Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

ROUTING MESSAGES TO MIGRATING PROCESSES
IN LARGE DISTRIBUTED SYSTEMS

Thirumalai Muppur Ravi August 1989
CSD-890049






UNIVERSITY OF CALIFORNIA
Los Angeles

Routing Messages to Migrating Processes

in Large Distributed Systems

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in Computer Science

by

Thirumalai Muppur Ravi

1989



© Copyright by
Thirumalai Muppur Ravi
1989



The dissertation of Thirumalai Muppur Ravi is approved.

LtrD e

Milo% D. Ercegovac
OL\&

Rajive L. Bagrodla

Ao O Nboo

Kirby A. Baker

Bruce Rot E}hlld

//WZ,Z,//W _

David R. Jefferson, Comnnttfé

University of California, Los Angeles

1989

ii






To my parents

Kumudini Srinivasan and ‘T. M. Srinivasan

and my brother

Arun

iii






Table of Contents

page

TINHOGUCHION ottt ae et s e et et seee e e se e aeesennasens 1
L1 MOBVAON 1ot etecnatsreves e sse s s e st stssssas st e seeeensses s e sens 1

1.2 Problem DesCriPHON ...c.cceeviiieniroriineee s see st eseseseseseseeenssassnessens 3

1.3 Related RESEAICH ....ociueiiiieriiiiieeeeee ettt er v s s ane 5

1.4 Research Contributions ....cc.ccivceommeicieneriinie i eeeese e s 11

IT The Basic PTOtOCOL ..o.vcvuioicereeeeieeciriee s vt sees et ee e e s seeeesenesees oo 13
2.1 The MOAEL ..ottt st e et s en s e s e 13

2.2 The Basic PrOtOCO] ....cceveeeieiiirieeeeseeeeees sttt etee oo e s e e sere s e sne 14

2.3 COrrectness ATEUINENT ..ecveveueueueeeeireeeceeeeesietsseeeeeeseeeeeeseressssssesesesesesssesens 29

2.4 Extended Protocol .......ccccueoviieieriieee et ee et sees e e ee et e, 37

IIT Routing Caches in Distributed SYStEIMS .uouvueeeeeerereerreeeeeeseeesessseeeeses e 39
3.1 Locality in Distributed SYSIEmMS .......ooeoeieveverereeeereeeceseseeeeeeessseer e 39

3.2 Adaptive Routing With CACHES ....c.eviiiiviiiineeeeeeeeeeeee e eer s e 41
3.2.1 IMTOUCHON ...cuorerirrreeeeeerceerceteiste sttt et eeeeen e e e s s en e 41

3.2.2 CaChe SHUCIUIE .veeeeeceeeeecieieeecece et esestesss e ee s ens s 43

3.2.3 Process CaChes .....cccvvernierirerceeneeise s et se e e s ee e sen e s s 44

3.2.4 NOE CaAChES .ivivieiieinerreeieieeeeee ettt ee e se e s s e e 52

3.3 Analysis of Caching SChEmES .....cocueuciiiiiiiieiee e, 54
3.3.1 Analytical MOAEL ....cooviririeeeeiic e ee s e 55

3.3.1.1 Modeling Temporal Locality ..........ccccecrememereeeerserrennnn, 55

3.3.1.2 Performance Model for PCS (CM) ...covovvvveeeeeeeeeeee, 57

3.3.2 Simulation of Caching SChemes .........occoeeeeerevroveneeeeeeeeeerenn, 61

IV Non-Uniform Updating of Routing Entries ......oeeveeeecccicevoreeseeeeseees e 73
4.1 INTrOQUCHON ..coiiiiiiiiniieereriere st eere et ee et et rae e ee e et eeee e seessersesmenessere st eneess 73

4.2 Shifting Neighborhood ProtoCol ..., 76

4.3 Shifting Neighborhood Protocol with Dynamic Broadcast ....................... 83

4.4 Shifting Neighborhood Protocol with Adaptive Routing .............cceueene.... 87

4.5 Moving Home NOde Protocol .....ccccccieieneeeiineiieeeeiee it snans 90

4.6 Analysis and Performance Evaluation of the Shifting Neighborhood
Protocol

v



4.6.1 Determination of the Optimal Neighborhood Structure ................ 94
4.6.2 Stretch Ratios for the Shifting Neighborhood Protocol ................. 112,
4.7 Simulation of the Shifting Neighborhood Protocol and Related Protocols 127 i
4.7.1 Model of Message Communication between Processes ................ 128
4.7.2 Model for Process MIZration ..........ocoeovieeeeeceeseeeeeeeeeeeeeeeeeesereessnes 130
4.7.3 Organization and Parameterization of the Simulation .................... 132
4.7.4 Results of the Simulation of the Shifting Neighborhood Protocol
and Related Protocols ......cccvcieiieneniiieeeciere e cse e seee e 137
4.7.5 Conclusions from the SImulation ........cceeceveeeceeeiceeceen e 169
V Oher TSSUES .ovuviuiciiriiincceetneseretsie st ssreset e sss s ss e s se e sestsssnesseseansssasessnnsans 172
5.1 Locating Remote Routing EOtres ....o.eveeveeeesieeetceieccceecees e e ee e 172 |
5.1.1 Wave SEarching ..c...coeceeeceeviinemeieissseseeseseecesssssosssesemssssssssssss s 172
S.L2ZHASHING ottt r ettt s e s 177 |
5.2 Relability ISSUES ..civieeeuriieeciitntceisie et e ee et ee s e 178
5.3 Unbounded Migration-COUNT ........oceecuivevemeeeeeeeeeneeseeeesesessssneress e seeesesens 180
VI Conclusions and Future RESEAICh ....oociiecriiceeeiecie e e 181
6.1 CONCIUSIONS v.veieieiieiinere et st e se et st s st et en s s sees s se e e s s e seseens 181
6.2 FULUTE WOTK .ottt seesos et saeme s s e e e s e s s 186



ACKNOWLEDGEMENTS

The problem in this dissertation was proposed to me by Professor David
Jefferson, my advisor. His dedication to the pursuit of innovative and original ideas,
his scientific temperament, open-mindedness, intellectual rigor and emphasis on per-
fection have been a great source of inspiration. I am grateful to him for providing a
very healthy and conducive environment for research and for treating me as a fellow
colleague rather than a student. David has been actively involved in my research and
this work should properly be viewed as a collaborative effort.

During my stay at UCLA, I have closely worked with Professors Milos Er-
cegovac and Tomas Lang who originally sparked my interest in computer architecture
and distributed systems. The opportunity to interact with them has been a valuable
one.

I would like to thank Professor Estrin for his interest in my research activities
and his continuous encouragement of my endeavors. Professor Dick Muntz has always
(particularly at odd hours and on weekends!) been available to provide honest and
constructive criticism, to allow me to run ideas by him, and to pick his brain. Profes-
sor Jack Carlyle generously made available the computer resources needed to com-
plete my computationally intensive simulations.

Unni Warrier, Balaji Narasimhan, Joe Bannister, Farshad Meshkinpour and
Anne Lam have provided me with friendship, encouragement and support in
numerous ways over the years. It is my particular pleasure to acknowledge their help.
[ would like to thank Unni, Anne and Balaji for giving me large amounts of computer
time and Balaji for reading earlier drafts of my dissertation. I am grateful to Linda
Keene for encouragement and for her pride in my accomplishments.

vi



My colleagues in the UCLA Computer Science Department created an unique
environment and offered the companionship which made life at UCLA an experience
that I will always cherish. We enjoyed lively lunch time discussions, concerts at
Royce Hall and countless parties (including our graduation party : do we know how to
throw a party or what ?) together. In particular they are: Leon Alkalaj, Pak Chan,
Maria Eugenia Fuenmayor, Hector Geffner, Art Goldberg, Miquel Huguet, Jeong-A
Lee, Jaime Moreno, Martine Schlag, Frank Schaffa, Marc Tremblay and Paul Tu. In
particular I would like to thank Miquel, who shared the same office with me for five
years, for being a close friend, for his wonderful dinner parties, and for keeping me
well informed about the steamier happenings in the department.

Doris Sublette and Verra Morgan have made the department a much nicer
place to be by their warmth, affection and genuine concern for students.

I would like to acknowledge the following for their time and assistance: Bob
Felderman, Chris Ferguson and Tom Verma for help with probability theory and other
assorted problems, Lance Kurisaki for assistance with psfig and Greg and Tiffany Fra-
zier for helping me track down bugs and solve problems related to SIMON.

The funding of this work by the JTF/JPL Contract No. 957523 and an IBM
Graduate Fellowship is gratefully acknowledged.

I am specially grateful to Alison Baylor for her love and the wonderful times
we had together.

Finally, I dedicate this dissertation to my parents Kumudini and T. M. Sriniva-
san and my brother Arun for their patience, faith, love and understanding during these

long years.

Thank you all |

vii



VITA

January 9, 1961 Born, Champaign, Illinois

1982 B.Tech., Elecirical Engineering
Indian Institute of Technology
Kanpur, India

1982-1984 Research Assistant

University of California
Los Angeles, California

1984-1989 Post Graduate Research Engineer
University of California
Los Angeles, California

1986 M.S., Computer Science
University of California
Los Angeles, California

1987-1989 IBM Graduate Fellowship

PUBLICATIONS AND PRESENTATIONS

T. M. Ravi and David Jefferson., A Basic Protocol for Routing Messages to Migrating
Processes, 1988 International Conference on Parallel Processing, August 15-19, 1988;

Unni Warrier, T. M. Ravi and B. Narasimhan., A Classification of Processes in Distri-
buted Discrete-Event Simulation, Southeastern Simulation Conference, Orlando,
Florida, October 17-18, 1988;

viii



T. M. Ravi, M. D. Ercegovac, T. Lang and R. R. Muntz., Static Allocation for a Data
Flow Multiprocessor System, Second International Conference on Supercomputing,
Santa Clara, CA, May 1987;

M. D. Ercegovac, P. K. Chan and T. M. Ravi,, A dataflow multiprocessor architecture
for high speed simulation of continuous systems, Proc. International Workshop on
High-Level Architecture, Los Angeles, CA, May, 1984,

M. D. Ercegovac, P. K. Chan, Z. Konstantinovic, T. M. Ravi and M. D. F. Schlag.,
Task Partitioning, Allocation and Simulation for a Dataflow Multiprocessor System,
Proc. Summer Computer Simulation Conference, Boston, MA, 1984;

F. Meshkinpour and T. M. Ravi., Instruction Set Partitioning for VLSI Architectures,
International Conference on Computers, Systems & Signal Processing, Bangalore, In-
dia, Dec. 1984;

T. M. Ravi, Partitioning and Allocation of Functional Programs for Data Flow Pro-
cessors, M.S. Thesis, Report No. CSD-860063, Department of Computer Science,
University of California, Los Angeles, April 1986;

T. M. Ravi and M. D. Ercegovac, Allocation for the SANDAC Multiprocessor System,
Report No. CSD-860059, Department of Computer Science, University of California,
Los Angeles, Feb. 1986.

X



ABSTRACT OF THE DISSERTATION

Routing Messages to Migrating Processes
in Large Distributed Systems

by

Thirumalai Muppur Ravi
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1989
Professor David R. Jefferson, Chair

We investigate process migration in large distributed sytems with message
passing. Our objective is to develop mechanisms for routing messages to and from
moving processes, that can scale up to thousands of nodes. In particular we develop
mechanisms where nodes have out-of-date routing tables, i.e. new routing updates in-
dicating that a process has moved is not broadcast throughout the network; and incom-
plete routing tables, i.e. a node will generally have routing information about only
some of the processes in the systerm.

We first present a Basic Routing and Migration (BRM) protocol which cap-
tures the fundamental synchronization and correctness issues associated with process
migration and the routing of messages to processes. The BRM protocol is shown to be
deadlock free and we show that under this protocol messages are eventually delivered
to their destination processes. The BRM protocol serves as a basic building block
which is extended to give protocols that address performance issues.

To take advantage of temporal localities in communication we propose
schemes for caching routing entries. Caches help to reduce the time to locate a process
(i.c. obtain a routing entry for a process) and provide a mechanism to keep routing en-
tries up-to-date,



The main contribution of our work is the Shifting Neighborhood Protocol
(SNP) for updating routing information in a large distributed system. Associated with
a process, in SNP, are a family of nested neighborhoods consisting of nodes of the
system. Routing entries located at nodes in different neighborhoods are updated with
different frequency depending on the location of the process. The number of neighbor-
hoods for a process corresponds to the number of levels in the protocol and the multi-
level organization of SNP serves to reduce the update bandwidth.

We propose an analytical model to derive the optimal protocol parameters, i.e.
the number of levels and the dimensions of the neighborhoods that results in minimum
update bandwidth in SNP. From the analysis we determine that the average update
bandwidth is a slowly increasing function of the size of the system while the average
message trajectory stretch ratio (ratio of number of hops taken by message to the
number of hops in the shortest path between source and destination) is independent of
the size of the system.

We perform an extensive simulation of the Shifting Neighborhood Protocol
running on a large distributed system and study the effect of the variation of protocol
and system parameters on the performance and overhead of the protocol. The results
of the simulation indicate that SNP is scalable with the size of the system and hence
suitable for implementation in very large systems.
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CHAPTER1
Introduction

1.1 Motivation

It is now common to have systems consisting of a large number of computers
connected by a local area network. It is also becoming feasible to implement large scale
Multiple-Instruction-Multiple-Data (MIMD) multiprocessors with thousands of nodes
connected by an interconnection network. Nodes in such systems share no memory and
communicate with each other by sending messages.

In order to effectively utilize the resources available in such large distributed
systems and the potential they provide for improvement in performance, availability and
reliability we have to implement dynamic load management. Dynamic load management
is the attemnpt to optimize performance at run time by reallocating resources dynamically
in order to adapt to changing system characteristics and demand of resources by
applications. Dynamic load management is a complex problem with many different
objectives and several approaches have been proposed to deal with different aspects of
load management.

With a number of resources available it is possible to exploit large degrees of
parallelism at the process or task level by distributing processes over different nodes. In a
distributed system where processes belonging to different applications have been
assigned to nodes statically, the load will vary from node to node during the course of
execution. The load is a measure of the utilization of resources like the CPU, memory,
1/O, communication links, special purpose accelerators etc. at a node. While some nodes
are underutilized, others may be so heavily loaded as to become a critical performance
bottleneck. By dynamic load balancing which is a component of load management,
processes are moved from more heavily loaded nodes to less heavily loaded nodes, in
order to balance the load on different nodes.



If the application consists of a number of communicating processes which
cooperate with each other towards a common goal, then the frequency and amount of
communication between processes can dynamically change over time. The objective of
the dynamic mapping problem is to dynamically assign processes to nodes in order to
minimize the overall communication between processes.

In order to minimize the execution time of an application consisting of
communicating processes which cooperate with each other towards a commeon goal, load
balancing is not adequate. Some processes may be more critical than others, and the
degree to which a process is critical may change from time to time as the execution
proceeds. Thus under dynamic load management, more resources need to be allocated to
currently critical processes.

Another goal of dynamic load management is reliability. If a node is going down
then all its processes can be migrated to other nodes. Or else if a node abruptly fails then
the processes at that node can be restarted at other nodes if the process image is stored in
stable storage or if a copy of the image is maintained at another site by checkpointing the
process.

In a system where processes communicate with each other some processes that
may be common to several applications (for example server processes) receive a large
number of messages that have to be serviced. These processes can be replicated with
copies spawned at different nodes and consistency messages sent between copies of a
process if necessary. By replication the availability of a process is increased, the distance
between other processes and a copy of the process is reduced and the traffic congestion
and the length of queues at the process is decreased. In addition the copies of the process
can execute concurrently.

We have identified two tools for dynamic load management of a distributed
system - process migration and process replication. This work will focus on process
migration and in particular migration in large distributed systems. Process cloning has
been dealt with elsewhere [Goldberg 88).

Most current research in process migration is concerned with the policy of
process migration, i.e. deciding which process is to be moved, when, and from which
source node to which destination node ([Ni85], [Lin 87] & [Zhou 87]). Policy issues are
concerned with what load index to use, algorithms for exchanging load information with



other nodes, algorithms for deciding when to move a process and where to move it and so
on. Here we are concerned instead with the mechanics of process migration, i.e. protocols
for moving a process from one node to another and the delivery of messages to processes
that are moving. In particular, the emphasis of this work is to develop mechanisms for
routing messages to and from migrating processes that can scale up to large distributed
systems with thousands of nodes.

1.2 Problem Description

Consider a large network of nodes executing processes that send messages to
each another asynchronously. A process may send a message to any other process at any
time, addressing it by a globally unique name. We choose a general model of message
communication. The results that we obtain for the general model of message
communication can be applied to other more specific communication mechanisms.

The set of processes to which a process sends messages or from which it receives
messages may be continuously changing. This is contrast to the model where processes
communicate with a fixed set of other processes and the operating system has prior
knowledge of which processes will communicate with each other.

Processes can migrate from one node to another dynamically based on load
management policies. A process can be moved to any node, not just an adjacent node.
We can not restrict the migration of a process to nodes belonging to a certain region in
the network. We make no assumptions on the rate at which processes migrate - some
processes may migrate frequently while others rarely, if at all, migrate.

Our objective is to route messages to migrating processes, so that messages are
eventually delivered to their destination processes. The main technical issues arise from
the fact that from the operating system’s point of view both messages and processes are
in motion, and messages must be routed to moving targets instead of fixed targets. As
processes are moving, a node has to first determine the location of a process before
sending messages to the node where it thinks the process is located. The location of a
process is determined using routing tables containing entries that map process names to
node addresses. Since in a distributed system with communicating processes it is
impossible to predict at the time a process is to migrate whether or not there is a message
in transit toward it, hence some messages will have to be forwarded to catch up with



their targets.

We are only interested in migration and routing mechanisms that scale up to
thousands of nodes. In particular we are concerned with minimizing the bandwidth
required to update routing tables and the storage required to store routing tables. Message
routing must rely on possibly out-of-date routing information, i.e. new routing updates
indicating that a process has moved may not be broadcast throughout the network. We
also cannot assume that a node has enough memory to keep a complete routing table,
mapping every process name to a node address. In our routing protocol, routing tables
may have incomplete information, i.e. 2 node will generally have routing information
about only some of the processes in the system.

Routing of messages to a process must be efficient, using paths to a process that
are as short as possible. Since messages are routed based on out-of-date routing
information and a process may be moving even while the message is enroute to the
process, the path that a message takes before it is delivered to a process will be larger
than the shortest distance between the source node and the destination process at the time
of delivery. The performance metric of interest that is minimized is the streich ratio - the
ratio of the length of the path taken by the message to the shortest distance between the
source node and the destination process at the time of delivery.

It is essential that the routing mechanism be adaptive and make routing decisions
based on changes in the system. The routing mechanism should adapt to the specific
pattern of communication between processes. Repeated communication between
processes should result in an amortized cost of communication between them. The
routing mechanism should also adapt to the migration of processes and not degrade in
performance over time,

In designing any algorithm for distributed systems an objective is to develop
robust algorithms. The failure of a few nodes and hence the routing tables contained in
them should not make a large number of processes inaccessible. The routing mechanism
should degrade slowly on the failure of nodes. All nodes should have the same function
as far as the routing mechanism is concerned, containing similar amounts of routing
information and receiving nearly the same number of requests for routing information.
Solutions where select special nodes in a region are designated to maintain up-to-date
and complete routing information are not acceptable solutions.



We will be interested only in forwarding messages to processes and will not
consider the problem of open files of the process to be moved. Our work conceming the
migration of processes is also applicable to the migration of files. Files can be considered
to be a restricted type of process and messages to and responses from open files at remote
nodes can be considered to be a special case of communication between processes.

1.3 Related Research

A name server [Terry 85] is a facility for providing global names for objects that
allows for the access of information about objects. Objects can be active like processes or
passive like files and devices. In a distributed system consisting of a collection of host
computers all globally accessible objects should be given unique names that can be used
by distributed applications.

Another important function of name servers is to bind an object name to its
location. The name server has to dynamically maintain information on objects whose
location is changing or which are being created and destroyed. However name servers
provide many more services than just locating objects. They include interpretation of
memory addresses, locking and access control of data objects, authentication, and
information like size, creation time etc.

