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Abstract

Optimal routing is an important subclass of resource allocation and load balancing prob-
lems that has applications in file allocation, distributed database systems, local area net-
works, etc. In this paper, we present a generalization of the vertex allocation theorem of
Tripathi and Woodside. The vertex allocation theorem applies to routing of single customer
chains in closed product form networks. Basically, the theorem states that to maximize
the sum of throughputs, each customer should consistently use the same server for each
request type rather than probabilistically choose among alternatives for each request. We
show that vertex allocation is valid for any network of quasi-reversible queues and that the
objective function can be any Markov reward function on the state space of the queueing
network model.

In many optimization problems the customers are not all known a priori but rather
enter the system dynamically. We address the problem of optimally choosing the routing
for a new customer being added to an operational system. We model the system as a closed
multi-chain queueing network and show that a simple “greedy” algorithm can be used to
determine the optimal routing for a restricted type of routing behavior. A purely analytic
application of the greedy algorithm requires solution of several queueing models. A less
costly approximation is proposed which uses measurements of the operational system to
avoid expensive calculations.



1 Introduction

Queueing network models have been widely used to model distributed computer system
and communication networks. We will be concerned in this paper with system optimization
problems that can be expressed in terms of a closed queueing network model of the system.
In order to optimize some performance measure, it is assumed that some model parameters
can be controlled, subject to specified constraints. Some of the most common model
parameters that are taken as control variables are: routing of customers; service capacities
of servers; and scheduling disciplines. Constraints are often expressed in terms of total cost
of the system, maximum response time, minimum throughput, fairness criteria, etc. We
will be concerned with the optimization of systems in which the decision variables control
only the routing of customers. This covers a wide variety of problems since routing is a
way of determining which resources are to be used to provide the services required by a
customer, and many problems fit in this framework, e.g., file allocation, load balancing,
packet routing, etc. We allow, as objective functions, any reward function on the states of
the model. This is general enough to include the most common objective functions, e.g.,

the weighted sum of throughputs of all customers.

There has been considerable research on the use of queueing network models for system
optimization [7] [8] [10] [15] [20] [22] [23] [25] [26]. Most of these studies deal with systems
with workloads that are modeled as open customer chains with Poisson arrivals. For other
applications closed chains are more accurate. Closed chains are used to represent a cus-
tomer population which is small enough that congestion in the system has an appreciable
effect on the rate of new demands for service. In this paper, we will assume that the system
of interest can be reasonably modeled as a closed product form queueing network. Closed
queueing networks have been used to model virtual communication channels with window
flow control, LANs with a moderate number of workstations, a mix of multiprogrammed
processes, etc. There are considerably fewer results available on the optimization of closed
queueing networks due to the more complex steady state solution for closed models which
have a finite state space and require normalization. We are concerned in this paper mostly
with static routing or load balancing, in which routing decisions are fixed at the time a
customer is introduced into the system. Below we briefly review the work most closely

related to ours and indicate the distinguishing characteristics of our results.



Kobayashi and Gerla [14] considered closed queueing networks and the problem of
selecting routing to optimize a weighted sum of throughputs. They showed that for a
single chain closed network the throughput is a convex function of the routing decisions
and that a modified form of the Flow Deviation algorithm [12] could be used to determine
the optimal routing. For a multi-chain network the throughput is not a convex function of
the routing variables and heuristics must be employed. For the class of networks treated in
[14] there are multiple customers per chain and the transition probabilities are restricted

to be the same for all customers in the same chain.

In a recent paper [21], Tripathi and Woodside considered the case in which the routing
decisions for each individual customer can be independently chosen. From another point
of view this is equivalent to letting each customer be represented by a separate (single
customer) chain. Under certain restrictions (which we will discuss shortly) they proved the
so called vertez allocation theorem. Consider a queueing network with multiple chains, each
with a single customer, in which a customer can be in different “phases”. Customer phases
are a useful device for modeling the requests for certain services by a job. For each type of
request (a phase the customer can be in), there may be several candidate servers that can
provide the service the customer requests. The problem is to assign routing probabilities to
these candidate servers so as to optimize some specified performance measures. In general,
if there are several servers that can provide the required function then each time a job
may choose to use a server according to assigned probabilities. In fact, in models in which
there is more than one customer per chain, an optimal choice for the transition probabilities
(for some objective function) will involve such a “probabilistic routing”. However, when
each customer can be independently routed, it is shown in [21] that there exists a verfex
allocation that gives optimal throughput,i.e. in which each phase of service (request type)
1s executed at one particular server each time the phase is entered. In other words, the
transition probabilities describing which server is to be used are assigned values of 0 or

1. Thus vertex allocation implies a deterministic choice of a server each time the phase is

entered.

The proof of the vertex allocation theorem in [21] is algebraic in nature. Although it
covers many of the most common applications, a more general result is presented in this
paper. The result in [21} is based on an algebraic form for the solution of the queueing

network model. The algebraic form assuined in the paper is only valid for a subset of



product form queueing networks. For a network of quasi-reversible queues, the algebraic
form used in [21] may not be satisfied; however, the steady-state probability distribution
still has a product form. The MSCCC center in [2] is an example of a center which can be
included in a product form network but which does not have the algebraic form assumed
n [21]. In addition, the only performance measure considered in [21] is a weighted sum of
throughputs. There are other performance measures of interest that can be expressed as
Markov reward functions on the state space of the queuneing network model. For example,
in [9] a product form queueing network is used to analyze system availability. One perfor-
mance measure of interest 1s the steady state probability that the system is operational.
This can be expressed as a reward function in which the operational states have reward

rate 1 and the failed states have a reward of Q.

In the first part of this paper, we will show that the vertex allocation theorem holds
for any network of quasi-reversible queues {13] and for eny Markov reward function. This
result is clearly a direct extension of the result in {21]. The major claim to originality
for this result is that it applies to a more general class of queueing networks and to a
wider class of objective functions. We also believe the proof method is of some interest
in itself. Also, the approach taken here has the potential to provide a basis for heuristic

optimization since the development has a probabilistic interpretation.

