(e))

- ...

-+ ...

The major problem here is the unrestricted use of duplicate variables in the rule

-76 -

2(X,X) => []1. The term £(b(d),b(e)) does not unify with the left hand side of
the rule £(X,X) => [). By the second clause of NU-step, b(d) or b(a) is selected

to be NU-narrowed. Either case will lead to a non-terminating narrowing.

In order to apply the rule £(x,x) => (] for the term £(b(d),b(e)), the equality of
b(d) and b(e) needs t be derived. The problem of establishing the equality of two
terms is, in general, undecidable. It turns out that if we restrict the use of duplicate
variables as described in Theorem 4.2, we have an important theorem regarding the
narrowing-completeness of Narrowing Grammar for simplified forms. That is, when-
¢ever a term can be simplified, it can be simplified by repeatedly applying NU-step.

We state this formally as follows:

Theorem 5.1: Narrowing-completeness of Narrowing Grammar for simplified
forms.

Let Dy be a term and Dy,D,,...D, be a successful narrowing with no non-linear
terms. Then there is a simplification Dg,E ,...,.En, With no non-linear terms such that

E,, narrows to D, in zero or more steps.

Example 5.1

Consider the Narrowing Grammar rules:

-77-

£{X,7) u» al(X,¥).
a =],

b => [].
£{a,b) has a successful narrowing to e([], []) :

f(a,b)
narrow to £([),b)
haxzrow_to £([1,I[))

Rarrow_to e({),[)).
"Then £ (a,b) has a simplification with no non-linear terms
f(a,b) = c(a,b)
such that

c(a,b)
narrow_to c({],b)

narrow_to e((], [1).

For the rest of this section, we prove Theorem §.1. The proof here is adapted from the
proof of rcduction-completcness of Log(F) [45] with many important modifications

and simplifications.

Definition 8.1 : R(G,H,p,q)

Let p, ¢, G, H be terms and G=>Hbea Nanowing'Grammar mle.lThe predicate
R(GH p.q) is true if either P and q are unifiable, or there exists a nonvariable subterm

s of p (which we write P = r{s]) such that G unifies with 5 with m.g.u. 6 and ¢ =

-78.

(r{H1)0. If multiple occurrences of 5 occur in P, Ze10 Or more occurrences of s are

simultaneously replaced by H.

Definition 5.2

We consider sequences of integers which represent an access path in a term, with the
empty sequence denoted by A. Concatenation of sequences is denoted by ".", and the
set of finite sequences of positive integers by N*. The elements of N* are called

occurrences. The set O (t) of occurrences of a term t is defined to be:
(1) AeOQ®.

(2) iue O()iff tisof the form f(t1,...,4,....5,).andu e O(;) forsome 1 S

sn

Definition 5.3
The subterm of ¢ at occurrence u [with u € O (1)], denoted by t@u, is defined to be:
(1) rif u=A.

(2) y@vifrisof theform f(¢y,....4,...,2,) and u=i.v withie Nandv e N*.
Definition 5.4

The replacement of the subterm at occurrence u in ¢ by 7, denoted ¢ {uer], is defined

to be:

-79.-

1) ¢ ifu=A.

(2) f(:l,...,r,-[ve-r'],...,r,.)ifr=f(r1,...,:,-,...,r,.) and u=i.v withi e NMand v

€ N*,

Lemma5.1:LetX,,. X, be variables, G H,t|...., ty,t1",....ts" be terms not containing

X1reeXny RGH,C(t1,.ty),c(t1 . t,7) be true for some constructor ¢. Let ¢ =

(<Xy=t1>,..,XKp=t,>} and T = (<X 1=41">,...,<X,,=t,">) be substitutions. Let A be a

term, possibly containing variables, Then R(G.HMoM1) is true,

Proof : By structural induction on M.

(1) M is a variable X;. Then Mo =t and Mt=y, Therefore, R(G.HMoM7) is
true.

(2) M s a O-ary function symbol. Obviously, R(G,H.M M) is true.

(3) M =fY,,..Yy). Assume the lemma is true for Y,,...,Y,,, that is, for each i e
(L....m}, R(GHY;0Y;t) is wue. Since f¥1,.¥w)o = fiY;0,.Y,0),
YY)t = AY1,...Y,t), and R(GH.c(t),..).c(81 o nty?)) is true,
R(G.HMoM7) is true.

Q.E.D.

Lemma 5.2; Assume

-80-

(1) f@n....t)andf(s,’,...,¢4") are terms

(2) R(GH,1.1")is wue foreachi e {1,....n}

3) f(Ll,...,L,.)isthcheadofsomeNarrowingGrammarmle

4) f(tl,....t,,)0'=f(L1,...,L,.)Gforsomem.g.u.o

5 f(tl’,....t,’)t=f(L1,...,[m)tforsomem.g.u.‘:

Then for each variable X that occurs in f (L1, . . ., L), if <X=s> & & and <X=5'> & T,

then R(G,H,5.5") is true.
Proof:
Consider L; for some i.
(1) L;is a variable.
<Li=t;> € 0 and <L;=f"> € 1, by assumption, R(G,H,1;.5;"} is true.
(2) L;is not a variable.
By assumption, both ¢; and ¢; unify with L;.
(2.1)If £; and & are unifiable, then for each variable X occurring in L;, if <X=5>

€ O and <X=s5"> € T, then s and s’ unify, therefore, R(G.H.5.5) is true.

(2.2)If ¢; and ¢’ are not unifiable, since R(G,H.1;,1;") is true, ¢; contains at least

S RAR LAY

one outermost non-simplified subterm that unifies with G, and G=>H is a
Narrowing Grammar rule. For each such subterm #;@p of ¢;, if L;@p exists,
it must be a variable because it unifies with the non-simplified term ;@p.
Therefore, <L;@p=t;@p> € 0, <L;@p=t;’@p> € T, and R(GH.1;@p.;' @p)

is true.

-81-

By assumption (4) and (5), both t; and ¢;” unify with L; for any j, therefore, the same
argument can be repeated for any L;. For each variable X occurring in f (L, . . . vLa),

if <X=5>€ 6, and <X=s"> € 6, then R(G.H,55) is rue.

Q OEI D-

Lemma 5.3:

If L; is a term in normal form and R(G,H.,¢;,2;") is true such that t;" unifies with Z; but ¢;
does not unify with L; and #; does not unify with z;”, then nu_narrowing(f;L;) has a
SLD-derivation with some substitution © provided that no non-linear terms will be
generated.

Proof ;

Since ¢; does not unify with both t;” and L; and L; is in normal form, there exists at
least one outermost non-simplified subterm t;@p which does not unify with L;@p.
Since R(G,H.t.4") is true, R(GH.4;@pt;’@p) is true. Also since 5;@p is not
simplified, L;@p is in normal form, #,@p does not unify with L;@p, and t;’@p unifies
with L,@p, then 4’@p is simplified, therefore, r,@p => r;’@p. That is,

nu_step(!;.5;[p « t;’@p]) has a successful SLD-derivation.

Repeat the same argument for any outermost non-simplified subterm (say occurrence
r) of 4[p « 1;*@p] which does not unify with L;@r. Since R(G.H,1;,1;"), in a finite
number of steps, #; NU-narrows to #’. Also, L; unifies with t;’, therefore,

nu_narrowing(f;,L;) has a successful SLD-derivation with some substitution 6.

-82-

Q.E.D.

Lemma 5.4:

(1) If Rey.ticyilislig st iS a term and ALyLioy LiLiyyoLy) => RHS is a
Narrowing Grammar rule such that I; does not unify with L;

(2) nu_step(s;f;") succeeds with substituu‘én 0.

Then nu_steap(fit1,..tic1 Lidistsdndy SE1wedio) 5 kis1 dn)) SUCCeeds with substitu-

tion 0.

Proof :

Since by assumption t; does not unify with Li, flt).....lio1,0idis1,otn) does not unify

with ALy,...Li_y.LiLiy....L,). By the second clause of NU-step, when narrowing

S seeesbim1 i sis 1 seensln), 2 €aN be selected to be NU-narrowed. Since nu_step(l;, ;)

succeeds with substitution 8, nu_step(fit],...ti_1 ;i 41 mln), Fy ki1 8 i)

succeeds with substitution 9.

Q.E.D.

Theorem 5.0:
Assume

(1) R(GH.E,F,)istrue, and

-83-

(2) nou_step(F, F;) succeeds.

Then there exists some term E, such that an NU-narrowing from E; two E 2 and
R(G,H.E3F ;) is true provided that no non-linear terms in an NU-narrowing from E,
to £, and ﬁ'omFl toF,.

Proof:

NU-narrowing

We have to show that R(G.H,E 2,F 2) is true. We proceed by structurat induction on

E;.

Suppose £ is a O-ary function symbol. If E 1 = Fy then E|,F, is an NU-narrowing
and by setting £, = F, we satisfy the theorem, since then trivially R(G.H.F, F,) is
true. If £y # F then since R(G,H.E | ,F) is true, £y = G and £ |=>F . Thus, there is

an NU-narrowing £1,F | ,F, and R(G,H,E,,F ;) is true if we take Er=F,.

Otherwise, let E| = f(r},...,,). Assume the theorem is true for every proper sub-
term of f(ty,...,5,). If E, unifies with F,, then EF, is an NU-narrowing and
R(GH,E3,F,) is true if we take E; = F5. Otherwise E'; does not unify with F,.IfE,
unifies with G then since R(G.H.E,F,) is true, E =>F. Thus, there is an NU-

narrowing E | ,F |,F 3, and R(G,H.E,,F ;) is true if we take E4 = F 5.
We now arrive at the case where £ does not unify with Fy, but G does not unify with

-84 -

E,.

Hence since R(G.H.E | ,F,) is true, F, = ft)' .ta”) where for every k e (1,...,n},
R(G H,t,1,") is true. We consider the following cases:
(1) Fi=>F,

There exists a Narrowing Grammar rule ALy,...L,) => RHS such that F{ unifies

with AL,,....L) with m.g.u. tand F5 = RHSt. There are two cases:

(1.1) £, unifies with AL,,....L,,) with m.g.u. 0. Thus E, => RHSQ, so if we let
E; =RHSo then E,,E, is an NU-narrowing. Of course F, = RHS*. By
Lemma 5.2, if a variable X occurs in AL,,....L,), if <X=s> e g, and <X=5>
€ T, then R(G.H.5.5") is true. Since R(GH,E | ,F,) is true, E, and F, do
not contain any variables in AL,,...L,), hence by Lemma 5.1,

R(G,H.E.F3) is true.