In this work we focus on one aspect of name servers, that is locating objects. In
particular we are only interested in locating processes that may be moving from one node
to another. Work on distributed name servers ([Birrell 82], [Oppen 83] & [Lampson 86])
concentrates on the conventions for naming objects and generally assume that the
properties of a name change slowly. Issues such as what information to keep on local
name servers, the location of local name servers and when to update local servers are not
dealt with and left as open issues.

Process migration and forwarding of messages has been implemented in the
DEMOS/MP system [Powell 83]. Our basic routing and migration (BRM) protocol can
be considered to be a more formal specification and generalization of their migration
procedure with particular concern for synchronization issues that arise when a process
has to be moved from one node to another. Our model permits concurrent execution of
several instantiations of the protocol on the same node. Our model also allows for the
situation that a node may not have a routing entry for every process in the system. The



main emphasis of our work, however, is to develop routing protocols rather than
migration protocols.

Fowler ([Fowler 85] & [Fowler 86]) proposed algorithms using forwarding
addresses to locate moving objects in a distributed system. In particular he proposed
three protocols for finding the address of a object that has moved. The most interesting
protocol is based on the UNION_FIND path compression algorithm. The main feature of
this approach is that routing entries used to forward a message to the destination are sent
updates with the current location of the object when the message is delivered to the
destination. In our protocol, we do not restrict ourselves to updating of routing entries
when an object is accessed, but also consider schemes where maintenance messages are
propagated as a side-effect of process migration. A problem with Fowler’s scheme and in
general with using forwarding addresses is that a single failure in an object’s forwarding
address chain makes the object inaccessible.

Gopal and Segall [Gopal 88] consider a very similar problem to ours in the
context of providing a directory service for users to dynamically locate other users. They
specify in detail two protocols - the first protocol defines a hierarchical relationship
between directory servers that permits efficient querying and updating of remote user
information. The essential idea is to partition the network into regions and select one
node in each region to act as a regional directory server. Each regional server maintains
knowledge of all local users in that region. Several logically related regions are grouped
into super-regions and one node in each such super-region is designated a super-server
and it maintains information on all users in that group of regions, The hierarchy can have
a number of levels and super-regions can be grouped into super-super-regions and so on.
Earlier in our research we considered this hierarchical approach and decided not to
pursue it because of several problems associated with tree structured schemes. The main
problem with tree based schemes is that-different nodes have different functions in the
routing scheme. The servers close to the root of the tree receive higher traffic and have to
store information about a larger number of users. Moreover the reliability of tree based
schemes is poor and the failure of servers particularly those close to the root have a
catastrophic effect. Another problem is the partitioning of the network into regions.
Nodes that are adjacent to each other in the network can be assigned to different regions
and hence the overhead of locating some nodes can be very high compared to the actual
distance between them. We develop protocols where all nodes have the same function in
the routing scheme and are treated uniformly.



The second protocol proposed by Gopal and Segall is a non-hierarchical approach
that requires all servers to maintain information on all users. Whenever there is a change
in the location of a user this information is flooded throughout the network. The
advantage of this scheme over ours is that message sequence numbers are not used but
rather the Propagation of Information with Feedback (PIF) protocol [Segall 83] is used to
guarantee the correctness of the protocol. However for the design of a practical scheme
for large networks, we consider the cost of unbounded flooding every time a user moves
prohibitive in terms of communication bandwidth.

Hwang [Hwang 87] proposes the replication of a location service to improve
availability and efficiency. If one replica is inaccessible then a different one can be
accessed and if several replicas are present, the client can choose the closest replica to
send its query. The replicas are kept consistent using Liskov’s [Liskov 86] multipart
timestamp technique. The problem with using any scheme with a few location services is
that the location services become a bottleneck because of the high message traffic
requesting for service. Also with few location services the distance from any node to the
location service is large resulting in a large message trajectory stretch ratio. The message
trajectory stretch ratio is the ratio of the number of hops that a message takes to be
delivered to its destination and the actual distance in hops between the source and the
destination. The goal of routing schemes and in particular, the routing scheme that we are
developing is to keep this ratio as close to one as possible. If we assume that the model of
message communication is such that most nodes send messages to destinations very close
to it, then Hwang’s scheme with a few location services will have a very high stretch
ratio. Hence, if we decide to have a large number of replicated services then because of
communication bandwidth considerations we need a more sophisticated scheme to
update the replicas. Keeping all the replicas up-to-date by spreading frequent gossip
messages is unnecessary because nodes can use out-of-date information for routing and
because some nodes rarely need information on some routing entries. In Chapter IV we
develop a scheme to maintain a large set of location services or, as we prefer to call them
routing tables,

Ahamad et. al. [Ahamad 87a] have proposed a scheme to locate objects when the
underlying communication network has the multicast capability. The scheme handles
object creation, migration and deletion. In our protocol we do not assume the existence of
a broadcast medium and have a model of a network with point to point connections.



Mullender and Vitanyi [Mullen 85] studied the resource location problem for a
client-server model in the context of the Amoeba operating system. The server posts its
location to a set of nodes, and the client queries another set of nodes for the desired
service. A rendezvous node is a node in the intersection of the two sets where the client
node finds the location of the server node. They do not consider the routing of messages
that may be in transit when a process moves, or messages that are sent based on old
location information which has not yet been updated.

The Emerald system [Jul 88] has implemented mobility of process objects as well
as data objects. To find an object it incorporates the forwarding address protocol
proposed by Fowler ([Fowler 85] & [Fowler 86]). When a node is unreachable due to
failure or the loss of a forwarding address, the Emerald system resorts to a system-wide
broadcast to find the object.

The Eden system [Black 85] treats resources as objects that are location-
independent. Currently the Eden system implements mobility for inactive objects, i.e.
objects that have no messages in transit either being sent or received. An object is located
by first checking a local cache for the address. If it is not found, a broadcast message
requesting the location of the object is sent to all other hosts.

In both Locus [Popek 85] and the Sprite operating system [Douglis 87 & Ouster
88] processes use kernel calls instead of messages for interaction with other processes.
Each process is assigned a special origin site or home node to which all remote calls are
sent. The special node has a forwarding address to the current location of the process to
which all calls are forwarded. However this strategy has several problems. There is a
residual dependency of the process on the special node even after the process has
migrated several times. In large distributed systems over a period of time, the additional
path length for the call could become very large compared to the actual distance to a
process. When all communication to a process is required to go through a special node,
process migration is no longer effective in reducing communication distances. Moreover
the failure of the special node makes the process inaccessible to other processes in the
system. Our protocols for routing messages to migrating processes will be adaptive and
not degrade in performance over time.



In the V-System [Theimer 86], when a message has to be routed to a process, a
local cache is checked for the location of the destination process. If a cache entry is
found then the message is sent to the location indicated. If there is no entry for the
process at the local cache, or if the process is no longer at the location indicated by the
cache entry then a query is broadcast system-wide to all nodes requesting the location of
the process. The local cache is updated with the response to the query and the message is
forwarded to the new location. We develop protocols that will not require a system-wide
broadcast of queries or updates.

In the Accent system [Rashid 81] every time a migration takes place, the
destination site broadcasts the change in location to all other sites. Like the scheme used
in the V-system this scheme is not scalable.

Lu, Chen, and Liu [Lu 87] have proposed a migration mechanism that assumes
that each process communicates with a finite number of processes called adjacent
processes and each node has a table with the exact location of processes adjacent to
resident processes. When a process migrates, it first blocks its adjacent processes from
sending messages, migrates to a new node, sends the adjacent processes the new location
of the process and re-enables the adjacent processes to send messages to the recently
migrated process. This scheme ensures that there is no message for a process in transit
when it migrates. In our protocol we tackle a more general problem assuming any
process can communicate with any other process at any time, and that the operating
system does not know which processes will communicate with each another.

Scheurich and Dubois [Scheur 87] deal with the problem of the migration and
location of memory pages in distributed systems. The performance of their mechanism
strongly depends on the geographical, spatial, and temporal locality of page references. It
uses caches for hints, and uses a broadcast search when the page is not found. Qur
message routing scheme basically relies on routing entries and the forwarding of
messages to a process that has moved. Extensions to our basic protocol proposed in
Section 3.2 use caches to take advantage of localities.

Qur problem is similar to the problem of routing to a mobile subscriber in packet
radio systems with fixed stations [Kahn 78]. In packet radio networks, a flooding scheme
is commonly used to initially locate a mobile subscriber. The weakness of this scheme,
however, is the high channel bandwidth due to control messages. A modification of this
scheme [Li 86] is to have a complete routing table at each station. To locate a mobile



subscriber a message is sent to the last known station to which the subscriber was
affiliated. If the subscriber has moved out of range of that station then a flood broadcast
is initiated at the last known station.

Westcott and Jubin [Westcott 82] propose an algorithm for routing in a packet
radio network that is similar to the old ARPANET algorithm [McQuillan 78] where
periodically a node exchanges its routing table with its neighbors and each node on
receiving the updates computes its new table. Only that part of the routing table is sent
which has changed since the last routing update. The main disadvantage of this approach
is that the size of update messages increases linearly with the number of nodes in the
network. We contend that it is not necessary to periodically exchange routing
information in the entire system and have up-to-date information on the location of a
packet radio (or a process in our case). We develop schemes that require less
communication bandwidth based on the premise that nearby nodes need more up-to-date
routing information while distant nodes can tolerate more out-of-date routing
information. This is because our goal is to reduce the average stretch ratio and not to
minimize the difference between the number of hops taken by a message to reach the
destination and the actual distance in hops to the destination.

Several hierarchical routing algorithms have been proposed ([Amer 88], [Kamoun
76], [Kleinrock 77], [Lauer 86], [Peleg 87] & [Ramamoorthy 86]) that decompose the
topology into hierarchically organized clusters. Clusters in turn can be organized into
superclusters and so on. In several of the algorithms there is a special node associated
with each cluster called the clusterhead. The algorithms proposed can be adapted for
routing messages to nodes in a network where connectivity or link delays are
dynamically changing. There are two advantages to the hierarchical routing algorithms in
large distributed systems. Hierarchical schemes for routing to nodes have been shown to
significantly reduce routing table space ([Kleinrock 77} & [Peleg 87]) without having to
concentrate routing information in the clusterheads. The second advantage is that when a
connectivity or other changes occur at a node, information about the change is spread
only within the cluster that contains that node, thus restricting the number of update
messages sent on every change.

A common feature of some ([Kleinrock 77] & [Peleg 87]) of the hierarchical
schemes is that special names are assigned to nodes, and the name of a node indicates
some information about its location. In our problem we are interested in routing
messages to processes which do not have a fixed location but can migrate from cluster to
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cluster. Thus from the name of a process a node can not determine which cluster it
belongs to, and hence a similar saving in routing table space is not possible.

1.4 Research Contributions

In this work we have developed routing schemes with low storage and bandwidth
requirements that route messages to moving processes. We assume the most general
model of message communication, process migration and the underlying architecture.

The schemes we have proposed can be adapted to systems that have a more restricted
model.

We study the performance issues related to our schemes for routing messages to
moving processes. We develop analytical models to study some performance metrics and
simulation models for a more general and extensive evaluation of the schemes.

The main contributions of this research are summarized below.

. A basic routing and migration protocol that captures synchronization and
correctness issues.

° Schemes for the use of caches to adapt to locality in distributed systems.

. The Shifting Neighborhood Protocol: A mechanism for updating routing
information in large distributed systems.

The remainder of this dissertation is organized as follows. In Chapter II we
present a formal specification of a Basic Routing and Migration (BRM) protocol and
show it to be deadlock free and correct. The emphasis in this basic protocol is on
synchronization and correctness issues associated with process migration and message
routing. The BRM protocol is not intended to be an efficient protocol for either migrating
processes or routing messages to processes, but rather a basic building block to which
different extensions are added to improve the efficiency of routing messages.
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In Chapter III, we propose the addition of caches to the BRM protocol to take
advantage of localities present in distributed systems. By caching routing entries the time
to locate a process (i.e. obtain a routing entry for a process) and the length of the path to
the process can be significantly reduced in the presence of localities. We present three
schemes for the addition of caches to the BRM protocol; two of them use caches
associated with a process and the third scheme uses caches associated with a node. We
describe analytic models for the performance of the caching schemes and simulate their
performance.

We then present in Chapter IV the main result of our work - the Shifting
Neighborhood Protocol for routing messages to moving processes. This protocol is a
multiple level mechanism for updating routing entries for a process. Different routing
entries for a process are updated with different frequency depending on the distance
between their location and the process. The principal benefit is the saving in update
bandwidth. The nodes of the system are partitioned into a family of nested
neighborhoods for the process. The optimal number of levels and the dimensions of the
neighborhoods that minimizes the update bandwidth for the Shifting Neighborhood
Protocol and related protocols are analytically determined, We calculate the update
bandwidth and the average message trajectory stretch ratio under certain assumptions of
system. Extensive simulations of the Shifting Neighborhood Protocol executing on large
distributed systems confirms that the protocol is scalable with the size of the system.

In Chapter V, we discuss how routing entries for a process can be obtained when
nodes have incomplete routing tables. We discuss reliability issues related to our
proposed protocol. Finally, in Chapter VI we summarize the contributions of our work
and present related open problems.
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CHAPTER 11
The Basic Protocol

2.1 The Model

We envision a load managing operating system as consisting of five functional
levels (Figure 2.1).

Application | cooperating processes

Load Management migration policy
Mechanics of interprocess msg. routing
Routing & Migration migration protocol

internode msg. routing

Low Level Kernel i .
process multiplexing

many processors
Architecture Level MIMD

no shared memory

Figure 2.1 : Functional Levels in System

The lowest is the Architecture level consisting of the nodes and the network connecting
them. The topology is assumed to be an arbitrary graph. The Low Level Kernel
implements reliable node-to-node message routing. Communication between nodes is by
asynchronous messages, takes finite time, and need not be order preserving. Each node
may have multiple processes resident on it and this level also manages the multiplexing
of processes on each node. The next layer handles the Mechanics of Routing and
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Migration and includes protocols for process-to-process message routing, routing table
maintenance, and migration of a process from one node to another. The Load
Management Policy Layer makes decisions about how to redistribute the load and
requests the Mechanics of Routing and Migration layer to migrate certain processes to
specified destinations. Finally the Application layer consists of a collection of
cooperating processes that communicate asynchronously by messages.

Each level of the system is assumed to be reliable. In this work we are interested
in the implementation of the third layer, handling the Mechanics of Routing and
Migration. Message routing between nodes is handled by the Lower Level Kernel, and
we will not be concerned with how it is done.

2.2 The Basic Protocol

We now present a Basic Routing and Migration protocol, BRM, which forms a
basis for the subsequent development of more complex protocols that optimize
performance. The BRM is designed with careful attention to modularization to allow for
different possible implementations of sub-modules and so that different features can be
added on to the basic protocol for performance enhancement. This protocol assumes that
buffers of unlimited size are available at each node to store messages while remote
routing entries are being obtained.

Associated with each process, the operating system maintains a migration-count
o which is incremented whenever the process migrates. Each node maintains a possibly
incomplete routing table containing entries that among other things map process names
to node addresses. Routing entries for a process are marked with a migration-count field
that is equal to the migration-count of the process when it was located at the node
indicated by the routing entry. The status of a routing entry indicates whether it is
permanent or temporary, i.e. whether it remains in existence for the lifetime of the
process or not. The updates field indicates the number of pending updates or update
requests to remote nodes from the node where the entry is located. Before an update to
remote nodes is started this field is incremented by one and when the update is complete
it is decremented by one. A temporary routing entry can be deleted only when the value
of this field is zero. A lock field controls access to the routing entry. The structure of a
routing entry is shown in Figure 2.2. When a process becomes resident on a node, a new
routing entry for that process is created at that node if one does not already exist.
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Process Name || Lock | Location | Migration-count | Status | Updates

Figure 2.2 : Routing Entry

When a process is created, routing entries for the process are distributed to a
subset of the nodes in the system and remain in existence for the lifetime of the process.
It is not necessary that every node have a routing entry for every process. However each
node U has access to a set &surrogate(U, q) of nearby nodes that have a routing entry for
a process q. U itself is not considered a member of &surrogate(U, g). The set
&surrogate(U, q) does not have to contain all the nodes in the system that have a routing
entry for g. If U has a permanent routing entry for ¢ then &surrogare(U, q) may be an
empty set. However if U does not have a permanent routing entry for ¢ then
&surrogate(U, g) must be nonempty.

In brief the protocol for routing a message to a process is as follows :

a. When node U must route a message to process g at the request of process p on U,
the operating system first checks if a routing entry for ¢ exists at node U. If so the
message is either delivered locally or routed to the proper node depending on
whether the routing entry points to U or not. However if no routing entry for the
process is found at U then a routing fault occurs.

b. When a routing fault for a message addressed to g occurs at node U, the message
is buffered at U and a request is sent to one or more surrogates of U which have
routing entries for g, i.e. nodes in &surrogate(U, q). When a routing entry for g is
received in response, the message is routed to the node indicated by the routing

entry.

C. If a node V receives a message for a process ¢ that is not resident on V, it re-
routes or forwards the message. The procedure for re-routing or forwarding a
message from V is identical to that for routing a message originating at that node.

Note that in some implementations of the BRM protocol, it is possible to receive several
replies to a request for a particular routing entry from the surrogates. The first routing
entry that is received is used to route the waiting message. If a routing entry is received
and there are no pending messages then it is ignored.
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The migration protocol for moving process g from node U to V is informally
described below. Process migration is atomic with respect to message routing, i.e. a
message cannot be delivered to a process while it is migrating.

d. The temporary or permanent routing entry for ¢ at node U is locked, and the
execution of ¢ is stopped at node U. Node U sends a MOVE system message,
containing the process state (and program code if necessary) to node V.

e. When node V receives the MOVE message, the migration-count of g is
incremented, q is installed and restarted at V, and the routing entry for ¢ at V is
modified to indicate its current location and migration-count. If there is no
routing entry for g at V then one is included in the routing table at V, marked as
temporary, and assigned the new location and migration-count of ¢. A system
message MOVE_CONFIRM is sent back to node U indicating that g is now
located at V.

f. Node U on receiving MOVE_CONFIRM, modifies the routing entry for ¢ to
indicate that q is at V, marks it with the incremented migration-count and unlocks
the routing entry. Node U sends a routing update message to all surrogate nodes
of U with routing entries for q.

Figure 2.3 illustrates the migration protocol. The choice of the surrogates and the method
for the access and update of remote routing entries are left open in the BRM protocol.
Obtaining a remote routing entry can be done in a number of ways such as bounded
broadcasts, hashing etc., which we discuss in Section 5.1.

In the basic protocol temporary routing entries for a process are created at a node
for two different reasons. If a process g is resident at a node U which does not normally
have a routing entry for ¢, then a temporary routing entry for g is created at U to indicate
that ¢ is located at U. Another instance where a temporary routing enwry is used is to
facilitate the efficient atomic update of routing tables of surrogates. In order to reduce the
synchronization delay during which a routing entry at U is unavailable, an atomic update
can be achieved by creating a temporary routing entry at U, and sending asynchronous
updates to the remote nodes that have to be updated. Creation of temporary routing
entries can however lead to an increase in storage over time and hence these latter
temporary entries must be deleted when the update is completed.
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For correctness, the routing table update procedure has to satisfy the following
specifications :

When a routing table update is received at a node W indicating that process ¢ is
located at V with migration-count o, then the routing entry for ¢ at W, if any, is

Node U

MOVE (V, U, q, state(q), code(q))

MOVE_CONFIRM (U, V, g)

Figure 2.3 : Migration Protocol
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updated only if o is greater than the migration-count of the routing entry for g.
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Process Name Location Long term/ Access conirol
l Access control l Temporary to table ¢

to routing entry lggilgr?tion \ No. of outstanding
T
~-a Updates V¢ [RTLock
p| RT(p).Lock | RT(p).Node | RT(p).cx| RT(p).Stas| RT{p).Updates
qal ......
Figure 2.4 : Routing Table (RT)
2. The set of remote routing entries for ¢ that can be queried when a routing-fault
occurs at node U, must be a subset of those updated by U when g migrates away
from U.
3. Any temporary entry for ¢ at U can be deleted only after all members of

&surrogate(U, g) have been updated.