In the preceding discussion it is assumed that all jobs which are to be routed are
known a priori. In many optimization problems the customers are not all known a priori
but rather enter the system dynamically. For example, consider a model of a LAN in which
disk-less workstations are added one at a time. When a workstation is added, decisions
have to be made such as where to obtain the kernel and swap space, where to locate
files, etc. A similar situation exists for choosing display servers for high speed graphics
display terminals. We continue to assume that the system can be modeled as a closed
product form queueing network. We will show that under a restricted, yet quite general,
type of routing (which we call the “phase-type” routing), any Markov reward function is
a quasi-linear function of the routing decisions variables, i.e. has only one local maximum
and one local minimum. Furthermore, since the objective function is quasi-linear and the
optimal solution lies at a vertex of the search space, we will show that a simple “greedy”
algorithm can be used to determine the optimal routing. If the resource demands on all

queues for all chains are known exactly, the greedy algorithm can give the exact optimal



routing; however, it can be computationally expensive. Furthermore, resource demands of
individual chains in the operational system may not be known exactly. An approximation
based on the formal development is proposed in Section 5; it is less costly and requires less
detailed information. The information required is easily obtainable from measurements of

the operational system and estimates of service demands of the new customer.

In Section 2 we formally define the model and the notation used in the remainder of
the paper. In Section 3 we present our generalization of the vertex allocation theorem and
outline the proof. Section 4 considers the case of adding a new customer to an existing
system and proves that a greedy algorithin can be used to determine the optimal routing.
In Section 5 we develop an approximation for the quantities used in the greedy algorithm
from measurements of the operational system. In Section 6 we present a numerical example

and Section 7 concludes with a summary and discussion.

2 Queueing Network Model

For convenience we list below the notation which is used in the remainder of the paper.

J = number of service centers.

K = total number of chains in the network.

J(k) = a specified (reference) service center visited by chain k.

Bix = visit ratio of a chain k customer at center j, scaled such that ;4 = 1.

Tix = mean service time of a chain % customer at center j.

z; = (zj1,%j2,...,2;5) = state of center j where z; indicates the state of the
chain k customer with respect to center j. Specifically, z;+ = 0 if the
chain k customer is not at center j and z;, = c if the chain k customer is
at center j in class c.

z = (£y,%2,...,&7) = state of the network model.

Ajk = ik - A = throughput of chain k customers at center 7, where Ay = Aj(k)k-

L = mean number of chain & customers at center j.

Wik = mean waiting time {queueing time + service time) of a chain k customer
at center j.

7(Z) = steady state probability that the network is in state Z € S, where S is the

state space of the network.



Ck = K-dimensional vector whose £ element is one and whose other elements

arc Zcroes.

The queueing network models being considered are multiple chain networks of quasi-
reversible queues [13] (or equivalently, queues that satisfy the M = M condition [16]}
with Markovian routing for customers. There is only one customer per chain unless oth-

erwise stated.

The major difference from standard queueing network models concerns the routing de-
cision variables that are introduced. Below, we introduce a type of model that incorporates
general class of routing decisions. (In Section 4, we will introduce another type of routing
which is more restrictive but still quite general and which permits efficient solution to

important optimization problems.)

Comnsider a single customer chain k, in a network of quasi-reversible queues. Let Cj
be the set of classes that customer %k can take on. For convenience we will assume that:
(a) the classes associated with different customers are distinct and, {b) a customer never
visits two distinct centers in the same class. These assumptions are for convenience in
exposition and can always be accommodated simply by renaming the classes. Let p, .,
denote the probability that a customer in class ¢; next moves to class ¢;. {(Due to the
use of disjoint class names, the chain, the source, and the destination service center are
implied by the subscripts.) The transition behavior of a customer % is then described by
a matrix Py = [pe;c;], ¢i and ¢; € Ci.. Since P is a stochastic matrix the rows must sum

to 1, and therefore, for each chain k:

Z Peie; = 1, Ve €C (1)
c; €C
In our case, since we are interested in optimal routing, not all the elements in Py are fixed.
In fact, we allow element Peic; = @ijj + vi; where a;; is a non-negative constant and v; ;
is a non-negative variable. When «a;; > 0, this places a lower bound on the transition

probability p ... Clearly, v;; is be a decision variable in our optimization problems.

The variables v, ; are all distinct and independent, except for the constraints embodied
in Eq. (1). The fact that some transition probabilities can be zero or non-zero, as a function

of the decision variables, means that the Markov chain associated with a customer’s class
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transitions can be decomposable for some values of the decision variables and can also
contain “transient classes”. To deal with this issue we assume that for each customer
there is a distinguished class and, for a well formed model, for any feasible choice of values
for the routing variables, the set of classes that are reachable from the distinguished class
forms an irreducible Markov chain. For any assignment of values to the routing variables,
the queueing network model has customers whose transition behavior is described by the
associated irreducible Markov chain. This rather cumbersome definition is required to
avold pathological cases. In practice, it is not a problem to accommodate the definition

and in fact, the requirement is naturally satisfied.

In the next section we describe a proof for the vertex allocation theorem for queueing

networks with the type of routing described above.

3 General Proof of the Vertex Allocation Theorem

In this section we describe our proof for the vertex allocation theorem. For convenience in
this discussion, we assume that the lower bounds on transition rates (i.e., the a; ;s in the

previous section) are all zero. A more complete and more detailed proof is available in [3].

We proceed by showing that if all but one of the routing variables are fixed, then an
optimal solution for the remaining decision exists with values for the transition probabil-
ities set to 0 or 1. Omnce this is proved the vertex allocation theorem follows easily by
contradiction as follows. Suppose there is no optimal vertex allocation. Then start with
an optimal solution and select one decision variable that is neither 0 nor 1. Considering
the other variables to be fixed and applying the previous result, an optimal solution exists
with the selected decision variable set to 0 or 1. Proceeding through the decision variables

in this way, they can all be “forced” to a vertex.

