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Abstract

During the past two decades queueing network models have proven to be a versatile
tool for computer system and computer communication system performance eval-
uation. This chapter provides a survey of the field with a particular emphasis on
applications.

We start with a brief historical retrospective which also serves to introduce the ma-
Jor 1ssues and application areas. Formal results for product form queueing networks
are reviewed with particular emphasis on the implications for computer systems mod-
eling. Computation algorithms, sensitivity analysis and optimization techniques are
among the topics covered. Many of the important applications of queueing networks
are not amenable to exact analysis and an (often confusing) array of approximation
methods have been developed over the years. A taxonomy of approximation methods
is given and used as the basis for surveying the major approximation methods that
have been studied. The application of queueing networks to a number of areas is
surveyed, including computer system capacity planning, packet switching networks,
parallel processing, database systems and availability modeling.
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1 Introduction.

Computer system and computer communication performance evaluation is concerned
with the measurement, analysis and prediction of the behavior of these systems. Many
different disciplines contribute to the set of techniques that are applicable to the prob-
lems in this area, including measurement instrumentation, statistical data analysis,
simulation and various topics in operations research. This chapter concentrates on
one particular tool for computer system performance evaluation: queueing networks.
Queueing networks continue to be widely used in many aspects of computer sys-
tem modeling. It is the purpose of this chapter to survey the available results and
their application to practical problems. We start with a brief historical review of the
developments in queueing networks and their application to computer system and
computer communication problems. We assume that the reader has basic familiarity
with queueing networks and concentrate on orgamzing the topics in the field rather
than presenting a tutorial. In the latter part of this section, we will outline the
remainder of the chapter.

In the early 1960’s the first queueing theoretic models of computer and commu-
nication systems began to appear [100,101]. The computer system models were most
often single server models in which the main interest was in studying “time-sharing”
scheduling algorithms, e.g. round-robin. These preemptive algorithms had became
feasible due to efficiently preemptable processors. Representing the computer as a sin-
gle resource (the central processor) was justified on the basis of the processor being
the limiting resource in the system.

The machine repairman model (or finite population model) might be considered
the first rudimentary form of queueing network to be applied to computer system
performance analysis. As early as 1967, Scherr [158] had applied the machine re-
pairman model to the CTSS (Compatible Time-Sharing System) at MIT. Lassettre
and Scherr later applied the machine repairman model to IBM’s TSO (Time Sharing
Option) system. This was a much bigger leap of faith since the system software and
hardware was now much more complex [115]. A particularly interesting observation
was made in the paper on the basis of simulation experiments. It appeared that the
mean response time predicted by the model was insensitive to the exact distribution
of service time and appeared to be dependent only on the mean service required.
Theoretical verification of this “insensitivity” property came much later. A survey of
the results in this modeling era can be found in [102].

While research into “time-sharing scheduling algorithms” did yield many interest-
ing results, computer systems quite rapidly became more parallel and more complex.
It was then no longer sufficient to model such a system as a single resource (or server).
Advances in I/O architectures permitted asynchronous I/O operation and, coupled
with larger memories, multiprogramming became commonplace., A major impact of
stochastic modeling has come from concentrating on the multiple resources in sys-
tems and accounting for the behavior patterns of customers in demanding service
from these resources. These early models concentrated on sequential resource usage
for a given customer, but did represent concurrent activity by different customers.
It should be noted that Kleinrock’s work [101] on communication network models is
an early example of this concern with multiple resource models (in this case sets of



communication channels) rather than with the details of scheduling disciplines at a
single server. During the next decade, the 1970s, the computer science world became
aware of queueing networks and their applicability to many of the performance mod-
eling problems being raised by more and more parallel, complex systems in single site
computer systems, computer communication networks, and distributed systems.

It is interesting that Jackson’s first results on networks of exponential servers had
been available for some time [90,91] (see also [72]) but had not been capitalized on by
the computer science community until the 1970’s. In the early 1970’s, two pioneering
efforts were carried out in the application of Jackson’s results to modeling of multi-
programming computer systems. One was a study by Moore [131] at the University
of Michigan in the modeling of the Michigan Time-sharing System using Jackson net-
works. A validation study showed that the model predictions were typically within
ten percent when the model parameters could be estimated accurately. Moore ob-
served during the study that it appeared in some cases that the response time was
determined solely by the relative load at the resources and not by any details of the
routing behavior. This is another case of an empirically observed “insensitivity” that
was later proved formally for certain classes of queueing networks [148]. The second
research effort was that of Buzen at Harvard [27]. Buzen’s work concentrated on the
central server model which is illustrated in Figure 1. Buzen introduced several of the
research topics that were to occupy many researchers in the next decade. He intro-
duced the routing optimization problem in the context of the central server model
and was the first to consider the computational aspects of queueing networks (the
complexity of actually computing performance measures), and he introduced the now
well known convolution algorithm. It is interesting to note that computational prob-
lems apparently did not become an issue until actual applications were attempted.
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Figure 1: Central server model with terminals.

Following the pioneering work of Buzen and Moore, there was an explosion in
research results including many major advances in both the theory and practice of
queueing network models. It is the purpose of this chapter to survey much of this
work, although it is not possible to attempt anything close to a complete account
of subsequent work in this introduction: this will occupy us for the entire chapter.
Below we outline the topics that are covered in the remaining sections of the chapter
and only briefly mention a few of the major contributions.

In the early to mid 1970s, as one might expect, there were many studies in build-
ing and validating queueing network models of computer systems. Some of these are
reported in [9,13,54,69,99,143,162) At the same time, mainly in response to the short-
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comings of the currently available results, there were advances in queuneing network
theory. In [12], the product form results of Jackson were extended to allow multiple
types of customers (customer chains), to allow general service time distributions in
certain cases and to allow a more general form of routing. {Customers could change
class as they moved among the resources and, since transitions could depend on the
class of a customer, the routing behavior could incorporate some dependence on past
history.} Since customers with different behavior could now be included in a model,
the model no longer had to be open or closed but rather each customer chain could
be open or closed as illustrated in Figure 2. Open chains, e.g. chain A in Figure 2

| e o
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Figure 2: Queueing network with open and closed chains.

have external Poisson arrivals and departures from the network. Closed chains have
neither arrivals nor departures, but rather the number of customers in the network
remains constant. Open chains are more appropriate for modeling situations in which
the customer population is very large and only a small fraction of the population is
actually in the network model at any time. In this case, there is no significant negative
feedback on the arrival rate as a function of the current population of the network.
Closed chains are more appropriate when the population is considered constant, or
nearly so. A common case is that of a multiprogramming system which is heavily
loaded. Assume that the degree of multiprogramming is limited by memory to some
fixed limit. Under heavy loading we assume that when one job finishes another will
immediately take its place, and thus the number of customers (jobs) remains fixed.

One of the effects of [12] was to raise the question of what other types of queues and
customer behavior could be represented in a queueing network while still retaining a
product form solution. This is the characterization problem. Basically, the goal is to
provide an effective test to determine if a queueing network model has product form.
Initially the solutions that were available were all developed in an ad hoc manner,
e.g. start with a solution for a simple case; then add some additional feature; solve
a small network by hand; guess a generalization to the product form solution; and
check the global balance equations for a general network. Several approaches were
developed that provided more systematic formal development of product form results
[29,96]. This issue is the main topic of Section 2.

The study of product form queueing networks has provided the stationary state
probabilities for a very useful set of models. Many performance measures of interest
are then, in theory, available as functions of these state probabilities. However, for
closed queueing networks the state probabilities are not given directly, but rather a
normalization constant must be computed to determine actual state probabilities. The
cost of computing performance measures grows combinatorially with the number of



queues, the number of customers and the number of customer chains. In particular,
as queueing network models began to be applied to communication networks and
distributed systems, computational cost and numerical stability became an issue in
the actual use of the formal results. The Mean Value Analysis Algorithm was a
major advance in this area {149] which permits calculation of mean queue lengths and
throughputs without calculation of the individual state probabilities. This has several
advantages including the avoidance of numerical problems which can occur with the
convolution algorithm. Other algorithms have been developed which are particularly
efficient for models with a large number of chains but are “sparse” in that each
chain visits only a small subset of queues [112]. These are common characteristics in
communication network models. Recently we have seen the development of a new type
of computational algorithm which is especially efficient for models with many chains
[39,48]. Another approach to avoiding the high computational cost is to find efficient
approximations, e.g. [129]. Computation algorithms for product form networks are
the subject of Section 3.

In attempting to build and validate models of real computer and communications
systems, it quickly became evident that there are many features that occur in real
systems but which cannot be represented in product form queueing networks. Those
features of real systems that have a first order effect on the performance measures of
interest and which are often present in computer systems are candidates for special
attention. For example, these include: memory contention, priorities, and synchro-
nization between customers. Driven by the need to model such features, there has
been extensive work on developing useful approximation methods. There are at least
two ways to organize the work on approximations: one is to organize the material on
the basis of the application and the other is to place the emphasis on the approxi-
mation technique. We have chosen to do both. Section 4 discusses approximation
techniques with reference to some practical applications for each technique. Section
6 discusses application areas and often refers back to Section 4 for details of the
appropriate approximation technique.

Most of the topics covered in Section 3 through Section 4 are concerned with
analysis of a model rather than synthesis of a system. The emphasis in Section 5
1s on the application of queueing network models in system optimization. Many
varieties of optimization problems can be posed in terms of queueing network models.
For example, in a computer system the allocation of files to secondary storage devices
will determine the branching probabilities to those devices. The obvious question
is how to allocate the files so that some measure, e.g. the total throughput of the
system, is maximized. Optimal routing in a communications network is a similar
problem. Many versions of the load balancing problem can also be posed as an
optimization problem in which there are constraints on the routing probabilities. The
above problems assume a fixed set of resources, and the goal is to control the transition
behavior of customers to optimize some performance measure. Another optimization
problem concerns allocation of capacity (in other words, money) to servers to optimize
a performance measure subject to constraints on total investment. Theoretical results
and applications of these problems are presented in Section 5.

Our goal in writing this chapter is to present an up-to-date survey of the major
advances in queueing network modeling with particular emphasis on their application



to computer system and communication network performance evaluation. A brief
summary has just been given of the chapter organization and what topics are covered
in each section. In this conclusion to the introduction, it seems appropriate to mention
several topics which we will not cover. Two ma jor areas that are not touched on here
are the subjects of two other chapters in this book: blocking and sojourn times.

An alternative approach to the analysis of queueing networks is that developed
by Buzen and Denning [54], called operational analysis. The operational analysis
approach has the advantage of providing a more easily accessible approach to many of
the results than using more classical stochastic analysis. However, the results available
from this approach are a subset of those available with the classical techniques.

A number of queueing network based tools have been built and many are com-
mercially available, e.g. (1,2,3,4,153,192]. Due to lack of space we have chosen not to
discuss this topic.

In addition to topics that were deliberately omitted, there may be topics or par-
ticular results that have been inadvertently overlooked. The authors take full respon-
sibility for any such blunders. Now, we begin!

2 Product Form Queueing Networks.

The most general method of solution for a queueing network model is to generate
and solve the associated Markov chain using numerical techniques. This is clearly
too costly in space and time for any but the most trivial network models. Product
form queueing networks are a special class of queueing networks which have a partic-
ularly simple form for the stationary state probabilities and which have a number of
interesting properties. We begin with a definition.

A queueing network will be said to be product form if the stationary state proba-
bilities have the following form:

J
P(S) = I P(S) (1)

i=1
where:
J is the number of queues in the network.
S; € §;, where S; is a set of “states” associated with the it? queue, 1 <7 < J.
S =(81,5,,...,57) is a state of the network.

F;(S;) is a function only of the state of the i** queue and in general may depend
on the type of the i** queue.

Product form queueing networks are the foundation upon which the queueing
network area is built. Several major factors have contributed to the success that they
have enjoyed in practical applications. First and most importantly, empirical evidence
shows that these models are often sufficiently accurate for quantitative performance
prediction in many applications [121]. Second, solutions exist for models with an
arbitrary number of resources and flexible “topology”, i.e customer routing, This
allows the results to be applied easily to a vartety of system configurations.



In many applications the product form assumptions are violated, and in this case
approximations are often required. The exact results for product form networks are
often useful in guiding the henristics used in inexact methods and Jor are useful in solv-
ing submodels that are part of these inexact methods. These issues will be discussed
in more depth in Section 4 where approximation techniques are the main topic.

In this section we concentrate on the stationary state probabilities for product
form queueing networks. We first briefly present the results which are most well
known and useful for computer systems modeling. We then discuss extensions and
generalizations of the basic results. Due to the importance of product form networks,
1t is clearly of interest to provide a characterization of this type of network model. By
a characterization we mean a set of necessary and sufficient conditions for a queueing
network to have a product form solution. This issue is discussed in the following
subsection. In subsection 2.2 we discuss some additional properties of product form
networks that are particularly useful in applications.

2.1 Basic Results

We consider queueing networks that have the following characteristics [12]:

® There can be different types of customers. Each distinct type will be called
a chain. For each chain k, there is a routing probability matrix P; for which
Py[i, 7] is the probability that a chain k customer departing from queue i will
next visit queue j. This type of routing is referred to as Markovian, since the
transition probabilities are not a function of past history.

o Each chain can be open or closed. For an open chain there is a Poisson arrival
process of customers to the network and at some queues there is a non zero
probability that the customer may depart from the network. For an open chain,
the total number of customers in the network is variable. For a closed chain the
number of customers is fixed. There are no arrivals from outside the network
and no departures.

¢ The service disciplines at the queues can be FCFS, PS (processor sharing), IS
(infinite servers or delay) or LCFS-preemptive.

* Except for delay servers, all queues are SSFR (single server fixed rate).

*® Successive service times of chain k customers at queue i are i.i.d. and exponen-
tially distributed.

The class of networks described above has product form and (due to the exponential
service time distributions and the service disciplines) the “state” of a queue is the
number of customers of each chain at that queue, denoted 7. Then:
@y el
BRI § Gy
H!'n|=1 pi{m) i=p T

Pi()

where:



#i(m) = 1 or m for SSFR or IS centers, respectively.
a;¢ is the relative service demand at the i** queue by chain k customers.
The above results can be generalized in a number of ways [12,96,195]:

¢ Phase type service time distributions (i.e. formed from exponential stages) can
be accommodated for IS, PS and LCFS-preemptive queues. In stationary state
probabilities for the number of customers at the queues i1s independent of the
service time distribution for the queue types mentioned.

¢ Queue length dependent service rates that are a function of the number of
customers queued can be represented without sacrificing the product form.

¢ The routing of customers can be generalized to allow a limited form of history
dependent routing by introducing customer classes [12,96]. When a customer
departs from one queue and joins another we allow the customer to change
class. In this way the same customer may visit the same queue in different
classes and its behavior at departure may depend on the class. An example is
shown in Figure 3 in which customers follow a “figure eight” pattern. This is a
single chain of customers but two classes (“a” and “b”) are used to distinguish
between customers that have arrived at queue 2 from queue 1 and those that
have arrived from queue 3. As with the phase type service time distributions, it
can be shown that the product form is independent of this generalized routing
behavior [148]. For a; one simply uses the total load of chain k at queue i, i.e.
summing the load over all classes of chain & that visit queue i.

class a class a

class b} class a

Figure 3: Queueing network with class changes.

¢ State dependent routing in which transition probabilities depend on the current
congestion at the various queues is clearly of interest in modeling systems with
dynamic routing, load balancing, etc. Unfortunately, except in special cases
[83,179], including this feature generally results in a non-product form network.

Given the importance of product form networks, it is natural that considerable
effort has been made to characterize precisely the class of queueing network models
that admit a product form solution, i.e. determine a set of necessary and sufficient
conditions for a queueing network model to be product form in the sense of Eq. (1).
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The most useful characterizations are those that provide a means for easily testing
a particular model to determine if it has product form. This “test” can be either in
terms of the structure of the transition rate matrix or at the “system level” in terms
of the queueing discipline, service rates, etc. The latter type of characterization is
obviously more accessible and useful for systems designers, while the former generally
leads to a more abstract and more general characterization. This section summarizes
the major approaches and the results that have been achieved.

The class of models that have a product form solution has been difficult to charac-
terize exactly. What is found in the literature generally are results that give sufficient
conditions for product form solutions. The most general approach appears to be
based on quasi-reversibility. An early algebraic treatment of quasi-reversibility (with-
out that name) and its relationship to product form queueing networks can be found
in [133]. An extensive development of these ideas and their application to queueing
networks is due to Kelly [96]. Informally, a quasi-reversible queue is one for which
the past departures, the current state and the future arrivals are mutually indepen-
dent. A property that follows from this definition is that the arrival process and the
departure process are Poisson.

The main result is a sufficient condition for a queueing network to be product
form, namely: that the routing be Markovian and that each queue be quasi-reversible.
When these conditions are met, then the network has a product form stationary dis-
tribution, and the factor P(S;), corresponding to queue ¢, is the marginal distribution
of the the i** queue when driven with a Poission arrival process of appropriate rate.

The set of queues that are quasi-reversible includes:

¢ FCFS with multiple classes. Each class must have the same exponential service
time distribution.

® Processor sharing with multiple classes and arbitrary phase type service distri-
butions.

¢ IS (delay server) with multiple classes and arbitrary phase type service distri-
butions.

¢ Last-Come-First-Serve-preempt-resume with multiple classes and arbitrary phase
type service distributions.

The quasi-reversibility results provide a sufficient condition for testing whether
a new queueing model is one which can be incorporated into a network model and
preserve product form. This characterization is useful for queueing theory enthusiasts
but not for performance analysts who generally want to think in terms of queueing
disciplines, number of servers, etc. and not in terms of transition rates or reversibility.
We gave a short list of types of quenes above which are quasi-reversible only to provide
some evidence that it is a useful concept. The results on quasi-reversible queues can
be translated into more generally accessible terms by considering a general class of
parameterized queueing disciplines and determining the restrictions (if any) required
for product form in terms of the parameters. For example, a rather general class of
disciplines called symmetric queues have been shown to be quasi-reversible [96]. A
symmetric queue is one with a Poisson arrival process for which the probability that

8



an arrival joins the :** position in the queue when there are n customers queued is
equal to the fraction of the service capacity that is given to the i** queue position
when there are n + 1 customers queued. A processor sharing system, for example,
can be described as a symmetric queue by defining that a customer that arrives when
there are n customers in the queue have equal probability of entering any of the
n + 1 positions. Many queueing disciplines can be described in this framework, and
it is known that all are quasi-reversible, With this characterization it is possible for a
practitioner to determine that a given queueing discipline is one which can be included
in a queueing network and retain product form. However, note that this is only a
sufficient condition for a queue to be quasi-reversible (although a rather general one).
It is also interesting to note that there can be multiple equivalent representations of
the same queueing discipline, and while one of these may be a symmetric queue, others
may not be. Thus the choice of representation rather than the intrinsic properties
of the model may determine whether the queue is symmetric. The processor sharing
queue is a simple example. Note that there is no compelling reason to have the
arriving customers have equal probability of entering any queue position. However if,
for example, the arriving customer joined the end of the queue, the queueing system
would no longer be symmetric (although it is clearly still quasi-reversible).