If a process ¢ migrates away from U, returns and migrates again, then it is possible that a
new request for updating surrogate nodes of U with routing entries for g can be generated
while a previous remote update for g is ongoing. The operating system therefore has to
keep track of the number of requests for remote updates that are not yet complete. Only
when all remote updates have completed can a temporary routing entry for g at node U
be deleted.

Access to the tables is controlled by locks to ensure that possible concurrent
access to a table at a node is synchronized. We design for the possibility that several
instantiations of the BRM protocol may be running simultaneously at a node responding
to different routing and migration activities. Associated with each table are two levels of
locks, one lock to control insertion and deletion of entries from the table, and the other
associated with each entry, to control read or write access to that entry.
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Figure 2.5 ; Message Buffer Table (MB)

Figures 2.4 and 2.5 show the routing table (RT) and the message buffer table
(MB). We refer to these tables at node U as RTy; and MBy, but we drop the subscripts
when the location of the table is clear from the context. Each entry in MB has a message
queue to store messages. We will always assume that the buffer at node U is large
enough to store those messages destined for a process g that arrive at U while g is
migrating from U. It is a flow-control problem to guarantee that this assumption is true,
but we do not deal with this issue here. Enquene and Dequeue operations insert and
remove messages from the queue. The Empty operation checks to sec if a queue is
empty. Lock (A.Lock) and Unlock (A.Lock) obtain and release A.Lock. A lock that is
requested and is unavailable is retried and the algorithm does not proceed to the next step
till the lock is obtained. Insert&Lock creates an entry that is initialized as locked. Delete
unlocks an entry and then removes it.

"Send" is a kernel call to route a message to the node indicated in the message.
"When" indicates the action to be taken on the receipt of a message from the kernel or a
request from the higher levels of the operating system.

The algorithm for the routing and migration protocol follows. Each step of the

algorithm is invoked asynchronously upon the arrival of a message or on receiving a
command from the Joad management or application level.
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BASIC ROUTING & MIGRATION PROTOCOL

Variable for each Process q

q.o

migration-count for process q.
Incremented whenever ¢ moves.

Variables at each Node U

RT

RT.Lock

RT (q)

RT (gq) .Node

RT (q) . O

RT (g) .Status

RT {q) .Updates

routing table located at node §)

containing routing entries.

lock associated with table RT that has
to be obtained Dbefore any routing
entries are inserted or deleted from
RT.

routing entry for process q. By
convention we say it is equal to Nil if
there is no entry for g in the routing
table at U. RT{(g) is deleted from RT by
the execution of Delete(q, RT). RT(g)
is created by executing Insert&Lock(q,
RT, RT(q).Lock), that c¢reates an entry
that is already locked.

possibly out-of-date node address for
q.

migration-count associated with the
above routing entry.

indication of whether this routing
entry is permanent or temporary.
Permanent entries are marked
"permanent" and temporary entries are

marked "temporary".

number of wupdates to remote routing
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RT (q) .Lock

MB

MB.Lock

MB (q)

MB (g} .Queue

MB (q) .Lock

entries whose completion has not vyet
been confirmed.

lock for routing entry that has to be
obtained before the entry is read or

written into.

message buffer table at node U
consisting of a list of queues of
messages destined for different
processes and waiting for the
resolution of routing-faults.

lock associated with MB that has to be
obtained before MB(g) can be created or
removed from MB.

message buffer entry to indicate the
existence of a queue of user messages
whose destination is g. MB(g) = Nil if
there are no messages whose destination
is g. MB(gq) is deleted from MB by the
execution of Delete{g, MB}). MB{(g) is
created by executing Inserté&Lock (MB(g),
MB (qg) .Lock), that creates an entry
consisting of an empty queue that 1is
already locked.

queue of user messages that are wailting
for the resolution of routing-faults
and whose destination is g.

lock for MB(g) that has to be obtained
before a message can be enqueued or
dequeued from MB(qg).
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Messages Sent & Received at each Node U

SM5G (U, g, text) system message sent to node U
containing user message text
for process g.

MOVE (U, V, g, state, code) system message for migration
¢f q from node V to U, con-
taining the process state and
code.

MOVE_CONFIRM(V, U, q) system message in response to
a MOVE message; sent from node
U to V indicating that process
g is executing on U.

RE(U, g, W) system message sent to U indi-
cating that q is believed to
be at W.

UPDATE CONFIRM({U, q) system message to confirm that

updates for g sent to remote
nodes have been received. It
may be a message sent by U to
itself.

Initialization Initially the migration-counts of all
processes are zero and routing entries for each process are
set up in the routing tables of some subset of nodes. The
routing entries for a process consist of a node address
which 1is the initial 1location of the process, and the
entries are marked with a migration-count of =zero and
status permanent.
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Procedures & Functions

Function ROUTE LOCAL (g, text )

{ Attempts to deliver or route messages based on the 1local
routing table. Delivers the message destined for g if g is
located at node U. Else if there is a routing entry for
process g at U then the message 1is forwarded to the node
location given by the routing entry. }

begin
Lock (RT.Lock)
if RT(gq) # Nil then begin
{routing entry found}
Lock (RT (g) .Lock)
Unlock {RT.Lock)
if RT(q) .Node = U then begin
{locally delivered}
Place text in message queue for process g
result := delivered
end else begin
{re~routed}
send SMSG({RT{qg) .Ncde, g, text)
result := re_ routed
end
Unlock (RT (q) .Lock)
end else begin
Unlock (RT.Lock)
result := failed
end
return (result)
end ROUTE LOCAL

Procedure ROUTE_REMOTE (g, text)
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{ Buffers the content of a message in the waiting table and
requests for a remote routing entry for the destination
process. The message with content "text" destined for g is
buffered in the waiting table at node U and a remote

routing entry for gq is requested. }

begin
Lock (MB.Lock)
if MB(q) = Nil then begin
{no msg. buffer entry for g}
Insert&Lock (g, MB, MB(qg) .Lock)
Unlock {(MB.Lock)
{buffer message}
Enqueue ( (g, text), MB(qg).Queue)
Unlock {MB (q) .Lock)
REQ REMOTE RE(q) {request remote routing entry}
end else begin
{other msgs. for q walting for routing entry}
Lock (MB(q) .Lock)
Unlock (MB.Lock)
{buffer message}
Enqueue ( (g, text), MB(qg) .Queue)
Unlock (MB (g) .Lock)
end
end ROUTE REMOTE

Procedure DELETE_RE (q)

{ Delete the routing entry for gq from the local routing
table if the entry 1s temporary, all updates to remote
nodes have completed and the process is not resident at U.

}

begin
Lock (RT.Lock)
if RT{(g) # Nil then begin
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Lock (RT (g) .Lock)
if RT(g) .Status = temporary
{temporary routing entry}
and RT (g) .Node # U
{process has not moved back}
and RT (q) .Updates = 0 then begin
{remote updates complete }
Delete (g, RT)
{delete temp. routing entry}
end else begin
Unlock (RT (g) .Lock)
end
end
Unlock (RT.Lock)
end DELETE RE

Procedure REQ REMOTE RE (q)

{ This is a procedure to obtain a remotely located routing
entry for g. In the Basic Routing & Migration Protocol the
implementation of REQ REMOTE RE is left unspecified, as it
can be done in a variety of ways. REQ_REMOTE RE (q)
executed at different nodes may return different wvalues.

The set of remote routing entries that are queried are a
subset of those updated.

In response to messages sent in this procedure, node U

receives a message or messages RE(U, g, V) indicating that
q is believed to be at V. }

Procedure UPDATE REMOTE RE (g, V, «)

{ Sends update messages to some subset of remote routing
entries from U. The routing entries are updated to indicate
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that process g 1s located at node V with migration-count o,
but only 1f o is greater than the migration-count of the
routing entry Dbeing updated. The implementation of
UPDATE_REMOTE RE is left unspecified. The subset contains
at least those remote routing entries that can be queried
from U,

If U has a temporary routing entry for g then in response
to update messages sent in this procedure node U receives a
UPDATE CONFIRM (U, gq) message indicating that all nodes in
the subset have received the update. }

Algorithm at each Node U

<1> when a process on node U requests the sending
of a message to process g begin
{call from application layer}

result := ROUTE LOCAL (g, text)

if result = failed then begin

ROUTE_REMOTE (g, text)
end
end

<2> when SMSG(U, g, text) arrives begin
{message from outside arrives}
result := ROUTE_LOCAL (g, text)
if result = failed then begin
ROUTE_REMOTE (g, text)
end
end

<3> when RE(U, g, V) arrives begin
Lock (MB,Lock)
if MB{(g) # Nil then begin
{messages for g in buffer}
Lock (MB (q) .Lock)
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<4>

<5>

end

when

end

when

while not Empty (MB(g).Queue} do begin
(g, text) := Deqgqueue (MB(g).Queue)
{re-route messages in buffer}
send SMSG(V, q, text)
end
Delete (g, MB)
Unlock (MB. Lock)
end else begin
{no messages for q in buffer}
Unlock (MB.Lock)
end

policy software
requests migration of g from U to W begin
{call from load management layer}
Lock {(RT (qgq) .Lock)
{block access to routing entry}
Remove g from execution
send MOVE (W, U, g, state, code)

MOVE (U, V, g, state, code) arrives begin
g.o := g.o0 + 1
Install process g with i1ts state
and code at node U
Lock (RT.Lock)
if RT(g) = Nil then begin
{create temporary routing entry}
Insert&Lock (g, RT, RT{qg) .Lock)
Unlock (RT.Lock)

RT (g) .3tatus := temporary
RT (g) .Updates := 0

RT{q) .Node := U

RT(qgq) . = q.O

Unlock (RT (q) .Lock)
end else begin
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<6>

<7>

end

when

end

when

{permanent routing entry exists}
Lock {RT (g) .Lock)
Unlock {RT.Lock)
{update routing entry}
RT {q) .Node := U
RT{(g) .0 := g.&
Unlock (RT {qg) .Lock)
end
send MOVE CONFIRM(V, U, q)

MOVE CONFIRM (U, W, g) arrives begin

{update local reouting entryl
RT (g) .Node 1= W
RT(g) . := RT{g).a + 1

{pending update to remote entries}
RT (g) .Updates := RT(qg) .Updates + 1
a := RT(g) .o

{unblock access to routing entry}
Unlock (RT (gq) .Lock)

{update remote routing entries}
UPDATE_REMOTE RE (g, W, o)

UPDATE CONFIRM(U, q) arrives begin
{a remote update 1is complete}
Lock (RT.Lock)
if RT(g) # Nil then begin
Lock (RT (g) .Lock)
Unlock (RT.Lock)
RT (g) .Updates := RT(qg) .Updates - 1
Unlock (RT {(q) .Lock)
{attempt to delete entry}
DELETE RE (q)
end else begin
Unlock (RT.Lock)
end
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end

2.3 Correctness Argument
In this section we discuss the validation of the basic protocol by showing the
absence of deadlocks and by proving that under appropriate conditions messages that are

routed according to the protocol are eventually delivered to the destination process.

We first examine the possibility of local and distributed deadlock in the BRM
protocol. Every step of the protocol has the following properties.

(i) An attempt is made to obtain a lock for a table entry only when the entry exists
and the entry is guarded from deletion while the protocol is waiting for its lock.

(i)  The actions in each step other than waiting for locks take finite time.
Every step except <6> has the additional property.

(i)  Ineach step table entries are locked before they are accessed.

Every step except <4> has the additional property.

(iv)  Before completion of a step all locks obtained in the step are released.
By assumption we have the following property.

) Low level node-to-node message delivery takes finite time.

There are two levels of locks, one associated with an entry that has to be acquired
before reading or writing to the entry, and the other associated with an entire table to
control insertion, deletion and testing the existence of an entry. An entry lock and the
corresponding table lock on the same node can be viewed as a parent-child lock pair.

Obtaining the table lock does not prevent concurrent acquisition of an entry lock
belonging to the table.
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In the BRM protocol, the procedure for creating an entry is first to lock the table,
test for the existence of the entry in the table, and if it doesn’t exist then execute an
Insert&Lock operation that creates an entry that is already locked. The table lock can
now be released, the entry written into and the entry lock released. As the table lock has
to be obtained to create an entry, two entries for a table cannot be created concurrently
and hence there is no danger of creating duplicate entries.

An entry is deleted by first locking the table, then locking the entry and then
executing a Delete operation that removes the entry. The table is then unlocked. As the
entry has to be locked before it can be deleted hence in the BRM protocol it is not
possible to delete an entry that is simultaneously being accessed.

To access an entry, only the entry lock has to be obtained. However, in the
protocol whenever there is a possibility that an entry does not exist, the table is first
locked and the existence of the entry in the table is checked. If the entry is in the table the
entry is locked and the table lock is released. Hence in the BRM protocol there is no
possibility of waiting forever in attempting to lock an entry that does not exist. Thus
property <i> holds for all steps of the protocol.

A causal path is a sequence of dependent steps or events that can be on the same
node or across nodes. Steps <4>, <5> and <6> form part of a causal path invoked when a
process g migrates say from U to V, with steps <4> and <6> executing on node U and
step <5> executing on V. The sequence of steps <4>, <5> and <6> take finite time
because of properties (i) and (v). The lock RTy(q).Lock obtained in step <4> is not
released at the end of the step. Subsequently when step <6> is invoked at U the routing
entry for ¢ can be accessed because the lock is already obtained by an earlier step in the
causal path. Finally in step <6> the lock RTy(q).Lock is released. We observe that even
though properties (iii) and (iv) do not hold for all steps, for every causal path through the
protocol entries are locked before they are accessed, and all locks obtained in the course
of the path are released before the path terminates.

Theorem The Basic Routing and Migration Protocol is deadlock free.
Proof: When a causal path needs only one lock, it is obtained and released after finite
time. For all causal paths in our protocol except the sequence of steps <4>, <5> and <6>

invoked when a process migrates, at most two locks are held at any time. When two
locks are held at a time, the two locks are always an entry lock and the corresponding
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parent table lock and they are always obtained monotonically - first the parent table lock
and then the entry lock. The concurrent execution of two paths of the protocol cannot
result in a deadlock because the pair of locks have to be obtained in order. Moreover as
only a corresponding parent-child lock pair can be held at the same time and not an
entry-entry lock pair hence there is no possibility that three or more concurrent
executions of the protocol can lead to a deadlock cycle. Thus there can be no deadlock
when causal paths in the protocol other than the path related to migrating a process are
executed concurrently on the same node or on different nodes.

Now consider the causal path that results when a process migrates. We assume
that the Load Management level of the operating system is well behaved with the
following properties:

i It does not request a process to be migrated from a node to itself.
1. It does not request a process to be moved from a node if it is not located at the
node.

Because of assumption (i), steps <4> and <6>, and <5> that belong to a causal path
cannot be invoked on the same node. Let us consider the migration of a process g from U
to V. Steps <4> and <6> are invoked on U and <5> is invoked on V. A routing entry for ¢
at U and a parent-child pair of the routing table and routing entry at V can be locked at
the same time. Because the pair of locks at V is obtained in parent-child order hence a
causal path with steps <4> , <5> and <6> cannot be involved in a deadlock with any
other causal path. From assumption (ii) and the fact that every process has an unique
name, simultaneous migrations from a node or between a pair of nodes has to involve
locking routing entries for different processes which can not result in deadlock. Hence
any two causal paths of the protocol can not be involved in a deadlock.

We have thus shown that the protocol is deadlock free. B

Figure 2.6 illustrates the absence of deadlock in the scenario when two processes
¢ and p migrate simultaneously from U to V and V to U respectively.

Before we proceed with the verification of the basic protocol we introduce a few
definitions. A process trajectory at time ¢ is defined as the sequence of node locations
where the process has been resident up to time 2. Since initialization, if a process g has
been resident on nodes X, X, ... and at time ¢ is resident at X n» then the process
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Figure 2.6 : Simultaneous process migration between U/ and V

trajectory is trajectory(q, t) = Xo X1 X2 -+ Xq. If the process ¢ moves from X, to
Xn41 attime ¢', where ¢’ > ¢ then trajectory(q, 1) =Xo X1 X2 X3 -+ X X1

Similarly let a message trajectory at time ¢ for a message be the sequence of node
locations to which the message has been routed up to time «. If a message M, whose
destination is process ¢, originates at node ¥ and is initially routed to Yy, then re-routed
to Yy, Y3, ... and is last routed to Y., then the message trajectory at time ¢ is
trajectory(M,,t) =Y, Y, Y3 --- Y. For technical reasons we leave the origin of the
message Yo out of the message trajectory. When the message is re-routed from node Y ;
to Y141 then the old message trajectory is appended with Y ¢, to obtain the new message
trajectory.

We define the functions delegate and roward. Let ¢ be a process and U and X be
nodes. The nondeterministic function surrogate was earlier defined as:

surrogate(U, q) = Some node X such that X # U/ and RTx(g) # nil
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The function surrogate need not return the same node value every time it is invoked. We
define &surrogate (U, q) as the set of all possible nodes that can be returned by
surrogate (U, q).

The node with the routing entry used to route messages to process q from node U
is given by function delegate(U, q).

delegate(U, q) = If RTy(q) # nil then
U
else
surrogate(U, q)

The function delegate(U, q) can never be nil. In accordance with procedure
ROUTE_MSG, if there is an entry for ¢ at U then it is chosen for routing messages for g
at node U, else an entry for q located at surrogate (U, g) is used.

The function toward(U, g) computes the address of a node to which messages for
a process g are routed (or re-routed) from node U, i.e. the node that delegate(U, q)
believes is the location of q.

fOWGfd(U, Q) = RTdelegaIe (U_q)(q).Node

In order to show the correctness of the Basic Routing and Migration Protocol we
prove the following theorems:
First we prove that while routing entries are not necessarily up to date, they always point
to a past or the present location of the process and have a migration-count equal to the
number of the times the process had (has) migrated when it was (is) at that location.

Theorem 1  Let the process trajectory for process ¢ at time ¢ be trajectory (g, t) =
XoXq --- XY Xn' For any node U at any time RTy(g) is unlocked, if vy =
RTy(q).o then RTy(q).Node =X .

Proof:
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Initially, all routing entries for ¢ point to the original location of g, i.e. X, and all
routing entries for ¢ have migration-count zero. Also initially a process has a migration-
count equal to zero. A routing entry can be modified only in step <6> and by the receipt
of updates. Steps <4> to <6> and the remote update procedure are invoked whenever a
process migrates to a new location. Every time a process migrates, its migration-count is
incremented (step <5>). We observe in steps <6> and from the specifications of the
update procedure that the routing entries that are modified when a process migrates to its
y+1th location, point to the new location of the process and are assigned a migration-
count y. Thus any routing entry for a process always points to the present or past
locations of the process, and a routing entry with migration-count y points to the y+1th
location of the process. B

We now show that messages to a process from a node that is a previous location
of the process, will be routed to a more recent location of the process.

Theorem 2 At any time after a process g has left its pth location U, we have
RTdelegare w, q)(Q')'a Z L.

Proof: Let us assume that the process g with migration count p—1 resides on node U
which is the pth location of g. If process ¢ moves from U to V, the routing entry for g at
U if non null is updated to point to V and it is assigned the latest migration-count of g, i.e.
u. If the routing entry for g at U is null, then all nodes belonging to &surrogate(U, q), are
updated (<6> and specification of remote update procedure) to point to V and assigned
the migration-count [. During the update of nodes surrogate(U, q), the routing entries for
q at surrogate(U, q) are inaccessible from U because a temporary local routing entry for
g is created at U and remains in place till all the surrogates have been updated (<6> &
<7>). Thus at the moment process g completes its migration away from its Jith location
U, a routing entry for g at all values of delegate(U, q) will have a migration-count pL.

We now show that the migration-count field of a given routing entry on a given
node never decreases. From the update procedure which describes the action taken by a
node on receiving an update message, we observe that the routing entry for a process g is
left unchanged unless the migration-count of the update is strictly greater than the
migration-count of the routing entry. If the process g revisits U then the migration-count
of its routing entry at U can only increase when g leaves U because the migration-count
of a process is monotonically increasing on every move. Therefore the routing entry for g
at any delegate(U, g) will have migration-count 2 [, where U is the pth location of q. B

34



In Theorem 3 we prove that if messages for a process are routed to a new node
from another node then either the process is resident on the new node or else the new
node has a more recent routing entry for the process.