Consider a queueing network model as described in Section 2. Let R(Z) denote the
reward rate assigned to state Z, and let R = 3 g5 m(£)R(Z) be the expected reward rate.
Consider a particular customer (chain) k and let C, = {1,2,...,C*}. We can partition the
state space S according to which class the chain k customeris in. Let A = {Z|z;z = ¢} be
the set of states in which chain & customer is in class ¢ for 1 < ¢ < C* and where the center

that corresponds to cis j. (Recall that in the model description, a customer class ¢ uniquely



identifies the chain and the location of the customer). For simplicity in notation, we will
drop the superscript k in A¥ and C* where the chain is understood from the context. It is
clear that the sets A;,..., Ax form a partition of S. Let Q be the transition rate matrix of
the model and partition the state space according to A;,..., Ac. By ordering the states,

Q can be put in the form shown in Figure 1. A principal submatrix Q.. corresponds to

Qu Qu Qu ... Qic |
Qun Q@ Qi ... Qo

Qer Qez Qcc

L -

Figure 1: Rate matrix.

the set of states A, where the chain k customer is in class c, and transitions between states
in A, correspond to transitions which do not involve the chain k customer. A submatrix
Qcd, for ¢ # d, corresponds to transitions in which the chain % customer moves from class
¢ to class d.

Let m(Z|Ac) = 7(£)/ Larea, 7(Z") be the steady state probability of state ¥ conditioned
on being in some state of A;. Let we = Y14, 7(E£’) be the probability that the model is
in some state in partition A,. We can express the steady state reward rate as follows,

R = ) m@R(E)

Zes

= w p_ 7(ZADRE@) +... +we > m(&Ac)R(Z) (2)

ZeA ZeAc

In the development which follows, we will show that for a network of quasi-reversible
queues, for all classes ¢ and all chains k, the conditional state probability =(Z]A4,) is
independent of the visit ratios for class ¢, and since routing decisions only affect the visit
ratios for class ¢, 7(Z|A.) 1s independent of the routing decisions.

Consider a single quasi-reversible queue [13] driven by Poisson arrivals with rates
A1, ..., Agr (open model) where C' is the total number of classes. Let # denote a state of the
queue and 7A(¥) = (n1(Z), ..., ne(&)) be the population vector where n (&) is the number of

class ¢ customers in the queue or in service in state Z. Let 7(Z) denote the equilibrium state
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probability of state ¥, § denote the state space of the queue, and Q@ = [¢{Z,Z")] denote the
transition rate matrix of the corresponding Markov process where ¢(Z, ¥') is the transition
rate from state & to #’. Consider a subset A.(n) C S where A.(n) = {Z|n.(&) = n} is the
set of states with n class ¢ customers. Let

(&)
Ei"EAc(n] 77(53”)
be the state probability of state & conditioned on being in some state of A.(n). We have

m(&| Ac(n)) = (3)

the following lemma.

Lemma 1 For a quasi-reversible queue, m{Z|A.(0)) is independent of A..

Proof:

From global balance, we have, ¥V & € A.(0),

(&) 3 a& I +n(@) 3 o@D = Y w(@)E\E+ Y (§ae(¥F)

F'eA(0) Fed (1) FeA(0) JeA(1)

But the second terms on each side of the equation are equal for a quasi-reversible
queue (see equation (3.11) of [13]), or equivalently, for a queue satisfying the M =
M condition [16].

Therefore, for a quasi-reversible queue,
VECA), (&) X o@F) = X (&) @)

'€ Ac(0) #'€A(0)

Now consider a matrix @* = [¢*(#,Z’)] which represents the Markov chain with

state space truncated to 4.(0). The entries in Q" are defined as follows.

g (Z,7") = ¢(F,7") A T#F, for 7,7 € A(0)

The diagonal terms of @* are chosen such that all rows in Q* sum to 0. Clearly,
all entries in Q" are independent of A.. Let =* = [x*(Z)] be the solution to the
Markov process that corresponds to Q*, namely #*Q* = 0. Since all entries in
(" are independent of A, 7*(¥) must be independent of A.. The global balance

equations for the Markov process represented by Q* are:
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VZe A(0), =) ¥ ¢(&&) > THENGNE, ) (5)

Z'€A(0) F'EA(0D)

Clearly, G=(¥) for 7(Z) satisfying Eq. (4) is a solution to Eq. (5), where G is the
normalizing constant, i.e., 1/ Zweca ) 7(Z'). Therefore, 7*(&) is a solution to @~
where 7°(&) = 7(¥)/ Taea. o) T(€') = n(ZF[A(0)). Notice that both G and = (&)
can be functions of A.’s and we will denote G by G(X.).

Since 7*(&) 1s independent of A., 7{#|A.(0)) is independent of A.. O
We also need the following lemma.

Lemma 2 For a quasi-reversible queue, m(Z]A.(1)) 1s independent of . .

Proof:

From global balance, we have, ¥V & € A.(1),

@) 3 & &) + #(@) Y oD + (@) Y «(FH =

F'eA(1) 7€ A(0) ZEAL(2)
>, ®(@NE,E) + Y De@F) + Y 7(HZ7)
2'€A(1) JeA(0) FEAL(2)

Again, the last term on each side of the equation cancel out for quasi-reversible

queues. Therefore, V & € A.(1),

Tr(‘i") Z Q(faf’)_i'w(f) Z Q(f’g.) =

#'eA(1) FEAL(0)
Y, ®(ZF@, 8+ Y w(@e(F ) (6)
FEALAL) JEAL(0)

In the last term of the above equation, each ¢(7,#) corresponds to an arrival of
a class ¢ customer. Therefore, A; can be factored out of ecach ¢(,7), namely,
(7, &) = A.¢'(¥, T), where ¢'(, ) is independent of A.. Furthermore, from Lemma
1, m(if) can be expressed as m*(7)/G(A.). Eq. (6) becomes, V # € A.(1),