(1.2) £, does not unify with f(L,,....L,). By the assumption that no terms is
non-linear, there exists some i such that ; does not unify with #;. Summar-
izing what is known in this case: L, is in normal form, R(G.H . 1) is true,
and ;" unifies with L; but #; does not unify with Z;. Since R(GHE | Fy)
and E, and F, do not unify, ; and 7’ do not unify. By Lemma 5.3,
nu_narrowing(t;.L;) has a successful SLD-derivation with substitution ;.

By repeatedly applying Lemma 5.4, nu narrowing(ff1..fi.ip).

f#1.e.Lj.tn)) has a successful SLD-derivation with substitution 6;.

-85 -

There exists an NU-nan'owingEl =P, Py, Py, ..., P, such that for each j,
P; = f81,....5,), and for each s5; e (51,08,), either Sk 1S It or 5, unifies
with L;. Moreover, the NU-nan-owing from Pito Pjy is derived by select-
ing some s, e {$10..54) such that Sy does not unify with L,, and
fu_narrowing(sy, Ly) has a successful SLD-derivation. We also have for
¢ach j, R(G,H,P,-,F 1) is true. Since 2 is finite, this NU-narrowing cannot be
infinite and must end in P, such that P unifies with ALy,...L,) with sub-
stitution 0'; Then P, => RHSq. Hence we have the NU-narrowing
PirPm RHSS. We know that F, = RHS. If we take £, = RHSG and we
know that R(G.H E 1-F1)is tue, £, and F 1 do not contain any variables in

AL\,....Ly), then by Lemma 5.1, R(G.H.E, F,)is true.

(2 Fy=#>F,
We are given that au_step(F | F3) succeeds. We now have to find an E, such

that Au_naxrowing(£ E3) has a successful SLD-derivation and R(GHE, F))

is true.

Since nu_at.p(F1;F2) succeeds and F; => F,, by the second clause of NU-
step, there is a rule ALy,..L;,....Ly) => RHS such that F does not unify with
ALy,..L,...L,). Here F 15f0¢1’....4x"). Since no terms is non-linear, there exists
Some outermost subterm 1;’@p of t;" for some i, and a Narrowing Grammar rule
#=>v such that: x and s, ‘@p unify with mg.u. 0, au_stap(s;’y; I « v]) succeeds
with substitution @, and Fa = flty’,.. iy “4lp « VIdisl sntn)B. We already

have R(G,H 1,,1;"). Since I; is a proper subterm of feantiyty), by the induction

-86-

hypothesis there is an NU-narrowing d,.d,,...d,, 7 2 1, such that ti=d, and
R(GH A, (t;//[p « v])O). Since dy...d, is an NU-narrowing, by repeatedly
applying Lemma 5.4, nu_narrowing(fit)...Li—1.d1 011,00,
SOy bic1 dptisyoda)) has a successful SLD-derivation with substitution 8,.
Take E4 = f(ti,...,t.-..l Wrilisentn)8,. We already have F, = fnti’lp «

V],....tx")0 and for each k, ki, R(G.H 23,4, is true. Hence R(G.H.E 2.F 7) is true.

Q.E.D.

Lemma 5.5

Let R(G.H.E(,F) be true and Fo,F,....F, be an NU-narrowing with no non-linear
terms. Then there is an NU-narrowing Eq,....E1,....E,, With no non-linear terms such
that R(G,H,E,, ,F,) is true.

Proof :

By induction on the length n of Fo,F1,....F,. If n =0, the lemma is obvious. Suppose
the lemma holds for NU-narrowings of length less than n. Since ‘nu__stop(F oF 1)
succeeds and R(G,H,Eq,F) is true, by Theorem 5.0, there exists an NU-narrowing
Ey,...Ey with no non-linear terms such that R(G,H,E ,F) is true. By the induction
hypothesis, there exists an NU-narrowing E;,....E, with no non-linear terms, such
that R(GH,E,, F,) is true. Hence there exists the NU-narrowing Eg,....E 1 ,....Ep, With

no non-linear terms such that R(G,H,E,, F,) is true.

Q.E.D.

-87-

Theorem 5.1 Narrowing-completenm of Narrowing Grammar for simplified

forms,

Let Dy be a term and Do.Dl,....D,. be a successfu] narrowing with no non-linear
terms. Then there js 5 simplification Dy.E,,....E,., with N0 non-linear terms sychy that

Em narrows to D, in zero or more steps,
Proof:

By induction on the length » of Do.D,,...,D,.. En=0, the theorem is obviously true,

Letn>0and assume the theorem holds for narrowings of length < 5. Then there is a
simplification DI,Fz,...,FP such that F, narrows 1o D, in zerp or more steps. Since
Dy narrow_to D, by Definition 3.5, there exists 3 Narrowing Grammar nyle G=>H
such that R(G,H,DO.D 1) is true. By Lemma 5.5, there is an NU-narrowing

Dy,E, £y such that R(GH.E,,,FP) is true. There are NOW two possibilities:

() If E, is simplified, take E, = E,, s0 Dy.E Loy is a simplification. Since
R(GHE, »Fp) is true and £, narrows o D, in zero or more Steps, therefore £,

narrows to D, in zero or more steps.

2) If E, is not simplified, since R(G,H,E,,.F,) is true and Fp is simplified, Ey=> F,.
Take E,, = F,, and Dy,E, kg IS & simplification, and therefore E,, namrows to
D, in zero or more steps.

Q.E.D.

-88.

5.3 Compilation Algorithm to Handle Duplicate LHS Variables

Both Theorems 4.2 and 5.1 assume that no NU-step in a simplification is non-linear.
In this section, we extend Algorithm 4.1 to handle some cases where this assumption
does not hold. One interesting aspect of the extended compilation algorithm is its use
of a suitable "equality" predicate equal(x,Y), which succeeds when both xand ¥
are equal under an appropriate equality theory. In this section we investigate the ordi-
nary rewriting situation [33] where the equality predicate essentially permits different
orders of narrowings among terms, but in other situations users may find it desirable

| to define equality in a way that has nothing directly to do with narrowing.

Example 5.2 Given the Narrowing Grammar rules;

£{X,x) => [},

a => b,
There is a NU-qarrowing
f{(a,b) - £(b,b) = [}
Consider the Prolog code generated from Algorithm 4.1:

simplify(£(Al,A2), Out) :- nu_narzrow(Al, X),
nu_narrow(A2, X),

_ simplify([], Out).

simplify(a, Out) :- simplify(b, Out).

The Prolog query

-89.-

?- lilplity(f(a,b), Out) .

fails even though a and b are equal in the sense that a can be narrowed to b. The
failure of the Prolog goal is due to the fact that the Prolog subgoals are executed from
left to right. The first subgoal nu_naxrrow(a,X) effects a unification and the second
subgoal au_nazrow(b,a) fails. If the order of execution of these two subgoals is

reversed, the Prolog query will succeed,

The extended compilation algorithm translates the Narrowing Grammar rules to Pro-
log clauses by generating some equality predicates when duplicate variables occur on

the left-hand side of the Narrowing Grammar rules. For instance, the Narrowing

£(X,X) => [].
is compiled into something like this:

simplify(f(u,n), Qut) :- nu_narrow(Al, X1),
nu_narrow(A2, x2),
equal (X1, Xx),
equal (X2, x),
simplify([], out).

Here the user must provide an appropriate definition for equal/2.

Algorithm 5.1 : Extended Compilation Algorithm to Handle Duplicate LHS Vari-

ables

TSR

itgin

(1) For each nr-ary constructor symbol ¢, n 2 0, and for distinct Prolog variables 4,

.. Ay, generate the clause:

’iwli!y‘ C(Al'--o,A")' c(Al,...,An’ ,.

(2) Letf(Ly,...,Ln)=>RHS be a Narrowing Grammar rule. Replace each of the
(say n) occurrences of a Prolog variable X in f (L,,...,L,) by X;,.. X, respec-
tively where X ;... X, are distinct Prolog variables not occurring in the rule. Also
letAy...Apy, Out, be distinct Prolog variables not occurring in the rule, and gen-

erate the clause:

simplify(fiAy, ..., Ay,),Ou) :-

nu_narrow(A, L)),

. s ay

nu_narrow(A,, L,),
equal (X, X),

.oy

equal (an X),
simplify (RHS, Our) .

If there are no such variables X y,....X,, then the equal/2 subgoals are omitted.
The user must define a predicate equal(x,Y) that succeeds when X and ¥ are equal

under an appropriate equality theory. We propose three different definitions for

equal/2:

.91 -

() Equality as uniiapitisy,

This definition is implicit in the compilation Algorithm 4.1 That is, if equality
as unifiability is used, Algorithm 5.1 reduces to Algorithm 4.1,

(2) Equality vig normal form:
This definition is appropriate for terminating theory. Thar is, €very term has itg
normal forms), *qual(x,x) first checks the unifiability of x ang Y. If this

fails, it computes a normal form of xand y before unifying them.

-

equal(x,X) :- .

equal (X, Y) :-
normal form(X, 2),

normal form(Y,Z).

normal form(A,B) :-
aimplify(a,C),
functox(C,F,N),
functor(s,F,N),

normal form args(N,C,B).
normal form args(0,A,A) :-).

normal form args{(I,A,B) :-
arg(I, A, C),
arg(1,8,D),
normal form(C,D),
Il is I-1,

normal form args(Il,A,B).
(3) Equality via lazy confluence:
This definition of equal(x, Y} tries to coroutine the narrowing of x and ¥ until
they become unifiable. In many situations, equality via lazy confluence is more

efficient than equality via normal form because the computation of a normal

form of a term can be very expensive.

-93-

equal(X,Y) :- conflate(X,Y).
conflate (X, X) :- !,

conflata(X,¥Y) :-
functox (X, F,N),
functox (Y, F,N),

args_conflatae(X,Y,0,N).

conflate(X,¥) :-
simplify(x,X1),
{X1=Y => truae;
simplify(Y, Y1),
{(X=Y1l ~-> true;
{X1=¥l -> true;

(QL£L(X, X1) ;difL(Y,Y1)) -> conflate (X1, Y1)

diff({X,X) :- 1, fail.
difg(_,).
args_conflate(X,Y,N,N).

args_conflate(X,Y,M,N) :~
Ml is M+l,
arg(Ml, X, x1),
arg(Ml,Y, Y1),
conflate(X1,Yl),

args_conflate (X, Y, M1, N) .

Example 5.3 : Consider the following Narrowing Grammar rules:

£(X,X) => [].
a = g,
b a> a.

c => [e].
and the Prolog query

?- simplify(f(a,b),Out).

(1) If equality via lazy confluence is used, the Prolog query succeeds because both a

and b have the simplified form [e].

(2) If equality via normal form is used, the Prolog query will loop becausq neither a

nor b has a normal form.