The concept of symmetric queues is similar to the set of station balanced queueing
disciplines that are described by Chandy and Martin in [29]. The work described in
[29] takes a quite different approach to characterizing queueing networks with product
form. They start with a (general but nevertheless constrained) class of queueing
disciplines and a specific algebraic form for the product form solution, and so the
results only apply in that restricted world. For example, one of the results is that
a queueing model with non-exponential service time distribution will have product
form if and only if it is station belanced and balanced. Thus both necessary and
sufficient conditions are given in this case. This is unusual in that most results are
only for sufficient conditions. The proof of necessity in the above result requires the
assumption of the particular algebraic form for the solution. The algebraic form is
one which is quite general, but none the less it is an assumption and does not follow
from first principles.

Excellent treatments of the characterization of product form networks based on
quasi-reversibility can be found in [96,195]. Other interesting work concerned with
characterization of product form models can be found in (83,155,197,198].

2.2 Insensitivity/Robustness

The product form solutions presented above allow a broad range of customer behavior
to be represented. It is interesting that some performance measures are insensitive to
certain details of the model. These properties are interesting theoretically and also
have practical significance, since they indicate when simpler models, often with fewer
parameters, can be used. There are two consequences. First, the form of the solution
is less complex and performance measures can be more efficiently calculated (see
Section 3). Second, if the performance measures of interest are insensitive to certain
parameters, then these parameters do not have to be provided (e.g., estimated from
measurements).



The major result of this type concerns the insensitivity of the stationary dis-
tribution of the number of customers at queues in a product form network to any
characteristic of the service time distribution except the mean (the service time dis-
tribution must be differentiable). This was mentioned above in connection with the
station balanced queueing disciplines [29]. The most common disciplines that exhibit
this property are processor sharing, delay (or infinite server) and LCFS-preemptive
queues. Clearly then, if a product form network model js being used, only the mean
service times need to be estimated. For more general and indepth treatments of in-
sensitivity refer to [23,155,156,157,197,198]. An interesting recent application of these
results to the analysis of circuit-switched networks can be found in [24,35].

Another insensitivity property concerns customer routing. The general model
allows the definition of customer classes and class changes. Using this feature, the
modeler can represent routing behavior that can depend on the customers past history
of visits to queues. A simple example was discussed previously and illustrated in
Figure 3. As previously mentioned, routing behavior that is introduced to represent
“past path dependencies” can be suppressed and only the total relative visit service
demands of a chain at a queue are required to obtain the queue length distributions.
This set of parameters is often easier to obtain in practice. Note that the dynamic
behavior of the model is a function of the detailed routing behavior; the claim is
only that the stationary state distribution is not effected. Also, the distribution of
customers at queues is obtained only on a per chain basis rather than by class (e.g.,
in the example in Figure 3 only the total demand by class a and class b customers
need be known) but then only the distribution for the total number of customers at
queue 2 is obtainable. This is sufficient for many applications.

In this section we have discussed some of the insensitivity results available for
product form networks. We were concerned specifically with modifications to the
structure of the model for which the stationary state distribution is invariant. A re-
lated topic is the sensitivity of performance measures to errors in parameter values.
In this case one is concerned with metrics such as the percentage error in the perfor-
mance measure as a function of the percentage error in the parameter. These topics
are discussed in Section 5.

3 Computation Algorithms for Product Form Net-
works.

The stationary state probabilities for product form queueing networks provide the
basis for the calculation of performance measures of these models. It i1s easy to
see that most performance measures can be expressed as an ezpected reward rate as
follows:
R = > R(S)P(S)
5€s

where S is the set of states. For open networks these calculations often collapse
to closed form expressions if the service capacities are of simple form, e.g. fixed
rate servers, infinite servers, etc. [12]. For closed networks the situation is more
complicated. Naive evaluation of performance measures by direct use of this equation

10



would imply a computation cost that is proportional to the number of states in the
model, and this is often prohibitively expensive for realistic models. Therefore, it is
important to develop algorithms for efficiently calculating performance measures of
interest.

Considerable effort has been expended on developing algorithms for closed product
form queueing networks. Over time, some algorithms have been subsumed by others
that are uniformly superior (e.g., RECAL [39], and MVAC [37] have been subsumed
by DAC [48]). A sampling of the most useful current algorithms is given below. These
algorithms differ in terms of:

The computational complexity:

The computational complexity of the algorithm is usually given in terms of the
number of centers, the number of chains and the number of customers in each
chain. Often the complexity is not easily calculable in such terms. For example,
the complexity of the MVA algorithm (see below) grows as 2V where N is the
number of state dependent servers. No closed form expression exists for the Tree
Convolution Algorithimn complexity which is highly dependent on the number of
chains in the model and “topology” of the network (e.g., the fraction of centers
visited by the average chain).

The performance measures that can be calculated by the method:

Queue length statistics {mean, distribution), throughputs and utilization are the
most common measures of interest. However, joint queue length distributions,
derivatives of measures with respect to parameters, etc. are sometimes required.
The algorithms are often limited to particular measures, e.g., MVA does not
yield quene length distributions.

The following notation is used throughout the chapter:

a.

7

p5(n)

> |3y S 3 S
’ =

S,
-

vl

gt

number of service centers.

total number of chains in the network.

population of chain k.

= population vector = (Np,..., Ng).

a specified service center visited by chain k.

visit ratio of a chain k customer to center j, scaled so that Oie = 1.
mean service time of a chain &k customer at center j.

il

= 85t - Tjr, relative utilization of a chain k customer at center j.

= service rate of service center j when there are n customers present,
p#i(1) =1,

= number of chain k customers at center j.

yK, n;;x = number of customers at center j.

(rj1,...,njK) = state of center j.

(fi1,...,7s) = state of the network.

;- Ay = throughput of chain t customers at center j, where \, =

I

X,
HOLY
= mean number of chain ¢ customers at center j.

11



Wi = mean waiting time (queueing time + service time) of a chain ¢
customer at center j.

S = (BT, 7, = N} = state space of the network.

P(7) = steady state probability that the network is in state 7 € S.

Pi(n) = steady state probability that there are n customers at service center

€L = ‘}{' -dimensional vector whose k-th element is one and whose other
elements are zero.

FCFS = First Come First Served service centers.

SSFR = Single Server Fixed Rate service centers.

IS = Infinite Server service centers.

QLD = Queue Length Dependent service centers (the dependence is in the

total queue length at a center).

The product form solution can be immediately used in the calculation of state
probabilities of queue lengths. However, for closed networks, we need to evaluate
the normalization constant which appears in the solution. For a product form single
closed chain network with SSFR centers only, the equilibrium state probabilities are
given by:

J
P(ny,...,ny) = %N)l;[la? (2)

and G(N) is the normalization constant determined so that the state probabilities
sum to one: ;
G(JV) = Z H a;-lj (3)
ay+..+ng=Nj=1
Since the summation is over the set of all feasible states, it is easy to see that the
computation of G(N) requires O [(N}'_JI' 1)] operations. However, Buzen [26] showed
that there is a simple recursive algorithm which computes not only G(N), but the set
G(1),...,G(N) with much less cost than taking the above sum. Furthermore, after
computing G(n), n = 1,..., N, it is necessary to determine the performance measures
of interest. Calculation of common performance measures is discussed below based
on the generating function approach introduced by Moore [132] and further extended
by Williams and Bhandiwad [199].

Consider the following polynomial which is called the generating function for the
network:

9:(t) = xi(t) - z2(t)... 24(t) (4)
= (I+at+at®+. )1+at+at+..)1+at+at*+...)
for1<j<N

Call the coefficient t" in g;(t), Gj(n). Note that the coefficient ¢V in gs(t) is equal
to the normalization constant G(N) (= G;(N)), since G;(N) is the result of the
sum of terms af" a3* ...a%’ such that ¥;n; = N. Furthermore, G;(n) is simply the

convolution of G;_(n) with the function f;(n) = a?,

Gi(n) = Gyoa(m) @ fi(m) & 3 £,(1Gsoaln — 1) 0<n<N

12



Using the property that:

zi(t) = 1—1a,-t (5)
we have
9i(t) = %:“1752
and so,
9:(t) = gja(t) + a;tg;(t) (6)

Now, noting that the coefficient " in tg.(t) is the coefficient t"~! in g;(t}, we have the
following recursive formula:

Gi{n) = Gj_1(n) + a;Gj(n — 1) (7)

where G;(0) = 1. Clearly G;(N) can be evaluated in O(NJ) operations. (This
expression could also be obtained directly from the convolution equation, but the
above development serves to introduce the generating function technique.)

From the values of G;(n), several performance measures can be evaluated. For
instance, the utilization of device i is obtained from Eq. (2):

U,' = Z P(nl,...,nj) (8)

n+..fng=N
n; >0
If we multiply g,(t) by a:t, the coefficient tV in g;(#).a;t (aiG (N —1)) gives the sum
of all terms of the form af'a%? ... a’}’ such that > ;jn; = N and n; > 0. Therefore, the
utilization U; of device i is given by:

a,'Gj(N - 1)

Y T

(9)

Other performance measures can be obtained in a similar way.

For multiple closed chain product form queueing networks with SSFR and QLD,
a similar recursive formula is obtained [116,148]:

Gi(f) = G;_i(R) ® f(7) = Y. f,(7 - DG 0<A<N (10)

4
<

where -
- |7t ai
Fi(7) ==

L, pj(m) oy 7!

and p;(m) =1 or m for SSFR or IS centers, respectively. Eq. (10) simplifies to:

K
G_,(ﬁ) = GJ‘_I(T_I') + Z ajij_l(ﬁ — Ek) ér <A< N (11)
k=1

-~

if the networks have SSFR and IS centers only. The normalization constant G J(ﬁ ) is
obtained in O(J [T, Lat2UMetl)y o1 O(J K [],(Ne + 1)) operations if Eq. (10) or Eq.
(11) is used, respectively.
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An interesting result for product form queueing networks is the so called “Norton’s
theorem” [28]. For single chain networks, this theorem states that a subnetwork of
resources of a product form queueing network model can be replaced by a QLD service
center such that the queue length distributions for each resource in the remaining
network are identical to those in the original network. The name “Norton’s theorem”
comes from the way the service rates of this equivalent center are obtained. The
subnetwork is solved in isolation with the resources in the subnetwork’s complement
“shorted”, i.e., the service rates of these resources are set to infinity. The service
rate u(n) is set equal to the throughput rate A(n), of this subnetwork with customer
population n. As an example, consider Figure 4a where a subnetwork is formed by
queues g; and g3. In Figure 4b queue ¢; in the subnetwork’s complement is “shorted”

SU
(@

«— Al)

10—

equivalent
center

L) = )

©)

Figure 4: Norton’s theorem.

in order to obtain the Norton equivalent QLD center. In this figure, A(n) is the
throughput of the network when the chain population is n. Figure 4¢ shows the
resulting network. This replacement is particularly useful for performing parametric
analysis. In a parametric study, some subset of parameters is varied. Using Norton’s
theorem the part of the network model that is not being varied can be replaced by an
equivalent QLD server and computational savings can be realized. It is interesting to
note that replacing a subnetwork by its Norton’s equivalent center corresponds to the
convolution algorithm in which the queues in the subnetwork are first in the order of
convolution. Perhaps the major use of Norton’s theorem is as a heuristic to develop
approximations for non-product form networks. The results are also valid for multiple
chain networks [105].

The convolution algorithm represented a ma Jor step forward in queueing network
modeling. However, it has the drawback that floating point overflow/underflow may
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occur during the computation of the normalization constant. This problem was ad-
dressed by Lam [110] who proposed an approach which alleviates the numerical prob-
lem, but at the expense of increased computational cost. Other algorithms followed,
such as LBANC [31], but with no significant advantages [116].

Reiser and Lavenberg [149] developed a new computational algorithm which they
termed Mean Value Analysis (MVA), since it allows the computation of mean per-
formance measures (throughputs, mean queue lengths, mean response times) without
the need to compute the normalization constant. The computational cost is on the
same order of magnitude as the convolution algorithm for SSFR and IS service centers,
but it is higher than convolution for QLD centers. The algorithm does not suffer the
numerical problems of convolution. Furthermore, the equations obtained are simple
and have a physical interpretation which has made MVA the most popular algorithm
for queueing networks. The physical interpretation has been the basis of a number of
approximations as we will survey in the next section.

For SSFR and IS centers, the algorithm is based on three equations. The first is
obtained by applying Little’s result to a service center:

Li(N) = M(N)apWir(N) (12)

and the second by applying Little’s result to the customers belonging to a routing
chain:

J J
Nie = 3 Lu(N) = 3 M(N)6Wi(N)
j=1 =1
. N
and so, A(N) = 7 : N (13)
Ej:l gjkWJ'k(N)

The last and key equation is obtained from the arrival theorem for closed queueing
networks {96,118,163] which states that, for networks of the type given in [12], a
customer arriving to a queue sees the distribution of the number of customers in that
queue equal to the steady state distribution for the network with one less customer
of that type. This implies that:

Tjk[l + 2,{;1 ij(N‘ — é'k)] for SSFR centers

14
T; for IS centers (14)

Wi(N) = {

These equations can be generalized to networks with QLD centers. Queue length
dependent centers often occur and it is important to be able to include them in
models. Common examples of such servers in computer systems modeling are I/0
devices such as disks. Depending on the scheduler of a moving arm disk, the disk
seek can differ significantly as a function of the number of requests queued. For QLD
centers, the calculations must include expressions for the marginal state probabilities:

AL )
Wi (V) = jkzﬂ,—mﬂ(i—lw—m (13)
=17
Pi(i|¥) = %mzajkxk(J\?)Pj(i_1|N_ak) (16)
J k
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For numerical stability, P;(0|V) is calculated from the equation below:

3 AN 7 _ =

Fi(0|N) = ij(ow ~ &) (17)
which increases significantly the cost of the overall algorithm since 2# load dependent centers
networks have to be solved, each with some of the load dependent service centers
removed from the network [116,187]. (In the equation above the superscriptJ — j on
the throughput is meant to indicate that the throughput is for a network which is
identical to the original network except that center j is removed.) However, Heffes [76]
has shown that, if the center service rate is given by a special function: p(m) = a—fﬁ
(e« 4+ 8 =1,3>0), an efficient solution exists. By a proper choice of a and §, the
modeler can try to match the queue dependent service rate of a device.

The MVA algorithm, as the name indicates, is appropriate for computing mean
performance measures, However, it is possible to obtain similar recursions for mo-
ments of queue lengths. In [76], Heffes showed that moments of queue lengths can be
obtained recursively in terms of lower moments using Eq. (16). De Souza e Silva and
Muntz [53] showed that the recursion for calculating variance (and higher moments)
can be obtained directly from the main MVA equation. For instance, a recursive ex-
pression for the variance ij(N‘), of queue lengths of chain k customers at center J s
obtained by: (a) taking partial derivatives of the petformance measures of a slightly
modified version of Eq. (14) with respect to input parameters (such as visit ratios),
and (b) using simple relationships between these derivatives and mean queue lengths.
One of these relationships is:

98
One then obtains:
Vi) = M(Majull — L(N) + 2Lu(N - &) + (19)

A
DA Mal(Li N = &) — L M)La(N — &) + V(N = &)
t=1

The relationships between partial derivatives of mean performance measures and mo-
ments of queue lengths have also been applied in optimization problems [46]. Similar
results for moments of total queue lengths in a center were also presented in [169).
McKenna and Mitra [126] obtained a general expression which relates higher (> 1)
factorial moments of queue lengths with higher order partial derivatives of the gener-
ating function with respect to relative utilizations. As a consequence, they obtained a
recursive expression for calculating the derivatives in terms of lower order derivatives.
The approach was used in conjunction with the asymptotic expansion method (to be
surveyed in the next section) to obtain bounds for moments of queue lengths,

Many applications, such as communication networks, require models with many
closed chains. Even for product form networks, an exact solution is not feasible due to
the large computational costs of the algorithms above. Lam and Lien [112] observed
that, in the case of communication networks and probably in other applications as

16



well, a given chain often visits only a small subset of the centers. With this motivation,
they developed a convolution-based algorithm called Tree Convolution which takes
advantage of this “sparseness” property when it exists.

Consider Eq. (10). Then:

Gi(A) = fi(R)® f(f) ®...Q fi1(7) (20)

Let SUBNET, be a subnet of m centers in the network (e.g., centers 1 to m) and
SUBNET, the complementary subset (e.g., centers m + 1 to J). From Eq. (20),

G(it) = Gsunen () ® Gsusner, () (21)
where

Gsupnver () = HA) @ ... Q ful(i)

GsuBNELR(T) = furi(@)@...Q f1(7)

The key observation is to partition the set of chains in the network into three
subsets, ®;, ®; and ®;. Subset P, (®2) contains all chains which visit only centers
in SUBNET, (SUBNET,) and subset ®; contains all chains which visit centers in
SUBNET, and SUBNET,. Then, it is easy to see that if 9, (®;) is non-empty,
GsusneT (7)) (Gsunner,(7)) can be evaluated with less computational effort than
if ®; (P;) was an empty set. This is because chains in ®, {®,} do not need to be
considered when evaluating Gsupser () (Gsupsen(R)). Furthermore, G;(R) can
also be evaluated with less computational effort if ®, and ®; are non-empty sets.
The algorithm works by finding a sequence of subnets (SUBNET,, SUBNE T, ...,
SUBNET;, ...) such that ®; is non-empty and then merging these subsets into larger
ones until all the network is covered. The tree approach can also be implemented using
an MVA-based recursion. The details can be found in [84,188|.

The computational requirements of both convolution and MVA algorithms grow
exponentially with the number of closed chains in the network. Recently, Conway
and Georganas [39] proposed a new algorithm called RECAL (Recursion by Chain
Algorithm) with computational requirements which grow as a polynomial function of
the number of closed chains in the network. RECAL is significantly less costly than
either convolution or MVA for networks with many closed chains and few centers, but
the opposite is true for networks with many service centers and a few closed chains.
Similar to convolution, RECAL is based on a recursive computation of the normaliza-
tion constant and suffers from the same potential overflow /underflow problems that
are found with convolution. Subsequently, Conway et ol [37] derived a new algorithm
called MVAC (Mean Value Analysis by Chain) that is similar in form to RECAL’s
recursion (and has similar computational requirements) but avoids the computation
of the normalization constant. Like MVA, MVAC computes only mean performance
measures for networks with IS and SSFR centers. Furthermore the equations used
have a pleasing probabilistic interpretation.

As we will discuss in following sections, there are applications which require the
calculation of joint distributions of queue length. Motivated by such applications, de
Souza e Silva and Lavenberg [48] developed a new algorithm called DAC (Distribution
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Analysis by Chain) which has been shown to be more efficient than previous algo-
rithms for that purpose, since the computational cost to evaluate joint quene length
probabilities with DAC is of the same order as the number of such probabilities [48].
DAC can be applied to networks with IS, SSFR and QLD centers. Furthermore, DAC
can be used to compute mean performance measures and marginal queue length prob-
abilities more efficiently than RECAL or MVAC. F inally, the recursion is very simple,

the equations obtained have a physical interpretation and the computations present
no numerical problems.

To illustrate the DAC recursion, consider a network with QLD centers in which
each chain with Ny > 1 customers is converted to NV, identical single customer chains
(with the same visit ratios, etc. as the original chain). We define some additional
notation in which superscript k¥ denotes a quantity for a network when only chains

1,....k are present. Thus, the superscript I denotes the network with a full popu-

lation.

il = (n1,...,ns) = joint queue length.