*This lemma and the previous one suggest that a general proof of independence of m{&]A.(n)) is possible

by induction. This is indeed true, but in the interest of space, we only give the proof for A.(0) and 4,(1).
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> (@@ -3 | ¥ o@E)+ T a@p)| =

#EAc(1) F'eAdc(l) FEAAD)
A
— > (D7, %) (7)
G(’\C)g‘eAc(o)

In the above equation, the first sum corresponds to transition into state ¥ due to the
arrivals and departures of other classes of customers. The second sum corresponds
to transitions out of state ¥ due to the arrivals and departures of other classes
of customers. The third sum corresponds to transitions out of state & due to the
departure of a class ¢ customers; All of these transition rates are independent of
Ae. Furthermore, 7*(¥) and ¢'(7, &) are independent of A.. The above equation in

madtrix form then becomes:

#Q =

where 7 = [n(Z)] for Z € A.(1), @ corresponds to the first three sum terms in
Eq. (6), and b= [5()] where &) = — Yieao) 7 (7 (7, &). Q and b are indepen-
dent of A.. ——Q is a diagonally dominant matrix with some rows that do not sum to
zero. It can be shown that the matrix C =7 — D! [MQ] 1s a substochastic matrix
where D is the diagonal matrix of —Q [24]. Tt follows that Q! exists and O~ > 0.
Multiplying both side of the above equation by Q~!, we obtain,

- )\c rlA=-1
=00 7]

Thus for any & € A1), n(¥) is a constant vector times \./G().). Therefore,
T(&|Ac(1)) = 7(F)/ Caea.qym(Z') is independent of )\,.. O

Using Lemmas 1 and 2, we will show that n(Z|A.), the conditional state probability in a
closed queueing model, is independent of the routing of the chain k customer. Consider
the model described in Section 2; let o(c) denote the distinguished center corresponding
to chain ¢ and let . denote the visit ratio for class c at center o(c). We have the following

lemma.,
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Lemma 3 For a network of quasi-reversible queues with Markovian routing, m(Z|A.) is

independent of 6.

Proof:

Since we have a network of quasi-reversible queues, the equilibrium state probability
has a product form [13] [16]; namely, «(Z) = (1/G) ]'[JJ:l m;(Z;), where G is the
normalization constant, and 7;(Z;) is the equilibrium state probability of being in
state Z; for center § when it is driven by Poisson arrivals with rates 6;,...,8c+ in
isolation, where 6, is the visit ratio for class ¢ customer at center j = o(c) in the
closed network model. C* denotes the total number of classes over all chains. From

the definition of 7(Z|A.), we have,

(& i T o) ]
W(§|Ac) — (—) _ H‘l:l l( *) — I:E H 1(9 )] (8)

2 gea. m(F) - Ygea. T (i) FeAci=1 T Ti)

In Eq. (8), if we can show that =;(§)/7;(Z;) is independent of 6. for i = 1,...,J,

then 7(Z|A.) is independent of #.. Extending the notation in Eq. (3) by adding

subscript j, we have,

2 (A () — mi(Z5)
(%3] Acr)) SSPPREIEL (9)

In Eq. (8), if i # o(¢), then n (%) = n.(7:) = 0, and

() mil§]A0)) if i £ a{c)

ﬂ',( _',:) B Wi(filAC(O))

which is independent of §, by Lemma 1. (Notice that the normalizing terms in

Eq. (9) cancel.) Similarly, if 1 = o{c) then n () = n.(Z;) = 1, and

Ti(¥i) _ ml@A(1)
mi(#) T wi@ A1)

if ¢+ = o(c)

which is also independent of 4. by Lemma 2. Hence for any center i, m;(;)/m(;)

is independent of 6.; therefore, 7(Z|A.) is independent of .. O

11



Since routing of chain & can only affect the visit ratios 8. for ¢ € C; and the conditional
state probability m(Z|A.) is independent of 6., #(Z|A.) is independent of the routing of

chain k.

Refering back to Eq. (2), R(Z), the reward rate for a given state Z, is a constant, and
therefore, it is independent of the routing decisions of chain k. We have also just proved
that m(Z|A.) is independent of the routing decisions of chain k; therefore, the summation
terms in Eq. (2) are independent of chain &’s routing. Let R, = Tzca, 7(Z|A) R(Z), Eq. (2)

can be written as o
R = Z chc (10)
c=1

In this equation the only dependence of the steady state reward rate on the routing deci-
stons 1s through the w, terms, i.e., the steady state probability that the chain &k customer

1s in class c.

Without loss of generality, let’s examine the case in which the chain &k customer leaves
class C. Let the probability of moving from class C to class d be vgg ford = 1,..., D,
and let the probability of moving to any other class be 0. For simplicity in notation, we
will drop the subscript C in ve g where the class is clear from the context. Clearly, every
element in Qg is either equal to 0 or vy multiplied by a constant which corresponds to
the rate at which the chain k customer leaves class C; therefore, vy can be factored out of
Qcd, or Qoa = v4Qly where Qfy is a constant matrix. The rate matrix in Figure 1 can

then be represented as shown in Figure 2.

r -

Qu  Qu ce Q1ic
Q?l Q22 e QZC
| @61 wloy .- vwQop Qow+y - Qoo |

Figure 2: Rate matrix with routing decisions factored.

We can construct the exact aggregate matrix Q49 of the matrix Q, where Q49 is a C
by € matrix with Qf}q = 7:Q.a17, where #. denotes the vector of probabilities [ (Z|A.)]

(confer [5] {17]). Q*9 is shown in Figure 3. Let & = (wy,...,w¢) denote the solution to
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[ Ag Ag Ag ]
11 12 e 1¢
Ag Ag Ag
21 22 ce 2C
- Qf ]'_"T Z Qi i’T . Q! ]'_'T QAQ Ag
| 1TeWen e lel fop! -+ UDTCWcep c(p+1) - Woo |

Figure 3: Q49 - the exact aggregate of Q.

Q#9. Then w, is just the probability of being in the aggregate state which corresponds
to Q27 (the solution to Q#9), and R, is the conditional reward of the aggregated state
corresponding to Q9.