(3) If equality via unifiability is used, the Prolog query will fail because a and b are

not unifiable,

The point to be made here is that if some terms are non-linear, NU-narrowing is not
complete. However, if an appropriate equality is defined, simplify/2 has a success-

ful Prolog-derivation.

5.4 Conclusions
The Narrowing Grammar formalism together with its implementation were presented
in chapters three and four. The correctness of the compilation algorithm based on the

assumption that no terms is non-linear. In other words, when we consider the extended

-0§.

if the basic assumption (no terms is non-linear) does not hold, the extended compila-
tion algorithm allows the user to define some appropriate equality predicate. In this
case, the choice of equality predicate has an important bearing upon two issues: com-

pleteness and efficiency.

-96-

Chapter 6

Performance Considerations

6.1 Introduction

In chapter four, we proposed Algorithm 4.1 to implement Narrowing Grammar. This
implementation is simple, and is not optimized. An interesting open problem is to
devise improvements for the implementation given there. Efficient implementations
are possible in many cases. We first apply the popular program transformation tech-
nique called partial evaluation to Algorithm 4.1 in order to generate more efficient
Prolog code from a given set of Narrowing Grammar rules, We then concentrate on
efficient classes of Narrowing Grammar, called Greibach Grammar and Tail-recursive
Grammar. Partial evaluation can, in many cases, be applied to transform Narrowing

Grammar rules to Greibach Grammar rules,

6.2 Partial Evaluation
A partial evaluator is an interpreter that, with only partial information about a
program’s inputs, produces a specialized version of the program which exploits partial

information [35, 36].

Partial evaluation of a Prolog program is accomplished mainly by instantiation of the
parameters of a Prolog predicate by propagating values for top-level formal arguments
through the Prolog clause (execution of unification at compile time), and reduction of
the number of logical inferences by opening calls. The basis of the partiai evaluation

system is 2 pure Prolog meta-interpreter:

partial eval(true,true).

partial eval((G,Gs), (H,Hs)) :-

partial_eval(G,R), partial_aval (Gs,Hs).

partial eval(G,H) :- clause(G,H1), partial eval(Hl,H).

This simple partial evaluation system works correctly only for non-recursive, cut-free
and deterministic clauses. The extension of the partial evaluation system to handle
nondeterministic clauses is described in [59). The major idea is to collect all the
clauses and treats the resulting list as an OR-list. Consider an example from [59]

which queries a simple database about family relationships:

-98 -

grandparent {(X,¥Y) :- grandmother (X, Y) ,
grandparent (X,Y) :- grandfather(X,Y).

grandmother (X, Y) mother (X, 2}, Parant (Z,Y) .
grandfathex(X,¥Y) :- tathnr(x,z), pareant (Z,Y).

Pazent(X,Y) :- mothex (X, Y) .
Parent (X, Y) :- father(X,Y) .

mother (anna, violattae) .
mother(violatte, jan) .
Dother(viclatte, stan) .
mothn:(hanziftto,h.nry).

mothor(h.n:iattc,ltanis).

Assume the tuples for the father/2 relation are not available at compile time. Con-
sider the query 2- grandmothex (X, jan) . The program resulting from partial
evaluation is:
gtandnothcr(lnna,jan) = {(truae; tlth.:(violotta,jln)).
g:andnoth.z(violqtto,jln) := father(jan, jan).
g:andmothcr(violcttc,jan) := father(atan, jan).
grlndnoth.:(h.nrictto,jan) i~ father (henry, jan) .
q:andmothn:(hunrictt.,jan) i~ father(stanis, jan).

These results are accomplished mainly by forward propagation of values through the

program and applying some simplifications on the resulting clauses.

6.3 Optimization of Algorithin 4.1 by Partial Evaluation

The compiled code generated from Algorithm 4.1 can be optimized considerably by
elimination of some procedure calls, yielding substantially faster code. Consider
Definition 4.1 which is used in Algorithm 4.1:

nu_narrow(X,X) :- 1,

nu_narrow(X,¥Y) :- simplify(X, %),

nu_narrow_subterms(Z,Y).

nu_narrow_subterms (X,Y) :-
functor(X,F,N), functor(Y,TF,N) .

nu_narrow_subterms(X,¥Y,0,N).

nu_carrow_subterms(_, ,N,N).

nu_narrow_subterms (X, ¥, I, N} :-
plus(I,1,Il), arxg(Il,X,A), arg({Il, Y,B),
nu_narrow(aA,B),

nu_narrow_subterms (X, Y, I1,N).

By Definition 3.2, each argument of z#s is in normal form. That is, the second argu-
ment in each call to nu_narrow/2 is initially in normal form. On the other hand, sim-
Plify/2 guarantees its second argument is simplified. Therefore, simpiify/2 is

computationally less expensive than nu_narrow/2.

At compile time, the nu_narrow/2 subgoals for each argument of rss are partially
evaluated using the definition of nu_narrow/2, The idea is to check, at compile time,
the types of arguments of ras (the second argument of each nu_narrow/2 subgoal).
For instance, if the second argument of nu_narrow/2 is a fresh variable, then the

nu_narrow/2 subgoal can be replaced by a unification by the first clause of

- 100 -

nu_narrow/2. Similarly if the second argument of nu_narrow/2 is a simplified term
with only variables as arguments, then nu_nazrow/2 can be replaced by simplify/2

and will then yield substantially faster code.

Algorithm 6.1 gives an optimized version of the compilation algorithm by partial

cvaluation of nu_narrow/2, in Algorithm 4.1.

Algorithm 6.1 : Optiiized Compilation Algorithm

(1) For each n-ary constructor symbol ¢, n 20, and for distinct Prolog variables X {,

.. Xnp, generate the clause:
simplify(¢(Xy,...,Xp), cXy,...,X,)).

(2) Foreachrule fiLy,..Ly,)=>RHS, letA,...An.Out be distinct Prolog variables not
occurring in the rule. If L; is a variable, let Q; be rrue and replace A; by L;. If L;
is simplified with only variables as arguments, let Q; be simplify(A;, L,). Oth-

erwise, let Q; be nu_narrow(4,.L;). Generate the clause:

simplify(f(Ay,...,Apn),Outy :- Qy,...,Qn, simplity (RHS, Out) .

We give here some examples of the partially evaluated code generated from Algo-
rithm 6.1 and the reader can compare this with the code generated from Algorithm 4.1 _

in chapter four.

- 101 -

Narrowing Grammar Rules Pxolog Clausas

match ([],8) => g, simplity (match(A,B),C) :-
simplify(a, (}),
simplifty(B,C).
match ([X[L], [X[S]}) => liwlify {match{A,B),C) :-
match{L, S). simplify (A, [DIE]),

simplify(B, (DIP]),
simplify (match (X, r),C).

(X+) = %, simplify (A+,B) :-
simplify(A,B).

(X+) => X, (X+). simplify (A+,B) :-
simplify((A, A+),B).

{([],L) => L. simplify((A,B),C) :~-

simplify(a, (1),
aimplify(B,C).

([X|L1],L2) => [X!(L1,L2)]. aimplify((A,B),C) :-
simplify (A, [D|E]).
simplify({D| (E,B)],C).

6.4 Efficient Classes of Narrowing Grammar

Efficient classes of Narrowing Grammar can be defined in terms of time and space.
These classes of grammars are very important, for example, in that they can be used
for analyzing streams that are arbitrarily long without concern about overflowing
available stack space or using excessive arnounts of time (a necessity in practical

stream analysis). In this section, we define two important classes of Narrowing

-102 -

Grammar, Greibach Grammar and Tail-recursive Grammar, and demonstrate how par-
tial evaluation can, in many cases, be applied to transform Narrowing Grammar rules

to Greibach form.

Definition 6.1

A Narrowing Grammar rule zgs => Rras is Greibach if res is simplified. A Nar-

rowing Grammar is Greibach if every rule is Greibach.

Example 6.1 : Consider the Narrowing Grammar rule for the Kleene Plus pattern
pattarm => {a]+, [b].
An equivalent Greibach Grammar is
pattern => [a,b]; [a|pattern}.
The second grammar is computationally more efficient than the first one.
Space complexity, particularly the depth of stack, is especially important in our imple-
mentation of Narrowing Grammar. Let us consider the classical factorial examplet:

factorial(l) => 1.

factorial(N) => N * factorial (N-1).

The depth of stack grows linearly with ¥. However, we can rewrite the definition of

factorial as followsz:

T N-1 yiclds the value of u-lwhmnmphﬁed.+md'redeﬁnedmhﬂy
$ If-then-clse is defined as follows:

if{trve,X,Y) => X.

if(false,X,Y) => ¥,

- 103 -

factorial (N) => factorial(1,1,W),
factorial (Result,Counter,N) =>
if ((Countax>N),Rasult, factorial (Countar*Rasult, Countazr+l,N)).
which requires constant stack space. We have applied the well-known optimization
that converts tail-recursion to iteration [1]. One of the most important applications of
tail-recursion optimization here is in Narrowing Grammar that specifies aggregate
operations. For example, given the following Narrowing Grammar rules:
count (Result) => count (Rasult, 0).

count (Result, Rasult) => [end of fila].

count (Result, Count) => [_ | count {(Result, Count+1))].

sum(Result) => sum(Result, 0).
sum(Result, Result) => [end of fila).

sum(Result, Current) => [Value | sum(Rasult, Current+Valua)].

The amount of stack space required for these grammars is constant.

Definition 6.2
Let P be a term.
cail(P) = tail(Q,) 1fP=('Q1,Q2)
(functionsymbol(P)/arity(P)} otherwise
Definition 6.3

The connection graph for a Narrowing Grammar is a labelled graph whose vertices

are the 1ss terms of the Narrowing Grammar, and for which there exists an edge

-104 -

<LHS,LHS, > if there exist rules in the Narrowing Grammar

U{SI => RHS
LHS, =» .,

where some (not necessarily proper) subterm of RHS unifies with LHS,. The edge is
labelled with the value O if the subterm of RHS that unifies with LHS 2 18 tail(RHYS),
and with 1 otherwise. Note that we permit self-loops in this graph, i.c., edges from
some vertex LHS | to itself.

A Narrowing Grammar is called tail-recursive if its connection graph is acyclic or ail

the edges in any cycles are labelled with the value 0.