€; = J-dimensional vector whose j-th element is one and whose other

. elements are zero.

1* = population vector = k-dimensional vector all of whose elements are
one,

Sk = {7 : ijl i = fk} = state space of the network.

P*(3) = steady state probability that the network is in state iie Sk

Sk = {7 ijl nj = k, n; is a nonnegative integer for all j } = set of
possible queue lengths.

P*(i7) = steady state probability that the joint queue length is 7 € S*.

Pf( n) = steady state probability that there are n customers at service center

7.

The recursion is based on the key equation:

J
PRI = MY e s P - ) (22)
where,
M= (23)
20 W5
=1
Wh = Ty~ pi(n 1) (24
n=1 pi(n) 7

Each step of the recusion corresponds to adding one customer to the network.
To allow easier interpretation of Eq. (22) we rewrite it as:

J
ey = k " Tie prs 7 & 25
Pt = E‘Lﬂc 15(n;) WﬁcP {7 — &) (25)

=1

Since the network is composed of single customer closed chains, Lfk is the probability
that the single customer from chain % is at center J» when % chains are present. It
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can be shown (using similar arguments to those presented in appendix A of [37]) that
the term in brackets in Eq.(25) is the expression for the steady state probability of
a network with k chains being in state 7, conditioned that the customer from chain
k is at center j. (Furthermore, this conditional probability is identical to the steady
state unconditional probability of a network where the &' customer is circulating at
center j only.) '

The recursion presented above calculates the joint queue length probabilities and
average measures for the last chain added to the network. The mean performance
measures for any other chain, say chain ¢, can be calculated by “backtracking”, i.e.,
by removing the chain ¢ customer from the network.

In [48] extensions to the algorithm were presented which reduce the computational
requirements when only marginal probabilities (or joint probabilities at a subset of
centers) are needed. Furthermore, a simple recursive expression is obtained which
allows the calculation of any state probability in K steps only, if chain throughputs
are previously calculated using any algorithm, say MVA or DAC.

Summary.

In this section, we presented a brief survey of computational algorithms for closed
queueing networks. Mixed networks, i.e., networks with closed and open chains, offer
no additional problem. The approach is simply to convert the mixed network into
an equivalent network with only closed chains. For networks with IS and SSFR, the
effect of open chains is to reduce the capacity of the service centers by a fixed amount
[116]. Several books exist which include a detailed presentation of algorithms, such
as [21,31,38,116].

We conclude this section with several observations. Although some of the exact al-
gorithms have been applied in practice, they are not practical for solving large network
models, mainly due to the large amount of storage required. (The issue of reducing
space requirements of exact algorithms by implementation procedures have been ad-
dressed by several authors, e.g. [74,209].) Many applications require the solution
of medium to large problems, and thus the modeler has to resort to approximation
techniques. However, even in this case the exact algorithms play an important role,
as will become evident in the next section. Furthermore, exact algorithms based on
equations which have a probabilistic interpretation are particularly useful as a basis
for developing heuristics for approximation algorithms. The prime example of this
1s MVA. It remains to be seen if DAC will be useful in a similar way. Finally, it is
important to point out that care must be taken when one chooses a particular algo-
rithm to solve a problem. It is common to see a reference to an exact algorithm as
appropriate to solve “product form queueing network models”. However, the correct
phrase is “a class of product form queuneing network models”, since the equations
obtained for the particular algorithm are often proven algebraically from expressions
valid for a restricted class of product form models only. For example, recently a new
kind of service center (of interest in modeling certain types of multiprocessor systems)
was proven to satisfy the requirements for a product form solution {17]. However, the
known algorithms cannot immediately be used to obtain a solution for models which
include this new center, and new algorithms had to be developed [18,32].
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4 Approximations.

4.1 Introduction.

As discussed in the previous section, open networks have a simple closed form solution.
The exact analysis of general closed queueing networks is typically very costly due to
the large state space. Closed networks require additional effort to obtain a normalized
solution, and relatively efficient algorithms have been developed as were described.
Unfortunately, these algorithms have computational requirements that grow combi-
natorially with the number of closed chains in the network or with the number of
centers. For example, for the most common algorithms (convolution, MVA) networks
with more than five chains with a few customers per chain (say ten) may be too costly
to solve in a medium size computer. Of course increases in the speed and memory
capacities of computer systems will expand the range of models that can be solved ex-
actly but the exponential growth of complexity of the computations means that only
marginally larger networks will come within reach. Networks with a larger number
of chains can be solved exactly if the network has a special sparseness structure (e.g.,
with tree algorithms) or if it has only a few centers (e.g., with RECAL, MVAC or
DAC). For networks which do not satisfy product form requirements, the only general
solution method is to determine the transition rate matrix for the model and to solve
numerically. Due to the state space explosion this is only feasible if the network has a
very small number of service centers and jobs, i.e., a small state space. The high cost
of existing algorithms for product form closed chain networks and the lack of efficient
exact algorithms for non-product form networks are the main reasons to investigate
accurate and cost effective methods for the approximate analysis of closed queueing
networks.

Many methods have been proposed for the approximate analysis of queueing net-
works. Most do not give error bounds for the results obtained. In general, the
accuracy of the method is evaluated empirically for a large number of networks by
comparing the approximate solutions with results obtained by analyzing the same
networks with an exact algorithm (if that is feasible) or by simulation.

We classify the techniques for the approximate analysis of queueing networks (both
product form and non-product form networks) into non-iterative and iterative meth-
ods. Most of the non-iterative methods proposed in the literature are based on ex-
tensions to the MVA equations, hierarchical decomposition and/or Norton’s theorem
and asymptotic expansions of the normalization constant. Some of the non-iterative
MVA based methods for non-product form networks require a recursive solution over
all network population vectors, and so they have the same multiple chain computa-
tional limits as MVA. MVA based approximations for product form networks generally
break the recursion of the MVA equations in order to obtain significant computa-
tional savings. Non-iterative methods based on hierarchical decomposition/Norton’s
theorem typically involve solving a subnetwork for all feasible population vectors (to
obtain the service rates for a flow equivalent server) and then solving an aggregate
network consisting of the flow equivalent server and the remainder of the network.
These methods are more suited to single chain networks rather than multiple chain
networks due to the cost of solving the subnetworks and the aggregated network. A
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variety of iterative methods have been proposed in the literature. A survey can be
found in [50]. Roughly, in some methods, sets of nonlinear equations are obtained by
introducing approximate relationships between unknown parameters of the network.
There may be two (or more) sets of equations and two (or more) corresponding sets
of parameters (say, X; and X;). The equations take the form: X1 = Fi(X;) and
X2 = F3(X;), which can be reduced to a single set of fixed point equations of the
type Xy = Fi{F3(X,)). In general, we may have N sets of equations of the form
Xi = Fi(X,y,... y X1, Xit1y ..., Xn). Others follow the classical iterative decompo-
sition approach in which a model is decomposed into an interrelated collection of
subnetworks. Each subnetwork is analyzed independently, with the remainder {or
complement) of the subnetwork represented in a simplified way. The parameters of
the complement of a subnetwork are obtained from the solution of other subnetworks.
Each subnetwork is analyzed, one at a time, and the parameters in the complement
are updated to reflect the latest subnetwork solution. Successive iterations refine
previous estimates, until some convergence criterion is satisfied. Figure 5 below il-
lustrates this iterative process. Besides the accuracy of the result, issues concerning

Subnet Subnet1 [~ | Subnet2 |——| Subnet3 | —
1 Subnet

2

r

Complement
of 3

Complement
of 1

Compiement

Subnet 3 of 2

queueing model

(a) (b)

Figure 5: An iterative process.

convergence, existence and uniqueness of the final solution are important, but in gen-
eral it is difficult to resclve any of these issues. Several researchers have addressed
the problem, e.g. [6,50,139,206].

We have outlined one classification of approximation techniques. In this section
we survey several specific approximations for product and non-product form networks
and indicate where they apply. These approximations have been developed in response
to needs in practical applications as will be discussed for each.

4.2 Decomposition.

Many approximations are based on hierarchical decomposition in which the network
1s decomposed into subnetworks which are solved independently. The results are
then combined to obtain a solution for the original network. Decomposition is a
useful technique in analyzing large complex systems consisting of weakly coupled
subsystems. The basic theorems formalizing the approach for stochastic models are
due to Simon and Ando [165]. Courtois made a seminal contribution in showing how
the results apply to stochastic queueing networks and developed a comprehensive
theory of nearly completely decomposable queueing networks. The development below



follows that of Courtois [40,41]. We briefly survey the application of the general
technique to queueing networks.

Consider a queueing network model of a system with exponential servers. Assume
that this model is composed of weakly coupled subsystems, i.e., the queues in any
subsystem interact much more heavily with queues in the same subsystem than with
queues in the remainder of the network. Then it may be possible to construct a tran-
sition rate matrix of the model such that it is nearly completely decomposable. This
matrix consists of state aggregates. Each aggregate is such that the transition rates
from states in one aggregate to another are small compared to the transition rates be-
tween states in the same aggregate. Courtois has shown that for such weakly coupled
queueing network models the aggregates are the transition matrices of subnetworks of
queues. This observation is of great importance in providing computational savings.
The basic solution technique is as follows: each aggregate is solved in isolation, ob-
taining an approximate solution for the conditioned state probabilities of each; then
the steady state probabilities for each aggregate are calculated by accounting for the
interaction between aggregates.

In more detail, assume that the behavior of the system is represented by a contin-
uous time Markov chain with transition rate matrix Q as shown in Figure 6. In that

—Ql € ce €
e @ ;

Qn_1N-1 €
[ € ... € On |

Figure 6: Transition rate matrix Q.

figure, @; is a submatrix consisting of the transition rates between states of aggregate
i. The €'s indicate that the transition rates from a state in aggregate ¢ to states in
any other aggregate are small, in comparison to the transition rates between states in
each aggregate (less than a value €). It is easy to see that a matrix C can be chosen
such that

Q=Q +eC (26)

where Q" is a completely decomposable matrix. =}, the solution of Q7 = 0, can be
interpreted as an approximation to the steady state probability vector conditioned
that the system is in aggregate ¢ (] a n{). In order to find the unconditioned steady
state probabilities, we need to calculate the percentage of time the system is in any
of the states of each aggregate. If we knew the correct 7§ this could be easily done by
exactly aggregating each submatrix @; into one state and constructing and solving a

new matrix 12, shown in Figure 7, with NV states, where the r;;’s are calculated from
rij = m$Qi;1 (27)

where 1 is a column vector of 1’s.
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Figure T: Aggregate matrix R.

The 7#f’s are not known exactly, but they can be approximated by the 77 s. The
solution of ¥ = WR (¥ = [y, 1,,..., ¥n]) is used to obtain the final approximate
solution

7 o= [m{dn M, ., T YN] (28)
This solution can be shown to be O(e)[42].

In [190] Vantilborgh extended the above results and showed that the solution for
the steady state probabilities can be bounded by O(€?) as follows. It is known that
for a specific choice of the matrix C in Eq. (26), each 7} will correspond exactly to #$.
However, in order to make this exact aggregation, it is necessary to know the exact
value of 7. The basic idea is to estimate , as above, and again use Eqgs. (27) and (28)
to obtain a new estimate. This new estimate can be shown to be O(e?) and successive
estimates obtained by iterating the procedure will produce successively better bounds
and will in fact, converge to the exact solution.

As an example of the application of decomposition to queueing networks, consider
the model of a multiprogrammed computer system with memory constraints shown
in Figure 8, where a memory partition has to be allocated to a Job before it is allowed
to compete for the CPU and disks. In the figure, the allocation of memory is repre-

memory

terminals disks

EJL% A O—

deallocate
node

allocate
node

Figure 8: A central server model with memory constraint.

sented by an “allocate node” [116,152,154], and we assume that there are M memory
partitions and N > M terminal users. Let 2 be the transition rate matrix for the
system. Assume that the states are ordered in such a way that: (a) the i'* aggregate,
for 1 < M, contains all states with 7 jobs in the CPU-I/O subnetwork and; (b) the j**
aggregate, j > M contains all states with M jobs in the CPU-I/O subnetwork and
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J — M jobs waiting for a memory partition. Further assume that N\ << min{ g, g},
where 1/) is the average user think time and ftc and uq are the CPU and disks service
rates, respectively. This assumption is reasonable for real system models. By properly
choosing the matrix C, each aggregate @7 will correspond to the subnetwork formed
by the CPU and disks, when the population in this subnetwork is ¢, for i < M or
M for i > M. Therefore, the aggregates can be efficiently solved. Unfortunately, the
approach in [190] destroys the physical interpretation above, since the submatrices
used to obtain a new estimate of 7 do not necessarily represent networks of quenes.

It is interesting to note that, based on decomposition, one can derive Norton’s
theorem for product form queueing network models [191]. As a final note, not only
has decomposition been applied to queueing network models of weakly coupled sub-
systems but, as will be discussed next, the general idea of decomposing a system into
an interrelated set of subnetworks can be used even when subnetworks are tightly
coupled.

4.3 Approximations for Large Product Form Networks.

As mentioned in the introduction of this section, we can classify the majority of
the methods that have been proposed for the approximate analysis of large product
form queueing networks as either: (a) non-iterative methods based on extensions
to the main MVA equations; (b) non-iterative asymptotic expansion methods; (c)
iterative methods which involve the approximate solution of the whole network; (d)
iterative methods based on hierarchical decomposition which involve the solution of
subnetworks. Based on this classification, we survey below some of the methods that
has been proposed.

4.3.1 Non-Iterative MVA Based Methods.

A simple example of a non-iterative approximation is the asymptotic bounds of Muntz
and Wong [134] for single chain networks. The upper bound for utilizations and lower
bound for mean response time for a class of queueing networks (single chain) applies
more broadly than product form networks and includes arbitrary work conserving
queneing disciplines, arbitrary service time distributions, etc. It can be shown that
the increase of a device utilization with an increase in the number of customers is no
greater than linear and that the ratio of the utilization of any two servers is equal
to the ratio of their respective relative utilizations (for single server queues). These
simple facts plus the observation that no utilization can exceed 1 lead to the following
upper bound on device utilization:

Qg a,
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(29)
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where U;(V) is the actual utilization of the i** server when the network population
is N, a; is the relative utilization of the i** server, and ag is the highest relative
utilization. An upper bound on response time can also be obtained by using Little’s
result. The bounds are also trivially extended for multiserver queues. The bounds
above can be used as a rough guideline for system analysis. In [54], there are several

examples which illustrate the application of asymptotic analysis.
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Although the bounds above require few assumptions, a penalty is that they are
not very tight. Zarhojan et al [208] developed a bounding technique called BJB {Bal-
anced Job Bounds) which leads to more accurate bounds, but the method requires
the network to be product form and only SSFR queues are permitted. It is shown
that bounds on the throughput (response time) can be obtained by calculating the
throughput (response time) of two related networks; one in which the relative utiliza-
tions of all devices are identical to the maximum relative utilization, and another in

which all the relative utilizations are identical to the average of the relative utilization
of all devices:
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(30)

where a, = —Z—J-,Lf-li Extensions for networks with IS centers are also described in [208],
but the solution is less efficient.

In [60,61] Eager and Sevcik proposed a bounding method which has advantages
over previous techniques. This method can handle multiple chain networks with IS
and SSFR centers, and one can trade off computation for accuracy, thus creating a
lierarchy of bounds. The method is appropriately called Performance Bound Hierar-
chies (PBH). We briefly summarize the results. From the MVA equations for single
chain networks we obtain:

(i-1)
wi(N —1)

Oy — o
WJ (V) a; 1+Z+‘W“"”(N—1)

(N -1) (31)

where Z is the sum of the relative utilizations in all IS centers, T/V(‘)(N) =3, ¥Vf“(N),
and the superscript () indicates the order of the bound. If W}'_l)(N — 1) is known
exactly for all j, then Eq. (31) gives the exact value for Wi(N) = W}”(N). However,
if an upper (lower) bound is chosen for W}O)(N — 1), then by applying Eq. (31) i
times successively, W}’) (N) will also be an upper (lower) bound for W;(N), for any
value of i. Also, the larger the value of i, the tighter the bounds. In [61] it is shown
that, starting with Muntz and Wong’s lower bounds for response time, a sequence of
lower bounds is obtained. Similarly, a sequence of upper bounds is obtained when it
1s assumed that all customers are in the bottleneck center, i.e., VV}O)(N —i)=N—4
for j = 8.

The basic idea of the algorithm remains the same for queueing networks with
multiple closed chains. However, exact MVA equations are not used as in the single
chain case, and new (MVA based) equations are employed. The computational cost
of the PBH algorithm is O (J K (K+:'—1)). For a given value of 7, bounds are less tight
for less balanced fixed rate centers and more “dissimilar” chains. In [60] extensions
are also developed for queueing networks with QLD centers, but the computational
requirements grow combinatorially with the number of those centers.

Recently, Hsieh and Lam [88] proposed a bounding technique called Proportional
Bounds, which is proven to be more accurate than BJB in (208]. The approach
also enables the trading of computational time for accuracy and, for single chain
networks, extends the technique in [61], since the recursion can be over an arbitrary
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population sequence rather than N — ; through N. The method is based on the
following observation: as the population of the network increases, the increase in the
ratio L;/L; is greater than a linear increase with rate ai/a;, when a; > a;. If we
assume that the rate of increase is linear (in particular, proportional to the ratio
of relative visit ratios), then using the main MVA Eq. (14) a lower bound can be
obtained for the total network delay. Similarly, an upper bound can be obtained by
noting that Li(n)/L;{n) < (a;/a;)", for a; > aj, n > 1. For instance, bounds on
W(N) are given by (assuming the network has only SSFR centers):

7 7
Y Di(n) < W(n) < Y. D¥n;) (32)
=1 =1
Di(n) = et + 5 (nia)(mi — 1))
Dlr(u)(n-)
rll(u)(n;_) — J :
’ m=t D (n;)
rj(no) = ;j i o =1 "3(mo) = [):C:jai:l mo=m—l

where the superscript /{u) represents the quantity for lower or upper bound, and
1 <ny <... < ngis any population sequence (S < N).

For multiple chain networks, the algorithm proposed in [88] is similar to the level 2
bounds in [60]. In [88] several examples are also presented which apply the multichain
algorithm to medium size communication networks.

In a subsequent paper, Hsieh and Lam [87] proposed a simple approximation for
multiple chain networks called PAM (Proportional Approximation Method). The
method uses the MVA equations and estimates average queue lengths for population
(I\_f — &) for 1 < k < K to obtain performance measures for population N. The es-
timates are based on assuming the customers from each chain are distributed among
the centers in the same proportion as the relative utilizations of the centers. A slight
modification is also proposed in which the last two steps of the MVA recursion are ex-
ecuted (instead of just one step) to improve accuracy. In [87] the PAM algorithm was
tested for chain throughputs only. The approximation does not give error bounds, and
the results seem to indicate that the accuracy is not nearly as good as existing itera-
tive methods. However, it is argued that the accuracy is sufficient for communication
network optimization problems with the advantage that the solution is very fast. The
emphasis is on low computation cost since, in communication network design, a large
number of models must be solved during a search of the design space.