Let Q49(d) denote the matrix obtained from Q49 by setting vy = 1 and vy = 0 for d’ #d
and 1 < d,d' < D, and let @(d) denote the solution to Q*(d). Let R(d) = X%, w.(d)R.
be the steady state reward rate if class C customer always changes to class d. We have

the following lemma.

Lemma 4 Hbin{R(d)} < R < rnélx{R(d)} for 1 <d<D.
Proof:

In [6], it is shown that for a matrix such as Q49 above, its left eigenvector @ is in
the convex hull of {&(d), 1 £ d < D}, i.e., & can be expressed as:

D
W o= ) Baw(d) (11)
d=1

where 3° 3 = 1. Combining Eq. (10) and (11), we have,

R= Suk =% [gﬂdwc(d)] R = T4 [gwc(dmc} - SARE) (2

Eq. (12) says that the total reward R for the model is a convex combination of the
R(d)’s. Clearly, mdin{R(d)} < R < mc?.x{R(d)}. |
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Lemma 4 states that the steady state reward rate can be bounded above and helow by
the reward rate obtained from routing the class C customer to a class d deterministically.
Now we will prove the vertex allocation theorem.

Let C* denote the total number of classes over all chains, or C* = Ei{zl C*, let ¢,d € Cy
for some chain %, and let ¢, = [¢. 4] be a probability assignment to [v. 4] such that Eq. (1)
1s satisfied. Let . = {¢.} be the set of all possible probability assignment for class ¢, and
let V. C &, be the set of all possible vertez assignment for class ¢ which is defined as

follows,

‘/:: = {Q&c | ‘;ﬁc & @c and qgc,d S {071}}
Let ¢ = [é1,...,0c+] be a probability assignment to all classes of all chains, and let
® — {¢} be the set of all possible assignments for all classes of all chains. V' C @ is call

the vertez set of the routing decision space and is defined as follows:
V={¢|pc®and Ve, 1 <e<C* §. €V}

Theorem 1 For a queueing network model described in Section 2, an optimal steady state

reward rate can be obtained by a probability assignment in the verter set.

Proof:

Suppose there is no optimal probability assignment in the vertex set. Let ¢ € ® and
¢ € V be a probability assigniment that gives the optimal reward, say R(¢). Find
a class ¢ such that ¢. & V.. Counsider all other variables to be fixed; from Lemma
4, we can improve the expected reward rate with a new assignment ¢’ such that
dqg = ¢, for d # ¢ and ¢, € V.. Set ¢ — ¢’ and repeat this procedure until ¢ € V.
Therefore, a probability assignment in the vertex set exists that gives the optimal

reward. D
4 Routing of Closed Chains

Theorem 1 provides the means to prune the search space from a continuum of values for
decision variables to a finite number of possibilities, but the complexity of determining an
optimal routing is still exponential in the number of decision variables. In the general, case

there is no known efficient solution. In this section we consider a special case in which only
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a single chain (customer) is being routed in the network where there are other customers
present. As mentioned in the introduction, this corresponds to optimally routing a new
customer which is being introduced into an operational system. For the “phase-type”
routing described below, we can show that the total reward has only one local maximum
and one local minimum in the routing decision space. In this case, we are able to devise

an efficient hill climbing algorithm to find an optimal solution.

4.1 Phase-Type Routing

In this section, we consider a particular type of routing which we call the “phase-type”
routing. This is a more restrictive form of routing than that described in Section 2. Phase-
type routing is basically hierarchical in nature. At the higher level, the behavior of the job
(or chain) is described via a Markov chain in which states are associated with “phases”
or “functions” that the job executes. At the lower level each “phase” or “function” is
associated with a set of open subnetworks which describe alternative ways for performing
the function. By way of example, consider the description of a chain k customer as shown

in Figure 4(a). FEach state in the Markov chain in Figure 4(a) represents a phase of

As where: o S )
Ay 5 Ao - * By . Brz| | . R
: B, Pr3| B /1
N A{ s Do e _/
4 Am /pml o .
(a) (b)

Figure 4: Phase-Type Routing for Chain k.

service. For example, B; might represent a phase of service which can be provided by
the alternative service networks By, Bay, .. ., By, (see Figure 4(b)), where I,,, is the total
number of alternatives for phase m. The routing decision variables are the probabilities
with which alternative service networks are selected, i.e. pn; is the probability that the
alternative service network B,,; is selected when the customer requests service i phase m.

As before, we assume pp,; can be expressed as a non-negative constant plus a non-negative
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Figure 5: Alternative Service Networks for B,.

variable subject to the constraint
me,- =1, Vm (13)

Figure 5 illustrates that the alternative service networks which provide the same function
can have different topologies. The relative arrival rate to each phase can be computed by
solving the job flow balance equations corresponding to the “phase transition diagram”
such as the one shown in Figure 4(a). Let A,, denote the relative arrival rate to phase
m. Then p..;A,, is the relative arrival rate into alternative service network B,,;. Let Amij
denote the expected number of visits to center j in the +** alternative service network of
phase m for each entry to the i'* alternative network. Then in the corresponding queueing

network model, it is easy to see that the visit ratios are given by:

M I'm
9j1( = Z Am mei)\mij (14)
m=1 =1

The main restriction inherent in phase-type routing is that the A,,’s are independent of the
routing decisions variables { p,.;}. Since the A,,’s are independent of the routing decisions
and the A.;;’s only depend on the topology within alternative B,,;, it is clear that each

8;x is a linear function of the decision variables { p;}.

Note that the resourcesin the various alternatives for a phase are not necessarily disjoint

and in fact, it is common for the same resource to be present in multiple alternatives.

In the next section we consider models with phase-type routing. We show that a
Markov reward function results in the total reward being a quasi-linear function of the
routing decision variables and develop a greedy algorithm for finding the optimal choice of

routing,.