Example 6.2 : First Come First Served Scheduling Policy

Consider an application to queucing systems. Suppose we wish to gather statistics on
the time customers spend at specific servers. For simplicity, assume that the type of
server is FCFS (First Come First Served). Arrivals and departures of customers to a

specific server are captured in a stream whose items have the format:

a(Tima)

d(Time)

For computer system performance analysis, we define turnaround time be the interval
from the time of submission to the time of completion. We can evaluate FCFS perfor-

mance criteria with Narrowing Grammar:

- 105 -

tctl_t (Rasult) => gop, t({1, []1,Rasult) .

fofs tt_,hlule,hsult.) = [cnd_ot_tilc] .

foefs_t (Stata, Current, Rasult) =>
(a(T) | fors ¢ {(State, [T7]) ,Cuzmt,hlult)] .

fefa t([T0 18] ,Cu::.nt,hlu.‘l.t) >

{d(T) | fofs_t(3, [7-T0 |Current] +Rasule)],

These Narrowing Grammar rules (except the first rule) are Tail-recursive Greibach

Grammar,

Example 6.3 : Context-free Languages

Consider the Narrowing Grammar rules for the language (g”b" 15 > 0}.

ab => [a], ab, {b].
ab => {a], [b].
The amount of stack Space grows linearly with the length of the input stream, On the

other hand, if we rewrite the Narrowing Grammar rules to Tail-recursive Greibach

Grammar:

ab => 5(0).

a{(Count) => [a | a (plus(Count, 1))}.
a(Count) => (b | b(ll.'lnus(COunt,l))].

b(Count) => b | b(niau.(Count,l))].
b(0) =>» 1],

which requires only constant stack space.

- 106 -

6.5 Partial Evaluation to Greibach Grammar

Consider the Greibach Grammar rule
LHS => [@ ..., | RHS].

the prefix of {a;,..d, | aRHS] is simplified and can be directly applied to mateh for

pattern matching. That is, a grammar in Greibach form is efficiently implementable,

In this section, we apply partial evaluation to transform a given set of Narrowing
Grammar rules, if possible, to Greibach form. At compile time, with some partial
information about some patterns, the partial evaluator produces a specialized version
of the grammar rules which exploits the partial information. The basic techniques are
execution of the unification at compile time and reduction of the number of NU-steps

by opening calls.

For instance, given the Narrowing Grammar rules:

P=>q, .
q => [a].

r => [b].
and the pattern p, the Narrowing grammar rules resulting from partial evaluation is:

P=>[a] r].

r => [b].

The basic parﬁal evaluation system described in section 6.1 works only with deter-

ministic rules. Below we describe how Narrowing Grammar rules, in general, are

- 107 -

partially evaluated:

Partial Evaluation of Narrowing Grammar

(1) The partial evaluation System takes a term, say X, as input, computes its

simplified form, say ¥ (assume there exists unique ¥). That is,
partial eval(X,Y) . simplifwX,).
The Narrowing Grammar rule resulting from partial evaluation is X => Y.
(2) If X has more than one simplified form, the partial evaluation system computes

all the simplified forms of X and treats the msulﬁng list as an OR-ist. This gives

us the following modified partial evaluation interpreter:

Partial eval(X,Y) .
2indal (T, simpligw(X, 1), L), or1ist(L,).

orliat([A | As], (A; B)) - orlist(As, B).
orlist([A], A).

For instance, the Narrowing Grammar rule
pattemm => [a]+, (b].
s partially evaluated to
Pattemn => (a,b] ; [a | ([a]+, [b])].
and can be further simplified to

pattern => [a,b]. ; {a | pattera].

- 108 -

(3) Backward unification
One technique of partial evaluation consists of propagating values forward
through the grammar rules by unification. However, this unification does more
than instantiating input parameters of the called procedure, it also eventually
gives back values for the output parameters (backward unification), wh?cfrfn c;:r~

tain cases, causes problems. Consider the following example :

program(X) => p(X).

P(a) => [d].
- p(b) => [e].
P(X) => [c].

The partial evaluation system generates:
program(a) => [d] ; [e].

which is not the expected outcome because x is instantiated to the value ‘a’ by
backward unification. Therefore, the rule p(b) => {e] cannot be applied. The
proposed solution is to avoid backward unification and execute the forward
unification only. We can avoid backward unification by explicitly handling
unification of the arguments in the r#s. The corresponding changes (no constant

appear in the Lss) are:

program(X) => p(X).

P(X) => (X = a}, {d].
P(X) => (X = b}, [e].
P{X) => [c].

- 109 -

The output of the partial evaluation system is:

program(X) => ({X=a}, [d]) ; ({X=b)}, [e]) ; (c].

Example 6.4 : Non-Context Free Languages

Consider the Narrowing Grammar which defines the non-context-free language
(a"b"c™ n20}):

s _abc => ab ¢ // a_be.

ab_c => pair((a], [bl), [c]v.

a_bc => [a]#*, pairz([b], [c]).

paiz(X,Y) => [].

paliz(X,Y) => X, pair(X,Y), Y.

Given the initial patterns s_abe, paiz([a),{b]), paiz([b], c]), (al* and

- lel*, the output of the partial evaluation system is

-110-

s_abc => [];
{ a | ((paiz([a], [b]), [B]), [c]1*) // ((a)*,paiz((b],[c})) 1.

paiz([a], [B]) => (]:

[a | (paiz([a),[Bl), [b])].

pair([b], (c]) => []:

[b | (paiz(([b],[e]), (e]) 1.

{a]* => [];

[a] (a]*].

{el* => [];

[e | {el*].

Example 6.5 : Partial Ordering
Consider the Narrowing Grammar rules for pattern:
pPattern => precedes([c], [a}) // precedas((b], [a]).

precedas (X,Y) => eventually(X), eventually(Y).

aventually(X) => X,

eventually(X) => [], eventually(X).

which specifies the partial ordering events of a, band . Given the initial pattern

pattern, the output of the partial evaluation system with some simplifications is:

- 111-

pattern => ([b | patternl];

[_ | pattern].

pattern => [¢ | pattern2]:;

[| pattara].

patternl => [¢ | aventually(fal)]:

[_ | patterml].

Pattern2 => [b | eventually({a])];
{ _ | pattern2],.

eventually{(a)) => [a};

[_ | eventually(([a})].

These Narrowing Grammar rules are Greibach and Tail-recursive.

-112-

Chapter 7

Comparison with Other Logic Grammars

7.1 Introduction

A logic grammar has rules that can be represented as Horn clauses, and thus imple-
mented by logic programming languages such as Prolog. These logic grammar rules
are translated into Prolog clauses which can then be executed for either acceptance or

generation of the language specified.

Since the development of metamorphosis grammar [13], the first logic grammar for-
malism, several variants of logic grammars have been proposed
(2,16,30,41,47,48,55). Among these we must mention Definite Clause Grammars
(DCGs), the most popular approach to parsing in Prolog. DCG is a special case of
Colmerauer’s Metamorphosis Grammar. It extends context-free grammar in basically
three ways:

(1) DCOG provides context dependency.

(2) DCG allows arbitrary stuctures to be built in the process of parsing.

-113-

(3) DQG allows extra conditions to be added to the rules, permitting auxiliary com-

putations.

Consider a DCG exampie:
santence (sentence (NP, VP)) --> noun_phrase (NP), verb phrase (V).

A sentence can take the form: a noun_phrase followed by a verb_phrase. The
arguments represent the structure (the parse tree) of the sentence to be parsed. DCGs

are essentially context-free grammars augmented by the language features of Prolog.

The logic grammar formalisms mentioned above are typically first-order, in the sense
that a nonterminal symboi in these formalisms cannot be passed as an argument to
some other nonterminal symbol. For example, usually DCG does not permit direct

specification of grammar rules of the form
goal(X) --> X.

This problem was pointed out as early as [42]. It affects the convenience of use,
extensibility, and modularity of grammars. We proposed a lazy functional logic

approach to this problem in previous chapters.

The logic grammars mentioned above are also not lazy. Lazy evaluation can be very
important in parsing. It allows coroutined recognition of multiple patterns against a
sweam. We are not aware of previous work connecting lazy evaluation and logic

grammars, although the connection is a natural one.

Narrowing Grammar is a functional logic grammar formalism. It combines concepts

-114 -

from logic programming, rewriting, lazy evaluation, and logic grammar formalisms
such as DCGs. In particular, it simultaneously affords the expressive power of both
functions and relations. The semantics of Narrowing Grammar are defined by a spe-
cial outermost narrowing strategy, NU-step, which is different from existing logic

grammar formalisms.

In this chapter, we point out a number of advantages of Narrowing Grammar for
language analysis. We briefly summarize some interesting features of Narrowing
Grammar. Then we go on to compare Narrowing Grammar with some existing logic
grammars, showing how some of these logic grammars can be transformed to Narrow-
ing Grammar. We also demonstrate the versatility of Narrowing Grammar for
language analysis by illustrating its use in several natural language examples: coordi-

nation, left- and right-extraposition.

7.2 Language Acceptance vs Generation

Many logic grammars can be straightforwardly translated to Prolog. For example,
each DCG rule is translated to a Prolog clause by adding a difference-list to each non-

terminal symbol giving the input and output streams.

sent --> np, wp.

sent (8,380) :~ np($,81), vp(s1,80).

The grammar mlé by itself acts asa language generator, but when compiled to Prolog,

it acts like an acceptor.

-115-

Narrowing Grammar ryles yse a simple definition of match for language acceptance.

match([],8) => g,

match({x|s], [X[L]) => matech(g,L).

sent => np, vp,

simplified term and matches against the input stream (the second argument). For

instance, with the starting pattern sant, Narrowing Grammar gencrates the sentence

[john, runa]j:

sant
= ap, vp
— (john), vp
= [John|vp]
— [John, xruns)

When applied with match, Narrowing Grammar accepts the sentence [john, runs):

match (sant, [john, runs])
= match((np,vp), [John, runs])
= match({[john],vp), [John, runs])
— match([john|wp], [John, rung))
— match(vp, [runs])
— match([runs], [runs))
= mateh(([]), [])

=[]

Now we adapt DOGs compilation to Narrowing Grammar compilation and formally

- 116 -

prove that if maten accepts a language, the compiled Narrowing Grammar accepts the

same language.

Algorithm 7.1
For each Narrowing Grammar rule fid;...A,) => RHS, perform the following:

(1) IfRHS is a variable or a simplified term, generate

JAy. AL S5 = match(RHS.S),

(2) If RHS is of the form 8B...B,) where g is a non-constructor function symbol,

generate
fA .. AnS)=> (B, .. B9,

where § is the input stream to be matched.

Unlike DCGs compilation, which requires arguments for the input and output streams,

Narrowing Grammar compilation requires only one argument for the input stream.

Example 7.1 : Given the Narrowing Grammar rules:

sent => np, vp,

([1,n) => 1.
{[XIL1],12) => [x(11,12)].

The compiled Narrowing Grammar rules are:

- 117 -

sent (8) => ',’ (np,vp,8).

+'([1,L,8) => match(L,3).

"¢ {[XIL1],12,8) => match(([X]| (L1,12)1,8).