Other related work for obtaining hierarchies of bounds is presented in [98,106,168,
170).

4.3.2 Asymptotic Methods.

Most of the methods surveyed thus far are based on the MVA equations. A different
approach is to obtain bounds on performance measures by performing asymptotic
expansions on the normalization constant. Computational savings are obtained by
truncating the higher order terms in the expansion. The earliest work that we are
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aware of that took this approach is that by Ferdinand [62] for the machine interfer-
ence (or machine repair) model, The idea of performing asymptotic expansions on
the normalization constant was also used by McKenna and Mitra [128,129,130,144]
who developed an extensive and novel methodology to handle large closed queueing
networks with IS, SSFR and QLD centers. In their method, Euler’s integral is sub-
stituted for terms in the expression for the normalization constant of a network. For
example, for a single chain network with J — 1 SSFR centers and a single IS center
(server J) (see also [195] for details):

ny J-1
G(N) = %Zj 1Ly (33)
Recalling Euler’s integral:
nl = /000 et dt n>0
it easily follows that, .
o = /0 ¥ e-*(i:-!)—dt (34)

Assuming that a; = bdN and 0 < a; <b(for 1 <i < J— 1) (this is called the “normal
usage” assumption), and using Eq. (34) to substitute for the a;” in Eq. (33), after
some algebraic manipulation and making an asymptotic expansion in one of the terms
in G(N), it is shown that G(N) can be written as a linear combination of the normal-
ization constant for hypothetical networks with SSFR centers called pseudo-networks,
with relative utilization at the centers and chain population different that those for
the original network. If higher order terms in the expansion are truncated, G(N) can
be estimated efficiently by solving the pseudo-networks with small population values
for the pseudo-networks.

The computational cost of the algorithm (for multiple chain networks) is O(JK?),
where ¢ is the number of terms in the asymptotic expansion and is empirically chosen
to be 4 [144] for accurate results. With this choice for ¢, the cost is similar to the
cost of the PBH algorithm with bound level of 3 [61]. However, the asymptotic
expansion algorithm requires that all chains visit an IS center and also 1Mposes a
limitation on the SSFR center utilizations relative to the total IS utilizations (e.g.,
for single chain networks, the normal usage assumption mentioned above requires
that U; < U;/N). In practice, this limitation is translated into a restriction on the
maximum utilization of the SSFR centers (say utilizations less than 0.85). Recently
it was shown in {130] how the “normal usage” restriction can be relaxed if the centers
at the pseudo-networks are treated as queue length dependent centers, even if the
original network has no such centers. Finally, besides obtaining bounds for average
quantities, bounds on second moments of queue lengths can also be obtained.

Other work related to asymptotic expansion techniques is found in [104] for solv-
ing a queueing network model of a multiprocessor system. For this sitnple system,
approximate formulas are obtained for the performance measures of interest.

12
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4.3.3 Iterative Methods.

The physical interpretation of the MVA equations has been the basis for a number of
iterative approximations.

In some early work, Bard [11] proposed a very simple way to break the recursion
in Eq. (14) by assuming:

Li(N = &) = Lu(N) (35)
which has an intuitive appeal when the number of customers is large.

A more accurate and widely used approximation was proposed by Schweitzer [160]
for product form networks with IS and SSFR centers:

Li(N) k#t

MLV k=t (39

Li(N - &) = {
It is easy to see from Eq. (36) that the approximation comes from assuming that
the fraction of each chain population at each center does not change if the network
population is decreased by one customer. This approximation has computational costs
which are O( KX N) and typically errors of less than 10% are obtained for throughputs
and less than 20% for mean queue lengths and mean service times. However, large
errors (up to more than 40% for average queue lengths) can occur [49,206). This is
due to the fact that the removal of a chain # customer can have nonnegligible effect
on the average queue lengths of other chains, which is contrary to the assumption on
which Eq. (36) is based.
In order to more accurately account for the effect of removing a job from the
network, Chandy and Neuse [30] proposed a new algorithm called Linearizer. To
illustrate the method, consider a single chain queueing network model. Define:

F(N) = L—JJ("VN—)

as the proportion of jobs at center J and
Dj(N) = Fy(N - 1) - F;(N)

as the difference in this proportion when the population increases by one job. Schweit-
zer’s approximation assumes that the proportion of jobs at each center does not change
from population ¥ — 1 to population NV (e, Dj(N) = 0. for all j). (Note that this is
true for balanced networks, i.e., networks in which all centers have the same relative
utilization, and for unbalanced networks in the limit as N — oo since almost all the
customers will be in the bottleneck center.) Linearizer can be viewed as attempting
to estimate the true value of D;(V). In order to break the recursion it 1s assumed
that D;(N) = D;(N —1). This is equivalent to assuming a linear change for Fj(N)
as IV grows. Successive iterations are used to refine the value of D;(N). For multiple
chain networks, it is necessary to estimate the difference Dy, J-(f\_f) in the proportion of
chain k jobs at center j when the population of the network varies from (N~ &) to
(_?V.) The basic approach remains the same, though. This algorithm is very accurate
and extensive tests reported in the literature indicate that errors are typically less
than one percent, and on the order of a few percent in the worst cases. Linearizer is
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however, much more costly than Schweitzer's approximation. In [30] it was reported
that the computational cost is O(JK?) and storage cost 1s O(JK?). In [52] it is shown
that the computational cost of Linearizer can be reduced to O(JK?), Recently, an
approximation based on Linearizer was proposed which has the same computational
cost of O(JK?) but storage cost is reduced to O(JK) [206]. Results in [206] indicate
that the new approximation is only slightly worse than Linearizer. Usually, conver-
gence is not a problem in these methods, but networks can be constructed such that
convergence is slow [206].

Schweitzer’s and Linearizer approximations cannot solve networks with queue
length dependent centers. However, load dependent centers are important not only to
model] a congestion adaptive servers (e.g., disks), but they also occur in hierarchical
modeling as a flow equivalent center for a subsystem. Zahorjan and Lazowska [207)
proposed an approximate algorithm to solve networks with QLD centers. A sim-
pler and apparently more accurate approximation was proposed by Krzesinski and
Greyling [108]. The method is based on Linearizer and uses an additional approxi-
mation for QLD centers, namely:

P(i | N —&) = Pi| N) (37)

This approximation breaks the recursion of the MVA equation (Eq. (16)), and the es-
timates obtained for queue length distributions were found to be reasonably accurate.
The computational complexity is O(J(TE, Nu)K?).

Combined iterative/decomposition methods.

The approximations above attain reduction in computational cost by replacing
the MVA recursion by iteration. They do not attempt to decompose the model into
smaller, more efficiently solved submodels. The main reason for partitioning a product
form queueing network into subnetworks is to obtain subnetworks which are much less
costly to analyze than the original network. The sum of the costs for solving each
subnetwork times the number of iterations is usually significantly less than solving
the whole network. There are many possibilities for choosing the subnetworks, for the
representation for the complement for each chain in the original network, and how
the parameters for the complement are determined. In [50,205] we find a detailed
discussion of the possible choices.

Below is an example of an approximation which decomposes the original model into
subnetworks and a simplified representation of the complement of each subnetwork.
Successive iterations over the subnetworks refine the estimate of the parameters for
the complement.

Models of local area distributed systems may require many closed chains (on the
order of tens to hundreds). Briefly, in a local area distributed system, a job generated
at one site may use resources from a foreign (i.e., remote) host. To represent the rout-
ing behavior of a job, at least one routing chain has to be associated with each site,
and so models of LAN’s with n sites will have at least n chains. Schweitzer’s approx-
imation is computationally practical and could be used to solve this kind of model.
However, large errors may occur in some cases. Linearizer is very accurate, but it
can be computationally too expensive for such models. An iterative approximation
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method was proposed in [49] which is applicable to this problem. The basic idea is to
subdivide the network resources into subnetworks (not necessarily disjoint) and, for
each subnetwork, to identify the chains that have higher loadings at the subnetwork
resources than at the resources in the complement. These chains will be called the
local chains for that subnetwork, and their customers the local customers. All the
other chains (and customers) will be called foreign (with respect to that subnetwork).
For instance, in a local area distributed system, the subnetworks can be the computer
sites, and the local chains for a site would most likely correspond to customers logged
on at that site. Chains representing customers logged on at other sites would be the
foreign chains. In this approximation, the effect of the complement in the subnetwork
is represented in a different way for the two types of chains. For local chains the
complement is represented by an IS center and for foreign chains the complement
1s represented by Poisson arrivals. As described in [49], this representation and the
parameters for the complement are obtained by (a) preserving the recursion in Eq.
(14) in a subnetwork when a local chain customer is removed, and (b) approximating
the effect on the mean performance measures in a subnetwork (and the remainder of
the network) when a foreign (local) chain customer is removed (for instance, Schweit-
zer's approximation is used to approximate the effect on the mean queue lengths of
the resources in a subnetwork, when a foreign chain customer is removed). Figure
9 shows the representation of a subnetwork and its complement. The approach was
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Figure 9: A submnetwork and its complement.

empirically found to be nearly as accurate as Linearizer but with a computational
cost competitive with Schweitzer’s approximation. It is interesting to note that any
solution technique can be used to solve for the subnetworks, and if the original net-
work contains only SSFR and IS centers and Schweitzer’s approximation is used for
the subnetworks, then the approach reduces to Schweitzer's approximation applied
to the whole network. It can also be applied to networks with multiserver service
centers. Furthermore, it is possible to trade off cost and accuracy by the choice of
subnetworks and local chains. In [49] an example is also given which extends the
method to non-product form networks.

Other iterative decomposition approaches are possible, and discussions can be
found in [50,122,205].
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4.4 Approximations for Non-Product Form Networks.

There are many applications that require the modeling of certain features which
violate product form requirements when included in a queueing network model, Some
examples include:

o FCFS queues with different service times for different routing chains. These
queues appear in models of packet switching networks when packets in different
virtual channels have different average lengths.

* In models of interactive computer systems, a job may be required to obtain a
memory partition before competing for I/O resources. This is an example of
the so called simultaneous resource possession problem. Other examples include
the modeling of critical sections in a computer system.

* Queues with priority scheduling may appear both in models of data networks
(e.g., control packets may have higher priority than data packets) or in a com-
puter system model (e.g., jobs may have different priorities according to their
class).

¢ Blocking. Blocking may occur when Jobs contend for resources with finite wait-
ing room. For instance, in data networks, a node with no free buffers available
may block the traffic on incoming channels to that node.

¢ Queues with fork/join. Fork/join constructs are important to model the be-
havior of programs which can spawn tasks to be executed in parallel and need
resynchronization at some points in time during execution.

Most of the solution methods proposed in the literature are tailored for a particular
class of non-product form networks, and do not produce error bounds. An exception is
the work of Courtois [40,41] which can be used in a more general framework and allows
the bounding of the solution. However, it is limited to small models since it deals with
the Markov chain representation of the system. Recently though, Courtois and Semal
[43,45] have shown that queueing models with a very large number of states can be
handled, by bounding performance measures of interest which are computable from
the conditional steady state probability of certain subsets of states. This approach
may considerably extend the size of models which can be analyzed. Another bounding
methodology was recently proposed by van Dijk [189] and will be discussed below.

The majority of the methods for the approximate analysis of non-product form
queueing network models can be subdivided into non-iterative and iterative meth-
ods based on heuristic extensions to the MVA equations, hierarchical decomposition
and/or Norton's theorem.

4.4.1 MVA Based Methods.

FCFS centers with relaxed service time distribution constraints.

It is known that for FCFS service centers the product form solution holds only if all
jobs belonging to different chains have the same exponential distribution. Even with
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the usual “independence assumption” {102] models of packet switched communication
networks with different packet lengths for different virtual circuits would violate prod-
uct form. Reiser [147] proposed a heuristic modification to the MVA equation for the
mean waiting times (Eq. (14)) for FCFS service centers with different service demand
distributions for different chains. Based on Eq. (14), the waiting time observed by a
packet of a chain % at service center j has three components, namely: (1) the mean
service time of the arriving job at service center j, Tjx; (2) the mean backlog of jobs
waiting in queue at arrival; (3) the residual service time of the job in service upon
arrival of a chain & packet. The main assumption is that the arrival theorem holds for
this kind of non-product form network. From the above assumption and observations
the following equation is obtained:

K K Y — Tz
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where PBJ-(N ) is the probability that the center j server is busy when the population
is N. Eq. (38) simplifies to

«
Wit(N) = T+ > TuLu(N — &) (39)
=1

for exponential service time distributions.

The above results apply to single server FCFS centers, but cannot be easily ex-
tended to multiple server centers. In [51] an approximation is developed to handle
non-product form FCFS multiple server centers. The approach is also based on the
assumption that the arrival theorem applies to the network model under consider-
ation. Furthermore, an additional assumption is used to relate: (a) the probability
mass function that, at arrival times, the server is serving @ customers (given that all
servers are busy), and (b) the network flows. Experimentation has shown that the re-
sults are accurate. In [36] a linearizer algorithm based on this method was developed
with good results.

Priorities.

Priority scheduling disciplines are frequently used in computer systems [102]. For
instance, jobs with different resource requirements may be assigned different priority
levels at the CPU. In packet switching networks, control packets usually have higher
priority than short message packets, which in turn may have higher priority than long
messages.

The shadow approximation [164] is an early iterative technique proposed for
preempt-resume priority systems, but large errors have been reported. More recently,
Bryant et al [22] proposed an MVA-based approximation for queueing networks (open,
closed or mixed) containing preempt-resume and head-of-the-line priority service cen-
ters, which appears to have better accuracy than previously published results. Similar
to Reiser’s approximation for FCFS centers, it is assumed that the arrival theorem
holds for non-product form networks with priority queues. In light of Eq. (14), the
expected sojourn time of a tagged job in a preempt-resume priority queue is given
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the mean backlog of jobs in the queue with equal or higher priority than the tagged
job; and (3) the delay due to higher priority jobs which arrive while the tagged job is
queued. A new equation for the mean waiting time of a job with a given priority is
obtained, and an MVA like recursion is used to solve for the mean performance mea-
sures. A similar development applies to head-of-the-line priority queues. [22] reports
on extensive experiments to evaluate the accuracy of the approximation.

by three components: (1) the mean service time of the tagged job at the center; (2)

The approximation above requires a recursive solution over all network populations
and thus has the same computational cost as MVA. But the work reported in [59]
showed that a Linearizer type algorithm can be used to alleviate complexity without
sacrificing much accuracy. Other related work appeared in (16] where the authors
tried to overcome potential sources of errors in previous approximations (such as
“synchronization error”). The modifications proposed seem to improve the accuracy
for some cases studied.

Bard’s Approximation.

An early example of an iterative method is found in [10] where Bard proposed the
use of Eq. (40) below instead of the MVA equation (Eq. (14)):

ij(N) = ij(/\la-'-a’\jaLla"-aL\]) (40)

to model several system characteristics including some which lead to non-product form
networks. Fj. gives the proper approximate solution in terms of parameters of the
model; the exact form of Fjx depends on the type of the 7' service center. Among the
models considered were: tightly and weakly coupled multiprocessors, CPU priorities,
software subsystems, distributed systems, etc.

4.4.2 Methods Based on Hierarchical Decomposition.

The approximations above are examples of MVA based techniques. In methods based
on hierarchical decomposition, the network is decomposed into subnetworks which
are solved independently. Then the results are aggregated to obtain the solution for
the original network [40,41].

Several decomposition methods are based on a heuristic use of Norton’s theo-
rem for non-product form networks. These approaches are based on weakly coupled
subnetworks [116].

FCFS centers with relaxed service distribution constraints.

Marie [125] developed an iterative algorithm for single chain networks with non-
product form FCFS centers. It has been extended for multiple chains by Neuse and
Chandy [135]. Recently, Akyldiz and Sieber {7] proposed an extension to handle QLD
centers in single chain networks.

In Marie’s method, each iteration involves analyzing a set of subnetworks and their
complements. For the sake of exposition, consider a network that has two non-product
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form FCF'S centers (e.g., non-exponential service time distributions), say center 7 and
J. as shown in Figure 10a. It is assumed that Norton’s theorem is valid for non-
product networks. A subnetwork is formed consisting of center j and the Norton’s
flow equivalent of the remainder of the network. as shown in Figure 10e. The flow
equivalent server for the remainder of the network is obtained by substituting for
center © an “equivalent” exponential server and dpplying Norton’s theorem, as shown
in steps (b) through (d) in Figure 10. (In that figure, equiv, is the “equivalent”
server for center ¢.) This subnetwork is not product form (since center j is FCFS
with general service time distribution) but it is an M/G/1 queueing model with state
dependent arrival rates, and can be efficiently solved. After solving for the subnetwork
containing center j, the parameters of the an “equivalent” exponential center j are
determined. (In the equivalent center, the service rate for a given quene length is set
equal to the mean departure rate at that queue length.) The same steps are followed
substituting center j by ¢ (Figure 10g), and iterating until a convergence criteria is
satisfied. The accuracy of the method appears to be good, but it is clearly very
expensive for multiple chain networks, unless the number of chains and the number
of non-product form FCFS centers is small.

Simultaneous resource possession.

The approaches based on decomposition and Norton’s theorem have also been
successfully used to model a class of queueing networks with simultaneous resource
possession [151]. A typical example is shown in Figure 8. Other examples include
the representation of software critical sections. These are examples of models which
include passive resources and are also called models with simultaneous possession of
resources.

The basic approach used to solve central server models with memory constraints is
to isolate the CPU-I/O subsystem, and to compute its Norton’s equivalent server. The
final solution is obtained by solving a network with the terminals and the equivalent
server with state dependent service rate equal to u(m), 0 < m < M, where M
is the number of memory partitions. Sauer [151} has studied the accuracy of this
decomposition approach and has shown that it is effective for single chain networks.
The method can also be extended to multiple chain networks which do not share the
same passive resources. In [151] a solution was proposed to solve networks where
jobs in different chains share the same passive resource, but it is computationally
expensive,

Several iterative methods have been proposed for solving the simultaneous resource
possession problem. They follow the classical iterative decomposition approximation
technique as described in the introduction to this section. Each of the examples below
employs a different method for choosing the subnetworks, its complement, and the
functions which relate the parameters for the complement of a subnetwork to the
solution of other subnetworks.

In the method of “surrogate delays” [92], a system is partitioned into a set of re-
sources which are held alone (without any other resource being simultaneously held),
a set of primary resources and a set of secondary resources. The primary resources
are those which are held while a customer requests service in the secondary subsys-
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Figure 10: Marie’s method.
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tem. In the surrogate delay approximation, two submodels are constructed: the first
represents explicitly the queueing delay for the primary resources, and the second the
queueing delay due to congestion in the secondary subsystem. In the example of Fig-
ure 8, the primary resources are the memory partitions, and the secondary subsystem
is formed by the I/O disks and the CPU. The first submodel contains an IS center
for the terminals and an M server center (M is the number of memory partitions)
representing the queue for primary resources, as shown in Figure 11a. The service
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Figure 11: The method of surrogate delays.

time of this last center is equal to the response time in the subsystem, assuming that
no contention occurs. The complement of this submodel is represented by an IS center
which acts as a surrogate for the queueing delay (excluding service) in the CPU-I/O
subsystem. The second submodel represents the terminals explicitly and includes a
flow equivalent center for the CPU-I/O subsystem (obtained from Norton’s theorem),
as shown in Figure 11b. The complement is represented by an IS center, representing
the queueing delay (excluding service) due to contention for memory. The solution is
obtained by iterating between the two submodels. The method of surrogate delays is
not readily extendible to multiple chain networks [92]. Other interesting application
examples are also presented in [92].