16



4.2 Optimal Routing for a Single Chain

Consider the case of adding a new customer to an existing system where the routings
of all existing chains are fixed and the route of the new customer has to be decided to
optimize some performance measures. We assume that we have a BCMP type network
(for the explanation of this restriction, refer to the discussion on the computation of the
mean sojourn time below) and the performance measure of interest can be expressed as a
Markov reward function. Let the new customer be chain K, and the other customers be
chains 1 through K — 1.

We will show that if chain K has the phase-type routing described in Section 2, the
reward function R can be expressed as a ratio of linear functions of the routing decision
variables, i.e. R is a fractional linear function; therefore, R is both pseudo-convex and
pseudo-concave in the routing decision space [1], and a simple “greedy” algorithm that hill
climbs from one vertex to another will find the optimum. For ease of exposition, we will
assuine that we only have binary decisions. The arguments presented are easily generalized

to n-way routing decisions.

Let’s focus our attention on Eq. (10) which is true even for the model with the general
type of routing. The conditional reward rate R, is independent of chain K’s routing, and
w, is the probability that the chain K customer is in class ¢. Let o(c) denote the center
that corresponds to class ¢c. Then w, can be expressed as [18],

O.rle
R AN a2
where 8.k is the relative frequency of chain K being in class ¢ and I, is chain K’s
mean sojourn time per visit to center ¢{¢) when it is in class e¢. Clearly, the relative

throughput (visit ratio) of chain K customer at center j is 6,5 = 3 8.5, and

c,o(c)=3
li = Yoo()=i(0cr /855 )lc is chain K’s mean sojourn time per visit to center j. Let w;

denote the probability that the chain K customer is at center o(c), then

zc,a(c)z Oexcle Ry
wp = 2 we = 5E GJ TS JG.J 7. (16)
co(c)=j c'=1 V'K te! =1 Ot Kb

The mean sojourn time of chain K at center o{c) is just the reciprocal of the conditional

throughput of chain K if chain K is conditioned to be in class ¢ self-looping at center j 2.

2This is well-known for BCMP network [4]. We are currently extending the proof for network of quasi-

reversible queues.
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Since the conditional throughput can be expressed as ¥ zeax 7(Z|AX)R'(Z), where R'(Z)
measures chain K’s throughput rate in state £, /. is independent of chain K’s routing,.
Notice that Equations (15) and (16) have the same form. For convenience and economy
of space, we assume that for each chain, the mean service time at center j is the same for
all classes. This makes {; independent of the routing decisions in the discussion follows.

The development can be easily extended to use Eq. (15).
Using Eq. (16), the total reward R can be expressed as,

Y71 9ix iR,

in which the routing of the chain K customer only affects the visit ratios 8;x’s. Below

R = (17)

we concentrate on the nature of the dependence of the 8,;5’s on the routing variables.
Basically, for the cases in which each 6,k is a linear function of the routing variables, R
is easily seen to be a fractional linear function of the routing variables. The phase-type
routing introduced in this section is exactly such a case. Using the notation introduced
above, each visit ratio, i.e., #;x, is a linear function of the decision variables { p,.;} (confer

Eq. (14)). Therefore, the reward function is a fractional linear function. Furthermore,

39_.,']{ I
= An Anid 18
8prm' .gl: 3 ( )

There are on the order of I, x M systems of linear equations which need to be solved
to obtain the An;;’s. (2 x M for the binary decision case.) One additional set of linear
equations must be solved to obtain the A,,’s. Furthermore, each conditional reward rate
R; and mean sojourn time [; can be obtained by solving a queueing network model with
chain K customer self-looping at center j, and the number of such models to be solved is

equal to the number of centers visited by chain K.

From Eq. (17), the rate of change of the total reward with respect to a decision variable

becomes,
00, x 98,k
OR (5 65x15] [Z,—la'RrgJ—p:;] — %8l Rj] [Eﬂj'grj_pmi] (19)
— 2
Opmi | 85|

Since §;x is a linear function of { p,;} for phase-type routing, 88k /8pmi is a constant

with respect to pm:. We can use the current allocation to compute 8;5’s and obtain the
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direction of greatest improvement on the total reward. This determines the next vertex

allocation.

4.3 Greedy Algorithm

Here we summarize the greedy algorithm for finding the vertex allocation which maximizes

the total reward for a model with phase-type routing.

Step 1: For each center j that may be visited by chain K, solve the network with chain K
looping at center j. Set R; to the total reward for this network; also set [; to be the
reciprocal of chain K'’s throughput at center ;.

Step 2: Compute 96,k /Opp,; according to Eq. (18), V j,m, 1.

Step 3: Let n = 0 and let 5® be an initial vertex allocation.

Step 4: Compute 8k, V j using 7). Then compute 8R/p,,; using Eq. (19).

Step 5: For each m, find 1 < ¢* < I, such that dR/8p,+« is the “maximum” 3.

Step 6: If ppiv = p,(f,) = 1 for all m, then 7 is the optimal allocation and we stop.
Otherwise, set pf,':rl) =1lifi=:*o0r0if i #¢". Let n =n+ 1 and go to Step 4.

In Step 1 of the above algorithm, the number of models need to be solved is equal to the
number of centers visited by chain K. 2 x M systems of linear equations need to be solved
to obtain the partial derivatives 86,k /Opnm:’s. Compared with solving 2¥ queueing models,

this is quite an improvement.

5 Approximations

The algorithm presented in the previous section requires computation of the reward rate,
for each center, conditioned on the chain I customer being at that center as well as the
mean sojourn time of chain K customer at that center. (For convenience, we still assume
that the mean service time at a center is the same regardless of which class a customer
is in.) If the parameters for all chains are known, these guantities can be calculated

for a given center by solving a model with the chain /X customer looping at the given

n) _

*Depending on the current allocation 5™, “maximum” means most negative if p, 7 = 1 and most positive

if pg?i) = 0.
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center. However, if the number of chains is large, it can be expensive to compute the exact
values by solving the queueing networks (one for each choice of center at which the chain
K customer loops). It is of interest, therefore, to consider efficient approximations. In
the approximation described below we assume that measurements of the system with the
current population (before adding the new customer) are available and these measurements
can provide an (approximately) alternative to solving the queueing network models. Qur
discussion here is limited to queueing networks with SSFR servers. Delay servers could

casily be included but we choose not to for clarity in presentation.