Theorem 7.1
Suppose F is a Narrowing Grammar term, and S is a stream. Let CF be the result of

“"compiling” F and S as follows:

éF AT T T 8) fF = f(Ty,...,Ty) where fis not a constructor symbol
match (F,S) if F is a variable or a simplified term

If match(F,) & R where R is some suffix of S using a given set of Narrowing Gram-
mar rules, then CF 2 R using the same set of Narrowing Grammar rules together with

the result of compiling the Narrowing Grammar rules using Algorithm 7.1.
Proof:

By induction on n, the number of the narrowing steps of match(F, S).

Basisin=1
In this case, F must be either a variable or a simplified term [X|L] or [}, since these
are only two rules for narrowing match. But then CF is just match(F, S), so CF % R

as claimed.

Induction step:
Let n = k+1, and assume the theorem is true for all 71 < k.

If F is simplified, then CF = maten(F, S). Therefore, it is trivially true that both

-118-

match(F, §) and CF NU-narrow to the same term.

Let us consider the case where F is not simplified. Thus CF = fT4, . .. s Tp.S) where F

=f(Ty,...,T,). Here we assume match(F, §) - match(F’, S)—)R soF = F.

There are several cases for F’:

(1) F’is a variable or a simplified term.

2)

(3)

Let CF’a match(F S) where CF’ is the result of "compiling” F’ and S.

Since F — F’, then L => H is in the given Narrowing Grammar, where
L=fiA\,...,Ap), LO=F0 and HO~F'0. By (1) of Algorithm 7.1, the compiled
Narrowing Grammar rule corresponding to L => H is fiA,...,A,.5) =>
match(H, S) where fA 4, ... ,A,,5)8 = CFO, and match(H, $0=CF".

Therefore, CF — CF”, and inductively CF* %R, s0 CF 5 R.

F=>F and let F" = g(Y,,... ,Y;) where g is an j-ary, j = 0, non-constructor
function symbol.

Let CF' =g(Y,,...,Y;,S) where CF is the result of "compiling” F* and S.

Since F — F’, then L => H is in the given Narrowing Grammar where
L=flA,,... ,A,), H=g(8,, ... »B;), L8=F9 and H8=F'8. By (2) of Algorithm
7.1, the compiled grammar rule corresponding to L => H is flAy, ..., ApS) =>
8B,B;.S)where flAy,...,AnS)0 =CF0,and g(B,, ... ,B;,5)0 = CF’8.

Therefore, CF — CF", and inductively CF* 53R, s0 CF % R.

F#>F andlet F = fiTy,...,Ti_ I,Y‘,T,H, «++ » T)@ where T;—Y; with binding

8 for some i. Let CF' = ATy,...,Ti—1,Yi,Tis1,. ... Tn.5)0 where CF is the

-119-

result of "compiling” F’ and S.

Since F — F', and T; — Y, therefore, CF — CF’, and inductively CF* % R, so

CF 3 R.
Therefore, both match(F, S) and CF NU-narrow to R in k+1 steps. By induction, if
match(F, §) & R using a given set of Narrowing Grammar rules, then CF % R using
the same set of Narrowing Grammar rule; together with the compiled Narrowing

Grammar.

Q.E.D.

We have adapted DCGs compilation to Narrowing Grammar compilation for the

language acceptance by adding an extra argument for input stream.

7.3 The power of unification

Unification arises naturally in parsing. Narrowing Grammar captures the power of
unification, permitting arguments of terms in rewrite rules to be used not only as
inputs, but also as grammar outputs [49]. Like many logic grammars, Narrowing

Grammar allows arbitrary structures to be built in the process of parsing.

As a simple example, we can even parse English-like sentences using these Narrowing
Grammar rules. Consider the following Narrowing Grammar directly adapted from

[14].

-120-

8(P) => np(X,21,P), vp(X,P1l).

np(X,P,P) => propernoun {X).
np(X,S8,P) => articla(X, R,8,P1l), noun(X,L,R),

complements (L, P1,9) .
vpPi(X,P) => verb(X,L,P1), complemants (L, P1,P) .

complemants([],P,P) => [],
complamenta ([K-X|L],P1,P) => case(K), np(X,P1,P2),

complemants (L, 72,P).

case (object) => [].
case(from) => [from].

casa{of) => {[of].

article(X,R,8,a(X,R,8)) => {[a].
article(X,R,S,tha(X,R,8)) => {tha].

article(X,R,S,each(X,R,8)) => {each].

noun (X, [],disk(X}) => [diak].
noun(X, {],cpu(X)) => [cpu_123].

noun (¥, [of-X], fallureof (X, ¥)) => {failure].

propaernoun (cpu) => [cpu].

properncun (disk) => [disk].
verb{X, {object-Y],signaled (X, ¥)) => [signaled].

({1,L) => 1.
((X1L1],12) => {x)(L1,L2)].

With this Narrowing Grammar and the definition of match, the goal
7= simplify(match(s (P), [cpu, lignn.lod,tho, failure,of,disk]), [1).

yields the resuiting parse tree

-121-

P = tha(X, tailu:.ot(di-k,x), signaled(cpy, X)) .

7.4 Higher-order Specification, Modular Composition and Lazy Evaluation
Consider the familiar example which specifies the non-context-free language
{(@a"b"c"In20).

3_abc => ab ¢ // a_be.

ab_c => paiz((a], (b]), [c]+.

3_bc => [a]*, pair([b], [e]).

pair(Xx,Y) =>» (1.

pair(x,y) => x, paiz(x,¥), Y.

Narrowing Grammar is higher-order. Specifically, Narrowing Grammar is higher-
order in the sense that patterns can be passed as input arguments to patterns, and pat-
tems can yield patterns as Outputs. The enumeration pattern abec // ab_cis
higher-order, as its arguments are patterns. The patterns a_bec and ab_c can be ysed

as arguments to //,

Narrowing Grammar supports modular composition of patterns. The enumeration pat-
tem a_be // ab_c is composed of patterns a_be and ab_c. Each of these patterns

specifies a constraint (a"b”"c* or a*5"c™) on the stream to be generated.

Lazy evaluation is intimately related with a programming paradigm referred to as
Stream processing [46]). Note that in this paper, a stream pattern is a term that will

yield a list of ground terms under lazy evaluation. We are not aware of previous work

-122-

connecting stream processing and grammars, although the connection is a naturai one.
Lazy evaluation and stream processing also have intimate connections with coroutin-
ing [27]. Coroutining is the interleaving of evaluation (here, narrowing) of two
expressions. It is applied frequently in stream processing. For example, narrowing of

the stream pattern
ab ¢ // a_be

interleaves the narrowing of (_ // _), ab_cand a_be.

A specific advantage of lazy evaluation in parsing, then, is that coroutined recognition
of multiple patterns in a stream becomes accessible to the grammar writer. Given two
constraints a”b"c* and g*b"c® which are represented by two patterns ab_c¢ and

a_be, the specification of these simultaneously constraints are ab_c // a_bec.

7.5 Transformation of Logic Grammars to Narrowing Grammar

In this section, we show how to transform four established logic grammars to Narrow-
ing Grammar. These are Definite Clause Grammars (DCGs), Metamorphosis Gram-
mars (MGs), Extraposition Grammars (XGs) and Gapping Grammars (GGs). The
latter three are exteasions of DCGs which provide some context-sensitive constructs.
There is a straightforward transformation from DCGs to Narrowing Grammar. With
only a few predefined Narrowing Grammar rules, Narrowing Grammar can simulate

the context-sensitive constructs of MGs, XGs and GGs.

-123-

7.5.1 Narrowing Grammar and Definite Clause Grammars

We show how a pure Definite Clause Grammar (DCG) rule can be translated into a

Narrowing Grammar rule so that both describe the same language,

(1) Essentially, DCG rules can be translated to Narrowing Grammar rules by chang-
ing all occurrences of --» 1o => and by including the Narrowing Grammar

definition for , .

(fl,z) => 1.

({XIL1],12) => [x|(L1,L2)].

(2) *:* of DCGs can be defined at the grammatical level in Narrowing Grammar.

(X:Y) => x.

(X:Y) =»> ¥,

Example 7.2 : Non-Context-Free Languages

Consider the following DCG rules for the language {@"b"c"1120) and their mansla-

tion to Narrowing Grammar nules:

8 =~> a(zero). 8 => a(zaxo).

a(k) --> [a}, a{succ(d)). a(A) => [a], a(succ(A)).
a{A) --> b(a), eci(a). a(A) => b(A), c(A).
b(succ(d)) --> [bl, b(A). b(succ(A)) => (b], b(a).
b(zero) ~--> []. b{zero) => [].
c(succ(d)) -=> [c], a(a). c(succ(A)) => [e], c(A).
c(xzearo) --> []. c{zazo) => [].

-124-

A NU-narrowing showing how the stream [a,b,c) is generated:

a(zero)

(a], a(succ(zaxo))

[a | a(succ(zerc))]

[a | (b{succ(zerc)), c(succ(zero)))]
(a | ({[b], b(zexo)), c(succ(zexc)))]
(a { ([b | b(zere)], c(succ(zero)))]
(a,b | (b(zere), c(succ(zexo)))]

la,b | ([], c(succ(zexo)))]

(a,b | e(suce(zero))]

(a,b | (le]l, c(zexro))]

[a,b,c | ¢(zero)]

LA S S A A A A A A

[a,b,e]

A NU-narrowing showing how the stream [a,b,c] is accepted:

-125-

match(s, [a,b,c])

—

—

match (a(zaro), [a,b,cl])

match(({a), a(succ(zere))), [(a,b,c])

— match([aja(suce(zero))], (a,b,c])

2 S A A A A A

match (a(suce(zaro)), (b,c])

match ((b(succ(zarc)), c(succ(zezo))), (b.e])
match((([b], b(zere)), c(suca(zaro))), {b,c])
match ({[b|b(zexo)], c(succ(zero))), [b,c])
match{([b| (b(zere), c{succ(zaro)))], (b,el])
match ((b(xero), c{succ{zerc)}), (e])
match({([]1, c(succ(zaro))), (e))
match(c(succ(zero}), [(e])

match(([c], c(zero)), (e])
match([c|c(zaro)], [e])

match(c(zero), [])

match([], (])

(1

7.5.2 Narrowing Grammar and Metamorphosis Grammars

MG (13] permits rules of the form

LHAS, T --> RHS

whe_re LHS is a nonterminal and Tis one or more terminals. The MG rule can be read

as "LHS can be expanded to Ras if T appears in the head of the input stream after

RHS is parsed”. We can capture the semantics of this MG rule in Narrowing Grammar

by defining two more rules for °,’ as follows (here delateisa constructor):

- 126 -

(deleate([XIZ]), [X|Y]) => delete(Z), Y.
(delatea((}), ¥) => Y.

and ansform the MG rule to

LHS => RHS, delete(T).