In another method proposed by Jacobsen and Lazowska [94], simultaneous re-
source possession 1s represented as a population constraint in a subnetwork. The
approach, applied to the network of Figure 8, also requires an iteration between two
product form subnetworks. The first includes an IS for the terminals and a multiple
server center with M servers representing the memory partition resources. The com-
plement is represented by the average service time of this multiple server center, which
is equal to the average time spent in the CPU-I/O subsystem. The second subnetwork
explicitly includes the CPU-I/O subsystem. The complement is represented by the
population size which is chosen equal to the mean number of memory partitions in use.
This quantity is obtained from the solution of the first submodel. Since this number
may not be an integer, an approximation is used to solve for the second subnetwork.
Several example applications were presented in [94] which demonstrate that method
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can be quite accurate. Although the method was also intended for solving multiple
chain networks sharing the same passive resources, additional approximations would
be required and no extensions were presented in (94].

In [120], another approximation was proposed to solve multiple chain queueing
models in which each chain has an independent memory constraint. We refer again
to Figure 8, but now there are K chains and K independent sets of memory partitions.
The basic idea is to solve K single chain models, each one representing the terminals,
with a flow equivalent server modeling the memory constraint for a given chain (say
chain k). The flow equivalent server is obtained from the solution of a multiple chain
network by varying the population of chain % and fixing the other chain populations
to the average number of jobs of the corresponding chain in the I/O subsystem. Note
that each iteration requires the solution of I single chain models with a QLD center
and the solution of a multiple chain model for all populations of each chain with
memory constraints. In [120] this approximation technique is also proposed as an
approximation for shared memory constraints, but in this case, the results are not
too accurate.

Krzesinski and Teunissen [109] extended the previous approach to solve models
with multiple chains sharing the same passive resource. In this method, each chain
visiting a shared passive resource is modeled as a chain visiting a dedicated passive
resource subjected to a constraint which is calculated from the average number of cus-
tomers of the other chains in the constrained subnetwork. As in [120], each iteration
requires: (a) the solution of K single chain subnetworks with a QLD center, where K
is the total number of chains sharing the same passive resource {MVA was used for
the solution); and (b) the solution of a multiple chain subnetwork as in (120], where
the population of a chain is allowed to vary and the other chains are maintained fixed
at the average population. Since Linearizer was used to solve for the multiple chain
model, it has to be invoked O(TK | Ny} times, in order to obtain the results for all
possible populations. The examples presented in [109] showed the accuracy of the
approach, but the computational cost can be high.

De Souza e Silva and Muntz [51] also addressed the simultaneous possession prob-
lem. Like {109], the approach is applicable to networks with dedicated and /or shared
passive resources. Furthermore, the use of passive resources can be nested. In this
method, two or more subnetworks are constructed. The effect of the complement
of a subnetwork for a chain is represented differently for different chains, depending
on whether the chain visits a passive resource in the subnetwork and/or in the com-
plement. Some of the subnetworks may not be product form due to multiple server
FCFS centers (with different service times for different chains visiting the center)
which result after applying the decomposition procedure, and an additional approx-
imation was developed to handle this case. To illustrate the method, we again refer
to Figure 8. Assuming that there are K chains sharing the same passive resource
(memory partitions), two subnetworks are built. The first represents the terminals
and the memory passive queue. The complement of the subnetwork for the i chains
1s represented by an IS center which collapses to one FCFS multiple server center
due to the memory constraint. The mean service time of jobs from each chain at this
center is given by an equation relating parameters of the other subnetwork. F igure
12a shows the first network. Note that this subnetwork is not product form due to
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Figure 12: An approximation method for simulataneous resouce possession.

the multiple server FCFS center with different service times for different chains. The
second subnetwork represents the CPU and the disks, as shown in Figure 12b. The
complement of the subnetwork for the chains is represented by: (a) a single chain
with M jobs (recall that M is tlie number of memory partitions) and K classes, each
one corresponding to a chain of the original model; and (b) an IS center in which the
mean delay is a function of performance measures of the first subnetwork. Note that
each iteration involves only: (a) the solution of a K chain network (an MVA based
approximation algorithm was used, but a Linearizer based approximation [36] may
also be employed), and (b) the solution of a single chain network (MVA can be used
with little cost).

In [51], an example was also presented for a model which represents contention
for peripheral processors in addition to memory. The model contains nested passive
resources. Several examples demonstrate the accuracy of the approach. Some of
these examples also appear in [109]. For those, the overall accuracy seems to be
comparable, but the maximum error in {51] was smaller than the maximum error in
[109]. However, no extensive systematic comparisons have been carried out for the
various approaches we have described.

Other approximations exist for the memory partition (passive resource) and re-
lated problems. Some of these can be found in [5,19,20,175].

4.4.3 Other Approximations.

van Dijk’s Bounding Methodology.

Van Dijk [189] has proposed a methodology for obtaining bounds for non-product
form networks. The basic idea is to modify the original queueing network problem
so that it satisfies product form requirements and so that a performance measure
obtained with the solution of this network bounds the corresponding measure of the
original network. The modification proposed is such that the resulting network satis-
fies job-local-balance (i.e., “for any state and any job, the rate into that state due to
a particular job is equal to the rate out of that state due to the same job"). In several
systems, 1t is relatively easy to recognize the causes for violation of job-local-balance
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at the system level (i.e., in terms of queues, service disciplines, etc. rather than in
terms of the Markov chain description of the model) and to make the necessary mod-
ifications. Application of the methodology to some non-product form models such
as overflow models, systems with breakdown, etc., are presented in [189] (and the
references therein). It is argued that the bounds obtained are sufficiently closed to
be useful to obtain insights, As with other approximation methods (e.g., MVA-based
methods), some ingenuity is required to apply the approach to each new model.

Modeling Program Behavior: Fork/Join Constructs.

Heidelberger and Trivedi [81] proposed an iterative approach to solve models of
parallel processing systems where a job subdivides into two or more tasks after vis-
iting a service center (these centers are called “split nodes”). These models arise,
for example, in some interactive systems where the user submits a batch job while
continuing to execute interactive tasks, In their method, the split node is replaced by
an “equivalent” product form service center. Interactive jobs are modeled by a closed
chain as usual. The secondary (split) tasks are modeled by a Poisson source with ar-
rival rate dependent on the throughput of the corresponding closed chain. Thus the
approximate model is mixed. Iteration is used to match the closed chain throughput
with the Poisson rate.

In [80], Heidelberger and Trivedi modeled the behavior of a class of programs
which allow concurrent execution of some of the tasks within a job. A central server
model with terminals was used to represent the system resources. In their model, a Job
consists of a primary task and two or more secondary tasks. A primary task executes
using the system resources and can spawn two or more secondary tasks. The secondary
tasks execute independently using the system resources, while the primary task waits.
Once all spawned secondary tasks finish, the primary task resumes execution.

Consider that each task spawned from a job belongs to a different class c;, i =
1,...,T (where T is the total number of tasks spawned by a primary task). cg is the
class of the primary task. Consider a stochastic process in which each state represents
a particular number of tasks of each class in execution. The basic assumption is that
this process evolves as a Markov chain. It is also assumed that the time between
transitions is sufficiently large in comparison to changes in the queue lengths at the
service centers, so that the queue length distributions converge to the steady state
distribution prior to the next change in the number of executing tasks. This is identical
to the assumption of weakly coupled systems used in decomposition. The transition
probabilities between states are calculated from: (a) the solution of a central server
model with T +1 closed chains, each one corresponding to a task class ¢; and with the
number of customers at each chain given by the corresponding state of the Markov
chain (note that if MVA is used only one pass is needed for all population vectors);
and (b) additional approximations for computing the conditional probabilities that
a class ¢; task ({ = 1,...,T), which has just completed execution, finds that all its
siblings have already completed executing, given the current number of active tasks
of each class. The solution method was shown to be very accurate. However, only
models with one type of job was considered, and the solution is very costly if jobs
spawn several (say, more than three) tasks. Another, less costly but less accurate
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approximation was also proposed in [80].

5 Decision Support.

Queueing networks have been employed as a basic tool for formulating and solving
a number of optimization problems. These optimization problems can occur during
any of the system life cycle phases. For Instance, in system sizing the modeler may
want to select the capacity of system resources which have to be allocated, such that
some system measure is optimized subject to certain constraints, such as maximum
cost and/or minimum throughput. In other problems, the goal is to distribute the
resources among the customers (jobs, packets, etc) so that some performance measure
is optimized subject to constraints. It can be useful to compare a performance measure
obtained from data measurements taken from the system during operation with the
“optimal” performance measure obtained from a model. If the measured performance
is much worse than the estimated optimal, the analyst may want to “tune” the system
by altering some parameter values in order to mmprove performance. In this case,
sensitivity analysis plays an important role to determine the influence of different
parameters on the measure to be improved.

5.1 Optimization Problems.

The set of decision problems can be organized according to:

¢ which model parameters can be controlled;
¢ the measure to be optimized;

e the set of constraints.

For computer/communication systems, the most common model parameters to be
controlled are:

¢ routing;
® service capacities;
¢ rate of service demands;

s scheduling disciplines.

Usually, only one of the model parameters is optimized with the others fixed a priori,
but in general a subset of the parameters can be optimized simultaneously.

The general routing problem deals with the assignment of customers’ demand
for service to resources that can provide the service such that some performance
measure is optimized subject to specified constraints. For mnstance, in the “classical”
routing problem in long-haul computer networks, the resources are the channels and
the customers are the packets traveling through the network. The problem is how to
choose the set of channels (the route) to be allocated to the packets traveling from
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a source to a given destination. Load balancing problems can also be put in this
general framework. In these problems, the resources are the disks, file servers, or
computer sites in a local network environment. The users are the jobs to be executed
and the problem is to “route” the jobs to the resources in order to balance resource
utilizations. File allocation problems are another variation of the general routing
problem. The issue is how to distribute the files among disks to optimize some
performance measure. In several studies, this problem is reduced to determining
optimal routing probabilities.

In the capacity assignment problem, the capacities of the resources are chosen
in order to optimize a performance measure. For instance, in long-haul computer
communication networks, the issue is to find the optimal capacities of the links to
maximize throughput (or minimize the network average delay) subject to cost or
fairness constraints. For a single computer system, the issue may be to choose the
capacity of the CPU and/or the disks subject to cost constraints. It is interesting
to observe that it may be possible to relate the routing problem with the capacity
assignment problem if a product form queueing network is used for the system model.
In this case, the model solution is affected only by the relative utilization of the re-
sources. The capacity ¢; of a device i can be computed from the relative utilization
a;, the visit ratio 8; and the relative service time 1i( = Tifci), as ¢; = 6;7;/a;. There-
fore, by calculating the relative utilizations which optimize a performance measure of
interest, the capacities can be obtained if §; and 7; are fixed. Similarly, the routing
in terms of the §; can be obtained if ¢; and ; are fixed.

Examples of optimization problems for which the rates of service demands are
the decision variables are: (a) selecting the throughput rates of jobs in a computer
system in order to optimize the overall mean throughput subject to a cost constraint:
(b) selecting the window sizes in a computer communication network with window
flow control.

The influence of different scheduling disciplines on the performance measures of a
queueing network has not been addressed much in the literature. It is, nevertheless,
an interesting and difficult problem if the queueing network is not product form.
For instance, it is not difficult to construct examples in which jobs from different
chains have different bottlenecks which vary from a center to another according to
the scheduling discipline of the centers.

The most common performance measures to be optimized are: response time,
queue size, throughput and cost. Among the constraints we mention: total server
capacity, total cost, minimum throughput (perhaps per chain), limited use of resources
(not all resources can be used by all customers).

Below we survey examples from computer/communication systems which employ
queueing network models. The examples are organized according to the particular
application area. Other examples are presented in Section 6.

Routing in computer networks.

One of the earliest applications of queueing network models in computer commu-
nication network optimization problems was the routing assignment problem (14,102].
An open queueing network was used in these studies to model the contention for link
capacities. The input traffic is assumed to be Poisson and J;; is the rate of traffic
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entering at site ¢ and destined for site j. The problem is to split the traffic among the
possible paths from origin to destination such that the network delay is minimized.
The routing obtained with this procedure is often referred to as probabilistic static
routing, since the network flows are divided probabilistically among several paths.
The optimal routing solution was formulated as a non-linear, multicommodity flow
problem. Since the objective function is convex with respect to the flows, a downhill
search method called Flow Deviation [64] was employed.

Open queueing network models do not accurately model networks with window
flow control mechanisms, as we will describe in the next section in more detail. For
networks which use window flow control in a virtual channel, a closed queueing net-
work is more appropriate to model the level 3 protocol of packet switching networks
[147]. Kobayashi and Gerla [103] proposed an algorithm based on the Flow Deviation
method for finding the optimal routing of traffic in closed queuneing networks. The di-
rection of steepest descent is found by taking the derivative of the delay function with
respect to the network flows. The derivative is shown to be a function of expected
queue lengths, which can be easily obtained from the MVA algorithm. For single
chain networks, the global minimum is obtained, since the ob jective function can be
shown to be convex with respect to the set of routing patterns. For multiple chain
networks, it is easy to show by counter example that the ob Jective function is not
convex. Therefore, in this case, the algorithm only finds a local minimum. Note that
in {103] the routing is probabilistic, and several paths can be used between a source
destination pair. However, in networks which employ virtual circuits, only one route
is chosen when a session is set up between a pair of cominunicating sites. In [67],
Gavish and Hantler describe a routing selection method for non-bifurcated routing.
The approach is iterative and uses a modified version of the Flow Deviation method
to make iterative improvements on an initial route assignment. At each step of the
iteration, the error between the current solution and the optimal solution is bounded
using a Lagrangian relaxation technique.

An example of optimizing routing and capacity.

Due to its special structure and wide applicability in computer system modeling,
the central server model (Figure 1) has been used as the basic model for different
optimization problems in the literature. We briefly survey some of these studies in
this section.

Trivedi ef ol [186] studied the problem of determining the CPU speed, the capacity
of the disks (in number of blocks of words) and the file assignment which maximize
system throughput subject to a cost constraint. (The CPU cost is assumed to be
a power function of its speed and a disk cost is assumed to be a linear function of
its capacity.} A single closed chain central server model was used to represent the
computer system. In their model, all files are broken into fixed size blocks, (which are
stored in blocks of identical size in the devices) and each block can be independently
stored in any secondary storage device. It is also assumed that the number of file
blocks which are stored on a device and the number of blocks a device can store (the
capacity of the device) are continuous variables. Furthermore. uniform probability of
access to any block in a file is assumed. With these assumptions, the unconditional
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probability of a request to a particular disk, after a CPU burst, is a simple function
of the parameters: (a) the probability of referencing file ¢ after a CPU burst and:
(b) the number of file blocks stored on disk j. It was shown that the reciprocal
of the throughput is convex, and that the set of feasible solutions is also convex.
Together these guarantee that any local minimumn is a global minimmum. The paper
also includes a proof of an interesting property of the optimal solution, namely that
if files are ordered in nonincreasing order of activity, then files should be assigned to
disks in this order, filling the disks with highest cost per block first. This property
was used to reduce the number of decision variables of the optimization problem.
Finally, the solution to this nonlinear constrained optimization problem was obtained
by: (a) first converting it to a nonlinear unconstrained optimization problem and then
(b) solving it via a standard quasi-Newton minimization technique. It is also worth
mentioning that this problem reduces to the file assignment problem if the CPU and
disk capacities are fixed a priori.

Capacity optimization.

In [184] Trivedi and Kinicki were concerned with the selection of CPU speed and
secondary memory device speeds such that the throughput is maximized subject to
a cost constraint. The system is modeled by a central server model with a single
closed chain. Device speeds are assumed to be continuous variables. (In a previous
paper, Trivedi and Wagner [185] had shown that for this optimization problem any
local minimum is a global minimum.) The Lagrange multiplier method was used to
solve this constrained nonlinear optimization problem. For this method, the partial
derivatives of the CPU utilization with respect to the relative utilization of the devices
have to be found. From Section 5.2 we can see that this has a simple form in terms
of mean queue lengths.

It is interesting to compare the routing problem of Kobayashi and Gerla (103] with
the above problem. For single chain networks, if cost constraints are relaxed, these
are equivalent problems and the main difference is the solution method employed.

Optimization of rates of service demands.

A simple example of a problem in optimizing service demand rates is that of
choosing the optimum degree of multiprogramming together with device speeds such
that the throughput in a multiprogrammed computer system is maximized subject to
cost constraints. This can be easily accomplished by using the approach in [184] with
a fixed degree of multiprogramming, and then performing a search for the highest
throughput, as suggested in {184]. (In other words, several models must be solved,
each with a fixed degree of multiprogramming.)

Heiss and Totzauer [82] used a central server model with open chains to find the
open chain throughputs which maximize the utilization of the devices such that the
response time of different types of users {modeled by different open chains) do not
exceed given limits. More specifically, the objective function is a linear combination
of device utilizations. The decision variables are the open chain throughputs. The
constraints are upper and lower bounds on the open chain throughputs and an upper
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bound on the response time of each open chain.

Load balancing.

A load balancing policy chooses the resources that should be used to run a job
(from the available resources that are capable of executing the particular Job)in order
to optimize a given performance measure. As mentioned in the introduction to this
section, this is similar to determining an optimum routing policy for communication
networks, but there are some significant differences. In the routing problem, a set
of source-destination pairs, the traffic for each pair and cost /performance constraints
are specified. The resources (communication channels) are all identical in function. In
the load balancing problem, there is no notion of source-destination traffic. Instead,
there are collections of one or more resources which can perform a certain type of
work and which we might call functionally equivalent subsystems. During execution,
a job can choose (or be assigned) to access resources in a particular subsystem to
obtain a certain type of service. Usually, the routing of jobs to the subsystem is not
an issue. In some systems, jobs are grouped into classes and, for each class, resources
are classified as either local or foreign. If the dispatcher chooses to execute a job at
a foreign resource, a penalty is paid (e.g., extra processing is needed) to dispatch the
job. An important property of a load balancing strategy is fairness of service, i.e., the
system should operate in such a way that all jobs, regardless of their class, should be
provided with specified acceptable levels of performance. As an example of a “fairness
problem” that may occur, consider a central server model representing a computer
site in a local area network. This site has a CPU (with PS scheduling) and a disk
(with FCFS scheduling). Assume that there are two types of jobs: type a with very
long CPU mean service times, and type b with relatively small CPU mean service
times. Assume also that the CPU is the bottleneck. In an attempt to improve the
response time of both jobs, type a jobs are sent to execute in a “foreign” site which
has more CPU capacity available. Both types of jobs, however, continue to use the
local disk (i.e., files are not transferred to the foreign site). It is easy to construct a
case in which the bottleneck is transferred from the CPU to the local disk, and the
response time of type b jobs can increase significantly. This is essentially the same
problem reported in [79] in a different context.