Theorem 3 At all times, either RTiyara, q)(¢)-Node = toward(U, q) or
RTdeIega:e (toward (U, q), q)(Q)-a > RTdelegaIe v, q)( Q)-a-

Proof: Let ¥ = RT y1ppa1e (U, 4)( q)-0.. From Theorem 1 we know that any routing entry for
process ¢ with migration-count 7y points to the y+1th node in the process trajectory of q.
Therefore toward(U, q) is the y+1th node in the process trajectory of ¢. Suppose g is not
at node toward(U, @), i.e. RTipuara(u, q)(@)-Node # toward (U, q). From Theorem 2 we
know that if node toward(U, ¢q) is the -lIth location of g, then
RT getegare toward U, ¢), (@) 2¥Hl.  Therefore  RTyuppue (roward (U, ¢), (@) >
RTdeIega:e(U. q)(Q)-a- .

Finally, we show that a message to a process follows the trajectory taken by the
process.

Theorem 4  The trajectory of a message is a subsequence (not necessarily contiguous)
of the trajectory of its target process.

Proof: From the definition of the function delegate we know that either a node U has a
routing entry for g, or else surrogate(U, g) has a routing entry for ¢. From procedure
ROUTE_MSG we observe that messages for a process g are routed from any node U to
toward(U, g). If a message is routed to a node toward (U, g) where the process is not
resident, then the message is re-routed to roward(toward(U, q),q). Suppose the message
is routed from say Yo to Yy, from Y4 to Y, and so on, and arrives at Y at time . At time
t, the message trajectory is trajectory(M,, t)=Y Y, Y3 -+ Y.

Let the process trajectory be trajectory(q, t) = Xo X, -+ Xy -+ Xy . From
Theorem 1 we know that any routing entry for a process points to a node on the process
trajectory. Therefore at any time ¢ the jth node in trajectory (g, t) maps to the uth node
of trajectory (M, t) such that X; ., =¥ ;. From Theorem 3 we know that this mapping
is strictly monotonici.e. if X;,; =Y, and Xy, 1 =Y, and if j >y then we have p > .
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Figure 2.7 : Route taken by a message from process p to g

Therefore a message for a process follows a trajectory that is a subsequence of the

trajectory taken by its target in such a way that every time a message is re-routed it is
sent to a more recent location of the process. B
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We now show that under certain conditions for the velocity of messages and
processes the BRM protocol does correctly deliver all messages to their target processes.
The velocity of a message takes into account the time that a message is waiting for the
resolution of routing faults.

Proposition If a message always travels a shortest physical distance route between
stops along its trajectory, and if its average velocity is strictly greater than the average
velocity of its target process, then the message will be delivered to its target.

Proof: By Theorem 4 the trajectory of the message is a subsequence of the trajectory of
the target process. By the triangle inequality the message travels a physical distance
between any two stops along its trajectory that is less than or equal to the physical
distance the process traveled between the same two stops. Hence, if the average velocity
of a message is higher, and the average distance traveled between points is equal or
shorter, the message will catch up with the process. B

Figure 2.7 illustrates a message from process p following the trajectory of process
g. The migration-count of ¢ is originally zero and every time g migrates, its migration-
count is incremented by one. The message is delivered to g when the migration-count of
q is ten.

2.4 Extended Protocol

The basic protocol is designed to address the synchronization and correctness
issues associated with the migration of processes. It is meant to be a basic building block
to which extensions can be added to improve performance.

The basic protocol by itself is impractical because in the worst case a message for
a process will have to retrace the entire trajectory of the process since its creation. This is
because when a process moves from a source node to a destination node, only the source
node and its surrogates are informed of the new process location. If we ignore the
movement of a process while a message is enroute to it then in the worst case a message
has to re-routed (N - 1) times before its is delivered, where N is the number of nodes in
the system. On the other hand the update bandwidth due to the BRM protocol is zero, if
we ignore the updates send to surrogates.
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A simple extension to the BRM protocol that we call the Complete Broadcast on
Migration (CBM) protocol and which is used by several systems is as follows: When
process ¢ moves from node U to V, an asynchronous UPDATE message is sent to all
nodes in the system that have a routing entry for ¢g. Any node that receives an UPDATE
message modifies its own routing entry for ¢ if the migration-count of the entry is less
than the migration-count of the routing update.

In the Complete Broadcast on Migration protocol, the number of times a message
is forwarded is zero, if we ignore the movement of a process while a message is enroute
to it and if we assume that the time for updates to propagate is negligible when compared
to the time between process migration. However the number of update messages sent
every time a process moves is O (V) update_msg-hops, where N is the number of nodes
in the system. If we assume a process migrates at the rate of v moves/sec, and there are P
processes in the system then the total update bandwidth is v X P x N update_msg-
hops/sec. If the number of processes per node and the migration rate of a process are
constants then the total bandwidth is O (N2).

In the BRM protocol while the update bandwidth is the minimum possible the
messages latency is unacceptable, particularly when processes are fairly mobile, because
the latency increases with the time for which the process has been in existence. On the
other hand the CBM protocol demonstrates the lowest possible message latency, with the
message trajectory stretch ratio close to one. However the update bandwidth is high if the
number of nodes and the migration rate of processes is high. Thus the two protocols
provide lower and upper bounds for update bandwidth and message latency - the message
latency in the CBM protocol serves as a lower bound for message latency and the
bandwidth to update routing tables in CBM serves as an upper bound for the update
bandwidth for any protocol to route messages to moving processes. In this work we
propose extensions to the BRM protocol with both reasonable update bandwidth and
message latency, by a tradeoff of increased bandwidth to update routing tables for
improved message latency.
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CHAPTER III
Routing Caches in Distributed Systems

3.1 Locality in Distributed Systems

Communication between processes in distributed systems is not random but tends
to follow certain patterns. When the probability that a process communicates with other
processes in the system is not equal, and instead a process tends to favor a subset of the
set of processes to communicate with, then the communication between distributed
cooperating processes is said to have the locality property. Locality in distributed
Systems consists of two components - temporal and spatial locality.

Temporal locality in a distributed system is inherent to the application and has the
following properties:

1. A process that has sent a message to another process in the recent past is likely to
send messages to it in the near future.

ii. The set of processes with which a process communicates is small and changes
slowly.

Temporal locality results from the way applications are structured by the user.

Spatial locality on the other hand results due to the initial placement of processes
and due to the migration of processes due to dynamic load management. Its manifestation
is that a process is more likely to communicate with another process on a node close to it
than a process located at a distant node.
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We can define the logical distance between two processes to be indicative of the
degree of communication between the two processes in the recent past. If the frequency
of communication between two processes is high then the logical distance between them
is small. If two processes have a small logical distance between them at a particular time,
then by the principle of temporal locality they are likely to have a small logical distance
between them in the near future. When the communication pattern between processes is
changing dynamically one of the objectives of dynamic load management is to translate
temporal locality in an application to spatial locality in the system. Dynamic mapping
which is a component of dynamic load management maps processes that have a small
logical distance between them to nodes that have a small real distance between them, i.e.
nodes that are geographically close to each other. The effectiveness of the transformation
of the logical distances between processes to real distances between them is constrained
by CPU and memory bounds. Thus spatial locality is not an inherent property of the
distributed application but results due to the mapping of processes to nodes.

There is a locality principle that we implicitly assume in developing our routing
schemes: when a process migrates it moves a short real distance from its previous
location. The principle of forwarding a message from an older location of the destination
process 1o a more recent location of the destination process is an efficient strategy only if
the message on being forwarded gets closer to the destination process.

There is an obvious analogy between locality of communication in distributed
systems and the locality of memory accesses in memory management systems. Just as
virtual memory takes advantage of locality to improve the memory access time, similarly
we introduce routing caches to improve the time to access routing entries. In this chapter
we study the addition of caches to the Basic Routing and Migration (BRM) protocol to
take advantage of temporal localities in communication between distributed cooperating
processes. In the following chapter we study schemes for the exploitation of spatial
localities in the communication between distributed cooperating processes.
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3.2 Adaptive Routing with Caches

3.2.1 Introduction

Caches containing routing entries track temporal localities in the communication
between processes. When a source process has to send a message to a destination
process, the source process has to first obtain a routing entry for the destination process.
Analogous to the memory hierarchy organized to optimize the cost of memory references
given the constraints on the size and speed of memory, we propose a routing table
hierarchy to optimize the cost for a process to obtain routing entries. The routing table
hierarchy, shown in Figure 3.1, consists of three stages. First the process checks a local
cache for the particular routing entry. If the local cache does not have the routing entry
then the local routing table is checked, and if the local routing table does not have the
entry then remote routing tables are checked till the entry is found. As we observed
earlier, in large distributed systems it is not possible because of size constraints for local
routing tables to contain routing entries for all processes. Therefore when a routing entry
request miss occurs at the local routing table then the operating system has to search for
the routing entry in the routing tables of remote nodes using time consuming and
bandwidth intensive mechanisms described in Chapter V. If the required routing entry is
not found locally, then we say a routing fault has occurred. The cost of obtaining a
routing entry from a remote node is orders of magnitude greater than the cost of
obtaining a local entry. Access of remote routing entries in the routing hierarchy is thus
analogous to disk access in memory hierarchy.

When a process is created, routing entries for that process are distributed to select
routing tables in the system. Subsequently new routing entries for that process are not
added to any routing tables except for the purpose of synchronization when process
migration occurs, in which case they are deleted once their synchronization purpose has
been served. Thus entries in routing tables are of a permanent nature. The contents of
local caches however dynamically adapt to the pattern of communication between
processes. Routing entries that are repeatedly used are retained in the cache while those
that are no longer used are dropped from the cache. The purpose of routing caches is to
reduce requests for remote routing entries for processes.
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Figure 3.1 : Routing Table Hierarchy

Another purpose of having caches is to keep local entries updated. When a
message reaches its destination process the sending process is sent a cache update
consisting of the latest location and migration-count of the destination process. The
entrics in the routing cache of the sending process are kept updated by cache update
messages. By using more up-to-date entries, the number of times a message is forwarded

and consequently the delay for the message to reach the destination is reduced.

Unlike memory caches used in CPU architectures the time to access a local
routing cache is not significantly different from the time to access the local routing table.
The difference between the local cache and routing table and the reason for accessing the
local cache first is because the cache adapts dynamically to the pattern of communication

while the local routing table does not.
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We can associate a cache with each process on a node or have one common cache
per node [Terry85}. The advantage of Process Caches is that when a process migrates the
Process Cache can be carried and installed at the new location of the process thus
avoiding a larger frequency of routing faults soon after migration. Node Caches on the
other hand can be shared by all the processes resident on the node, thus avoiding
duplication of entries and permitting more effective sharing of memory space. We first
discuss schemes that incorporate Process Caches in the BRM protocol and later discuss
the BRM protocol with Node Caches.

3.2.2 Cache Structure

Process Name | Location | Migration-count

Figure 3.2 : Cache Entry

In the BRM protocol we add fixed size caches in addition to the routing tables at
each node. A cache entry consists of a process name, its node address and the migration-
count of the process. The structure of a cache entry is shown in Figure 3.2. Cache entries
are accessed, added or modified by giving commands to the cache manager. Caches are
of fixed size and when a new entry is added to an already full cache then a suitable entry
is chosen and dropped based on a replacement policy run by the cache manager. Least
Recently Used (LLRU) or other schemes can be used as a replacement policy. Associated
with each cache entry is a reference field maintained by the cache manager to indicate
how recently an entry was accessed. The cache manager makes decisions on which entry

to replace when the cache is full, based on the value of the reference fields of the
different entries.

The operating system interacts with the cache through the cache manager. The
commands to the cache manager are given in Figure 3.3.

The command Lookup checks the cache for an entry for the given process and if
one is found, the location and the migration-count of the process are returned. If the entry
is not found then (Nil, Nii) is returned. If the parameter mark is specified in the Lookup
command then the reference field of the accessed cache entry is updated, else the
reference field is not modified. The Refresh command replaces the cache entry for a
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particular process, if one exists, with the specified location and migration-count for the
process. The mark parameter serves the same purpose as before. Remove command
removes an entry for the specified process from the cache if it is in the cache. The Add
command adds a new entry to the cache and returns the entry that is being replaced. If no
entry is replaced then (Nil, Nil, Nil) is returned. The Enumerate command returns a list of
all the cache entries.

(Location, Migration-count) := Lookup (Cache name, Process name, mark/no_mark)
Refresh (Cache name, (Process name, Location, Migration-count),mark/no_mark)
Remove (Cache name, Process name)

(Process name, Location, Migration-count) :=
Add (Cache name, (Process name, Location, Migration-count))

((Process name, Location, Migration-count),(. . ), .. ) := Enumerate (cache name)

Figure 3.3 : Commands to Cache Manager

We first discuss schemes that incorporate Process Caches in the BRM protocol
and later discuss the BRM protocol with Node Caches.

3.2.3 Process Caches

We associate two caches with each process p - a Send Cache CS (p) and a Receive
Cache CR (p). The Send Cache stores the location and associated migration-count of
processes to which process p sent messages recently, The Receive Cache on the other
hand stores the location and the associated migration-count of processes that sent
messages to p recently. When process p sends messages to g, an entry for g is kept in the
Send Cache CS(p) to avoid expensive routing faults. The purpose of the Receive Cache
CR(p) of process p is so that when p migrates to a new location the operating system can
notify all processes that recently sent messages to p, of the new location of p. Thus when
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temporal localities are present, Send Caches amortize the time to locate a process when
routing tables are incomplete, while Receive Caches reduce the number of times a
message is forwarded before it is delivered to a moving process. Both the Send and
Receive Caches of a process are carried along with a process when the process is
migrated and installed at the new location, avoiding a cold start of the process with
empty caches.

Cache update msg.

CS(p) with location of g

Proc.

CR(p)

Message from
process p to q

CS(q)

Proc.
q

Update of rec. cache
with location of p CCR(Q)

Figure 3.4 : Update of Caches on Receipt of Message

We propose two alternate schemes for the addition of caches associated with
processes to the BRM protocol. The Process Caching Scheme with placement on Routing
Fault, PCS (RF), is informally described below. Note that when a cache or routing entry
is updated, any modification to the entry is made only if the update has a higher
migration-count.

i When process p located at node U requests the sending of a user message to
process g, the operating system first checks the Send Cache CS (p) for an entry
for g. If no entry is found then the local routing table at node U is checked.
However if there is no entry for ¢ in the local routing table also, then a routing
fault occurs and a request for a routing entry for g is sent to a remote node.
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1i. On obtaining an entry for g either from the local cache, local routing table or a
remote node, the user message from p is routed to the node location indicated by
the entry. If the entry is obtained from the remote routing tables it is added to the
Send Cache CS (p) at U.

iii. When process g receives a user message from process p, the entry for p in CR (g)
if any is updated or else a new one is added to the Receive cache CR(g)
indicating the latest location and migration-count of p. Process ¢ sends a cache
update message containing the latest location and migration-count of g to process
p. This is illustrated in Figure 3.4.

iv. When a process p at node U receives a cache update message for an entry for g,
the operating system checks the local Send Cache CS(p) and the local routing
table for an entry for q. If an entry for ¢ is found in either the cache or the routing
table it is updated.

v. When node U receives a routing update message for an entry for ¢, the operating
system checks if there is a entry for ¢ in the local routing table and if so updates
it.

vi. When process ¢ migrates the caches CS(g) and CR (g) are removed from the old
location of g and installed at the new location of q. All entries in CS (g) that are
common to the entries at the routing table at the new location are deleted from
CS (g). All processes for which there is an entry in CR (g) are sent a cache update
message containing the new location and migration-count of q.

vii. A node that receives a cache update message routes the message similarly to user
messages.

When a cache update message is received by a process the local routing table has
to be updated in addition to the Send Cache of the process because entries that belong to
the routing table are not kept in the cache.

Figure 3.5 illustrates the action taken when process ¢ migrates. The Receive
Cache CR (q) associated with process ¢ has entries for processes p, r and s due to receipt
of messages from these processes. On migration, process ¢ carries its Send and Receive
Cache to the new location and sends cache update messages to processes p, ¢ and r.
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Receive Caches are updated by user messages while Send Caches are updated by
cache update messages in response to user messages. The updating of caches results in
negligible communication bandwidth overhead. Cache update messages need be sent
only if the user message has been forwarded before its delivery to the destination process,
ie. if the cache entry at the source process is known to be out-of-date. Cache update
messages can be piggybacked onto other user messages or acknowledgements to user
messages.

The routing table hierarchy for Process Caching Scheme (RF) is illustrated in
Figure 3.6.

At each node there is a set of Send and Receive Caches for all processes resident
on that node. The set of Send Caches at a node are illustrated in Figure 3.7. Access to the
set of Send Caches CS at a node is controlled by a lock. A new Send Cache for a process
can be added to the set of Send Caches at a node by executing Insert&Lock which
creates a Send Cache for the process that is already locked. Delete unlocks the Send
Cache of a process and removes it from the set of Send Caches on the node. The
implementation of the set of Receive Caches is similar to the set of Send Caches.
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The alternative mechanism - the Process Caching Scheme with placement on
Cache Miss PCS (CM) differs from the previous mechanism in that an entry is added to
the cache when there is a cache miss instead of a routing fault. Thus an entry is added to
the cache if a request for that entry is made and the entry is not found in the cache.

The Process Caching Scheme with placement on Cache Miss PCS (CM) is
informally described below. The main difference between the two schemes is in the
policy of addition of entries to the cache that can result in duplication of entries in the
cache and routing table. A consequence of the duplication of entries is that in PCS(CM)
if an entry is dropped from the Send Cache because the Send Cache is full, the local
routing table has to be updated prior to dropping the cache entry. There are also
differences in the way cache and routing updates are handled. Note as before that when
any cache or routing entry is updated, any modification to the entry is made only if the
update has a higher migration-count.

i When process p located at node U requests the sending of a user message to
process g, the operating system first checks the Send Cache CS (p) for an entry
for g. If no entry is found then a cache miss occurs and the local routing table at
node U is checked. However if there is no entry for ¢ in the local routing table
also, then a request for a routing entry for ¢ is sent to a remote node.

il On obtaining an entry for ¢ either from the local cache, local routing table or a
remote node, the user message from p is routed to the node location indicated by
the entry. If the entry is obtained either from the local or remote routing tables it
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iil.

iv.

vi.

vii.

viii.

is added to the Send Cache CS (p) at U.

When process g receives a user message from process p, the entry for p in CR (g)
if any is updated or else a new one is added to the Receive cache CR (g)
indicating the latest location and migration-count of p. Process g sends a cache
update message containing the latest location and migration-count of g to process

P-

When a process p at node U receives a cache update message for an entry for g,
the operating system checks if there is a entry for g in the local Send Cache
CS (p). If there 1s an entry for ¢ in CS (p) then it is updated, else the routing table
at U is checked for an entry for ¢ if any and updated.

When node U receives a routing update message for an entry for g, the operating
system checks each of the Send Caches belonging to the processes resident at U
and the routing table on node U for an entry for ¢ and if an entry for ¢ is found it
is updated.

When process g migrates, entries in the routing table at the old location of g that
are in common with entries in CS(g) are updated with the cache entries. The
caches CS(g) and CR (g) are removed from the old location of ¢ and installed at
the new location of g. All processes for which there is an entry in CR (g) are sent
a cache update message containing the new location and migration-count of 4.

A node that receives a cache update message routes the message similarly to user
messages.

When a cache entry for ¢ has to be discarded from the Send Cache of process p
because the Send Cache is full, then the routing entry for g, if any in the local
routing table is updated with the location and migration-count for ¢ in the cache

entry.