Note, however, that with NG rcan be any pattern, not just a stream of terminals.

Example 7.3 Consider the following MG and Narrowing Grammar rules which accept

all strings of [a)’s and {b]’s which have an equal number of {a)’sand [b]’s.

ns =--> []. ns => [].
ns --> na, ns, nb. na => na, ns, nb,
na --> [a]. na => [a].

na, [tem(nb)} =--> nb, na. na => nb, na, dalete(nb).
nb --> [b]. nb => [b].
nb --> [term(nb)].

The [term(nb)] ‘terminal’ permits the MGs to treat the nonterminal nb temporarily
as a terminal. However, the grammar will recognize/generate a superset of the original

language. Note that this artifice is not needed with Narrowing Grammar.

A derivation showing one possible stream is generated from the start symbol ns:

- 127 -

S A A A A A A

na, ns, nb

(nb, na, dalete{nb)), ns, nb
({bl, na, delete(nb)), ns, nb
(b| (na, delete(nb))], ns, nb
(bl ({na, delete(nb)), ns, nb))
[Bi(({a), deleta(nb)), ns, nb)}
(bl ([aidelete(nd)], ns, nb)]
[b,a) (dalete(nb), ns, nb)]
(b,a] (delete([bl), ns, nb)}
(b,a| (delete({b]}, []1, nb)]
[b,al {(dalete((b]), nb)]

(b,a| (delete([b]), [bl}]

[b,a] (delate([]), (1)]

[b,a]

7.5.3 Narrowing Grammar and Extraposition Grammars

One commeonly used XG rule is of the form

LHAS ... T --> RHS.

Here Lras is a nonterminal symbol and T is any finite sequence of terminals or non-

terminals. The XG rule can be read as ~z#s can be expanded o ras if 7 appears

later in the input stream”. We can capture the semantics of this XG rule in Narrowing

Grammar by defining three more rules for °, as follows (here delete_any is a con-

structor):

-128 -

(delate_any([X|Z]), [(X[{X]) => dalete(2), Y.
(delete_any([])), ¥) => ¥,

(delete_any(X), [Y|Z]) => {Yl(d.l.t._lny(lt), Z)1.

and transform the XG rule to

LHS => RHS, delete_any(T).

As compared to MGs, one extra rule (the last rule) for +,/ is needed due to ... in the
zas of an XG rule. It is because the pattern 7 can appear anywhere later in the input

stream.

Example 7.4 : Left-Extraposition

Pereira pointed out that relative clauses can be handled with rules like the following:

s -=> np, wp.

np =-> dat, n, optional relative.
np -=> [john].

np ~-> [trace].

VP --> v.

vp ~-> v, np.

v -=> [writae].

optional relative --> [].
optional_relative --> relative.
relative --> rel marker, s.
:c.'l._mx.:h: +++ (trace] --> rel pro.

rel_pro --> [that].

The left-extraposition XG rule

-129-

Tel marker ... [trace] --> rel _pPro.
is ransformed to
rel marker => rel_pro, dalete_any(i{trace]).

A NU-narrowing showing how the relative clause ([that,john,wrote)) can be

generated:

relative

rel markex, s

(rel_pro, delete_any([trace])), s

([that], delete_any(([trace}l}), s

(that |delete_any([txace])], »

{that| (delete_any([trace]), s)]

(that| (dalete_any([trace]), (mp, vp)}]

{that| (delete_any([trace]), ([john], vp))1]

(that| (dalete_any([trace]), ([john|wvp])])

(that, john| (delete_any({traca)l), vp))

{that, john| (deleta_any((trace]l), (v, np))l
{that, john| (delete_any([trace]), ([wrote], np})]
(that, john| (delete_any([trace]), [wrota|np])]
[{that, john, wrote| (delete_any([trace]), np)]
(that, john, wrote| (delete_any({trace]), [trace])]
[that, John, wrote| (daleta([]), [1)]

T S A A A A A T A]

[that, john, wrota)]

The point to be made here is that commonly used XG rules can be transformed to Nar-

rowing Grammar rules easily.

-130-

7.5.4 Narrowing Grammar and Gapping Grammars

In the previous section, we described how Narrowing Grammar simulates left-
extraposition of XGs, here we show how Narrowing Grammar simulates right-

extraposition of GGs. Consider a special class of GG rules [16] of the form

LHS, gap(X), T -=> gap(X), RHS.
where L#s is a nonterminal symbol and ris any finite sequence of terminals or non-

terminals. This rule implements right-extraposition in linguistic theory,

We can capture the semantics of this GG rule in Narrowing Grammar by defining

rules for °,’ with constructors replace (_r_) and replace_any(_,) as follows:

(replace([],R), ¥} => R, Y.

(replace([XIL]),R), ([X|Y]) => replace(L,R), Y.

{(replace_any([],R), ¥} => R, Y.
(replace_any([X|L],R), (XI¥]) => raplace(L,R), Y.

(replac._any('r,n) r [X]X]) => [X] (replace_any(T,R), Y)].

and transform the GG rule to
LHS => replace_any(T,RHS).

Example 7.5 : Left- and Right-Extrapeosition

In this example, we show how Narrowing Grammar simulates the left- and right-

extraposition of GGs. The following grammar which is adapted from [17] parses sen-

-131-

tences such as "The man is here that Jill saw".

s -=> np, vp.
np -=> dat, n, relative.

np =-->n.

np -=-> [temm(np)].

vp --> aux, comp.

vp ~-> ¥, np.

relative --> rel marker, s.

relative --> [].

relative, gap(G) ~--> gap(G), rightax.
rel_marzker, gap(G), [term(np)] --> rel . pro, gapi(G).
rightex -~-> rel_marker, s.

comp --> [here].

aux --> [is].

dat --> [the].

rel_pro --> [that].

n --> [man],

n --> [Jjill].

v ==> [saw].

The left-extraposition GG rulet

rel_marker, gap(G), [temm(np)] --> rel_pro, gap(G).

is ransformed to
T This rule is equivalent to the XG rule o
rel marker ... [term(np)] --> rel pro.

-132-

rel marker => rel pro, dalete_any([term(np)}).

and the right-extraposition GG rule

relative, gap(G) --> gap(G), rightex

is ransformed to

relative => replace_any([), rightex).

All other rules can be transformed to Narrowing Grammar rules by changing all

occurrences of -->to => Now we illustrate how the sentence

The man is hare that Jill saw

can be generated from the Narrowing Grammar by giving a sequence of terms that can

be produced by NU-narrowing of the Narrowing Grammar start symbol s:

-133-

= np, vp
— {(dat, n, ralative), vp

-» ([tha], n, relative), vp
= [tha| (n, relative)], p
— [the|((n, relative), vp)l
(the] ({[man), Telative), vp))
(the| ({man|zelative}, wp)]
[th.,n'nnl (relative, wp)]
[the, man| (replace_any([], rightex), vp)]
(the,man| {replace_any([], rightex), (aux, comp))]

[the,man| {replace_any((], rightex), [is|comp))]
(the,man,is| (replace_any([], rightex), comp)]
[(the,man, is| (:cplnc._any({1, rightex), (here])]

-
-

-

-

-

- [t:h.,ml(nplacn_lny(n, rightex), ((is], comp))]
e 4

-

->

— [thc,mn,is,hnnl(r.phco_my([], rightex), [])]

-

[{the, man,is, heare | zightex)

The non-terminal rightex generates the stream [that, 111, saw] as illustrated in
Example 7.4. The point to be made here is that commonly used GG rules can be

transformed to Narrowing Grammar rules easily.

7.6 Narrowing Grammar can be More Expressive

In previous sections, we described how Narrowing Grammar simulates other logic
grammars. Here we demonstrate the versatility of Narrowing Grammar in

specification by illustrating its use in sevefal examples. The key to many of the

-134-

demonstrations is the definition of a simple but powerful primitive, //, that corou-
tines grammatical expressions in the generation of a single steam. This cannot be

done easily with some other logic grammar formalisms such as DCGs.

Example 7.6 : Non-Context Free Languages

Consider the following Narrowing Grammar which defines the non-context-free

language {a"b™c"d™ |m,n20):

abcd => a ¢ // b_d.
a_c => triple((a], [b], [c]), (d)=,.
b_d => [a]*, txiple([bl, [c], [d]).
triple(X,¥Y,2) => ¥Yr,

triple(X, ¥, z) => X, triple(X.Y.Z), Z.

It is obvious that Narrowing Grammar rules are modular. The first rule imposes

simultaneous constraints a"b*c*d* and a*b™c*d™.

Example 7.7 : Lazy Narrowing and Coroutined Pattern Matching

In this example, we consider a basic problem for testing a certain set of events that
satisfies certain precedence (partial ordering) constraints. A directed acyclic graph
(DAG) is well suited for representing these constraints. In a DAG whose nodes
represent events, an edge X — Y represents the ondering constraint that event X

occurs before event Y, which can also be specified by precedas (X, ¥):

-135-

Preceadas (X, YY) => eventually(X), eventually(Y).

aventually(X) => X,

eventually(X) => [_], eventually(X).

Now, we can directly represent an ordering of any two events by a pattern as follows:

.-. // precedes(X,¥) // ..

Each precedes (x,Y) corresponds to an edge X - Y in the DAG. For instance, sup-

pose we are given a partial ordering of events which is represented by the following
DAG:

The pattern that describes the partial ordering is

Pracedes (el,e2) // precedes(el,e3) // pracedas(e3,e5) //
precedas (a3, ed) // precedas(e2,e6) // precedas(e5,e6) //
precedas (a4, as) .

Here a1, ..., a6 are some event patterns.

- 136 -

7.7 Case Study : Natural Language Analysis

Coordination (grammatical construction with the conjunctions 'and’, ’or’, 'but’) has
long been one of the most difficult natural language phenomena to handle. The

reduced coordinate constructions are of the form
A X and Y 3,

for example,

John drove the car through and comletelz demolished a window,
Y

a X 8

where the unreduced deep structure corresponds to
A X B and A Y B.

The SYSCONI facility for Augmented transition networks (ATNs) [5, 61] was one of
the most general and powerful metagrammatical device for handling coordination in
computational linguistics. Two logic grammar formalisms, Modifier Structure Gram-
mars (MSGs) [15] and Gapping Grammar§ [16,17], were proposed later to handle

coordination in natural language.

In previous sections, we define some context-sensitive constructs in Narrowing Gram-
mar to simulate MGs, XGs and GGs. In this case study, we apply the same predefined
context-sensitive rules to specify natural language phenomena such as coordination,
left- and right-extraposition. Let’s first summarize all the context-sensitive Narrowing

Grammar rules here:

-137 -

(delete([XiZ2]), [XI¥]) => dalete(Z), Y.
(deleta([]), ¥) => ¥.