A load balancing policy may be source-initiated or server-initiated, depending on
whether the source site makes the decision where to execute the job or the server sites
search for work when they become idle [196]. Furthermore, load balancing can also
be static or dynamic. Static load balancing algorithms generally base their decision
on the average behavior of the system. Therefore, static load balancing aims at
obtaining optimal mean performance at steady state with no dynamic control based
on the current system state. A drawback of static algorithms is that they do not
adapt to short-term changes in the load. Dynamic strategies, on the other hand, base
their decision on current information about the state of the network. A taxonomy of
load balancing algorithms and a comparison of several policies can be found in [196].

The usefulness of static algorithms might be questioned, since operational systems
often implement dynamic control procedures. However, both types of algorithms are
important since they play different roles. Static models are useful for system sizing
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(e.g., allocation of resources, identification of bottlenecks, sensitivity studies, etc.).
Note that some decisions are inherently static, e.g., file allocation in most applications.
Static algorithms can sometimes be exploited for dynamic load balancing (e.g., some
routing algorithms in computer networks [14]). Dynamic models are harder to solve
analytically, and solutions often deal only with very small systems and/or are based
on simplifying assumptions such as system homogeneity.

Many papers that deal with load balancing algorithms model the distributed Sys-
tem being analyzed as a system of M parallel queues as illustrated in Figure 13. The
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Figure 13: A queuneing model for load balancing.

queues represent the resources in the network subject to load balancing (e.g., proces-
sors, computer servers, etc.). There is a dispatcher which is in charge of distributing
the load among these queues (e.g., [33,136,203]). The overhead incurred in transfer.
ring a job from its “local” site (i.e., origin) to a “foreign” site is sometimes included
in the model (e.g., [58,66,123]). In [46,47,172], a more detailed representation of the
network is considered. Below, we briefly review some of the results in the literature.

Chow and Kohler [33] studied three policies based on immediate information about
the state of the system. In the first policy, the dispatcher transfers a job to quene k if
Ri(ng +1) = ming{ R(ny + 1)} where Ry(n;) = n/ w1, ny is the current number of jobs
in queue ! and p; is the service rate of queue I. This policy is aimed at minimizing the
expected response time of an arriving job. In the second policy, queue % is chosen to
receive an arriving job if this choice minimizes the expected time to complete service
of all the jobs in system assuming no further arrivals. (It is assumed that all servers
are exponential which facilitates this calculation.) The third policy assigns an arriving
Job to queue k if this choice maximizes the expected throughput of the system during
the next arrival pertod. A solution is obtained using numerical techniques and only
for a system with two queues.

Yum and Lim [203] studied systems in which jobs are restricted to run in a subset
of the resources, according to their types. Different policies are compared (including
one of the policies of [33]). Numerical solution methods were employed and only
systems with three queues were studied.

Ni and Hwang [136] obtained the optimal assignment probabilities which minimize
the expected system delay for a static load balancing policy. The system is modeled
by a set of parallel M/M/1 queues (processors) where each job type ¢ is constrained to
run only in a subset P; of the processors. The problem is formulated as a non-linear
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programming problem with constraints. In order to obtain the final solution, the
authors first solve the simpler problem of finding the optimal routing probabilities for
one class of jobs in a system with two classes only, in which the second class has its
rate already preassigned. The solution to the original problem is obtained (roughly)
as follows. All classes which are restricted to run in a single processor are combined
into one class with preassigned rates. All the remaining classes (say classes u,...,v)
are combined into a single class where the jobs can run in any processor belonging to
the set P, J,...,UP,. This “simpler” optimization problem is solved and the optimal
throughput calculated for each processor (say b; for processor j) is used to obtain a
set of rates r;; for each original class { = u,...,v. These assigned rates r;; are such
that they satisfy as close as possible the optimal rate é; for all j. The rates r;; are
made into preassigned rates. The remaining job rates are combined into a single class
and the “simpler” optimization problem is solved again. This process is repeated,
recursively, until the final solution is obtained.

Eager et al[58] included in their model of dynamic policies the processor overhead
spent in transferring a job from its local site to a foreign host. As in previous work,
hosts are modeled by single queues, but here there is & dispatcher in each host which
makes the decision of whether to transfer a job or not. The decision to transfer a
Job to another host is made based only on local information. More specifically, a job
should be transferred if the local queue length exceeds a given threshold (“threshold
policy”). However, the choice of the foreign site to receive the transferred job may
or may not be state dependent. Three policies are studied: (a) a random policy
in which a site is chosen at random. Since new arrivals and transferred Jobs are
treated equally, a transferred job may be retransferred if it arrives at a host with
queue length exceeding the threshold value. To avoid instability, a limit is imposed
on the number of transfers a job may experience; (b) a threshold policy where a site
1s selected at random and then its queue length is probed to determine if it is below
the threshold. If so, the job is transferred. If not, another site is probed up to some
specified maximum number of probes. A job is processed locally if the probing limit
1s exceeded; (c) a shortest queue policy, where a given number of sites are chosen at
random and their queue lengths are obtained. The site with the shortest queue length
is chosen to receive the job, if its queue is less than a given threshold. Otherwise, the
job is processed locally.

A model is developed for a homogeneous system. The key assumption made to
obtain an approximate solution is that each site behaves independently of other sites in
the network. Thus each site can be analyzed in isolation. The effect of the remainder
of the network on a site is modeled by a Poisson arrival process of transferred jobs.
Since all sites are identical, information about the current state is obtained from the
solution of a single site.

Lee and Towsley [123] also considered dynamic threshold policies. The model
and main assumptions are similar to those in [58]. The choice of a foreign site is
always made at random and no retransfers are possible. The optimum threshold is
obtained numerically by exhaustive search. As in [58], only homogeneous systems are
considered. Unlike [58], there is a communication delay whenever a job is transferred
to a foreign site, but no extra processing at the local site. Furthermore, the effect of
assigning different priorities for local and transferred jobs is studied.
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The models of static and dynamic policies presented above are simplistic in that
the hosts in the distributed system are represented by a single (fixed rate) queue
and/or only homogeneous systems are considered. The models discussed next use a
more complex representation for a site. For example, a host can be represented by
a central server subnetwork or by any other product form queueing network model.
Complex job behavior can also be represented, and the distributed system may be
heterogeneous. However, only static load balancing is considered.

In the model of Tantawi and Towsley [1 72], the distributed system consists of a set
of sites connected by a communication network. Sites are represented by a number
of resources, and different sites may have different configurations and resources with
different processing rates. Jobs arrive at each site according to a Poisson process with
possibly different rates for each site. The communication network may be represented
by one or more resources. The model is required to be a product form queueing
network.

The optimal static load balancing problem is formulated as a non-linear optimiza-
tion problem. If the communication delay is such that it satisfies the so called “triangle
inequality property” (i.e., the communication delay of transferring a job from site i
to j is never greater than the delay of transferring the job to a site k and then to
site j), the authors were able to show that sites are partitioned into three categories:
they are either sending jobs for foreign processing but not receiving jobs from foreign
sites; or only receiving jobs from other sites but not sending any; or only processing
local jobs. It was also assumed that the network communication delay is a function of
the total traffic in the network and is identical for all source-destination pairs. Under
this assumption, a set of relations between partial derivatives of the response time
of jobs processed in a site with respect to the job completion rate of that site and,
partial derivatives of communication network delay with respect to the total traffic
through the communication network is found using the Lagrange multiplier method.
These relations must be satisfied by the optimal solution. The partitioning of sites
and the relations are used in an efficient algorithm for determining the optimal so-
lution. Furthermore, an algorithm {appropriate for performing parametric studies)
was developed to find the average values of the communication delay at which the
partitioning of sites will change, i.e., sites will move from one category to another.

This “direct” solution method in [1 72], albeit elegant, requires the assumption of a
single chain network and does not handle cases where jobs from one site are restricted
to run in a subset of sites in the network. For these cases, however, a downhill search
method, such as the Flow Deviation method [64] developed for product form open
queueing networks can be employed.

De Souza e Silva and Gerla [46] also modeled a distributed system as a collection
of central server models (with terminals), one for each site. In this model, multiple
classes of jobs with different demands are allowed. More specifically, it is assumed
that there are local application programs running at each site. These programs are
modeled as closed chains and are not subject to load balancing. Other types of jobs
are assumed to come from a large number of terminals (such as in some transaction
processing systems) and are modeled as open chains. These interactive jobs may run
locally or may be transferred to a foreign site via a communication network. It 1s
further required that the network of queues representing the distributed system has
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a product form solution. There can be multiple open chains with different resource
loadings to represent different types of interactive work., Some of these classes may
be restricted to run in a subset of sites in the network. The ob Jective function to be
minimized is the overall mean system delay where weighting factors are parameters
to be chosen by the designer to avoid unfairness to different classes.

The load balancing problem is formulated as a nonlinear optimization problem.
The solution method chosen is a downhill technique based on the Flow Deviation
method [64]. In order to compute the steepest descent direction for the downhill
technique, partial derivatives of the objective function with respect to the decision
variables (open chain flows at each service center) must be computed. It is shown
(see also [53]) that the derivatives can be obtained from means and variances of queue
lengths which can be easily computed using MVA (for calculating the means) and new
equations using an MVA-like recursion (for calculating the variances).

In a subsequent paper, de Souza e Silva and Gerla [47] extended the above tech-
nique to allow: (a) multitasking within each job and (b) jobs with spawned tasks.
In the first extension, a job may require the execution of several tasks in sequence,
before completion. Each task is subject to site constraints, i.e., it is allowed to run
only on a subset of sites in the system. A motivation for this model arises in dis-
tributed database applications in which the database is partitioned (and replicated)
among several sites. A job can be initiated on any site, and consists of a seqiience of
tasks that are processed on the site where the referenced data is located. The task
sequence is modeled by introducing class changes [12] in the chain which represents a
particular type of job. The algorithm takes into account all the possible assignments
of tasks to sites.

The second extension is motivated by distributed system applications where inter-
active users may submit batch jobs to be executed. These batch jobs can be assigned
to a set of sites in the system (e.g., server sites) and run until completion in the
selected site. (For instance, the batch jobs could represent the compilation of a pro-
gram, text processing, etc.) Interactive jobs (such as text editing) are modeled as
closed chains. Spawned jobs are approximately modeled as open chains with rates
dependent on the related closed chain jobs, following the approach of [81].

File allocation.

The file allocation problem can be formulated as a variation to the load balancing
problem. (For surveys on this problem see, for example, [55,194].) The placement
of files on the disks can be interpreted as determining the routing probabilities to
the disks after a CPU access. Many solution techniques are based on the following
two step procedure: a) find a solution for the optimum branching probabilities to the
disks and then b) from the file access statistics determine a file allocation that best
approximates the optimumn branching probabilities. An example of this approach can
be found in [186]. Another example is found in [202] which is discussed below.

In {202], Woodside and Tripathi considered a model of a local area network with J
identical SSFR centers representing file servers and an IS center representing worksta-
tions (see Figure 14). There are K single customer chains, each one representing the
behavior of a workstation user. A user cycles between accessing 1ts one workstation

48



servers

- L ] L]
- - [ ] > L ]
L ] - [ ]
1O
workstations

Figure 14: A queueing network model of a local area network.

and accessing a file server. Files of each workstation may be allocated in one or more
file servers. As in previous work, the allocation of files in different servers can be
characterized by the routing probabilities from the center representing the worksta-
tions to the centers representing the file servers. The problem studied was the optimal
allocation of files to the file servers in order to maximize the total utilization of the
file servers. In the model this reduces to optimally choosing the routing probabilities.
It is shown that each workstation should access a single file server and that the load
of the file servers should be balanced.

In a subsequent paper [182], a more general model was considered by the authors.
Servers to be allocated may be load dependent and need not be identical. Further-
more, the servers are divided into subsets such that a server belongs to a subset & if it
can execute work of type k. Some of the chains may have their demands (character-
ized by the routing probabilities) already fixed, while the routing probabilities of the
other chains can be varied. Let p,i; be the probability that a request for a service of
type k from the chain r customer, is served at center ;. The key result indicates that,
to maximize a weighted sum of the chain throughputs, the routing probabilities p,;
are such that for each chain r and service type k, pexi is 1 for some value of ; (and 0
for all others). In other words, there is an optimal solution in which each customer
always goes to the same server for a particular type of request. The optimal solution
is thus at a vertex of the space of feasible values for the transition probabilities. The
result, albeit very interesting, does not solve the optimization problem since explicit
values for p,4; are not obtained. However, it restricts the form of the optimal solution
and may be useful for pruning the search space.

In {181], an extension of the model in [202] was studied. In this new model,
workstations may share files, and the allocation of shared files to servers is assumed
to be given. The problem is to find the optimal allocation of the non-shared files.
As in [182,202], the optimal solution is also shown to be at a vertex of the space of
feasible solutions, but the optimization problem, unlike [202], has no known efficient
solution. Therefore, the authors proposed several heuristics to obtain a suboptimal
solution for the placement of files at the servers.
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It is worthwhile to note the difference between the solution obtained with the
above model and the model considered in [186]. In the former, each user behaves
independently of the others. (There is a distinct routing chain for each user.) In the
latter model, customers are statistically identical, and only one routing chain is used
to model customer behavior. The optimal solution to the first model is at a vertex of
the solution space. The solution to the second model is not, in general, at a vertex
of the space of feasible solutions.

Finally, it is interesting to observe that the results in [182] can be used to find
a suboptimal solution to the allocation problem as follows. Assume that each work-
station is activated one at a time. Since the model is characterized by many single
customer chains and a few service centers, the DAC algorithm is particularly suited
to this problem. Furthermore, from the results of a network with r users, it is very
easy to obtain the results for the network with one more customer, and it is efficient
to compute the results when all possible values of p,x; € {0,1} are tried. This process
is similar to the one used in [68] for finding the window sizes in a computer net-
work, where a solution close to the optimal is obtained. Clearly, the order in which
chains are added to the network will affect the final solution, but since DAC permits
backtracking, it is easy to evaluate different orderings.

In Wolf [200] we find an example of an approach applied successfully to IBM main-
frame systems. The objective function is the mean I/O response time. Counstraints
can be imposed on the relative disk access rates. An open queueing network model
was used to obtain the relative disk access rates, and heuristics were developed for
the final solution. The approach was used to assign files to disks in two IBM systems:
an IBM 3081 CPU with 15 channels, 15 controllers and 144 disks, and an IBM 3090
with 40 channels, 42 controllers and 168 disks. Significant performance gains were
reported when files were placed according to the new approach in comparison with
the previously utilized allocation schemes.

Summary.

In this subsection we surveyed various optimization problems applied to com-
puter/communication systems. We have argued that many problems can be cast as
a form of the “routing problem?”, although there are also some key differences.

Queueing optimization problems have been successfully applied in the analysis
and design of data communication networks. The file allocation and load balancing
problems have become increasingly important as the number of distributed system
applications proliferate. We have discussed a number of studies concerned with ana-
lyzing and comparing load balancing strategies. Unfortunately, the more interesting
case of dynamic load balancing is more difficult to analyze, and only simple models
have been studied. Static models, on the other hand allow important characteristics
to be modeled, such as complex site models, site constraints, jobs with multiple tasks,
etc.

In the solution of an optimization problem, it is often useful to know certain
properties of the measure to be optimized. For example, it may be useful to know if
the throughput as a function of a certain model parameter is convex or not. Some
of the papers referenced above have addressed this problem. Additional work can be
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found in [97,167). A particularly important class of properties is the sensitivity of the
performance measures of a system to its parameters. This is the sub Ject of the next
section.

5.2 Sensitivity Analysis and Workload Characterization.

Sensitivity analysis plays an important role in system design. It allows the modeler
to evaluate the impact of small changes in system parameters for a specific measure.
As an example, this information can be useful in determining: (a) the most critical
parameters to be changed in order to improve performance; (b) the influence of er-
rors in estimating parameter values. In this sense, sensitivity analysis is related to
workload characterization for queueing networks.

The sensitivity of a measure with respect to a parameter is defined in terms of
the derivative of the measure with respect to that parameter. Let A be a specific
measure and My, the percent change in M when the value p of a parameter P varies
by Py, percent. A first order expansion on M around the point P = p yields:

| p M P
o= B P
where M is the value of M for P = p. The term in brackets in the expression above is
the sensitivity of M with respect to P at the point P = p- Clearly, a higher absolute
value of the sensitivity with respect to a parameter indicates that a fractional change
in the parameter value has more influence on the measure.

For product form queueing network models, expressions for performance measures
(e.g., throughput, expected queue length) typically involve the normalization constant
(see Section 3). Therefore, the evaluation of the partial derivative of a measure
with respect to a model parameter will usually require the calculation of the partial
derivative of the normalization constant with respect to that parameter. The partial
derivative of G(N) with respect to the visit ratio 8 is given by [53,126]:

8G(N)  G(N) -
W = —-gj—k—LJk(N) (41)

Williams and Bhandiwad [199] were probably the first to obtain an expression
similar to the above for single chain queueing network models. They found an ex-
pression for the sensitivity of throughput by differentiating both sides of the equation
A(V) = G(N —1)/G(N), and by then applying Eq. (41).

In [53,169], simple expressions relating first moments of queue lengths and partial
derivatives of queue lengths with respect to input parameters (such as visit ratios
and service times) are obtained. It is also shown that first moments can be easily
obtained using recursive expressions similar to MVA. Thus, sensitivity measures can
be easily evaluated. (The approach generalizes to higher moments of queue lengths
and higher order partial derivatives.) It should be emphasized that partial derivatives
of queueing measures with respect to input parameters are important not only in
sensitivity analysis but also in optimization problems as well, For example, several
studies discussed earlier used expressions similar to Eq. {(41) in solving optimization
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problems (e.g., [103,184]). In [46], expressions relating partial derivatives of queue
lengths and their first moments were used in a load balancing optimization problem.
The approach in [53] can be generalized to obtain recursive expressions for calculating
partial derivatives of joint queue length probabilities which are necessary to evaluate
the sensitivity of availability measures, as will be discussed in the Section 6.

Other studies of sensitivity include the work of Gordon and Dowdy [71] which
generalizes the results of [199] to multiple chain networks and also considers the
magnitude of errors introduced by “large” errors in parameter values, i.e., that are
too large to use the first order approximation mmplicit in using the first derivative.
Tay and Suri [173] using a different approach (operational analysis) consider the error
in performance measures introduced by (a) errors in estimates of the parameters and
(b) errors due to random fluctuations in the values of those parameters observed in a
particular observation period.

Suri [171] studied the sensitivity of queueing network measures with respect to
deviations from the “homogeneous service time assumption”. This assumption states
that the service rate at a station is independent of the number of jobs at that station.
For single chain queueing networks, he obtained an expression relating the partial
derivative of the throughput with respect to uy(n) (for station M) and marginal
queue length probabilities:

) 1
—_— = — > — >
B () aMP[nM > n+1] — AP[ny > n] (42)

A similar expression was obtained for the partial derivative of queue lengths with
respect to ua(n). Eq. (42) was used to obtain bounds for the throughput when
the variation in ppy(n) ¥n < N is bounded. (Bounds were obtained for average
queue lengths for a balanced system, i.e., a system in which all centers have the same
relative utilization.) The bounds obtained have shown the relative insensitivity of the
throughput with respect to the homogeneous service time assumption.