As an example, consider the case where a large number of workstations are activated
one at a time and routing decisions are made for each workstation in order to optimize the
sum of throughputs. In such a model, the number of centers would be at least equal to the
nuinber of workstations plus the total number of servers. Therefore, K, the total number of
chains, and J, the total number of centers, can both be large. Also, the system is somewhat
dynamic in the sense that users come and go, so the resource demands for all the existing
chains may not be known. We assume that it is possible to collect statistics to estimate,
for exarnple, the mean queue length and the mean load for each chain at each center. At
chain K’s arrival to the operational system, i.e., a new workstation coming on-line, these
statistics (load indices) can be used in the heuristics to choose the customer’s routing. In
the following we develop an approximate version of the exact optimization algorithm that
is based on Schweitzer’s approximation [19] and the availability of estimates for current
queue lengths and loads. The objective function assumed for this approximation is the

sum of throughputs.

We will assume that the parameters (or at least estimates) for the new customer are
known. To apply the algorithm presented in the previous section requires estimates of the
reward rates E; and the sojourn time /; conditioned on the new customer being at center

J, for all j. In the following we develop an approximation for these quantities.

Let N denote the population vector when chains 1 through K are present in the net-
work. The reward rate (sum of throughputs in this case) conditioned on the new (chain

K) customer being at center j can be expressed as:

K-1
R = > )\k(ﬁ) + Ax(J) (20)
k=1
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where

Ak(j) = 0 if j(k)#j and = -}— otherwise (21)
J
and where (for k£ # K)
1
M) = — 2 (22)
> 0aWi(N)

=1
In the following discussion we develop an approximation for the throughput )\k(]{f )
where it is understood that the chain K customer is treated as looping at the j** center.
Rather than complicating the notation, we assume that the center j will be understood.
Of course, the approximation must be computed for each choice of j to obtain all the

required terms.

For product form queueing networks of fixed rate servers it is well known that the visit
ratios can be suppressed in the above equation by defining Wi (N ) as the mean sojourn
time per cycle of customer k at center ¢ (the cycle is measured relative to some specified

center). Eq. (22) then becomes:

M) = — 1 (23)

J
> Wi(N)
i=1
The unknowns that have to be estimated are therefore the mean sojourn times at each

center per cycle. To estimate these quantities we will make use of the MVA equation:

where T}y is the load at the i center due to the chain k customer, per cycle of the chain &
customer. We assume that these loads are known for each customer. Then the mean queue
lengths that appear in Eq. (24) are the only unknowns. Below we develop an approximation

for these mean queue lengths based on Schweitzer’s approximation.

In words, Schweitzer’s approximation says that when a given customer is removed from
the network, the other customers remain distributed among the centers in approximately

the same proportion as with the customer present. More formally, this is:

LirlN—&) ~ L(N) 1<k <K -1, K +£E
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In our case we are adding a customer and the equivalent approximation is that the
customers that were in the network will (approximately) remain distributed as they were
before the new customer is added. More formally, let N be the population vector after
adding the new customer and N - & be the population vector prior to adding the new,

chain K customer. Then the approximation is,
Liwv(N —&x) ~ Liw(N) 1<K <K-1
Together the above equations yield:
Li(N—&) ~ La N —ex) ¥ #k
It follows that:

-y

LiN-&) = Y La(N-&) = S La(N—éx) forif£jandk#K  (25)

k' £k k' £k
or
L{N-&) ~ S LN —éx) + & Viandk#K (26)
P
where é;; = 1 for ¢ # j and 0 otherwise.

Note that the é;; term accounts for the chain K customer looping at center j; it adds

one to the queue length at center j. Putting this result into the MVA equation we obtain:

Wil N) ~ Ty |14+ 3 LadN —éx)+6;| fork # K (27)

K # k
In words, the approximation is that a chain & customer arriving at the i** center, con-
ditioned on the chain K customer being at center j, “sees”, on the average, the mean
number of other customers (i.e., excluding itself) at center 7 with population N — &%, plus

the chain K customer if ¢ is where the chain K customer is conditioned to be.
Finally we note that /; is simply 1/Ax(N) where:

1

(V) = Wor(F)

(28)

ng(ﬁ ) can be “computed” ezactly from measured quantities of the operational sys-

tem;
Wik(N) = T 1+ LV - &) (29)
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At this point it is simply a matter of applying the greedy algorithm given previously using
the approximate values for R; and !; to find the optimal routing. In the next section we
report on experiments using this approximation. Before concluding this section we discuss

several other approximations that are possible using the same basic approach.

It is interesting to note that the above approximation can be very easily extended to
form the basis of a heuristic for dynamic load balancing. Suppose the current system is
modeled as a closed queueing network with K single customer chains, and we want to
evaluate the possibility of rerouting a customer, say chain K. To reduce the problem to
the routing problem that was just discussed, we need estimates for L,—k(ﬁ — €x) for all

centers 7 and all chains k& < K. Schweitzer’s approximation suggests using
Li(N —&x) ~ L(N)

At this point the previous approximation can be invoked.

The approximation that is described above can be viewed as a more formal approach
to selecting and justifying load indices for load balancing heuristics. In a recent paper
[11], Ferrari and Zhou describe the derivation and use of a certain load index for routing
(or assigning) a new command in a workstation environment. The objective function that
is to be minimized is the new jobs’s response time. (Note that effects on other jobs are
not included in the objective function.) It is easy to see that minimizing the response
time of this new job is equivalent to maximizing its throughput. For the sake of brevity,
lets consider a very simple case in which there are J single server queues where the job
can be executed and also that the job is initiated on a workstation on which there is no
contention. The throughput of the job is measured relative to the workstation. Referring
back to Eq. (17), it is straightforward to deduce that 8,5 is 1 when j corresponds to the
workstation of job K, R; = 0 for j not equal to the workstation, and when j does equal
the workstation then I; = 1/R;. The result is that the total reward is:

1
= Tim Gixcls (5
where the sum is over the possible servers. Since we know that vertex allocation applies
to this problem, one of the 8;x will be 1 and the rest are 0. It is clear that server :*
which yields the smallest value for I; should always be chosen and server with the smallest

mean queue length with population N will yield the smallest value for I;. The result in [11]
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includes delay servers and several different functions (with a set of possible servers for each

function), but the result in these cases also follows as a special case of our development.