The routing table hierarchy for the Process Caching Scheme (CM) is illustrated in Figure
3.8. The reason that when a routing update is received at a node all the caches at that

node have also to be updated is because an entry for a particular process could be present
in each of the Send Caches at the node in addition to the routing table.
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Figure 3.8 : Routing Hierarchy for Process Caching Scheme (CM)

The difference between the two schemes for adding processes to the BRM
protocol is that in PCS (RF) entries are added to the cache only when there is a routing
fault in accessing an entry, whereas in PCS (CM) entries are added to the cache
whenever any entry, local or remote, is accessed. Thus in PCS (CM) there is no change in
the rate of routing faults when a process migrates, because the Send cache contains
entries for all processes to which the process has sent messages recently. However in
PCS (RF) there will be an increase in the rate of routing faults when a process migrates
because the Send Cache does not have entries for processes to which messages were sent
recently if these routing entries were in the routing table at the previous location. In PCS
(CM) many entries in the Send Cache may be redundant because of duplication of entries
in the local routing table. Thus, with fixed size process caches the superiority of one
scheme over another depends on the pattern of communication and the size of the routing
tables.

In PCS (RF), memory space is effectively utilized by avoiding duplication of
entries in a process cache and the local routing table, However in both PCS (RF) and
PCS (CM) there is no sharing of process caches between different processes located on
the same node. The individual Send Caches of a process resident at a node and the local
routing table they share are shown in Figure 3.9, We now introduce a scheme that uses
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Figure 3.9 : Request of Entries by Process in Process Caching Scheme

node caches that are shared by all processes resident on the node thus avoiding
duplication of entries among different process caches resident on the same node.

3.2.4 Node Caches

Node caches like local routing tables are associated with individual nodes. An
entry is added to the local node cache when a process resident on the node has to send a
message that results in a routing fault. The advantage of node caches is that there is no
duplication of entries at a node and the available memory space is effectively utilized.
The sharing of a Node Cache by processes resident on a node is shown in Figure 3.10.
However there are also many disadvantages. It is difficult to maintain fairness in the use
of the node cache by processes resident on a node, particularly when some of the
processes are sending out many more messages to different processes than others.
Morcover, when a process migrates to a new location it will have no cache entries at the
node cache in the new location and hence there will be a large number of routing faults
after the move.
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The Node Caching Scheme NCS is informally described below. As usual when

any cache or routing entry is updated, a modification to the entry is made only if the
update has a higher migration-count.

il.

iii.

iv.

When process p located at node U requests the sending of a user message to
process g, the operating system first checks the Node Cache CN for an entry for q.
If no entry is found then the local routing table at node U is checked. However if
there is no entry for g in the local routing table also, then a routing fault occurs
and a request for a routing entry for ¢ is sent to a remote node.

On obtaining an entry for g either from the local node cache, local routing table or
a remote node, the user message from p is routed to the node location indicated
by the entry. If the entry is obtained from the remote routing tables it is added to
the Node Cache NC at U.

When process g receives a user message from process p, ¢ sends a cache update
message containing the latest location and migration-count of g to process p.

When a process p at node U receives a cache update message for an entry for g,
the operating system checks the local Node Cache NC and the local routing table
for an entry for g. If an entry for ¢ is found in either the cache or the routing table
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Figure 3.11 : Routing Hierarchy for Node Caching Scheme

it is updated.

V. When node U receives a routing update message for an entry for g, the operating
system checks if there is a entry for ¢ in the local routing table and if so updates
it.

vi. When process ¢ migrates no cache entries are taken with the process to the new

location of gq.

vii. A node that receives a cache update message routes the message similarly to user
messages.

The routing table hierarchy for the Node Caching Scheme is illustrated in Figure 3.11.

3.3 Analysis of Caching Schemes

In this section we study the effectiveness of the routing table hierarchy and in
particular compare the relative merits and demerits of the different caching schemes. As
discussed earlier (Section 3.2.1) one of the main motivations for introducing caches in
the routing table hierarchy is to reduce the time to obtain a routing entry for a particular
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process. The cost of obtaining a routing entry for a particular process is very high if there
is a routing fault and the routing entry has to be obtained from remote nodes. Our
objective in this section is to study how different parameters like the choice of caching
scheme, the size of the local Send Cache and routing table, the rate of process migration
etc. affect the cost of obtaining a routing entry,

Message communication between processes in the distributed system is assumed
to have temporal locality, i.e. the destination process to which a process sends a message
is likely to be one to which the process has sent a message in the recent past. Every time
a process has to send a message it requests the operating system for a routing entry and
hence the requests for routing entries follows a certain distribution. We propose a model
for temporal locality of communication between processes and given the resulting
distribution of requests for routing entries we determine the average time spent to obtain
routing entries.

While the main motivation for introducing caches is to reduce the time to obtain a
routing entry, the caches are kept updated in order to reduce the time for a message to
reach the destination process. If the entries in the cache are out-of-date then the message
has to be forwarded several times before it is delivered to its destination. In the previous
section we discussed how Send Caches are updated by acknowledgements to user
messages and by the mechanism of Receive Caches at the destination processes. These
mechanisms maintain most of the Send Cache entries up-to-date when temporal locality
holds and hence we did not study the performance of the updating of caches.

3.3.1 Analytical Model

3.3.1.1 Modeling Temporal Locality

Our model for temporal locality in the communication between processes is based
on the Least Recently Used Stack Model (LRUSM) for generation of memory page
references to model program behavior [Coffman 73]. Reed et. al. [Reed 87) adopted the
LRUSM model to model network traffic, i.e. communication between nodes in a
distributed system.
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We associate a stack of size NoProc with each process, where NoProc is the total
number of processes in the system. Each stack location contains a process name and has
a probability associated with it. The probability that a process p sends a message to
another process g is equal to the probability associated with the stack location that
contains q in p’s process stack.

Probability of Access

a, Py P
4, p2 p1
ag Pq Py
ay Py
Request =i P

=

-

.

-
A NoProc —

Figure 3.12 : Updating of the Process Stack After a Message is Sent

The stack is not fixed over time but rather the position of process names in the
stack changes on the sending of a message by the process. Figure 3.12 illustrates the
updating of the stack after a message is sent. On the left is the stack at time 7 and a
message is sent at time £ + 1 to the process whose name is in stack position j. As a result
the process name in location j is moved to the top of the stack and all the process names
in locations 1,2, ... j—1 are pushed down one location. All other positions below j

remain the same.
We define the stack distance d, as the position of the destination process that is
sent the z-th message in the stack of the source process. According to the LRU Stack

Model the stack distances are independent random variables such that

Probability(d; =i)=aq; , fpr all t and 1 €i < NoProc
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NoProc
where 3 ag;=1.
i=1

Thus at time ¢ if a source process is sending a message, the probability of sending
it to the process listed in location 1 of its stack is a 1, to the process listed in location 2 is
a3 and so on. The distance probabilities a; are stationary, i.e. they do not change over
time.

The parameter a; can be chosen to model different communication patterns. To
model temporal locality as we defined in the previous section the distance distribution is
biased towards shorter stack distances, i.e.

012022.. .2aN0me

Requiring an,proc > 0 is necessary and sufficient to guarantee that the source process
will send messages to all processes in the system eventually. If the source process will
never send messages to some processes then these processes are placed in the bottom
positions of the initial stack and assigned g; = 0.

In our simulation experiments we use this model for generation of messages by a
process. We choose the distance probability a; =5 x LocalityBase™, where

b =LocalityBase —1 and LocalityBase > 1. For large NoProc we have
NoProc ,
3> b xLocalityBase™ = 1.

i=1

3.3.1.2 Performance Model for PCS (CM)

We evaluate the average time Trina rE 0 Obtain a routing entry for a particular
process for the routing hierarchy where the model for generation of messages and thereby
the model for the request of routing entries by a process is the LRU Stack Model.

The policy of replacement of cache entries when a cache is full is chosen to be the
Least Recently Used (LRU) scheme. The cache is ordered like a stack and is reordered
each time an entry is accessed. Unlike a conventional stack however any entry in the
cache can be accessed at any time. The cache entries are ordered by decreasing recency
of reference. If a new entry has to be added to a cache that is full, the entry at the bottom
of the cache which has not been accessed for the longest time is chosen to be discarded.
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The new entry is added to the top of the cache and the other entries in the cache are
pushed down to the next location.

The Process Caching Scheme (CM) is the most analytically tractable of the three
schemes because its performance is independent of the rate of process migration. This is
because in PCS(CM) an entry is added to the Send Cache whenever there is a cache miss
and a Send Cache of size C contains the C most recently accessed entries for distinct
processes. When a process migrates to a new location, the Send Cache for that processes
is also migrated along with the process. Hence after migration the process has access to
the C most recently accessed distinct entries. The cache miss ratio or the fraction of
requests that cannot be satisfied by the cache in this case is called a warm start miss
ratio.

This is in contrast to the Process Caching Scheme (RF) where an entry is added to
the Send Cache only if there is a routing fault, ie. a cache miss occurs and the cache
entry is not found in the local routing table either. In PCS (RF), soon after a process
migrates the Send Cache of the process at the new location does not have entries that
happened to be in the local routing table at the node where the process was previously
located. Hence in PCS (RF) there will be an increase in the rate of cache misses soon
after migration because the Send Cache of size C belonging to the process may not have
all of the C most recently accessed distinct entries. In this case we call the cache miss
ratio a lukewarm start miss ratio. For PCS(RF) the hit ratio or the fraction of requested
entries found in the cache will be inversely proportional to the rate of migration.

In the Node Caching Scheme the Node Cache is shared by different processes
resident on the same node. The interaction between the locality sets of different processes
is difficult to model. In NCS when a process migrates to a new location no cache entries
are carried to the new location and hence we call the associated miss ratio a cold start
miss ratio. '

In this section we study the performance of the routing hierarchy when the
caching scheme is the Process Caching Scheme with placement on Cache Miss. The
parameters of the model are given in Table 3.1.
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NoProc Total Number of Processes
CacheSize  Size of Send Cache

RTSize Size of Local Routing Table

a; Distance Probabilities in the LRUSM model
Tcache Time to check for cache entry

Trr Time to check for Routing Table entry

Tremote Rt Time to access Remote Routing Table entry

Table 3.1 : Parameters for the Routing Hierarchy Model

We assume that the time to check the cache for a particular entry is the same as
the time to check and return the entry. Let PCache Hir be the cache hit ratio or the fraction
of entries requested by the process that are found in the cache; and Ppr pir be the fraction
of entries requested from and found in the routing table. The average time to obtain a
routing entry is

Trind RE = Pcache it % Tcache
+ (1= Pcache Hir ) X PrT it X ( Tcacke + TrT)
+ (1 = Pcache Hit = (1= Pcache Hit ) X Prr it ) X (Tcache + TRT + TRemote RT)

= PCache_Hit X Teache
+( 1= Pcache_tit ) X PRT_Hit X (Tcache + Trr)
+ (1 = Peache Hie ) (1= Prr_ it } X (Tcache + TRT + TRemote RT)

The explanation for the above expression is as follows. The operating system
receives requests for routing entries from a process. The request of routing entries by a
process is modeled by a LRU Stack for that process. The operating system first checks
the Send Cache of the process for the particular routing entry and the probability of
finding that entry is Pegepe ;. If the entry is found in the cache then the time taken is
Tcache If the entry is not found in the cache, the operating system next checks the local
routing table for the entry. The probability of requesting an entry from the routing table is
(1 = Pcache 1ir)> and the probability of finding the entry in the routing table is Ppr yir- In
the PCS(CI:/[) the presence of a particular entry in the routing table is independent of the
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presence of an entry in the cache and hence Ppr y;, is independent of Pcache tir- If the
entry is found in the routing table then the total time to find the entry includes the time
spent to check the cache before the routing table. If the entry is not found in the local
routing table either then it is guaranteed to be found in one of the remote routing tables in
the system. The probability of a routing fault is

PRouting Fault = (1~ Pcache it ) (1~ PRy pic )

We assume an average time Tpmo e tO Obtain a routing entry from a remote node. The
methods for obtaining a remote routing entry will be discussed in Chapter V.

If the distance probabilities a; are stationary, i.e. constant in time, then at any
time after the cache has filled up the process names in the top CacheSize locations of the
LRU Stack of the process are identical to the entries of the cache. The average long term
cache hit ratio is independent of the initial stack contents and is given by

CacheSize
Peoche = Y, 4
=

Since the routing table has RTSize entries out of a total of NoProc possible entries, and
the selection of which routing entries to keep in a particular routing table is done in
random, the routing table hit ratio is

RTSize

Frr g = NoProc

Therefore the average time to find a routing entry is

CacheSize
TFind_RE = ¥ & XTcache
i=1
CacheSize RTSize
+( 1~ g Y X ———x (T, +T
( E:l i) NoProc < (Tcacke + Trr)
RTSize CacheSize
+(1- NoProg Y(1-— Ei a; ) X (Tcache + TRT + TRemote RT)
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3.3.2 Simulation of Caching Schemes

We compare the performance of the caching schemes by simulating the routing
hierarchy for the three different caching schemes. The simulation we have developed is
based on SIMON II {Swope 86]. SIMON is an object oriented discrete event simulator
with events represented by messages. Objects may be defined hierarchically in terms of
other objects and can be created, deleted or moved. Explicit well defined connections
between objects allow objects to exchange messages with each other. Messages carry a
time stamp corresponding to the time at which the event modeled by the message OCCurs
in the real system. SIMON manages the scheduling of events so that parallel execution
between different components of a real system can be faithfully modeled. The main
advantage of SIMON is that it is general purpose and flexible enough to permit the
simulation of a wide range of real systems without being restricted by the simulator.

We consider a single source process that is requesting routing entries in order to
send messages to other processes in the system. Message communication between
processes is assumed to have temporal locality and the generation of requests by a
process is modeled by the LRU Stack Model. The request for a routing entry is resolved
by the routing table hierarchy consisting of the cache, local routing table and the remote
routing table. The source process, i.e. the process requesting routing entries, can migrate
from one node to another. The three caching schemes differ in when an entry is placed in
the cache and in the effect of the migration of the process on the cache hit ratio.

The simulation experiments compare the performance of the three schemes when
different system parameters such as the rate of process migration, the size of caches,
routing tables, etc. are varied. The parameters for the simulation are given in Table 3.2,
All times are in microseconds. The residence time of a process at a node is chosen from a
geometric distribution. In the LRU Stack model for the generation of requests for routing
entrics by a process, the distance probabilities a; are chosen such that

a; = b x LocalityBase™, where b = LocalityBase — 1 and LocalityBase > 1. Note that
NoProc .
@y >az > .. .>anyproc and for large NoProc we have ¥ b x LocalityBase™ = 1. In
i=1
our experiments we have generally chosen LocalityBase to be between 1.0 and 2.0. As
the LocalityBase increases the degree of locality increases, i.e. the set of destination

processes to which a message is most likely to be sent becomes smaller.
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Msglnterval Constant interval between requests for entries
AvProcResTime  Mean time a process is resident at a node
DistResTime Distribution of residence time of a process at a node
NoProc Total number of processes

ProcPerNode Average number of processes resident on a node
LocalityBase Degree of locality in the LRU Stack Model of process
RTSize Size of a local routing table

CacheSize Size of the cache

Tcache Expected time to access cache entry

Trr Expected time to access routing table entry

TRemote RT Expected time to access remote routing table entry

Table 3.2 : Parameters for the Simulation

The routing table and the cache are of fixed size. The entries in the routing table
at each node are chosen independently and randomly from the total possible set of
routing entries. Creation of entries in the routing tables is done at the time of process
creation. When a process moves to a new location the routing table at that node is
different from the table at its previous location. Initially at the time the system is started
up all caches are empty. Without loss of generality we assume the LRU stack of the
process to be initialized to 1, 2, 3,...NoProc, ie. the top of the stack contains 1
corresponding to process 1, next 2 and so on.

The average number of processes resident on a node (ProcPerNode) is not
relevant for the Process Caching Schemes but is an important parameter for the Node
Caching Scheme. The Node Cache is shared by all the processes resident on the node and
entries of the Node Cache are replaced based on the LRU scheme. We assume that all
processes on a node have the same rate of generation of routing requests. We measure the
time to find a routing entry and collect statistics on the rate of cache misses and routing
faults for a chosen process on the node. The LRU Stacks of the other processes on the
same node are initialized so that process names in the stacks are in random order. When a
process migrates to a new location, the node cache at the new location is initially filled
with random entries. When we compare the performance of one of the Process Caching
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Figure 3.13 : Average Time to find Routing Entry (RE) vs. Cache Size

Schemes with the Node Caching Scheme we make sure that the sum of the cache sizes at
a node are the same for the two schemes being compared. This implies that in the
comparison of Process Caching Schemes and the Node Caching Scheme if the Send
Cache in the Process Caching Scheme is of size C then the Node Cache has size
ProcPerNode x C.

For our experiments we choose Tcuope =50 psecs, Tgrr =150 usecs and
TRemote T = 10 Usecs. Note that the expected time for a remote access is more than two
orders of magnitude greater than the time for a cache access.
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For the experiments whose results are presented here each simulation run
consisted of 300,000 requests for routing entries by the process under observation. To
eliminate from consideration start-up transient effects, the measurements were started
after 400 requests had been resolved allowing sufficient time for the caches to fill up.

The performance measures of interest are the average time to obtain a routing
entry and the fraction of routing faults. Every data point in the performance graphs is a
result obtained from 5 experiments. We compute the 95 % confidence intervals using the
t distribution. In the performance graphs the average is plotted as a point and vertical
bars indicate the confidence intervals.

The surprising observation from our simulation experiments was that the Process
Caching Scheme with placement on Cache Miss did not perform better than the Process
Caching Scheme with placement on Routing Fault as often as we had expected it to. In
fact PCS (RF) almost always performed better than PCS(CM). Figure 3.13 shows the
average time to find the routing entry and its variation with the size of the cache for the
three different schemes. The rate of migration of the process is rapid with the process
migrating after having sent an average of 40 messages. In NCS, a process does not carry
any cache entries when it moves to a new location and therefore a number of routing
faults occur before entries for the favored set of destination processes are placed in the
cache. Therefore when the cache size increases, the decrease in the time to find a routing
entry for NCS is much less than the decrease for the Process Caching Schemes.
Moreover note that for the Process Caching Schemes Trina pe continues to decrease as
cache size is increased beyond CacheSize =5 while for NCS the curve levels off as the
cache size is increased beyond a total Node Cache size of ProcPerNode x CacheSize i.c.
10. For NCS when process migration is rapid and the degree of locality is high, the
process migrates to a new location before its cache can be filled up and utilized.

The interesting observation fron‘i the graph of Figure 3.13 is that PCS(RF)
performs better than PCS(CM) when the cache size is less than 5 even though process
migration is rapid. The reason for this is that when the cache size is small, effective use
of the memory space on a node is critical. PCS(RF) effectively utilizes the small memory
space available by avoiding the replication of entries in the cache and the routing table.
In PCS(RF) if an entry is found in the local routing table it is not added to the Send
Cache thus making more cache space available to store entries that are likely to be used.
Therefore the effective cache size for PCS(RF) is larger than for PCS(CM). In PCS(CM)
the advantage is that all recently accessed entries are moved along with the process to the
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new location thus avoiding routing faults that occur in PCS(RF) soon after process
migration in order to obtain entries that were present in the routing table at the previous
location. However from our simulations we observed that this has only a secondary effect
on the performance and a single routing fault is all that is required to obtain and place in
the cache an entry that was recently accessed but was located in the routing table of the
previous location. In PCS(CM) the effective cache space decreases due to replication of
entries in the Send Cache and the local routing table, resulting in repeated routing faults
when the degree of locality is moderate.