The above discussion has concentrated on the sensitivity of performance measures
to estimates of customers’ mean service demands at resources. Other parameters that
have to be specified for a queueing network model include the number of customer
chains and the population of each. There has been much less formal analysis of these
issues. However recent work by Dowdy, Krantz and Tripathi [36] shows that the repre-
sentation of a multi-chain queueing network by a single chain network pessimistically
bounds the throughput for the multi-chain network. The resource loadings for the
single chain are the mean loadings in the multi-chain model. Other results pertaining
to these issues can be found in [204]. General discussions of the issues related to the
workload characterization can be found in [63], and particularly with respect to the
design and parameterization of queueing network models in [180].

6 Application Areas

6.1 Brief Summary

Queueing networks are particularly useful models in situations where customers se.
quentially demand service from a set of resources and the ma Jor effect on performance
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is captured in the contention for these resources. While there are Limitations to the
kinds of models that are tractable (even with approximations), there are a number
of reasons for the popularity of queneing networks, most of which we have touched
upon in the previous sections. These include:

¢ ability to model systems with sufficient realism.

e availability of efficient solution methods.

* insensitivity of the results to small variations in the parameters.
¢ empirically verified accuracy of the results.

¢ approximation techniques to solve larger and/or more realistic models based on
key exact equations.

There are of course alternatives to analytic models: namely simulation and bench-
marking. Often the alternatives can be more accurate but have their own limitations;
benchmarking requires the existence and ability to control the target system and sim-
ulation is often to costly. In some cases, e.g., during design, parameter values may
not be known with sufficient accuracy to warrant the cost of simulation.

To suminarize the major uses of analytic models are:

e design phase; to choose between several design alternatives.
® system sizing; comparing systems or selecting the configuration.
¢ system operation; for selecting tuning parameters.

¢ planning for the future; selecting new hardware/software configuration, usually
due to evolving workload.

In the following sections, we discuss the application of queueing network models to
a number of particular computer performance problems. Our treatment is necessat-
ily brief in all cases but some preference is given to those areas that are perhaps less
familiar or are of more recent vintage (e.g., interconnection networks and synchroniza-
tion in parallel systems). The more traditional applications (that seems appropriate)
such as capacity planning and packet switched networks are more briefly covered.

For a more general discussion of computer system performance evaluation see
[78]. [117] is a survey that covers analytic methods and [122] concentrates on the
application of queueing networks. [114,146,201] are concerned with communication
network modeling. [114,201] are specifically limited to queueing network models while
[146] is more general.

6.2 Capacity Planning.

Capacity planning is concerned with the determination of future systemn needs based
on the predicted workload grow. For determining future system needs, the modeler
generally must: (a) construct a model of the current system and (b) validate it by
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comparing measures obtained in the real system with results obtained from the model.
During the model construction, the modeler estimates the values of the parameters
to be used in the model. This estimation may require measures taken carefully from
the system. Once the analyst is confident of his model, the effect of changes in
workload can be studied, and the effect of changing the hardware configuration can
be evaluated. In [121} a detailed discussion of all steps that should be taken for
predicting the behavior of evolving systems is presented.

Capacity planning refers to the evaluation and selection of computer system config-
uration changes, e.g., processor upgrade, number and/or organization of I/O devices.
Queueing networks have proven highly successful as a modeling tool for capacity
planning for computer mainframe installations. As evidence, there are a number of
commercial tools and companies devoted to this activity [1,2,3].

Capacity planning involves three basic activities: measurement of the current
system, model construction and validation and performance projections. Details of
these activities with particular emphasis on the use of queueing networks can be found
in [116,121]. As might be expected, product form queueing networks are often not
general enough to represent many features of real computer systems including for
example, memory contention, priority scheduling and simultaneous resource posses-
sion. In some applications these are first order effects and must be represented in the
model. We have discussed approximate solutions for queueing networks with these
features in Section 4. More detail on the application of these solutions for computer
system capacity planning can be found in [116,121].

Obtaining parameter values for a quening network model of a computer system
can be challenging if the right measurement facilities are not available. For example,
it can be difficult to attribute operating system processing time or paging activity
to a particular job. In addition, there is the issue of deciding on the number of
chains required to represent the workload. Assuming that detailed measurements are
available on individual jobs, one would have the problem of deciding how to cluster
them into chains. When detailed measurements are not available it may be necessary
to use only a few chains due to the inability to distinguish individual job’s resource
usage. These and other issues are discussed in [121,180]. The theoretical results on the
sensitivity of product form network results that were discussed in Section 2 give some
indication, perhaps, of why queueing network models have been proved useful even
though many of the assumptions are untrue. Ultimately, however, the Justification is
via empirical evidence.

6.3 Packet Switching Networks.

Queueing networks have been widely used to model packet switching networks, mainly
at the network level in the OSI reference model. Basically, a store-and-forward packet
switching network is a collection of resources (e.g., data links) shared by the data
packets that travel through the network. The key feature in the model is the network
topology and the routing of data packets, which is defined by level 3 in the OSI
reference model.

In order to obtain an analytic solution for the network model, several simplifying
assumptions are usually made. A key assumption is the “independence assumption”
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[102] which states that the transmission times of a packet at each channel it visits are
independent random variables. Obviously this is not true, since the length of a packet
does not change as it travels through the network. However, simulation studies have
shown that the assumption is quite good when several packet streams are merged on
a transmission line, but it is known to fail in tandem queues with constant packet
lengths [150].

In [114,201] a survey of models used in the analysis of packet switching networks
is presented. Schwartz [159] has a good discussion of the analysis of flow control
mechanisms. Reiser [146] also presents a survey of models used for packet switching
networks. Below we summarize some of the models proposed in the literature.

The basic model used in early studies assumed that the packet sources, which
represent protocols of layers 4, 3, 2 are Poisson sources. Furthermore, all packets are
assumed to have the same average length and packets traveling from a given source to
destination follow either a fixed route or stochastic routing (state dependent routing
cannot be represented except in very special cases). Therefore, at least one routing
chain is needed to model the routing behavior. Finally, processing time at the switch-
ing nodes and propagation delays are ignored (although they can be heuristically
incorporated [102]).

The set of assumptions stated above are the main assumptions which ensure that
the model possesses a product form solution (other assumptions include no time-out
errors, infinite buffers at the queues, etc.). The queueing network model is open, and
therefore the number of routing chains does not add computational complexity to the
final solution,

With this basic model, a number of quantities of interest can be obtained [102,201]
including: packet delay averaged over the whole network, mean packet delay for a
source destination pair, average buffer occupancy at the nodes. For fixed routing, if
the network has special characteristics called overtake. free conditions [195), then the
distribution of end-to-end delays can also be calculated. The overtake-free conditions
can be stated roughly as: (a) a packet belonging to a routing chain cannot overtake
another packet of the same chain (e.g., when the discipline at the link queues is FCF S)
and; (b) if two routing chains &, and k; share a link l;, the “influences” generated by
a packet Py, of chain %, behind packet Py, of chain %, cannot overtake packet P, in
another link /;. For a typical example of an “influence”, assume that packet Py, after
leaving link /; visits link /,,. Also assume that link /,, is shared with packets from
chain k3. Note that a packet from k3 can be “influenced” by Pk, and may visit link ! 5
and “influence” P,. The distribution can be calculated exactly for packets belonging
to chains which satisfy the overtake-free conditions. But it may also be possible to
use the equations obtained as an approximation when the overtake-free conditions are
violated. For a detailed discussion on so Journ times in queueing networks, we refer
to the chapter by Boxma in this book.

Using the basic model a number of optimization problems can be formulated and
solved, including [102,201]:

(a) Capacity assignment. The capacity of each link is selected such that the
average packet delay is minimized subject to a constraint on maximum cost.

(b) Optimal routing. The stochastic (static) routing which minimizes the average
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delay is obtained under the constraint of given link capacities. Although stochastic
routing is generally not used in computer networks, since realistic networks implement
some form of dynamic routing strategy, stochastic routing plays an important role in
system network design. Note that static models are relatively more efficient to analyze
than dynamic models, and can be used effectively for identification of bottlenecks,
sensitivity studies, topological design, etc.

The general design problem in computer networks in which the topology, link
capacities and stochastic routing are to be selected to minimize the overall average
packet delay under a cost constraint is too complex to be solved exactly. Instead, a
combination of the optimization methods described above is used to find an approxi-
mate solution [14,102].

Buffer management may have a significant impact on the performance of data
networks. The number of buffers allocated to different queues is an important design
issue. Lam and Reiser [113] developed a model based on previous work by Lam and
Schweitzer [111,161] for evaluating the impact of input buffer limits on performance.
In general, there is no exact analytic solution for queuneing networks with blocking
and an iterative approximation technique was developed based on an estimation of
blocking probabilities due to buffer limits. From the model, throughput versus input
load curves are obtained which show the decrease in throughput with increase in load
due to buffer limitations.

There have been a number of studies analyzing window flow control mechanisms
[14,159]. A key assumption made is that packets are lost when they arrive at the
source of a flow controlled connection between two communicating processes and the
window is closed (i.e., the maximum number of packets traveling on the connection
is achieved). (In the following, we assume a virtual circuit connection.) This (“lost
packet”) assumption together with the independence assumption allows a tractable
analytic model to be obtained. With the lost packet assumption (and other minor
simplifying assumptions), a closed queueing network model with one chain for each
virtual circuit in the network is developed [147]. If it is further assumed that packets
from different virtual circuits have the same average length, then the model has
a product form solution. Even with these simplifying assumptions, networks with
many virtual circuits will have many distinct closed chains. The computational cost
precludes the use of exact solution techniques, and approximation methods have to
be used. (Real networks may have hundreds to thousands of virtual circuits open at
a time.) A simple approach is to consider in detail a chosen virtual circujt and to
model the effect of other virtual circuits by reducing the capacity of the links used by
the given virtual circuit [140]. Other approximation techniques can be used as well.
In real networks, however, each virtual circuit uses only a subset of the links in the
network. In this case, medium size networks (say, on the order of 50 chains) can be
solved exactly and efficiently by using tree algorithms [84,112,188].

If packets from different virtual circuits have different mean lengths, then the
model deseribed above does not have a product form solution and approximations
have to be used. An accurate approximation to solve this problem was proposed by
Reiser [147], based on the arrival theorem.

A number of optimization problems have been studied in addition to those men-
tioned above. For instance, Lazar [119] studied the following problem. Consider a
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closed queueing network representing a packet switching network with virtual circuits.
Before transmission, each packet belonging to a virtual circuit is fed into a controller
which determines the rate of sending packets into the network. This rate is a function
of the number of outstanding packets in the network. The optimization problem is to
find the rates which maximize the overall throughput, subject to a constraint on the
overall delay function and a constraint on the maximum control rate of each virtual
circuit. It is shown that the optimal control policy is a window flow control mecha-
nismn for each virtual circuit. A variation of this problem is to find the control rate
for optimizing the virtual circuit throughput subject to a constraint on the network
delay for that virtual circuit [85]. To find the optimal window size for each virtual
circuit requires the application of Norton’s theorem for the network, which may be
impractical. In [86], a simple example was presented to find the window sizes. In the
example, it is assumed that a set of virtual circuits have a bottleneck link, modeled
as an exponential FCFS server. Clearly, this assumption significantly reduces the
complexity of the problem.

Kobayashi and Gerla [103] used the flow deviation method to solve the optimum
routing problem in a network model with virtual circuits. The solution involves the
application of MVA for each iteration of the algorithm (which may not be practical
for large networks).

Gerla and Chan [68] studied the problem of finding the window size for a virtual cir-
cuit network which minimizes a measure of fairness P. P is defined as P = Y2, diski
where d; is the traffic demand for virtual circuit i, 1.e., the maximum throughput rate
for virtual circuit { assuming no interference from other traffic. The minimization is
subject to a constraint on the overall network delay. The proposed solution is heuris-
tic. Starting from a unit window assignment for all virtual circuits, the incremental
improvement of fairness per increment of average delay (AP,/ AT;) is computed for
an increment in the window size of each virtual circuit ;. Then virtnal circuit [ such
that AP//AT; = min;{APF,/AT:} is chosen, and its window size is incremented. Iu
order to calculate AP,/AT;, Schweitzer’s approximation is used. Numerical results

were presented in [68] which suggest the approach is viable.

6.4 Circuit Switching Networks.

In a circuit switching network, in order to establish a communication path between a
pair of nodes, the source node generates a call which sets up a circuit linking the source
and destination nodes. The circuit consists of a set of transmission lines or links,
connected by switches. Unlike a packet switching network, when a communication
path is set up between a pair of nodes, a fixed amount of the total capacity of each
link in the path is allocated exclusively to the connection, and released only when
the communication is completed. (For instance, the capacity of each link could be
divided into time slots in a time division multiplexed system, or into frequency bands
in a frequency division multiplexed system. During the set up of a circuit, one or
more slots or frequency bands from each link in the path are allocated to the call.)

Consider a call k generated by node u to establish a circuit between nodes « and
v. Assume that the call requests ¢; umnits of capacity to be allocated between u and
v. The call is blocked if a path between u and v cannot be found in which all links
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have at least ¢, units of capacity available to be allocated to the call. One important
measure for such networks is the probability of blocking.

For the networks considered immediately below some addditional assumptions are
made. We assume that there are KX types of connections. Distinct types represent
connections between distinct pairs of nodes. Furthermore, the path used by a type
of connection is fixed and unique. The arrival process of type k calls is assumed to
be Poisson with rate A\;. The duration (holding time) of a type k call is a random
variable with arbitrary continuous density with mean 1/pk. The arrival processes
and call holding times are assumed to be independent, and call set up and call release
are instantaneous. It is also assumed that all calls require the same amount of link
capacity and this is taken as the unit of link capacity, i.e., ¢ = 1forallk.

Let ni(t) be the number of calls of type % in progress at time ¢. If the call
holding times are exponentially distributed, then the system evolves according to a
continuous time Markov process A" = {ni(t) : k = 0,..., K}, with discrete state
space S = {7 : 7 = (n1,...,nk),nx > 0, integer}. Let P(7) be the stationary state
distribution of the process. Burman et al [24] have shown that P(7) has product
form: " :

1= 1 (™
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where G is the normalization constant of the network satisfying:

K
G = > [ P(®) (44)

AES i=1
and S is determined by the routing of the calls, and is such that, for all links j:

K
> nil; < C; (45)

i=1

1. — 1 if type i call is routed via link j
Y 7 1 0 otherwise

The proof of Eq. (43), presented in [24], is simple and servers as an illustration
of the application of concepts presented in Section 2. If we assume infinite capacity
for all the links in the network, then the model reduces to an IS service center with
K types of customers and exponential service times. It is easy to show that this new
process A (with state space S’) is reversible and satisfies Eq. (43). The state space
of the original process A" is S’ (the state space of process A’ "} truncated to the set
S C &' Thus, from [96], this process is reversible and the equilibrium distribution is
the probability that A” is in state i’ conditioned that #' € S. Burman et al [24] also
show that Eq. (43) is valid for general holding time distributions.

The normalization constant for this problem cannot be calculated from the stan-
dard algorithms for product form queueing networks. Dziong and Roberts [57] ob-
tained recursive expressions which allow the calculation of the blocking probabilities
for a network. However, the calculation is costly and practical only for small networks.
In [57], approximations for calculating the blocking probabilities are proposed.

The above model can be extended to allow state dependent arrival rates and
different type of calls requiring different amounts of link capacity [57]. In [35], Conway
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also proposed extensions to the basic model in which links may fail and are repaired
independently of each other. The repair time of each link is given by a continuous
(but otherwise arbitrary) density. It is assumed that calls routed through failed links
continue to hold the capacity allocated to them in other links, and resume transmission
immediately after all failed links in their path are repaired. Another extension in {35]
allows random selection of a path at call set up ‘time, from the set of possible paths
between the source and destination.

6.5 Availability.

Obtaining availability measures of repairable computer systems often requires numer-
ical solution of a Markov chain model of the system [183). However, in certain cases,
a queueing network can be used to model the failure/repair behavior of the system
[73]. If certain restrictions are imposed, (e.g., the failure of a component cannot affect
another component) the queueing network will have a product form solution. In this
case, availability measures can be evaluated in a much less costly manner (in terms of
computation time and storage requirements) than conventional numerical solutions.
The queueing network obtained typically has one closed chain for each type of com-
ponent in the system {73]. A component cycles between a queue, which models the
failure rate of the component, and one or more queues representing the repair center.

Consider a set of N components of the same type (same failure/repair behavior)
each with failure rate A. If none of them is a spare, then the composite failure rate
is nA, whenever there are n components working. Obviously, this behavior can be
represented by an IS queue. Another representation is used when some of the compo-
nents are spares which fail with a different rate than that of the working component
(As, possibly zero). In this case, if there are n components working but at most m of
them can work in parallel, then max(n — m,0) are spares and the total failure rate is
A x min(m,n) + A, x max(n — m,0). A queue dependent service center can be used
to represent this failure rate.

The queueing discipline of the repair queue may be any of the well known disci-
plines which lead to product form. Among the most useful for availability modeling
are: IS, LCFSPR, FCFS, “random order of service preemptive resume” (with re-
sampling at arrival times) [73]. (This last discipline is an example of a case where
it is useful to have the product form characterization results to determine if a new
discipline will preserve product form.)

As a specific example, consider a model of a distributed architecture database
system. In this model, there are three processors (one of them is a spare), two disk
controllers and three clusters of disks, each containing four dual ported disks. In each
disk cluster data is replicated such that all data is accessible if any subset of three
disks is accessible. Thus, any disk unit in a cluster may fail without the system losing
access to any data. If a processor fails, the spare immediately replaces the failed unit.
If two processors have failed, the system is still operational but in a degraded mode.
Each processor may fail in two modes: a soft failure mode and a hard failure mode. In
the first mode the system can be restarted automatically (if there is a spare processor,
the spare substitutes for the failed unit during the restart). The restart process takes
an average of 1/u, hours. The second mode requires the intervention of a repairman.
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The processors are linked to both disk controllers. Each disk controller is linked to
all disks, and therefore, one disk can fail without affecting data access. The failure
rate of an active processor, a spare processor, a controller and a disk unit of cluster i
is Ap, As, Ac and Ay, respectively. The probability of a processor failing in soft (hard)
mode is p ((1 - p)). There is only one repairman who repairs units in FCFS order,
and it takes an average if 1/u, hours to repair a unit. We also assume independent
exponential failure times.

Figures 15 and 16 show the architecture and queueing model for this example.
There are 5 chains, one for each set of components with the same behavior, and 3
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Processors ! '
- |
disk
controllers
disk cluster 1 disk cluster 2 disk cluster 3

Figure 15: A distributed architecture for a database system.
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Figure 16: A queueing model for the distributed database system.

centers. The IS center models the failure behavior of the disk clusters, disk controllers
and the restart process of soft failures of a processor. The center labeled “processors”
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models the failure behavior of the processors. Note that the service rate of this
center changes according to the number of spare and active modules, i.e., to(3)/ ape =
s+ 2Ap; 1p(2)/ape = 2Ap; pp(1)/ape = Ap (where p and k are the indices of the center
and chain for the processors, respectively). The center labeled “repairman® models
the repair facility.