(delete_any([XIZ]), [X|Y]) => dalete(2), Y.
(dalete_any([]), ¥) => Y.

(dalete_any(X), (Y[Z)) => (Y] (dealete_any(x), 2z)].

(replace([],R), ¥) => R, Y.

(replace([X|L],R), (X|¥]) => replace(L,R), Y.

(replace_any([),R), YY) => R, Y.
(replace_any([X|L],R), [X]Y]) => replace(L,R), Y.
(replace_any(T,R), [X]Y)) => [X] (replace_any(T,R), Y)].

Consider the following Narrowing Grammar rules for natural language analysis with

coordination, left- and right-extraposition:

- 138 -

sant => 3.

sent => 3, [and], sent.

a => ap, vp.

3 => [term(s)].

np => n,

np => det, n, comp, relative.

op => [and], vp, delete(([and], [tem(s)])}).
np => [and], s, dalete{([and], (term(s)])).

np => .[tom(np)} .

relative => [].
relative => rel marker, sent.

relative => replace_any([]l, rightex).
rel_marker => ral_pro, dalate_any([term(np)]).
rightex => rel_marker, sent.

vp => advl, v, comp.

adevl => [].

advl => adv.

comp => [].
comp => np.
comp => prep, np.

rel_pro => [that].

A NU-narrowing showing how the sentence with coordination "John drove the car

through and completely demolished & window" is generated:

-139-

A N N L A TN

Jj

‘L*

s, [and], sent.

{(np, vp), land], sent.

[john| (vp, [and], sent)].

(jobn| ((advl, v, comp), [and), sent)].

(Jobn| (([), v, comp), [and], sent)].

[joha| ({v, comp), [and], sent)].

[john| (([drove], comp), [and], sent)].

[John,drove| (comp, [and], sent)].

[John,drove| (np, [and], sent)].

[John,drove| ((dat, n, comp, relative), [and], sent)].
{john,drove, the| ((n, comp, relative), [and], sent)].
(john,drove, the,car| ({comp, relative), {and], sent}].
[john,d:on,th-,ca:i(((p:.p, ap), relative), [and], sent)].
[john,dzovh,th.,ca:,th:oughl((np, relative), [and], sent)].

[john,drove, the,car, through| ((({and], vp,
delete(([and}), [tezm(s)]))), ralative), [and}, sent)].

[john, drove, the, car, through, and| ({({vp,
dalete(([and], [term(s)]))), relative), [and], sent)].

[john,drove, the, car, through, and| (({(advl, v, comp),
dalete(([and], ([term(s)]))), relative), [and], sent)].

[john, drove, the, car, through, and, complaetely| ({({(v, comp),
dalete(({and], (term(s)]))), relative), [and], sant)].

{john,drove, the, car, through, and, completaly, demolishaed} { ({comp,
delete(((and], (term(s)]))), relative), [and], sent)].

{john, drove, the, car, through, and, completely,damolished| (((np,
deleta(([and), (term(s)]))), relative), [and], sent}].

{jobn,drove, the, car, through, and, completely, damolished, &, window|
{{(dalete(({and], [temm(s)])), relative), [and], sent)].

(John, drove, the, car, through, and, complately, demolished, a, window|
((dalete([and| [term(s)]]), relative), [and], sent)].

[john, drove, the, car, through, and, completely, demolished, a, window|
(deleta([and| [temm(s)]]), (and], sent)].

- 140 -

=3 [john,drove, the,car, through, and, completely, damolished, a, window|
(dalete([and| (texm(s)}])), [and|{seant]})].

— (Jjohn,drove,the,car, through, and, completely, damolished, a, window)|
(daleta([tarm(s)]), sent)].

— {jochn,drove, the,car, through, and, complately, damolishad, a, window|
(deleta({term(s)]), s)].

— [john,drove, the, car, through, and, complately, damolished, a, wvindow|
(delete([term(s)])}, [temm(s)})].

=% [john, drove, the, caz, through, and, completely, damolished, a, window|
(delata([]l), [1)]. :

— [john,drove,the,car, through, and, complately, damolished, a, window}]

.

Similarly the sentence with coordination, left- and right-extraposition "The girl saw

the man that Mary saw and Bill heard" can also be generated:

-141-

o
k

L A T I A A R R A PR Y

l*

s
op, vp

(dat, n, comp, relative) R -

[the,girl| (relative, vp)]

(the,girl) (replace_any([],rightax), vp)]

(the,girl| (replace_any([], rightex), {advl,v, comp))]

[the,girl] (zreplace_any([], rightax), [saw|comp])]

[the,girl, saw]| (replace_any((],rightex), comp)]

(the,gizl, saw| (replace_any([], rightex),np)]

[the,girl, saw| (replace_any([], rightex), (dat,n, comp, relative))]
({the,girl, saw| (replace_any([], rightex), [the| (n, comp, relative)])]
(the,girl, saw, the| (replace_any([], rightex), (n, comp, relative))]
(the,girl, saw, the} ({ replace_any((],rightax), [man]| {comp, relative)])]
{the,gixl, saw,the,man| (replace_any([], rightex), (comp, relative)) |
[the,girl, saw, the, man) (zrightax, comp, relative))

{the,gizl, saw,the, man| ((re)l_marker, sent), comp, relative)]
{the,girl, saw, the, man, that| (sent, comp, relative)]

[the, girl, saw, the,man,that| ((s, [and], sent) comp, relative)]
(the,girl, saw, the,man, that| (((np, vp), [and], seat), comp, relative)]
(the,girl, saw, the, man, that, mary| ((vp, [and], sent), comp, relative)]

(the,girl, saw, the, man, that mary|
(((advl, v, comp), [and], sent), comp, relative)]

(the,girl, saw, the,man, that, mary, saw]|
((comp, [and], sent), comp, ralative)]

(the,girl, saw, the,man, that, MATY, saw|
{ (np, (and], sent), comp, relative)]

[the,gir]l, saw, the,man, that, mary, saw|
((({and], s, delete(([and], [tezm(s)])), [and], sent), comp, relative)]

({the,girl, saw, the,man, that,mary, saw, and|
(((s,dalete(((and], [term(s)])), [and], sent), comp, ralative)]

[the,girl, saw, the,man, that,mary, saw, and|

- 142 -

({{(np, vp),deleta(([and], [term(s)])), [and], sent) ,comp, ralative))

% [the,girl, saw,the,man, that,mary, saw, and, bill |
({(vp,dalete(([and], [tezm(s)])) » (and], sent) , comp, relative)]

%5 [the,girl, saw, the, man, that, mary, saw, and,bill, heazd|
(((delete(({and], [term(s)])), [and], sent) , comp, relative)]

-£> [the,girl, saw, the, man, that,mary, saw, and,bill, heard|
({(delete([and, term(s)]), [and|sent]), comp, relative)]

% [the,girl, saw,the,man, that,mary, saw, and,bill, heard)
({deleta([term(s)]),sent), comp, relative))|

— (the,girl, saw,the,man, that,mary, saw, and, bill, heard|
({delete([term(s)]),s),comp, relative)]

— [the,girl, saw, the, man,that,mary, saw,and, bill, heard|
((delete([term(s)]), [tarm(s)), comp, relative)]

= [the,girl, saw,the man, that, mary, saw, and, bill, heard|
((delete([]),[])), comp, relative)]

l*

[the,girl, saw, the,man, that,mary, saw, and, bill, heard]

7.8 Summary

Narrowing Grammar compares favorably in expressive power and generality with
other logic grammar formalisms. In this chapter we have demonstrated how to
transform several established logic grammars to Narrowing Grammar. Like many
logic grammars, Narrowing Grammar can be straightforwardly translated to Prolog, so
the full power of unification is exploited. Unlike many logic grammars, Narrowing

Grammar combines concepts from logic programming, rewriting, and lazy evaluation.

- 143 -

Chapter 8

Conclusions

In this dissertation, we have shown how Narrowing Grammar comprises a new for-
malism for language analysis. Narrowing Grammar combines concepts from logic
programming, rewriting, lazy evaluation, and logic grammar formalisms. such as
Definite Clause Grammars. The semantics of Narrowing Grammar are defined by a
kind of special outermost lazy narrowing called NU-narrowing. With some modest
restrictions on the use of duplicate variables on left-hand side of Narrowing Grammar
rules, NU-narrowing is shown to be complete in the sense that when a term can be

simplified, it can be simplified by a sequence of NU-steps.

The rules of Narrowing Grammar by themselves act as pattern generators, but when
applied with match they act like an acceptor, or parser. All Narrowing Grammar
rules can be compiled to logic programs in such a way that, when SLD-resolution

interprets them, it directly simulates NU-narrowing.

Narrowing Grammar is modular, extensible and highly reusable, so saving rules in a

library makes sense. These grammars extend the expressive power of first-order logic

grammars, by permitting patterns to be passed as arguments to the grammar rules. As

-144 -

a consequence, some complex patterns can be specified more casily. Narrowing
Grammar also provides lazy evaluation. Lazy evaluation is important in certain
language acceptance situations, such as in coroutined matching of multiple patterns

against a stream.

Narrowing Grammar compares favorably in expressive power and generality with
other logic grammar formalisms such as Definite Clause Grammars, Metamorphosis
Grammars, Extraposition Grammars and Gapping Grammars. We have demonstrated
how to translate different logic grammars into Narrowing Grammar, We have also

pointed out some limitations of first-order logic gramnmars.

Although narrowing is in general difficult to implement efficiently, Algorithm 4.1 is a
relatively efficient way to implement Narrowing Grammar. Further improvements for
the implementation are possible in many cases. Chapter 6 presented several
approaches, including compiling Narrowing Grammar rules with partial evaluation so
that the right-hand side of any rule is simplified. Another approach is to optimize the
Prolog code generated from Algorithm 4.1 by eliminating some redundant

nu_naxrow/2 predicates.

Very good results can come from convincing people to stand on others’ shoulders. In
this dissertation, we proposed a new view of logic grammars. It links many good
results from different areas such as logic programming, rewriting, lazy evaluation,

logic grammars ahd parsing.

- 145 .-

References

1. Abelson, H. ahd G. Sussman, The Structure and Analysis of Computer Programs,
MIT Press, Boston, MA (1985).

2. Abramson, H., *‘Definite Clause Translation Grammars,”” Proc. First Logic Pro-
gramming Symposium, pp. 233-240 IEEE Computer Society, (1984).

3. Abramson, H., ‘“Metarules and an Approach to Conjunction in Definite Clause
Translation Grammars: Some Aspects of Grammatical Metaprogramming,’’
Proc. Fifth International Conference and Symposium on Logic Programming,
pp. 233-248 MIT Press, (1988).