6 Numerical Examples

Consider a local area network with disk-less workstations and servers connected to a com-
munication network. When the workstation comes on-line, routing decisions must be made
concerning where to obtain certain types of services. Figure 6 depicts such a routing prob-

lem. There are 3 servers and 5 workstations in the network and workstation 5 is coming

Figure 6: A routing example.

on-line. The user of W S5 requests 4 types of services from the servers. 3 types of service
can be obtained from any of the servers and the last type can only be provided by servers
1 and 2. After the job executes at a server, it always returns to the workstation. Let p,y,;
denote the probability that server j is selected in request type m. The relative frequency
of the occurrence of the types of requests, which are the A,.’s as described in Section 2
for phase-type routing, are A; = 0.12, Ay = 0.15, A; = 0.5, Ay = 0.23, and Aws, = 1.
Table 1 shows the relative loads of the other workstations and the service time of the new

customer.

In order to compare the results of the exact algorithm and the approximation procedure
presented in Section 5, we assume that the system has reached steady state when the new
customer joins the network, and therefore, the mean queue lengths of the network without
the new customer can be obtained from solving the network with chains 1 through 4. Then

the approximation presented in Section 5 is applied to obtain the conditional reward rates

24



chain (k) || Servery | Servery | Servers | WSk
relative loads of other chains
1 0.4 0.25 0.25 3
2 0.8 0.25 0.35 4
3 0.35 0.9 0.9 4
4 0.15 0.3 0.4 3
service time of chain K
K || o3 0.3 0.2 3

Table 1: Reletive loads and service time,

and mean sojourn times. The exact conditional reward rates and mean sojourn times are
solved using MVA with chain K looping at each center in turn. These values are shown in

Table 2. Notice that each alternative service network contains only a single server {since

WSy | Server, | Servery | Servers

exact solution
Rj 1.1389 | 0.7393 0.7429 0.7319
F 3.0000 | 0.4225 0.4174 0.2922

approximate solution
E; || 1.1351 | 0.7442 0.7472 0.7396
[; || 3.0000 | 0.4224 0.4173 0.2923

Table 2: Conditional reward rates and mean sojourn time comparisons.

the job returns to the workstation right after it visits a server) and the resources do not
overlap in any of the alternative service networks, Y/ X .- = 1 in Eq. (18) (if center j is
visited by chain K), and therefore, 88,k /8pm; = Ay, ¥V i. Table 3 shows the values for the
80;/Opwm;’s. Table 4 shows the rate of change of the reward with respect to the decision
variables { pn;}, starting with an initial allocation where all phases execute at server 1. In
both the exact and the approximate algorithin, the optimum is found in one step, which
1s the case where types 1 through 3 of services are obtained at server 3 and type 4 service
1s obtained at server 2. The * in Table 4 denotes the direction of the steepest ascent for

the reward function.
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Server; | Servery | Server;
m=1 0.12 0.12 0.12
m =2 0.15 0.15 0.15
m=3 0.5 0.5 0.5
m =4 0.23 0.23 N/A
Table 3: 88;/0ps;’s.
Server; | Servery | Serverg I Server; | Server, | Servers
exact R/ Op.,;
step 1 step 2
m=1| -0.0304 | -0.0297 | -0.0215* || -0.0304 | -0.0297 | -0.0214"
m =2 -0.0380 | -0.0371 | -0.0268* || -0.0379 | -0.0371 | -0.0268*
m=23| -0.1266 | -0.1266 | -0.0894* || -0.1264 | -0.1265 | -0.0893"*
m =4 | -0.0582 | -0.0570" N/A -0.0582 | -0.0569" N/A
approximated 8R/Op,;
step 1 step 2
m=1 || -0.0297 | -0.0291 | -0.0208* || -0.0297 | -0.0291 | -0.0208*
m=2 | -0.0371 | -0.0364 | -0.0260* || -0.0371 | -0.0364 | -0.0260"
m =3 | -0.1238 | -0.1238 | -0.0868* || -0.1237 | -0.1237 | -0.0867*
m =4 | -0.0570 | -0.0558* | N/A -0.0569 | -0.0558* N/A

Table 4: OR/Ip,,; as the greedy algorithm executes.

In the above example, Schweitzer’s approximation works quite well for estimating the
conditional reward rates and the mean sojourn times. Furthermore, the search converges
in one step in the above example. A large number of random versions of this and other
examples have been run with randomly chosen parameters. The heuristic worked very well:
the optimal solution was found and in one step in over 95% of the cases. The maximum
difference between the optimal reward rate and the reward rate selected by the heuristic

was 3%.
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7 Conclusion

Optimal routing for closed queueing networks has proved to be a difficult problem. In
this paper, we have described a generalized version of the vertex allocation theorem of
Tripathi and Woodside. The proof method has an interesting probabilistic interpretation
that suggests the characteristics that should be present in load indices to be used in routing,

and it also suggests heuristics for routing or load balancing.

We proved the vertex allocation theorem for a general class of routing problems and
for any Markov reward objective function. While this helps to reduce the search space,
there is still no efficient solution to the problem of optimally routing a set of customers.
We concentrated in this paper on the special case of optimally adding a single customer
to an existing system. We developed a greedy algorithms and discussed approximations
which are relatively efficient. Experiments to date have indicated that the greedy type
algorithm for these problems is quite efficient; the optimal solution is often found in one
step. Further experimentation is desirable to determine how robust the approximations

are.
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