In order to calculate availability measures, we need to obtain joint queue length
probabilities (see example below) and possibly state probabilities as well. The DAC
algorithm described in Section 4 is particularly efficient for these calculations. In
the example above, the percentage of time the system operates with all components
working is simply P'7(14;3;0) (n = (14;3;0) € S¥), which is readily available from
the basic algorithm. On the other hand, a small subset of state probabilities also
needs to be calculated in order to obtain the steady state availability. These state
probabilities can also be efficiently calculated using DAC.

In availability modeling, it is important to calculate the sensitivity of availability
measures with respect to input parameters such as repair and failure rates. To eval-
uate these sensitivity measures, we need to obtain the partial derivatives of PX(77)
with respect to the input parameter of interest. In most cases, partial derivatives can
be easily calculated using the same approach as in [53,169].

6.6 Multicomputer Systems.
6.6.1 Database Systems/Machines.

Database systems represent one major application of computer systems. They also
represent a number of challenges in modeling.

Recently Heidelberger and Lakshmi [77] used queueing network models to com-
pare the performance of two database system architectures: a mainframe database
and a database machine architecture based on multiple microcomputers. This work
1s an excellent example of how simple queueing network models can provide useful
information about the expected behavior of systems and can help the analyst to make
important decisions.

The architecture of the mainframe database management system consists of a
tightly coupled multiprocessor running a simple operating system and a number of
disk drivers. The architecture of the database machine consists of a front-end (as-
sumed to be a tightly coupled multiprocessor) for terminal management, application
processing, etc.; query processors which are responsible for parsing, optimization,
translation of queries and dispatching them for the access processors, maintaining dic-
tionary data, etc.; access processors for accessing the relations (a relational database
is assumed), performing concurrency control and recovery functions. The relations in
the database are distributed across the disks. The query and access processors are
assumed to be microprocessors and to have only local memory.

The main assumption is that the queueing model satisfies product form require-
ments (contention for locks is negligible, commit processing is performed sequen-
tially, etc.). Other simplifying assumptions are also made in comparing architectures.
Among them we mention equal memory hierarchy performance for the two archi-
tectures; the given speed ratings (MIPS rating) for the mainframe processors and
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microprocessors of the database machine are considered equivalent.

The queueing network models for the two systems are shown in Figures 17 and
18. Both models have only a single open chain representing the transactions which
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Figure 17: A queueing network model for a mainframe database management system.
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Figure 18: A queueing network model for a database machine.

visit the processors and disks a number of times before leaving. The multiserver
queue of Figure 17 represents the tightly coupled multiprocessor architecture of the
mainframe. The disk subsystem is modeled by a number of SSFR queues. The relative
utilization for each resource in Figure (17) is obtained as a function of the average
number of database system calls in the transaction, average number of I/O’s per call,
average number of I/0’s during commit, average number of instructions executed by
the transaction, main memory buffer’s miss ratio, etc.

In Figure 18, the multi-server queue represents the front-end host which is also
a tightly coupled multiprocessor. SSFR queues represent the query processors, ac-
cess processors and the disks, The relative utilizations of the system resources are
determined as in the mainframe model.

For comparison purposes, a measure called MIPS penalty is defined as the sum of
the microprocessors MIPS of the database machine divided by the difference between
the mainframe MIPS and the MIPS of the database machine front-end. Note that, if
the MIPS penalty is greater than 1, then the total number of MIPS of the database
machine (front-end plus multiprocessors) is greater than the total number of MIPS of
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the mainframe. This measure captures the effect that in general the database machine
requires more total MIPS than the mainframe to achive a given response time goal
to execute identical tasks. Several performance studies were carried out using this
basic model. For instance, studies to compare the mean response time of the two
architectures as a function of the throughput for database machines with different
MIPS penalties; studies to verify the sensitivity of the architectures with respect to
distributed processing overhead, buffer miss ratio and other input parameters,

6.6.2 Multiprocessors and Interconnection Networks.

In the past few years a number of papers devoted to the analysis of maultiprocessors and
their interconnection network have appeared. Roughly, a multiprocessor is a collection
of processor/memory units which cooperate by sending/ receiving data directly among
themselves or by accessing global shared memory units. In both cases, data is sent
through an interconnection network which links the cooperating units. The type of
interconnection network may vary from simple shared busses to more complex omega
networks. In general, the modeler is concerned with the interference which occurs
when the interconnection network and global memory units are accessed. Below we
survey some solution techniques that have been employed to analyze these systems.
Some of the work is based on solutions surveyed in previous sections.

As an example, consider a simple multiprocessor system with P processing units
with local, non-shared memory, B global busses and M shared memory modules.
In order to execute a task, a processing unit accesses data in its local memory and
periodically, accesses data in any of the shared memory units. For data to be accessed,
any of the B busses must be held, together with a memory unit which stores the data.
Note that if B > M, there is no possibility of contention for the busses, and memory
interference can be modeled as M independent queues. When B = 1, then the
bus/memory subsystem behaves as a single server queue. The interesting case occurs
when B < M and B > 1. Irani and Onyuksel [89] obtained a closed form expression
for a symmetric system with exponential service times. Le Boudec [17] was able to
show that the bus/memory subsystem can be modeled by a special station, which
leads to product form solution when used in a BCMP-type [12] network, provided
that the following properties hold for the station:

(a) there are B identical exponential servers;
(b) there are M classes of users;

(c) a service request from a tagged customer of class m is granted if: (1) there is a
server available and; (2) there is no other class m customer being served and;
(3) all customers still in queue which arrive before the tagged customer cannot
be served (i.e., they belong to any of the classes of customers in service).

It is easy to see that this station represents the contention for bus/memory, if there are
as many servers as busses, as many classes as global memory units and the memory
access time is the server service time. Furthermore, it is interesting to note that
the bus/memory subsystem model yields a simultaneous resource possession problem
and it is surprising that the model satisfies product form requirements. Due to the
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solution complexity of this special station, the product form algorithms surveyed
previously cannot be used to solve networks with these stations, and new algorithms
were developed in [18,32].

Harrison and Patel [75] studied the contention for unbuffered omega networks. In
the model, there are P parallel queues, each one representing a data transfer device, in
which requests are queued. A transfer occurs if a path in the interconnection network
can be found between a source and a destination. For the analysis, the P quenes
are collapsed into a flow equivalent queue where the state represents the number of
devices that have a request to transmit. Given that n devices are busy, the probability
that m requests are satisfied is calculated based on the topology of the network and
simple combinatorial arguments. From the solution of the flow equivalent server and
the above probabilities, the effective throughput rate of the network is calculated. In
[138] the effect of non-uniform requests in the network is studied.

Kruskal et al [107] consider buffered synchronous (discrete time) omega networks.
Their analysis is derived for the first stage only, and it reduces to the analysis of
a single discrete time queue. The results are then extended by approximation for
the remaining stages. Christos et al [34] develop bounds for the mean delays for the
second and subsequent stages, also based on single queue analysis.

Fredericks [65] analyzes a simple buffered circuit switching network with two stages
(input ports and output ports), where both input and output servers must be held
simultaneously in order to start transmission. The solution is similar to the ones
surveyed in Section 4.4.2 for the simultaneous resource possession problem, with minor
variations.

Reed [145] studies the performance of microcomputers linked through an inter-
connection network. He develops a technique to calculate the visit ratios of messages
through the communication links. This technique avoids the solution of a large num-
ber of linear equations that would result in a large model, and yet preserves some
information about the structure of the network. With these visit ratios and given
service requirements, he uses bottleneck analysis [134] to obtain bounds on perfor-
mance measures. Furthermore, trade-offs between different topologies are studied
using Balanced Job Bound analysis [208].

In [124] Leutenegger and Vernon give an interesting example of the use of simple
mean value arguments to study the performance of a multiprocessor system with a
complex structure: the Wisconsin Multicube. The system studied consists of proces-
sor units (with cache memories) connected via a grid network. Shared global memories
are distributed across column busses. Interference for cache and global memory are
assumed to have secondary effects in comparison to bus interference, and it is ignored.
To obtain the solition, it is assumed that the resulting queueing network model sat-
isfies product form requirements. Furthermore, Reiser's approximation (see Section
4.4.1) is used for FCFS centers. The model allows the evaluation of several design
trade-offs such as the effect of cache block sizes and the speed up as a function of the
number of processors.

Norton and Pfister [137] also analyzed a multiprocessor machine: the IBM RP3.
The model solution is an example of hierarchical decomposition surveyed in Section
4.3.3. The overall model is decomposed into two submodels: one for the processor
and one which represents the contention for the network/ memory subnetwork. (The
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effects of the respective complements are represented in a simplified way.) The two
sets of equations obtained are reduced to a single point equation.

6.7 Distributed System Modeling.

The term “distributed system” has been used to describe a variety of different system
architectures. In this subsection we restrict our discussion to local area network of
computer systems which runs a single distributed operating system. The operating
system 1s assumed to support a number of features, such as transparent access to
data through the network, transparent distributed process execution and automatic
replication of storage. (The UCLA-LOCUS system [142] is an example of such a
distributed system.) Many interesting performance issues arise in such systems. For
instance, how much can the system grow without degradation in overall performance
(i-e. how well does it scale)? Replicating files through different sites to improve file
access reliability may have an adverse effect on performance, since changes in a copy
must be propagated to other copies. What is the “best” replication factor? Should
requests to access remote resources be given priority over local requests?

One of the first distributed system models was presented in (70]. In that paper,
each site in the network is represented by a number of queues which model the re-
sources of the site (e.g., CPU, disks). In general, the resources of one site are accessible
not only to jobs generated by users logged on to that site, but also to Jobs generated
remotely as well. Therefore, when a user submits a Jjob, besides accessing the local
processor and disks, the job may need a remote (“foreign”) resource. It then “vis-
its” the network and service centers on the foreign site. Through the communication
network, it sends request messages, perhaps some data necessary to run the request
remotely, and the response messages are returned. In order to represent the routing
behavior of a job in the system, at least one routing chain is used for jobs generated by
users logged on to a particular site. Figure 19 illustrates the queneing network model
obtained. In this figure, a central server model is used to represent the resources at
each site, a single closed chain is used to model the routing of jobs generated at a site
and a single queue represents the contention for the communication network.

In [70], the effect of updating files replicated through the network is studied.
Whenever a file is closed by a job, all modifications are propagated through the
system, and the job continues to run asynchronously with the updates. To represent
this effect, the model in [81] which was discussed in Section 4.4.3 is used. In [70],
the performance measures predicted by the model are compared with measurements
made in a system with four Vax computers running LOCUS in which user behavior is
simulated by a synthetic benchmark. The results reported are encouragingly accurate,

The above work ignores the priority given to file updates which run at a foreign
site. In [15], these priorities are taken into account. The model is essentially the one
in [70], but priority servers are included. In order to solve the model, the approach of
[22] is used. It is shown that the model with priorities predicts much more accurately
the system response time than the model which ignores priorities. In [15], the effect
of increasing the degree of file replication is also studied.

Both models discussed above use a single FCFS center to represent an Ethernet
communication network channel. In [49] the use of a more accurate representation
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Figure 19: A queueing network model of a distributed system.

of the Ethernet channel embedded in the overall system model is proposed. The
approach uses the clustering approximation technique described in Section 4.3.3. In
[49], it is concluded that, for very light load in the channel, the FCFS center pro-
vides a good approximation, but when the number of sites increases, the channel
becomes more utilized and influences the overall response time of Jobs. Comparisons
with simulation demonstrate that the results obtained from the analytical model are
accurate.

As a final note, the basic model of Figure 19 was used in optimization problems
as mentioned in the previous section.

6.8 Synchronization in Parallel Systems.

Except for a few special cases, product form networks require that customers can only
occupy one resource at a time and that the only interaction between customers is due
to contention for these resources. For many applications, other forms of customer
interaction are first order effects and must be represented to obtain accurate models.
This is particularly true in modeling the computation structure of interacting con-
current programs. Interactions between programs (customers) manifest themselves,
for example, in the requirements for mutual exclusion and/or precedence relations
among subtasks. The task spawning and the “spawn-join” behavior [80,81] that were
discussed earlier are particular cases of this type of interaction.

The following are some of the major types of concurrency and synchronization
features that have been studied.

1. spawning independent subtasks.

In this case the model can be viewed [81] as having a set of primary cus-
tomers. These primary customers occasionally spawn additional customers.
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The spawned customers, like those of an open chain, have transition probabil-
ities such that they eventually depart from the network with probability one.
This type of non-product form behavior is not unusual in computer systems.
For example, an interactive system may respond to the user while still doing
some post processing of the previous request. Note that this type of behavior
does not involve synchronization with the completion of the spawned tasks, i.e.,
the “parent” tasks and the spawned tasks are all mutually independent except
for contention for resources.

. task synchronization

The feature that distinguishes this case from the previous one is more complex
synchronization between task completions and initiations. For example, in [80],
a parent task 1s blocked until the completion of all of the spawned subtasks.
Many other forms of synchronization between tasks are possible. In [176,177],
a computation is described as a partially ordered set of tasks where the partial
ordering is a precedence relation. In this model a task is initiated at the instant
when all of its immediate predecessors have completed. One may be interested
in such models for computations that execute and then, when all task have
completed, the job departs. An alternative is a model in which the job is
immediately reinitiated when it “completes”. Note that the partial order of
tasks can be considered as a macro level model. Each task may have a “micro”
behavioral description which describes the load on physical resources. In [178],
a more general computation graph structure is used to specify CPU-1/O and
I/0:1/0 concurrency within a job. [8] and [193] suggest that some combination
of timed Petri nets and queuneing networks be used for model specification. [193]
discusses the trade-off between the modeling capability of timed Petri nets and
the efficient solutions available for product form queueing networks.

. serialization delays

This is a special form of contention which arises in computer systems due to
shared resources that must be used in a mutually exclusive manner, i.e., by
only one job at a time. Shared data structures are the most common example.
When a job requires access to the resource and the resource is in use, then the
requesting job must be blocked. We can therefore associate a queue with each
such shared resource. Serialization delays are a special case of simultaneous
resource possession. In this case there 1s a single “resource” analogous to a
single server queue. For simultaneous resource possession in general, there may
be a pool of identical resources (e.g., memory partitions) which is analogous to
a multiple server queue.

There are also special cases of this type of problem in terms of the (secondary)
resources that are accessed while holding the primary resource. In the simplest
case, the set of secondary resources associated with the primary resources are
mutually disjoint. This is, for example, assumed in the surrogate delay method
n [93]. In the case of serialization delays, this is often not a tenable assumption.
For example, whether accessing a shared data structure, or not in any critical
section, computations will be accessing shared physical resources (CPU, disks,
etc.).
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It is easy to see that the types of interaction mentioned above restrict the execution
of jobs and can have a significant effect on performance. For performance prediction,
these features may have to be represented to obtain accurate results. Models incorpo-
rating these features are also useful in evaluating design alternatives. As an example,
the number of distinct serialization delays is often a design variable. It is possible
to treat several shared data structures as one for the purpose of achieving mutual
exclusion. At the extreme, there could be only one critical section for all shared
data. With less critical sections there is less overhead due to requesting and releasing
access to shared data; there is however, additional serialization delay. The tradeoffs
can be evaluated using models incorporating these features [5,166,174]. Another is-
sue is the effect on performance of more or less parallelism within a computation.
The ability to represent concurrency and synchronization enables the evaluation of
design alternatives involving these features, e.g., the effect of executing portions of a
computation in parallel. [178] explores the effect of CPU-1/0O concurrency within a
computation and also of I/0-I/O concurrency. Heidelberger and Trivedi [80,81], as
discussed previously, study models that incorporate spawning independent tasks and
also the spawning of subtasks that then must synchronize with the parent task at
completion. Thomasian and Bay (176,177 model computations as partially ordered
tasks.

There are two main approaches to solving models that incorporate concurrency
and synchronization features in a model. These are: iterative approximations and
decomposition. Iterative approximations have been described in Section 4. Examples
of this approach as applied to concurrent computations can be found in [5,80,81,177).

The second approach is the use of decomposition. In this approach, the synchro-
nization between jobs is used to define the aggregation of states of the model. For
example, consider a model in which all jobs are statistically identical, and there are
K critical sections. A detailed state for such a model will have to include the queue
at each critical section and also the distribution of active customers among the phys-
ical resources. We can, however, consider aggregation of all states in which the same
number of customers are quened at each critical section, i.e., an aggregate state is de-
fined by (ng, n1,na,...,ng), where ng is the number of customers that are not queued
or accessing any shared data structure and n; is the number queued for critical sec-
tion i. Thomasian {174] refers to the aggregate states as the “system states”. The
assumption that lock requests and releases are relatively infrequent relative to the
transitions among the physical resources suggests that decomposition can be applied.
Closed queueing network results may be used to analyze behavior within an aggregate
state and to obtain the transition rates between aggregates. In cases where both iter-
ation and decomposition have been considered and compared [80,81,174], it appears
that decomposition is generally more accurate. However, it can also be considerably
more expensive since many subnetworks may have to be solved, and the aggregate
level model is generally not product form and must be solved numerically.

In [174] the main emphasis is on representing precedence relations between tasks
(represented as a partial order). It is shown that the top level Markov chain has
a special form and can be solved efficiently. In [95] the same type of aggregation
1s applied to models of parallel computation. However, in this work the resulting
Markov chain was considered to be potentially too large to be efficiently solvable, and
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a “fluid flow” approximation was developed for solution of the top level model.

7 Summary.

It is evident that queueing networks have been found to be useful in many areas of
computer system performance evaluation. These models are also being used exten-
sively in other areas such as flexible manufacturing [25]. The application areas in
which queueing networks have proven to be effective were surveyed in some detail
in Section 6. These will continue to be important applications and one can expect
refinements in these areas. There is, however, a serious issue as to what role queueing
networks will play in the future as highly parallel computer system architectures be-
come common and parallel and distributed processing are the major concerns. While
there has been some work on modeling concurrency and synchronization, it remains to
be seen how accurately these systems can be modeled and exactly what role queueing
network technology will play.

It seems clear that without major breakthroughs exact results will not be gen-
eralized significantly. There are then two evident directions for research: look for
those breakthroughs or concentrate on bounds and approximations. The former is
perhaps more exciting and holds more promise in the long range. The latter 1s more
likely to produce useful results in the short term. Both research directions are impor-
tant. With respect to bounds and approximations, we believe that formal analysis of
bounds and approximations should be emphasized. There are several approaches that
are of current research interest. The work of Courtois and Semal on extracting bounds
from large Markov models [44,45] is an interesting and promising direction. This is
an approach to finding bounds on performance measures without actually generating
the entire transition rate matrix. The hope is that it will be generally applicable to
Markov models since it is based on numeric solution but will conquer the state space
problem by obtaining bounds from a representation of only a small portion of the
Markov chain. The bounding methodology of van Dijk [189], the asymptotic methods
[104,127,130,141], etc. are examples of other approximation methods currently being
explored.

The accomplishments to date have been impressive. Queueing networks has
emerged as a new field and enjoyed considerable success both in practice and in
theory. A large part of the success is due to the symbiotic relationship of practical
application and theory. Often the theory has developed in response to the needs of
the applications. It remains to be seen if advances in queueing network theory can
match the demands of the complex, highly parallel computer systems of the 1990’s.
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