As the Send Cache size is increased beyond 5, PCS(CM) performs slightly better
than PCS(RF). This is illustrated in Figure 3.14 which shows the region of the previous
graph where the time to find a routing entry for PCS(CM) is smaller than the time for
PCS(RF). For cache size greater than 5, the cache size is large enough to hold enough
entries so that the probability of cache hit is very high. In this case it becomes more
important to reduce the rate of routing faults after process migration instead of using the
available cache space effectively.
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Figure 3.15 : Fraction of Local Hits vs. Cache Size

For the same experiment as Figure 3.13, Figure 3.15 plots the fraction of local
accesses, 1.e. accesses to the local cache and routing table, as the cache size is increased.
Note that when the cache size is very small, the fraction of local hits is best for PCS(RF),
then NCS and finally PCS(CM). When the cache size is very small schemes that
effectively utilize local memory have a higher fraction of local hits. As the cache size
increases the fraction of local hits for the Process Caching Schemes is much higher than
for the Node Caching Scheme. Note as before that when the cache size increases there is

no significant difference in the local hit ratio for the two Process Caching Schemes.
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Figure 3.16 : Average Time to Find Routing Entry (RE) vs.
Average Process Residence Time

Figure 3.16 illustrates the effect of the variation of the rate of process migration
on the average time to obtain a routing entry. As expected the average time to find a
routing entry for PCS(CM) is independenf of the rate of process migration. The change of
the rate of process migration has the most pronounced effect on NCS where the average
time to find a routing entry increases rapidly as the rate of migration increases. When
process migration is very rapid the Process Caching Schemes perform significantly better
than the Node Caching Scheme, because caches are not moved when the process moves
in NCS resulting in a large number of routing faults after every migration. In the case
when process migration is so frequent that all the cache entries are not accessed before
the process is moved, then the performance of PCS(CM) is slightly better than PCS(RF).
In PCS(RF) when the rate of process migration decreases the rate of routing faults
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Figure 3.17 : Fraction of Routing Faults vs, RT Size

decreases, resulting in a lower average time to find a routing entry. When processes
migrate relatively infrequently we observe that the performance of the Node Caching
Scheme and the PCS(RF) schemes are similar and the choice would be to implement
NCS because NCS is relatively easy to implement and the procedures for routing table
and cache updating are simple.

In Figure 3.17 we keep the size of the cache fixed and observe the fraction of
routing faults as the size of the routing table is increased. When RTSize is zero then
PCS(RF) and PCS(CM) are identical. When the routing table size is increased the
fraction of routing faults for both Process Caching Schemes decreases. The degree of
improvement in performance of PCS(RF) is much greater than for PCS(CM) when the
routing table size increases. This is because in PCS(RF) there is no duplication of entries
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Figure 3.18 : Fraction of Local Hits vs. Locality Base

between the local routing table and cache and hence PCS(RF) is able to more effectively
exploit the increased probability of routing table hits to increase the fraction of local hits.

In Figure 3.18 we compare the the performance of the three caching schemes as
the Locality Base increases. We fix the cache size to be 6 and the average time for which
a process is resident at a node to be 300 psecs. If we define the degree of locality to be
the probability that the next message sent by a process is one of the last 6 distinct
destinations to which a message was sent, then

6 .
Degree of Locality = Y b x LocalityBase™

i=l1

where b = LocalityBase — 1.
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Figure 3.19 : Degree of Locality vs. Locality Base

In Figure 3.19 we plot the change in the Degree of Locality with the change in the
Locality Base parameter,

We observe in Figure 3.18 that the behavior of the caching schemes as the
locality base is varied is similar to their behavior (Figure 3.15) when the size of the cache
is varied. This is because the size of the cache required is directly related to the degree of
temporal locality in the communication. At relatively low degrees of locality
(LocalityBase = 1.3), PCS(RF) performs significantly better than the other two schemes.
More significantly at low degrees of locality and with fairly rapid rates of migration
PCS(CM) and NCS have similar performance. However as the degree of locality
increases the Process Caching Schemes do significantly better than the Node Caching
Scheme. At high degrees of locality the two Process Caching Schemes perform similarly.
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NoProc 60
LocalityBase 2.0
RTSize 8
Tcache 50 psecs
Trr 150 psecs
TRemote_RT 10,000 psecs

Table 3.3 : Parameters for the Analytical Model of PCS(CM)

Finally we compare the results from the analytical model for the performance of
PCS(CM) with results obtained from the simulation of PCS(CM). The parameters for the
analytical model are given in Table 3.3. In addition in the simulation we assume
Msginterval = 5 psecs and AvProcResTime = 200 usecs. The average time to find a
routing entry as determined from the analytical and simulation models is given in Table

3.4,
CacheSize | Tapayicat T Simutation
(Wsecs) (isecs)

1 4458.3 4455.0+£ 12.0
2 2254.2 22558+17.1
3 1152.1 1148.6 £ 6.6
4 601.0 600.0£5.3
5 3255 323.6+2.5
6 187.8 187.0%£1.3
7 118.9 1200 2.2
8 84.4 842+£09

Table 3.4 : Comparison of the Analytical and Simulation Models
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The average time to find a routing entry calculated from the analytical model is
found to be almost identical to the values obtained from the simulation model.

From the simulations we conclude that in a majority of the cases

Tpeswrry <Tpcsomy < Tncs

where Tpcg rr) is the average time to find a routing entry for PCS(RF). We observe from
the simulations that the effective use of memory space by avoiding duplication of entries
between the cache and local routing table in PCS(RF) has a greater impact on
performance than the advantage in PCS(CM) of moving all the recently used entries
along with the process to the new location of the process thus avoiding an increase in the
rate of routing faults soon after migration. We observe that on the average the
performance of PCS(RF) is significantly better than PCS(CM) except when cache sizes
are very large, the rate of process migration is very rapid or the degree of locality in
communication is very large. In these cases PCS(CM) performs slightly better than
PCS(RF).
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CHAPTER 1V
Non-Uniform Updating of Routing Entries

4.1 Introduction

In the Basic Routing and Migration (BRM) protocol, when a process moves from
a source node to a destination node the only routing entries that are updated are the
entries for the process at the destination node and at the source node and its surrogates.
Thus in the worst case in the BRM protocol, a message for a process can retrace the
entire trajectory of the process since its creation.

The addition of caches to the BRM protocol provides a mechanism to locally
maintain up-to-date entries for processes to which messages had been sent in the near
past. The caching schemes thus help in reducing the cost of repeated communication
between a source process and a destination process after an initial message has been sent
between them.

In this chapter we introduce protocols for updating routing entries for a process
when the process moves from one node location to another. The objective is to keep
routing entries in the system up-to-date in order to reduce the number of times a message
ts forwarded when the message is the first one sent in the recent past from a source
process to a destination process. Repeated communication between two processes is
indicative of the presence of temporal locality and is handled by the caching schemes
proposed in the previous chapter. Here we develop protocols to prevent the first message
from a source to the destination process from retracing the path of the destination process
since its creation.
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The efficiency of routing schemes is measured in terms of the Message
Trajectory Stretch Ratio and the Time Stretch Ratio.

The Message Trajectory Stretch Ratio (MTSR) is the ratio of the actual length of
a message trajectory in hops to the shortest distance between the source of the message at
the time of sending and the destination at the time of the delivery. The stretch ratio as a
measure of the performance of routing schemes has been used previously by Kleinrock
and Kamoun [Kleinrock 77] and Peleg and Upfal [Peleg 87].

The Time Stretch Ratio (TSR) is the ratio of actual time taken by a message to be
delivered to the shortest time to send a message from the source of the message at the
time of sending to the destination at the time of the delivery. The Time Stretch Ratio is
not equivalent to the Message Trajectory Stretch Ratio because the time taken to route
messages and the time spent by messages at intermediate buffers are taken into account
in calculating the Time Stretch Ratio.

The Update Bandwidth is a measure of the message overhead for updating
routing tables. Update Bandwidth is measured in terms of message-hops/sec. If an update
message traverses /2 hops then the contribution by this update message to the number of
updates is & message-hops.

The principal protocol that we present here is the Shifring Neighborhood Protocol
(SNP). The other protocols that are introduced here are variations of the SNP. In terms of
performance the Shifting Neighborhood Protocol simultaneously achieves stretch ratios
close to 1 while keeping the update bandwidth low. The stretch ratio achieved by SNP is
significantly lower than the BRM protocol where only forwarding addresses are left
when a process moves. The update bandwidth incurred by SNP is significantly smaller
than CBM (Section 2.4) where a complc;c broadcast results when a process moves to a
new location. The Shifting Neighborhood Protocol is designed to be scalable with the
size of the system unlike the BRM and CBM protocols. In SNP the stretch ratio (an
indication of message latency) and the update bandwidth can be traded off by
appropriately choosing the parameters of the protocol, based on the stretch ratio
requirement and the bandwidth available.
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The motivation for the Shifting Neighborhood Protocol is that distant nodes need
not know about small perturbations in the location of a process. The reason for this is two
fold. The performance goal of the routing scheme is to minimize the maximum stretch
ratio between any two processes in the system. We do not minimize the maximum
difference between the length of the message trajectory and the shortest distance between
the location of the source and the location of the destination. Therefore distant nodes can
be updated less frequently than nearby nodes, because the relative increase in the path
length that a message from a distant process has to take will be small compared to the
actual distance to the destination process. The second reason is because of our
assumption of spatial locality in the communication between processes. In a system
where processes are mapped to nodes to minimize communication costs, a process is
more likely to send messages to nearby processes than distant processes. This is another
justification for keeping nearby nodes more up-to-date than distant nodes.

In the multi-level schemes that we propose here, routing entries for a process are
uniformly distributed throughout the system but entries in different levels are updated
with different frequencies. This is in contrast to schemes where more routing entries for a
process are concentrated close to that process. The problem with this approach is that
when a process moves, routing entries for that process also have to be moved to maintain
the same distribution of entries around the process.

The multi-level protocol we propose here is different from the hierarchical
protocol proposed by Kleinrock and Kamoun [Kleinrock 77] in a number of ways. Their
mechanism is for message routing to nodes whose location is fixed. In their mechanism
the network is statically partitioned into clusters and node addresses inherently indicate
the cluster they belong to. We on the other hand are interested in routing messages to
processes that don’t have fixed locations but migrate. Instead of partitioning the network
statically, we utilize the concept of the neighborhood of a process that is not fixed but
can change dynamically depending on the process location. While in Kleinrock and
Kamoun’s mechanism different levels have different degrees of information about the
location of a node, in our mechanism routing entries are distributed uniformly over all
levels but entries at different levels are updated with varying frequency. Qur scheme is a
flar scheme and not hierarchical. Thus the multi-level organization serves to reduce
bandwidth in our scheme, while it serves to reduce storage in Kleinrock and Kamoun’s
mechanism,
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In an m-level Shifting Neighborhood Protocol, neighborhoods {N{, No, N3 ...
N,,} are associated with a process, where a neighborhood is a set of nodes such that N
< Ny € N3 ... © Np. A node may belong to several neighborhoods. The neighborhood
N,, contains all the nodes in the system. Figure 4.1a illustrates a process and its
neighborhoods in a 3-level SNP. Nodes in N; are in the immediate proximity of the
location of the process while nodes in N5 - Ny are further away from the process. Based
on the assumption that transmission costs are small in comparison to the rest of the
communication costs, all distances are measured in terms of number of hops and not hop
lengths.

The Shifting Neighborhood Protocol can be implemented for systems with a large
range of topologies. The only requirement is that the diameter of the connected graph
associated with the topology should grow with the number of nodes in the graph. This
excludes topologies with trivially small diameters like star graphs and completely
connected graphs.

4.2 Shifting Neighborhood Protocol

Consider a large system with a particular process ¢ that is migrating in the
system. Without loss of generality and for ease of description let us assume all nodes
have a routing entry for g. The protocol can be applied similarly to systems where nodes
have incomplete routing tables. Figures 4.1 and 4.2 illustrate the operation of a 3-level
SNP. In Figure 4.1a, initially process ¢ is located at node U and associated with the
process is a set of neighborhoods (N, Ny, N3} with radii {ry, r;, r3} respectively.
Neighborhood Ny covers a region in the immediate proximity of U, N, covers a larger
region around U and N3 covers the entire system. The radius of the system is 3. Initially
the routing entries for ¢ at all nodes indicate that ¢ is located at U and the entries have a
migration-count of zero.

If process ¢ moves from node U to node V that is within Ny, by the BRM
protocol the entry for g at U is updated to indicate that g is now located at V. In addition,
in SNP routing updates indicating the new location of g are broadcast to all nodes that are
in Ny. This is illustrated in Figure 4.1b. On receiving updates the routing entries at these
nodes are modified to indicate that ¢ is located at V.
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Figure 4.1 : Process Migration within the Lowest Level Neighborhood in SNP
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Subsequently if ¢ migrates to locations that are in Ny (Figure 4.1c), then after
every move routing updates are broadcast to the nodes in the region N;. Thus as long as
the process moves to a location within the lowest level neighborhood routing updates are
broadcast to all nodes belonging to the lowest level neighborhood. Note that as in
previous protocols there is a migration-count associated with a process which is
incremented whenever the process is moved, and when a routing table is updated, any
modification to the entry is made only if the update has a higher migration-count.

Now if the process at node W migrates to node X (Figure 4.2a) that is in N, but
outside N1, then routing updates are broadcast to all the nodes in N, which includes
nodes of N1. Furthermore N is reconstituted (Figure 4.2b) to consist of those nodes in
N, that are within distance r, of X, Note that N is constructed to be a proper subset of
N;. Thus when the process moves out of the lowest level neighborhood but within the
second level neighborhood routing updates are broadcast to all nodes in the second level
neighborhood, and the lowest level neighborhood is reconstituted.

Subsequently the process ¢ can move to locations within Ny resulting in the
broadcast of updates to the nodes in N This is shown in Figure 4.2¢.

Similarly when g moves to a location that is outside N, then routing updates are
broadcast to the neighborhood at the next higher level which in this case is N5 the entire
system. As a consequence neighborhoods N and N, are reconstituted.

The main feature of SNP is that nodes in the lowest level neighborhood of a
process have up-to-date information about the exact location of the process while nodes
belonging to the second level neighborhood but not the first level neighborhood contain
more out-of-date and more approximate information about the process location. Thus the
multi-level scheme provides a mechanism to update nodes at different levels with
different frequency.

The trajectory of messages to ¢ from processes located at different nodes of the
system is illustrated in Figure 4.3. For the purpose of this illustration we assume that the
time for update messages to be broadcast is small compared to the time between
consecutive migrations of a process. Let us consider the case when a process p sends a
message to g, where p is Jocated at a node in the neighborhood N5 of process ¢ but
outside N,. When a message is sent from process p to ¢, the message is first routed to X
the center of N,. The last time the routing entry at the node, where p is located, was
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Figure 4.2 : Migration of a Process outside its Lowest Level Neighborhood in SNP
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Figure 4.3 : Trajectory of Messages to Process ¢ in SNP

updated the process ¢ was located at X. Since the process is no longer located at X the
message is forwarded to ¥ the center of N;. The last time the routing entry at X was
updated the process g was located at Y. Assuming that the time for update messages to be
broadcast is small compared to the time between consecutive migrations of a process all
nodes in Ny know the current location of ¢q. Hence node Y that belongs to N forwards
the message to the current location of ¢ where it is delivered to g. Thus if we assume that
the process g does not move while a message from p is enroute to it, then the message
from p to g takes three message trajectory hops to be delivered to the destination,
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Figure 4.4 : Alternate Decompositions of a 2-d Toroidal Mesh into Neighborhoods

Similarly a message from process r is touted to node Y the center of
neighborhood N; of the process ¢. From node Y the message is forwarded to the current
location of the process and delivered to the process.

A message from a process s located in neighborhood Ny of process g is directly
routed without being forwarded to p.

Thus we observe that the number of times a message is forwarded is related to the
neighborhood structure and the distance of the originating process from the destination
process. If a2 message originates from a process located at a node that is outside N; _; but
in N; then the message is at most forwarded i — 1 times before it is delivered, assuming
that the time for update messages to be broadcast is small compared to the time between
consecutive migrations of a process and the process does not move while a message is
enroute to it. Thus we can establish a bound of m — 1 on the maximum number of times a
message can be forwarded before its delivery for a m-level SNP, if the destination
process does not move while the message is in transit.
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The region covered by a neighborhood need not consist of all the nodes within a
distance r from the center of the neighborhood. The region of the topology covered by a
neighborhood N; can have an arbitrary shape with the constraint that Nj_; € N; € N;4;.
Figure 4.4 shows a toroidal mesh with two possible ways of decomposing the system into
square regions. In the rest of this section we choose a neighborhood of radius 7;
consisting of all nodes that are within distance #; of the center of the neighborhood.

For the implementation of SNP we associate a data structure with each process
that is stored in the process control block. The structure is an array Nbhd Center to keep
track of the centers of the neighborhoods of the process. Nbhd_Center [1] contains the
location of the center of neighborhood N, Nbhd_Center [2] contains the location of the
center of neighborhood N, and so on. It is not necessary to represent Nbhd_Center [0] -
the current location of the process as this can be trivially determined by the process. The
array index ranges from 1 to NoLevels — 1, where NoLevels is the number of levels in the
protocol.

In addition each process needs to know the radii of its neighborhoods in order to
determine if the process has moved out of one of its neighborhoods. In case the
neighborhood is not the set of all nodes within a certain radius from the center, a
descriptor of the neighborhood has to be kept in order to determine if an arbitrary node
belongs to a neighborhood. With each process we associate an array Nbhd_Radius of
constants, with index from 1 to NoLevels, where Nbhd Radius [NoLevels | is the radius of
the system. The optimal radii for processes depends on their average move size and
hence we associate the data structure containing the neighborhood radii with a particular
process instead of a node so that different processes at a node may choose to have
different numbers of levels and different radii of neighborhoods.

The m-level SNP is informally described below. We assume that array
Nbhd_Radius contains the radii of levels 1 to m.

1. Initially when a process g is created at a node U the routing entry for ¢ indicating
its location and migration-count is broadcast to all the nodes in the system.
Nbhd_Center[1], Nbhd_Center[2], ... Nbhd_Center [m—1] are all initialized to
U.

2. When process ¢ moves from node V to W, the operating system at W determines
the maximum j (1£j<m-1) such that Distance (W, Nbhd Center{j]) >
Nbhd_Radius [j], where Distance (X, Y) is the length of the shortest path from
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node X to Y. If there is no j for which the above inequality is true then we set j
equal to zero. Let i :=j + 1.

(i) The operating system at W sends a REQ BROADCAST _UPDATE
message containing parameter Nbhd Radius{i] and the location and
migration-count of ¢ to the node Nbhd Center (i ].

The operating system at node Nbhd Center{i] on rteceiving the
REQ_BROADCAST_UPDATE message, updates the local routing entry
for ¢ and broadcasts routing updates containing the latest location W and
migration-count of ¢ to all nodes within a distance Nbhd Radius [i] of the
node Nbhd Center[i].

(ii) If {>1 then operating system at W reassigns the values of
Nbhd_Center (1] ... Nbhd_Center [i—1] to be W.

Note that the degenerate 1 level SNP is equivalent to CBM (Section 2.4) where a
complete broadcast results when a process moves to a new location.

4.3 Shifting Neighborhood Protocol with Dynamic Broadcast

The average message trajectory stretch ratio for the Shifting Neighborhood
Protocol (SNP) for arbitrary source and destination process locations is calculated in
Section 4.6.2 and observed to be close to one. However the worst case stretch ratio for
the SNP can be arbitrarily large in some anomalous cases. Consider the situation in
Figure 4.5 where process p at node U sends a message to process ¢ at node V. Figure
4.5 illustrates the neighborhoods {N1, N3, N3} of process ¢ with radii (ry, ra, r3}.
The message from process g that is located at a node outside N is first routed to node
X, the center of N, then to node Y, the center of N, and finally to node V where it is
delivered to process gq. The message trajectory stretch ratio for this message is

Distance (U,X) + Distance (X,Y) + Distance (Y,V)
Distance (U, V)

Msg. Traj. Stretch Ratio =

2)‘2
= —5—» where 3 = Distance (U,V)

If & is 1 hop length, then the resulting stretch ratio of the message is approximately 2,
which can grow arbitrarily large in large systems.
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Figure 4.5 : Anomaly Resulting In Large Stretch Ratio in SNP

Thus there are anomalies in the performance of SNP when the originating
process of a message and the destination process are located close to each other but on
opposite sides of the boundary of the neighborhood of the destination process. The
situation is further worsened in the above situation when there is spatial locality
because the probability that those two nearby processes communicate with each other is
very high. We propose two protocols that are modifications of SNP to resolve this
boundary effect - the Shifting Neighborhood Protocol with Dynamic Broadcast
(SNP(DB)) and the Shifting Neighborhood Protocol with Adaptive Routing (SNP(AR)).
In this section we present SNP(DB) and in Section 4.5 we will present SNP(AR).
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Figure 4.6 : Process Migration in SNP(DB)

In the Shifting Neighborhood Protocol with Dynamic Broadcast (SNP(DRB)),
the source of an update broadcast after the migration of a process is the current location
of the process rather than the center of the neighborhood of the process as in the SNP,
This is illustrated in Figure 4.6 where process ¢ moves from node U to V. {ry, r,, 3}
are the radii of neighborhoods {Ny, N,, N3} of process q. When g moves to node V
that is in N routing updates are broadcast to all nodes within radius 2r, of the node V.
This is in contrast to SNP where routing updates would be broadcast to all nodes within
radius r from the center of N4,
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If the process moves to a location outside N, but within N, then routing

updates are broadcast to all nodes within radius r, of the current location of the process
and the neighborhood N1 of process ¢ is reconstituted.