4. Apt, KR. and M.H. vanEmden, ‘“‘Contributions to the theory of logic program-
ming,’” JACM 29(3)(July 1982).

5. Bates, M., “‘The Theory and Practice of Augmented Transition Network Gram—
mars,”’ In Bolc, L., Ed., Natural Language Communication with Computers, pp.
191-259 Springer-Verlag, (1978).

6. Bellia, M. and G. Levi, “The Relation between Logic and Functional
Languages: A Survey,” /. Logic Programming, pp. 217-236 (1986).

7. Bosco, P.G., E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi, ‘A Com-
plete Semantic Characterization of K-LEAF, a Logic Language with Partial
Functions,”’ Proc. 1987 Symp. on Logic Programming, pp. 318-327 IEEE Com-

puter Society, (1987).

- 146 -

10.

11.

12.

13.

14.

15.

16.

Chau, H.L. and D.S. Parker, ““Narrowing Grammar,’’ Proc. Sixth International
Conference on Logic Programming, pp. 199-217 MIT Press, (June 1989).
Church, A., *“The Calculi of lambda-conversion,”’ Annals of Mathematics Stu-
dies Number 6, Princeton University Press, Princeton (1941).

Clark, K., ‘‘Predicate Logic as a Computational Formalism,’" Research Mono-
graph, Imperial College, Univcrsitir of London (1980).

Clark, K. and S. Gregory, “PARLOG: Parallel Programming in Logic,”” ACM
Transactions on Programming Languages and Systems 8(1)(1986).

Colmerauer, A., H. Kanoui, P. Roussel, and R. Pasero, ‘‘Un Systeme de Com-
munication Homme-Machine en Francais,,” Groupe de Recherche en Intelli-

gence Arificielle, Universite d’ Aix-Marseille (1973).

Colmerauer, A., ‘‘Metamorphosis Grammars,” in Narural Language Communi-
cation with Computers, LNCS 63, Springer (1978).

Colmerauer, A., ‘‘An Interesting Subset of Natural Language,” in Logic Pro-
gramming, ed. K. Clark, S.-A. Tarnlund,Academic Press, New York (1982).
Dahl, V. and M.C. McCord, “‘Treating Coordination in Logic Grammars,”’
American Journal of Computational Linguistics 9(2) pp. 69-91 (April-June
1983).

Dahl, V. and H. Abramson, ‘“On Gapping Grammars,”’ Proc. Second Intl. Logic

Programming Conf., pp. 77-88 (1984).

- 147 -

17.

18.

19.

20.

21.

22.

23.

24,

Dahl, V., *“More on Gapping Grammars,”’ Proc. Intl. Conf. on Fifth Generation

Computer Systems, (1984).

Darlington, J., A.J. Field, and H. Pull, *“The Unification of Functional and Logic
Languages,”” Logic Programming: Functions, Relations, and Equations,
Prentice-Hall, (1986).

Dershowitz, N. and D.A. Plaisted, ““Logic Programming cum Applicative Pro-
gramming,’’ Proc. of the IEEE International Symposium on Logic Programming,
pp. 54-66 (July 1985).

Dincbas, M. and P.V. Hentenryck, *‘Extended Unification Algorithms for the
Integration of Functional Programming into Logic Programming,”’ Journal of
Logic Programming 4(1987).

Fay, M., *‘First Order Unification in an Equational Theory," Proc. of the 4ih
Conference on Automated Deduction, (1979).

Fribourg, L., ‘‘Oriented Equational Clauses as a Programming Language,”’ Jour-
nal of Logic Programming 1(2) pp. 165-177 (August 1984),

Fribourg, L., “'SLOG: A Logic Programming Language Interpreter based on
Clausal Superposition and Rewriting,”’ Proc. of the IEEE International Sympo-
sium on Logic Programming, pp. 172-184 (July 1985).

Gallier, J.H. and S. Raatz, ‘‘Extending SLD Resolution to Equational Hom

Clauses Using E-Unification,”” Journa! of Logic Programming 3 pp. 3-43 (1989).

- 148 -

25.

26.

27.

28.

29.

30.

31.

32.

33.

Goguen, J.A. and J. Meseguer, “‘Equality, Types, Modules and (Why Not?) Gen-
erics for Logic Programming,”* /. Logic Programming 1 pp. 179-210 (1984).
Gorlick, M.D., C. Kesselman, D. Marotta, and D.S. Parker, ‘‘Mockingbird: A
Logical Methodology for Testing,”” Technical Report, The Acrospace Corpora-
tion, P.O. Box 92957, Los Angeles, CA 90009-2957 (May 1987). To appear,
Journal of Logic Programming, 1989.

Henderson, P., .Functional Programming: Application and Implementation,
Prentice/Hall International (1980).

Hill, R., “*LUSH Resolution and its completeness,’”” DCL Memo 78, Dept. of
Computer Science, University of Edinburgh (1974).

Hirschman, L. and K. Puder, ‘‘Restriction Grammars in Prolog,’’ Proc. First
Inml. Conf. on Logic Programming, pp. 85-90 (1982).

Hirschman, L. and K. Puder, ‘‘Restriction Grammar: A Prolog Implementation
.'" Logic Programming and its Applications, (1985).

Hirschman, L., ‘‘Tutorial: Natural Language and Logic Programming,’”’ /EEE
Symposium on Logic Programming, (1987).

Hopcroft, J.E. and J. Ullman, Introduction to Automata Theory, Languages and
Compuzation, Addison Wesley, Menlo Park, CA (1979).

Huet, G., “‘Confluent Reductions: Abstract Properties and Applications to Term

Rewriting Systems,’* Journal of the ACM 27 pp. 797-821 (1980).

- 149 -

34,

35.

36.

37.

38.

39.

40.

41.

42.

43,

Hullot, J.M., *‘Canonical Forms and Unification,” Proc. of the 5th Conference

on Automated Deduction, (1980).
Kahn, K., ‘‘Partial Evaluation, Programming Methodology, and Artificial Intelli-
gence,’” The Al Magazine 5(1)(Spring 1984).

Kahn, K. and M. Carisson, ‘“The Compilation of Prolog Programs without the
Use of a Prolog Compiler,’* Proc. of the Intnl. Conf. on Fifth Generation Com-

puter System, pp. 348-355 ICOT, (1984).

Knuth, D. and P. Bendix, ‘‘Simple Word Problems in Universal Algebras,"’
Compuwsational Problems in Abstract Algebra, pp. 263-297 Pergamon Press,

(1970).

Kowalski, R.A., ‘‘Predicate Logic as a Programming Language,’" Information

Processing 74, pp. 569-574 North Holland, (1974).

Lankford, D.S., ‘‘Canonical Inference,”” ATP-32, Dept. of Mathematics and

Computer Science, Univ. of Texas (December 1975).
Lloyd, J.W., Foundations of Logic Programming, Springer-Verlag (1988).

McCord, M.C., **Modular Logic Grammars,"’ Proc. 23rd Annual Meeting of the

Association for Computational Linguistics, pp. 104-117 (1985).

Moss, C.D.S., *“The Formal Description of Programming Languages using Predi-

cate Logic,”” Ph.D. Dissertation, Imperial College, London (1981).

Narain, S'., *‘A Technique for Doing Lazy Evaluation in Logic,”* Proc. Symp. on

Logic Programming, pp. 261-269 IEEE, Computer Society, (1985).

- 150 -

45.

46.

47.

48,

49.

50.

51,

52.

53.

Narain, S., “‘A Technique for Doing Lazy Evaluation in Logic,”” J. Logic Pro-
gramming 3(3) pp. 259-276 (October 1986),

Narain, S., “*LOG(F): An Optimal Combination of Logic Programming, Rewrite
Rules and Lazy Evaluation,”” Ph.D. Dissertation, UCLA Computer Science

Dept., Los Angeles, CA 90024-1596 (1988).

Parker, D.S., **Stream Data Analysis in Prolog,’’ Technical Report CSD-890004,

UCLA Computer Science Dept., Los Angeles, CA 90024-1596 (January 1989).

Pereira, F.C.N. and D.H.D. Warren, *‘Definite Clause Grammars for Language

Analysis,”” Artificial Intelligence 13 pp. 231-278 (1980).

Pereira, F.C.N., *‘Extraposition Grammars,"* American Journal for Compuia-
tional Linguistics 7(1981).

Pereira, F.C.N. and S.M. Shieber, Prolog and Natural-Language Analysis, CSLI
Stanford (1987).

Plotkin, G., ‘‘Building-in Equational Theories,’’ Machine Intelligence 7 pp. 73-
90 (1972).

Reddy, U.S., ‘‘Narrowing as the Operatonal Semantics of Functional
Languages,’’ Proc. of the Symposium on Logic Programming, (1985).

Robinson, G. and L. Wos, ‘‘Paramodulation and theorem proving in first order
theories with equality,”* Machine Intelligence 4, (1969).

Robinson, J.A. and E.E. Sibert, ‘‘LOGLISP an Mﬁaﬁve to Prolog,”’ Machine

Intelligence, pp. 399-419 (1982).

-151-

54.

55.

56.

37.

58.

59.

61.

Shapiro, E.Y., *‘A Subset of Concurrent Prolog and its Interpreter,” Technical
Report TR-003, ICOT, Tokyo (February 1983). '
Stabler, E.P., ‘‘Restricting Logic Grammars with Government-Binding Theory,”
Computational Linguistics 13(1-2)(1987).

Sterling, L. and E. Shapiro, The Art of Prolog, MIT Press, Cambridge, MA
(1986).

Subrahmanyam, P.A. and J-H. You, “FUNLOG--Funcﬁons+Logic: A Computa-
tional Model Integrating Functional and Logic Programming,’’ Proc. Interng-
tional Symp. on Logic Programming, pp. 144-153 IEEE Computer Society,
(1984).

vanEmden, M.H. and K. Yukawa, “‘Logic Programming with Equations,* Jour-
nal of Logic Programming 4(4)(1987). |

Venken, R., ““A Prolog Meta-Interpreter for Partial Evaluation and its Applica-

tion to Source to Source Transformation and Query-Optimization,"* Proc. ECAJ
84, pp. 91-104 Elsevier Sci. Publ,, North-Holland, (1984),

Warren, D.H.D., L.M. Pereira, and F.C.N. Pereira, ‘‘Prolog - the language and its
implementation compared with Lisp,”” Proc. Symp. on Al and Programming
Languages, (1977).

Woods, W.A., ““‘An Experimental Parsing System for Transition Network Gram-
mars,’" In Rustin, R., Ed., Natural Language Processing, pp. 145-149 Algo-

rithmics Press, (1973).

-152-

62. Yamamoto, A., ‘‘A Theoretical Combination of SLD-Resolution and Narrow-

ing,’” Proc. of the Fourth International Conference on Logic Programming,

(1987).

- 153 -