The m-level SNP(DB) is informally described below. We assume that array

Nbhd_Radius contains the radii of neighborhoods corresponding to levels 1 to m.

1.

Initially when a process ¢ is created at a node U the routing entry for g
indicating its location and migration-count is broadcast to all the nodes in the
system. Nbhd Center[1], Nbhd_Center [2], ... Nbhd Center(m—1] are all
initialized to U.

When process g moves from node V to W, the operating system at W determines
the maximum j (1<j<m-1) such that Distance (W, Nbhd Center[j1) >
Nbhd_Radius [j]. If there is no j for which the above inequality is true then we
set fequal to zero. Leti :=j + 1.

(i) The operating system at W broadcasts routing updates containing the
latest location W and migration-count of ¢ to all nodes within a distance
2 X Nbhd_Radius [i ] of the node W.

(i1 If i >1 then the operating system at W reassigns the values of
Nbhd_Center[1] ... Nbhd Center[i—1] to be W.

We observe in SNP that the source of the routing update broadcast is the
current location of the process and nodes in the proximity of the process know the
correct location of the process. Thus in SNP(DB) boundary effects such as those
observed in SNP are not present.

In SNP(DB) the radius of the update broadcast after every move is twice the
radius of the broadcast in SNP. The reason for this is as follows. In Figure 4.6 if
process g migrates to a location within N, and as a consequence broadcasts routing
entries for g only to nodes that are within a distance r; instead of 2r; from the new
location of g, then not all the nodes in the neighborhood N; of process g will receive a
routing update regarding the latest location of q. However the routing entry in the
node at the center of the neighborhood will always point to the latest location of g,
assuming updates are instantaneous. In the resulting modified scheme, messages from
processes that are located at nodes in the neighborhood N; of process ¢ may in the
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worst case be forwarded a large number of times before being delivered to the
destination process. Hence the radii of broadcast is chosen to be 27 instead of r;.

The update broadcast radius specified by us for SNP(DB) is conservative and
in actual implementations of SNP the radius of broadcasts can be reduced
appropriately depending on the new location of the process in order to just cover the
neighborhood.

The maximum as well as average message trajectory stretch ratios for
SNP(DB) are smaller than for SNP as will be observed from the simulations of
Section 4.7. However the tradeoff is that the resulting update bandwidth for SNP(DB)
is higher than for SNP. If the number of levels and the radii of the neighborhoods are
chosen to be the same for SNP and SNP(DB) then the total update bandwidth for
SNP(DB) could be up to four times the bandwidth due to SNP. However in practice,
as we will observe in Section 4.6.1, the radii of neighborhoods chosen for the two
protocols are different and hence the difference in the update bandwidths due to the
two schemes is much smaller.

4.4 Shifting Neighborhood Protocol with Adaptive Routing

An important property of the Shifting Neighborhood Protocol and its other
variations is that routing entries for a process are more up-to-date at nodes near the
location of the process than at distant nodes. We take advantage of this property to
adaptively route a message towards a process.

When a process p at node U has to send a message to process ¢ then the
Mechanics of Routing and Migration Level of the operating system at U obtains a
routing entry for g indicating that g was located at node V with the migration-count of
0. In SNP and the other protocols discussed in this chapter the text of the message
along with the destination process ¢ and its last known location V are passed to the
Low Level Kernel at node U. The Low Level Kernel passes the text of the message
and its destination process name and node address to an adjacent node. The message is
routed by the Low Level Kernel of the intermediate nodes till the message reaches
node V where it is passed up to the next higher level, viz., the Mechanics Level which
either re-routes the message or delivers it to the process.
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Figure 4.7 : Adaptive Routing of a Message to Process q in SNP(AR)

In the adaptive message routing scheme the migration-count ¢; is included in
the message along with the destination process name g, its location V and the text of
the message. The message that is routed from U to V is passed to the Mechanics Level
at select intermediate nodes on the path of the message. At the Mechanics Level of an
intermediate node the migration-count o, of the local routing entry for q is compared
with migration-count ¢ in the message. If oy > o then the message is re-routed to
the new node location contained in the routing entry for ¢ at the intermediate node.

The adaptive routing scheme can be applied to any of the three protocols
discussed in this chapter. The Shifting Neighborhood Protocol with Adaptive Routing
(SNP(AR)) consists of the SNP protocol for broadcasting routing updates and the
adaptive routing technique for routing messages to a process. Figure 4.7 illustrates the
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working of adaptive routing in the 3-level SNP(AR). A message is sent from process p
at node U to ¢g. The neighborhoods of ¢ are {N|, N;, N3}. At node U in N5 the
message for g is routed to node X the center of N,. However at node W, the first
intermediate node in the path of the message that lies in N5, the message is re-routed
to node Y the center of N,. All nodes in N, and hence node W, have routing
information indicating that the center of the neighborhood N; of process g is node Y.
At node Z, the first intermediate node in the path of the message from W to Y that lies
in Ny, the message is re-routed to node V where the process is located. Thus the
message trajectory is significantly reduced with adaptive routing.

An alternative to routing messages towards the center of a lower level
neighborhood of the destination process is to route the message to the closest node in
the lower level neighborhood. In the topology of Figure 4.7 the two schemes are
equivalent but for many topologies like, for example, the toroidal mesh, routing in the
two schemes is different. The reduction in the length of the paths taken by messages
will be even larger when messages are routed to the closest node of the lowest level
neighborhood instead of the center of the lowest level neighborhood.

The select intermediate nodes at which messages are passed up to the
Mechanics level are chosen to be the nodes at the boundaries of the neighborhoods of
the destination process. These nodes are the first in the message trajectory that are
likely to have more recent information about the location of the process. In order to be
able to route messages to the nodes on the boundaries of the neighborhood of a
process, information on the radii of the neighborhoods of a process has to be stored
along with the location information and migration-count in the routing entry.

By using adaptive routing the message trajectory lengths and hence message
trajectory stretch ratios are substantially reduced. The additional cost however is in
the additional time for a message to go up to the Mechanics Level of the operating
system at select intermediate nodes. In Section 4.7 we compare the time stretch ratio
of SNP and SNP(AR) and will observe that the time stretch ratio for SNP(AR) is also
significantly lower than for SNP.
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4.5 Moving Home Node Protocol

A protocol that is traditionally used to route messages or remote calls to
moving objects is the Home Node Protocol. Associated with each process is a home
node, usually the node where the process was created, to which all messages for the
process are routed. The home node forwards messages for the process to its current
location. Every time a process moves the home node is sent an update indicating the
new location of the process.

The Home Node Protocol is used in the Locus [Popek 85] and Sprite [Douglis
87 & Quster 88] operating systems to route remote calls to moving processes. One of
the problems with the Home Node Protocol is that it is not scalable and the stretch
ratio degrades with the increase in the lifetime of a process. In the course of time a
process could move far away from its home node, and hence the additional path length
for all messages to that process will be large even though the actual distance between
the process that originates a message and the destination process may be very small.

We propose a modification of the Home Node Protocol based on the
mechanisms used in SNP, called the the Moving Home Node Protocol (MHNP) The
operation of the 3-level MHNP is shown in Figure 4.8. The process g is initially
located at node H; and all routing entries for ¢ in the system are initialized to indicate
that g is at /. The neighborhoods of q are {N, N5, N3}. If ¢ moves to a location
within Ny (Figure 4.8a) then a routing update is sent only to the home node. The
home node is the center of Ny, and has a routing entry that indicates the current
location and migration-count of ¢. In Figure 4.8b when ¢ moves to a new location that
is outside Ny but in N, routing updates are broadcast to all nodes in N,. Just as in
SNP the neighborhood N is reconstituted to consist of those nodes in N, that are
within distance r; of the new location of the process. The new home node H, for
process g is the current location of the process.

Thus in MHNP as long as the the process migrates to a location in the lowest
level neighborhood of the process the updating protocol is the same as the Home
Node Protocol. However if the process moves to a higher level neighborhood then the
updating protocol is the same as SNP.
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Figure 4.8 : Process Migration in MHNP
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The m-level MHNP is informally described below. We assume that array

Nbhd_Radius contains the radii of neighborhoods corresponding to levels 1 to m.

1.

Initially when a process ¢ is created at a node H; the routing entry for g
indicating its location and migration-count is broadcast to all the nodes in the
system. Nbhd Center[1], Nbhd _Center{2], .... Nbhd Center [m—1] are all
initialized to H ;.

When process ¢ moves from node V to W, the operating system at W
determines the maximum j (1<j<m-1) such that Distance (W,
Nbhd_Center [j]) < Nbhd Radius[j]. If there is no j for which the above
inequality is true then we set j equal to zero. Leti .= j + 1.

(i) If i = 1 then the operating system at node W sends an UPDATE message
containing the location and migration-count of g to the node
Nbhd_Center[1].

f i>1 then  operating system at W  sends a
REQ_BROADCAST UPDATE  message containing  parameter
Nbhd_Radius[i] and the location and migration-count of g to the node
Nbhd Center[i].

The operating system at node Nbhd Center[i] on receiving the
REQ_BROADCAST_UPDATE message, updates the local routing entry
for g and broadcasts routing updates containing the latest location W and
migration-count of g to all nodes within a distance Nbhd Radius[i] of
the node Nbhd_Center [i].

(i) The operating system at W reassigns the values of Nbhd Center[1] ...
Nbhd_Center[i—1] to be W.

As we will observe from the simulation results described in Section 4.7 the

update bandwidth for MHNP is significantly smaller than SPN because no update
messages are broadcast while the process migrates to locations that are within the
lowest level neighborhood. However the average stretch ratio for MHNP is greater
than the average stretch ratio observed for SNP. All messages originating from a
process located at a node in neighborhood N, of process g (Figure 4.9) are sent to
H 1 and then forwarded to the current location of g. Thus, the number of message
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Message
Trajectory

Figure 4.9 : Trajectory of Messages to Process q in MHNP

trajectory hops traversed by a message from a process located in the lowest level
neighborhood of the destination process is 2. This is assuming that the time for
updates to be delivered is small compared to the time between successive migrations
and that the destination process does not migrate while a message is in transit toward
it. The maximum stretch ratio for a message originating from a process located in
the lowest level neighborhood of the destination process is approximately 2r.
However for messages that originate from nodes that are not in the lowest level
neighborhood of the destination process the number of times a message is forwarded
is the same as in SNP, i.e. the number of times that a message is forwarded is equal
to the index of the lowest level neighborhood to which the node, where the process
sending the message is resident, belongs.
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4.6 Analysis and Performance Evaluation of the Shifting Neighborhood Protocol

In this section we discuss the analysis and evaluation of the Shifting
Neighborhood Protocol and related protocols that update routing information in large
distributed systems in the presence of process migration. The Shifting Neighborhood
Protocol is modeled and the optimal neighborhood structure, i.e. the number of levels and
the size of the corresponding neighborhoods, that minimizes the bandwidth for updating
routing tables is analytically determined. The update bandwidth of SNP with the optimal
neighborhood structure is evaluated and compared to the update bandwidth for the other
related protocols. The performance measures other than the update bandwidth that are
evaluated are the number of times a message is forwarded and the stretch ratio of
messages. The main result from the analysis is that SNP is scalable over a large
distributed system. In particular under reasonable assumptions the mean communication
bandwidth to update routing entries due to the migration of a single process is G (logR)
message-hops/sec, where R is the radius of the underlying topology.

4.6.1 Determination of the Optimal Neighborhood Structure

For the analysis we choose the 2-dimensional square toroidal mesh as the specific
topology underlying the system executing the Shifting Neighborhood Protocol. The 2-
dimensional toroidal mesh belongs to the more general category of multidimensional
meshes. The advantage of choosing a toroidal mesh structure is that edge effects due to
the migration of a process to the boundary of the topology are avoided. Another
advantage is that a sub-section of the mesh consisting of a square sub-mesh with
boundaries has topological properties similar to the larger square toroidal mesh.

The migration of a process is modeled as an unrestricted random walk. The key
result from random walk theory that we use is that if a process on every migration moves

a distance that is constant or normally distributed and in a direction that is uniformly
2
- - . r. .
distributed, then the process will take ;—2 moves to cross a boundary of radius r; around
the initial position of the process, where / is a constant related to the average size of a
move. In Appendix 1 we discuss this result in more detail. We assume this model for the
migration of a process in the forthcoming analysis. However sometimes there may be
phase changes in the system, and in between phase changes the process motion can not

represented as an unrestricted random walk but rather as motion that is directed. In this
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Figure 4.10 : Neighborhoods of a Process in a Square Toroidal Mesh

case a process takes b X r; moves to cross a boundary of radius r; around the initial
position of the process, where b is some constant. We also study the effect of directed
process motion on the update bandwidth,

In order to minimize the update bandwidth and obtain the optimal neighborhood
structure, i.e. the optimal number of levels and sizes of neighborhoods, from the
analytical expressions for the update bandwidth, we assume that the number of levels and
the dimension of neighborhoods are real valued. Discrete approximations to the optimal
values of the number of levels and the dimensions of the corresponding neighborhoods
obtained from the solution are used for the actual implementation of SNP.

The notations for the parameters and performance measures for the model of SNP
are given in Table 4.1.
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No. of update-msg-hops/sec due to a single process
Stretch Ratio
Square neighborhood N;

G

No. of levels or neighborhood for a process
No. of nodes in neighborhood N;
No. of nodes in the system

Dimension (side) of neighborhood N;
Dimension of the entire square toroidal mesh
Rate of migration in terms of no. of moves/sec

~ < &y o2E

Constant related to the average size of a move

Table 4.1 : Parameters and Performance Measures for
the Shifting Neighborhood Protocol

Figure 4.10 illustrates process ¢ initially located at node X of an R x R toroidal mesh.
The neighborhoods {Ni, N3, ... N,} of process ¢ are square meshes, with the
corresponding sides of the square mesh r = (ry, ro, .... 1, }, where ry<ro<rs....<r,,. The
neighborhood N; has dimensions #; x r;. We will call the node at the intersection of the
diagonals of a square mesh its center. In an R X R square toroidal mesh because of the
symmetry any node can be considered the center. Note that the neighborhood N,
contains all the nodes in the system. Hence

rm =R

Ny =N

The model of process migration is as follows. Let a process be initially located at

the center of an r; X r; neighborhood N;. We assume that the size of a move is constant or
2

r.
normally distributed. In our model of process migration the process takes ;—2 moves to

cross the boundary of neighborhood &;, where [ is a constant and depends on the average
move size. In Appendix 1 we show how this property holds when the migration of the
process is modeled as an unrestricted random walk,
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From the description and specification of SNP in the previous section we know
that every time the process moves to a new location that is within N;, updates are
broadcast to all nodes in Ny. Generally, when the process moves and crosses out of the
boundary of N;_; to a node in N; then updates are broadcast to all nodes in N;.

In a mesh the optimal number of update messages-hops required for broadcasting
updates to NV; is equal to the number of nodes in neighborhood N; minus one i.e. n; - 1.
Therefore

For every move of the process n; update message-hops are sent.
2

ry
For every 1—2 moves of the process, n, update message-hops are sent,

Fm-1>

12

Foreve moves of the process, »,, update message-hops are sent.
Ty m UP P

The above estimate is slightly conservative because if we assume that every time a

r2

1
process moves n; update message-hops are sent, then for every —;2— moves actually only

2

ri

12

(n3 —ny) additional update message-hops will be sent and for every moves

actually only (n; —n;_y *++ —ng —ny) update message-hops will be sent. In order to
simplify the analysis for the update bandwidth we ignore lower order difference terms
and adopt the above accounting procedure for counting update messages. The update
bandwidth estimate that we obtain will be slightly higher than the actual update
bandwidth. The update bandwidth due to the migration of a single process can be
expressed as

12 npi?

3 } update_msg-hops/sec (4.1)

ry T -1

From the properties of a square mesh we know n; = r;2, and thus

C= V[rlz-}- ] update_msg-hops/sec  (4.2)

We now state the first optimization problem as follows:
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Minimize C=C(m, r{,ro *** Iy, V)
given fixed m
over (r1,72 *** m-1)

We determine the point r = ry at which C(r) is a minima by letting

9C) _ 4 fori= 1,2, ..m-1

ar,-
2r,212)
g—c=v[2r1— 23 =0
r1 ry”
r12
=2 rpg=—
)

oC [ 2ri_; 12 2?‘,‘212-]

0r;1 ria® ri—13J
r:_ 2 .

=> r; = fori=3..m
ri-2

By induction we can easily show that

fii ,
fori=2..m (4.3)

fi= li—l

From Equation 4.3 we obtain

oI foris1 44
—_—=-—fo > K
. ;- fori (4.4)
and
1 m-1 1 m-l
ri=rp," 1™ =R™[ ™
1
R.m
ri=Cpri (4.5)
From Equations 4.3 and 4.5 we obtain the optimal dimension r; of neighborhood N;
(4.6}

i
r,-=(%)m I forl<ism
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In Appendix 2 we show that at the point r =r, the update bandwidth C is a minimum,
Thus we have obtained the optimal dimension ; = O (R*/™) of neighborhood N;, given
that there are m neighborhoods. By substituting Equations 4.4 and 4.6 in Equation 4.2 we
obtain the update bandwidth

C =vmr? (4.7)
2

=vm (%)m I?

update_msg-hops/sec (4.8)

Having obtained an expression for the optimal radii of the neighborhoods given m we
now find the optimal number of neighborhoods to minimize the update bandwidth. The
optimization problem that we solve is

Minimize C=C(m, ri,ra = * I, ¥)
given (ry,ro *-- ry) as in Equation 4.6
over m

In Equation 4.8 let

dac

gm0

2 2
>v (%”‘z mé)’"m(ﬁ)i@)

i

=>.l—lln£=0
m
=>m=2 ln% (4.9)
R 2
To verify that m=21n-l— leads to a minima for C we show below that P >0 at
nm
m=21n£.
!
d’c _
2
2 2
vi? R.m R.d 2 [1___]n_.] - R m d
—)  In(=) —(— — —_ 1
P 2o [T w T T T Ay
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2

=w2 (5" In()
m

2 2 . R 2
- —"‘2—[1— -;l" IHT] + —2j|

2 2
4vi? (1;-) m [m(%)]
= >0

m3

Thus we determine that the optimal number of levels in the SNP protocol is O (logR).
The update bandwidth for the optimal neighborhood structure is given by

C=2v 1n~1-§- r12

S

R

ln_

= &7 p
I 1
7 R
Sincee ! = FE where e = 2.718..., we have

C =2ve 12 m% update_msg-hops/sec (4.10)

The total update communication bandwidth due to P processes in the system is

2veP 1? In(%) update_msg-hops/sec (4.11)

We now compare the update bandwidth due to the migration of a single process
for SNP and the CBM protocol where there is a complete broadcast on every move. As
we noted in Section 2.4, for BRM with complete broadcast on every move the update
bandwidth is

Cepp =0 ) =0 (R?) update_msg-hops/sec
However for SNP, from Equation 4.10 we have
Csyp = O (logR) update_msg-hops/sec

The update bandwidth for SNP is a vast improvement over the update bandwidth for
CBM. For the Shifting Neighborhood Protocol executing on a square toroidal mesh, the

100



bandwidth overhead resulting from the updating of routing tables due to process
migration has only a logarithmic dependency on the dimension of the system. Since the
logarithmic function of the dimension of the system is a very slowly increasing function
of the size of the system, hence we conclude that the Shifting Neighborhood Protocol is
scalable with the size of the system.

As we noted earlier our estimate of the update bandwidth is slightly conservative
because in order to simplify the expression for the update bandwidth C we drop some
lower order terms. The exact expression for C is given by

(ng —ny)l? L (ra=n —ny)i?

C=v n + + ..
2 2
(ni—n;q *+* —ng—nl (M =np_q ... =02 —nl
-t 5 U A . 17 14.12)
Fiq |
i-1
|- X
=v|n“+% j=1 update_msg-hops/sec (4.13)
i=2 2
Ti-1

The analysis of the optimal neighborhood structure and the corresponding update
bandwidth for the Shifting Neighborhood Protocol with Adaptive Routing SNP(AR) is
identical to the analysis of the Shifting Neighborhood Protocol because the difference
between the two protocols is in the routing of messages and not in the update of routing
entries when a process migrates.

Optimal Neighborhood Structure for SNP(DR)

The analysis of the Shifting Neighborhood Protocol with Dynamic Broadcast
follows along the lines of the analysis of SNP and therefore we will provide only an
outline of the analysis of SNP(DB).

Let us associate neighborhoods (N, N, .... N,,} with process ¢ and let g be
initially located at node X of an R x R toroidal mesh as illustrated in Figure 4.10. The
neighborhood N; is a square mesh with side ;. The updating mechanism for the Shifting
Neighborhood Protocol with Dynamic Broadcast is specified as follows. Every time the
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process moves to a location that is within N, updates are broadcast to all nodes within
distance 2r; from the new location of the process. When the process moves and crosses
the boundary of N to a node that is outside N1 but still in N, then updates are broadcast
to all nodes within distance 2r; from the new location of the process. Similarly when the
process moves and crosses the boundary of N;_; to a node that is outside N;_; but still in
N; then updates are broadcast to all nodes within distance 2r; from the new location of
the process. Finally when the process moves and crosses the boundary of N,,_; to a node
outside N,,_; but still in N, then updates are broadcast to all nodes in N,,,.

In a square toroidal mesh the number of update message-hops required for
broadcasting updates to all nodes within distance 2r; from the source is approximately
equal to 4r;2. Note however that when the process crosses the boundary of its
neighborhood N,,_1, it is sufficient to broadcast messages to r;> nodes that will cover the
entire system. Therefore

For every move of the process 4r ;2 update message-hops are sent.
2

r
For every —;2— moves of the process, 4r,-+12 update message-hops are sent, where
i=1,2 - m-=2
2

Ym-1
!2

For every moves of the process, ,,2 update message-hops are sent.

The above estimate as in the analysis of SNP is slightly conservative because a few
updates are accounted for twice in order to simplify the analysis. The update bandwidth
due to the migration of a single process for SNP(DB) can be expressed as

r2212 r‘_212 rm.212

2+ ..... >

C=4v 7'12 +
ri rie1’ 4rm-1

update_msg-hops/sefd.14)

To determine the point r =r, at which C(r) is an minima we keep m fixed and let

aC(r) =0 fori= 1, 2, ... m—1
ar;

Fori=2,3.m-1

{4.15)
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oC 2“rm—lz 2rlm
= 0:) rm =

arm_1

Since r,, = R we have
1

r =(__2RT); ] (4.16)

From Equations 4.15 and 4.16 we obtain
i

ri= (%) ™1 fori=1,2,..m-1 (4.17)

and

r, =R

Similarly as in Appendix 2 we can show that at the point r =r, the update bandwidth C

is a minimum. Thus if the number of levels m is fixed, the optimal dimension r; of
i

neighborhood N; for SNP(DB) is (-%—)m of the dimension of the corresponding

neighborhood in SNP, where { ranges from 1 to m—1. By substituting Equation 4.16 in
Equation 4.14 we obtain the update bandwidth for SNP(DB) as

C= 4vmr12 (4.18)
2

= 4vm (%}m 12 update_msg-hops/sec (4.19)

Now that we have obtained an expression for the optimal radii of the neighborhoods of a
process in SNP(DB), we can find the optimal number of neighborhoods that minimizes
the update bandwidth.

In Equation 4.16 let

= =0
2 2
= av (" Pem ™ Py L Zy)=0
=> 1—%111-5—[:0
=> m=2In5 (4.20)
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2

To verify that m =21r1-}-e- leads to a minimum for C we can show that >0 at

2] dm?
R
=21n—,
m=smy

The update bandwidth for SNP(DB) when the optimal neighborhood structure is

chosen is given by
C=8v ln£ rlz

21
1

R R mnZ
_ 2 52
=8vin 2 ( 21) i
2, R
C=8vel ln?__l update_msg-hops/sec (4.21)

The total update communication bandwidth for SNP(DB) due to P processes in the
system is

BveP 12 1n(i;-) update_msg-hops/sec | (4.22)
The exact bandwidth required to update routing tables on the migration of a

single process is given by

update_msg-hops/sec(4.23)

Optimal Neighborhood Structure for MHNP

As before we consider the situation illustrated in Figure 4.10. The updating
mechanism for the Moving Home Node Protocol is specified as follows. Every time the
process moves to a location that is within Ny, 1 update message is sent. When the
process moves to a location that is outside Ny but in N, then updates are broadcast to all
nodes in N;. Similarly when the process moves to a location outside N,,_; then updates
are broadcast to all nodes in N,,.
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The update bandwidth due to the migration of a single process can be expressed

as
2 2 2
n;l nyl
C=v[1+ 22 ot — =+ ... e J
s ri Frn-i
ra2]2 r212 r, 212
= v|1+ 5= F et 7T + 5 update_msg-hops/sec (4.24)
Fi ri Y1

In MHNP the updating mechanism for migration to a location within the lowest level
neighborhood is different from the updating mechanism when a process crosses
neighborhood boundaries. When the process migrates to a location within the lowest
level neighborhood, then no broadcast of updates takes place, but instead a single update
message is sent to the home node. In Equation 4.24 we observe that the update bandwidth
C as a function of r; is not concave, but decreases as r; approaches ro. Therefore the
dimension of the lowest level neighborhood 7, is chosen based on the worst case stretch
ratio that can be tolerated. Here we assume 7 to be a constant.

To determine the point at which the update bandwidth is a minimum, we let

9€ _0 fori=2, ....m-1
a?‘i
aC 2r,1% 2?‘3212]_0
ory ri? ry’ J
r22
=> = —
)‘3 rl
Fori=3,4, .-+ mwehave

ac [2r,-_112 2r21?)
=V -_—

dri-) rig? ri—13J
2 i-1
ri_ ra
=> rj=—— = — (4.25)
rig  ry'”
From Equation 4.25 fori =2, 3, - -+ m we obtain
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r; r
— 2 (4.26)
Fi1 r
and
1

ry=(2ymT ) (427)

r

From Equations 4.25 and 4.27 we obtain the optimal dimension #; of neighborhood N;
i-1
n=G9" " fori=1,2, e m (4.28)
1

As in Appendix 2 we can similarly show that at the inflection point the update bandwidth
C is a minimum.

By substituting Equations 4.28 in Equation 4.24 we obtain the update bandwidth

r2212(m -1

C=
vi{l+ r12
_2
=y (A +m—-1) (ri) "1z (4.29)
1

We have obtained an expression for the update bandwidth due to process migration in the
Moving Home Node Protocol given a fixed number of levels or neighborhoods in the
protocol. Now if we let m the number of levels vary then we can determine the optimal
number of neighborhoods to minimize the update bandwidth. In Equation 4.29 let

ac
dm
2 .2
= R . m-1 R  m-1 R. d 2 =
ZYNEHDTT Y =) P ) (=) | =0
r rt ry’ dm m-1
= 1- lni =0
m-— r
R
=>m=1+2 ln?— (4.30)
1
2 R o
As before we can show that T2 > 0atm=1+2In— implying that C is minimum at
m ri

this point.
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Thus we have obtained the optimal neighborhood structure and the optimal
number of levels for MHNP. The update bandwidth for MHNP when the optimal

neighborhood structure is chosen is given by
1
R
n-——
C=va+2mi &y ™ g2,
o n

C=v (1+2¢ 12 mri ) update_msg-hops/sec
1

Protocol | Optimal Neighborhood

Optimal No. of

Dimensions (r;) Levels (m)
£
SNP and 1= (—Ili) 1 2 ln%
SNP(AR) forl€i<m
£
R.m R
SNP(DB) =30 2In>;
forl <ism-1
i-1
MENP =" 1+2In
r r
forlsi<m

(4.31)

Table 4.2 : Optimal Neighborhood Structure for SNP and related protocols

The total update communication bandwidth for MHNP due to P processes in the system

is

vP (1+2el? Ini ) update_msg-hops/sec
r
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The exact bandwidth required to update routing tables on the migration of a
single process is given by

update_msg-hops/sec (4.33)

Tables 4.2 and 4.3 summarize our results for the optimal size of neighborhoods,
the optimal number of neighborhoods, the average update bandwidth when the number of
levels m is given and the neighborhood sizes are chosen to be optimal, and the average
update bandwidth when an optimal neighborhood structure, i.e. optimal neighborhood
sizes and optimal number of neighborhoods, is chosen. The constant { is related to the
average size of a process move. The update bandwidth is given in terms of the number of
update_msg-hops/sec. The update bandwidth given in Table 4.3 is due to the migration
of a single process.

Protocol Update Bandwidth Update Bandwidth
Optimal r; Optimal 7;
Fixed m Optimal m
2z i
R.m s R 1
SNP and SNP(AR) vm (T) l 2vel ln—l-
2
Rym 2 2 R
SNP(DB) 4vm(21) l Bvel ln2[
2z
MHNP v[1+(m—1)(;‘?-)m—1 2] v[1+2e121n—r&]
1 1

Table 4.3 : Update Bandwidth (update_msg-hops/sec) for SNP and related protocols
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The size of the neighborhoods and the number of levels in the expressions given
in the Tables are real valued and therefore actual implementations have to use discrete
approximations to the values obtained. For SNP(DB) note that the expression for r; is not
applicable when i is equal to m and hence can not be used to obtain r,, = R. The reason
for this is that in SNP(DB) the broadcast of updates to nodes in the mth level
neighborhood is done differently than to nodes in lower level neighborhoods. Note that
for MHNP the value of r is chosen based on other criterion with the constraint that r; <

ra.

From Table 4.2 we observe that the optimal number of levels for SNP and

SNP(AR) is ZIn% which is O (logR). For SNP(DB) the optimal number of levels is

Zlnz% which is 21In2 or 1.39 less than the optimal number of levels for SNP and

SNP(AR). The optimal dimension of neighborhood N; for a m-level SNP or SNP(AR)

i

protocol is O (R ™ ). If the number of levels m is fixed, the optimal dimension r; of
i

neighborhood N; for SNP(DB) is (%)m of the dimension of the corresponding

neighborhood in SNP, where i ranges from 1 to m—1. The behavior of MHNP is similar
to SNP except at the lowest level of the protocol where MHNP behaves differently. The
expressions for the optimal neighborhood structure and update bandwidth for MHNP
indicate the similarity between MHNP and SNP for all levels of the protocol except the
lowest level.

The update bandwidth for SNP and related protocols (Table 4.3) due to the
migration of a single process is O (logR) update_msg-hops/sec when the rate of process
migration is fixed, which is a vast improvement over the update bandwidth of O(Rz)
update_msg-hops/sec for the protocol with Complete Broadcast on Migration, Note that
the update bandwidth for SNP and related protocols is proportional to the rate of process

migration. Observe that the update bandwidth for SNP(DB) with an optimal
41n2
In(R / 1)
optimal neighborhood structure. The increased update bandwidth for SNP(DB) is
accounted for by the fact that when a process crosses the boundary of neighborhood N;_;

in SNP(DB), where i < m, there is a broadcast to a square mesh of side 2 r; while in SNP

neighborhood structure is (4 — ) times the update bandwidth for SNP with an

the broadcast is to a square mesh of side ;. The reason that the update bandwidth for
SNP(DB) is less than four times that of SNP is because the optimal neighborhood
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structures for the two protocols are different and in SNP(DB) when the Process Crosses
its neighborhood N,,_; a broadcast of size 2r,, x 2r,, is not necessary since a broadcast
of size r,, x r,, is sufficient to cover the entire system.

Effect of Directed Motion of a Process between Phase Changes on Update
Bandwidth

Let us consider that the Shifting Neighborhood Protocol with an optimal
neighborhood structure is chosen for processes executing on a square toroidal mesh. The
optimal neighborhood structure was derived earlier with the assumption that process
migration can be modeled as an unrestricted random walk. Let us now assume that
between phase changes the migration of a process is no longer an unrestricted random
walk but is directed in a certain direction. We examine the effect in SNP of this change
in the motion of a process on the update bandwidth,

In the case of directed process motion a process takes b x r; moves to cross the
boundary of a square mesh of side r; centered at the initial location of the process, where
b is a constant related to the average size of a move. Therefore for the period between
phase changes we can express the update bandwidth as

r22 r;z rm2

+ .k +o
ri b Fi b Fm-1 b

C=v|n%+ update_msg-hops/sec (4.34)

where from Equations 4.5 and 4.6 we have
1

R.m
?'1—(*}-). {
+
and r;=(%)ml forl<i<m

For 2 £i < m we obtain

) il
r; R
——=("

l
ri1 {

We therefore have the update bandwidth
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From Equation 4.9 we have m =2 lni and hence

1 1
(%) "=l , where e = 2.718...
R —
| - pve-] R
C=v[el’+ =+ (——=———-1-~=) 1 update_msg-hops/sec (4.35)
b Ve — 1 !

Hence the update bandwidth for the duration between the phase shift in the
migration of a single process is O (Rv), where the neighborhood structure for SNP is
chosen by optimizing the update bandwidth assuming process migration can be modeled
as an unrestricted random walk. Thus the update bandwidth increases from O (log (R)) to
O(R) during a phase change, assuming the rate of process migration is fixed. If the
typical mode of the migration of a particular process is characterized by directed motion
and not an unrestricted random walk then the neighborhood structure to be used in SNP
can be chosen by minimizing the update bandwidth assuming the process motion is
modeled as directed motion. The analysis for the choice of the optimal neighborhood
structure assuming directed process motion would then follow along the lines of the
analysis for SNP for unrestricted random walk.
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4.6.2 Stretch Ratios for the Shifting Neighborhood Protocol

In the previous section we obtained the optimal neighborhood structure for the
Shifting Neighborhood Protocol and other related protocols. The optimal neighborhood
structure that consists of the optimal size of neighborhoods and the number of
neighborhoods is derived by minimizing the update bandwidth resulting from updating
routing entries due to process migration. In this section we study the efficiency of the
routing schemes in terms of the increase in the path length of messages compared to the
shortest distance between the source and the destination of the messages. In particular we
determine the Message Trajectory Stretch Ratio for messages averaged for all possible
source process and destination process locations. We will show that despite the large
reductions in update bandwidth observed for SNP over the protocol with Complete
Broadcast on Migration, the increase in the stretch ratio for SNP is very small and the
stretch ratio is close to one.

The main assumption we make for the evaluation of the average message
trajectory length is that a process sends a message to any process in the system with
equal probability. This is the uniform probability model of communication between
processes. This is in contrast to the spatial locality model where a process is more likely
to send a message to a nearby process than to a distant process. The reason for assuming
the uniform probability model is because it simplifies the analysis of the message
trajectory stretch ratio in the Shifting Neighborhood Protocol. In fact the stretch ratio for
the Shifting Neighborhood Protocol will be even smaller when there is spatial locality in
the communication between processes. In the simulation of SNP and related protocols
that follows in the next section, we study the performance of the protocols assuming the
spatial locality model.

To calculate the stretch ratio for a particular message we assume that the
destination process does not move while the message is enroute to it. In addition the time
for updates to be broadcast is assumed to be small in comparison to the time between
successive migrations of a process.

Let

h, = The length of the trajectory of a message in hops averaged over all possible source
process and destination process locations
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% = The shortest distance in hops between the location of any two processes averaged
over all possible process locations

We calculate the the Message Trajectory Stretch Ratio (MTSR) for a particular protocol
as

r

MTSR =

;~|| |

We define the relative increase in the path length (RPL) as

hy
RPL = = -1
h

The topology chosen for this analysis is a p X p square toroidal mesh and without loss of
generality we assume that p is odd. In Appendix 3 to 7, we derive the following
properties of a square mesh:

. . . . .2
¢ The average distance between any two random distinct nodes in a ¢ X ¢ mesh is 29

(4.36)

e The average distance between the center of a ¢ X g mesh and any other random node in

the mesh is % (4.37)

e The average distance between a random node in a ¢ X ¢ mesh and a random node on

the edge of the meshis 2L — 2 (4.38)

6 3

e The average distance between the center of a ¢ X ¢ mesh and nodes on the edge is

3
@D @39

e The average distance between two nodes U and Y (Figure 4.11), such that U and ¥

belong to a ro X r, mesh, Y is the center of a r| X ry sub-mesh, U is outside the r; x r,
2

— r
sub-mesh and r is O (\/r3 ) is approximately -—i—(rz + 71— — ~;1-—) (4.40)
2 2

113



| S
EEEETS SRR
b |or
SRR RS SRR R
........... SRR EEERES
:::::::::::“. vy
N R R R

Figure 4.11 : Two Level Neighborhood
Stretch Ratio for 2 level Shifting Neighborhood Protocol

We first evaluate the average message trajectory stretch ratio for the two level
SNP. The size of the neighborhoods are chosen according to the analysis of the previous
sub-section to minimize the update bandwidth for the 2 - level protocol. Consider a
message that is sent from a source process s to a destination process d. The
neighborhoods of process d are {N |, N, } with corresponding sizes {r; R}. We consider
two cases - when process s is in and neighborhood N and outside neighborhood N of
process d. Let

1:- = Average length of message trajectory from s to d for case i
(1) Source Process s located in Ny

This case is illustrated in Figure 4.12 where a message is being sent from source
process s to destination process d. Since we assume that the time to broadcast update
messages is small compared to the elapsed time between successive process migrations
hence according to the Shifting Neighborhood Protocol the node at which s is located
will have an up-to-date routing entry for the location of process d. Therefore a message
from process s to d is directly routed from s to the location of process d. We assume that
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Figure 4.12 : 2 Level SNP - Source of Message Located in the
Lowest Level Neighborhood of Destination Process

the destination process d does not move while a message is enroute to it. From Equation
4.36 we have

— 2
Li=—
1=3 7
(2) Source Process s located outside N

This case is illustrated in Figure 4.13. According to the Shifting Neighborhood
Protocol, a message from process s is first routed to Y, the center of N, and then re-
routed to process 4.

Ly=d,+dy

From Equation 4.37 we have

=5

From Equation 4.40 we have
2
-— 2 r1 1
dy=—R+—-—
2=z Rt - %)
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Figure 4.13 : 2 Level SNP - Source of Message Located outside the
Lowest Level Neighborhood of Destination Process

To evaluate the average trajectory length of a message sent from an arbitrary source to an
arbitrary destination the trajectory lengths obtained for the two cases are weighted with
the probability of the occurrence of each case, i.e.

o L |2 3, p2_2y|r1 2 r®
br=—7F | "+R -4+ = —_— =
R2[31 1 [2+3(R+R R)

From Equation 4.36 we have the average shortest distance between any two processes in
the system
T2
=—R
3
The choice of rq for a 2-level SNP to minimize the update bandwidth is obtained from
Equation 4.6 as

r1=‘\/§\fl_

— 21 (R-D|JRI 2 2 2
h, = — + —_—t =R+ ==
" 34R R 2 3 3° 73R
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Thus for a 2-level Shifting Neighborhood Protocol the relative increase in the path length

is O (:/—%—). This result is based on the assumption that update and user message traversal

times are small compared to the time between successive migrations of a process.

Stretch Ratio for SNP with Optimal Neighborhood Structure

We extend the analysis for the 2 level SNP to the more general case when an
optimal neighborhood structure is chosen for SNP. Let m be the optimal number of levels
of SNP and (ry,ry * - r,) be the optimal radii of the m neighborhoods of the process,
where r,,, = R. Figure 4.14 illustrates a particular message trajectory for a 3 level SNP.

From Equation 4.36 we have
= 2
h=—R
3
The optimal size of neighborhoods to minimize the update bandwidth is given by
Equation 4.6 as
i

r,-=(i?~—)’”1 for1 <i <m—1

From Equation 4.3 we have
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Figure 4.14 : Message Trajectory for 3 Level SNP

71 .
r;:(—l—-) I forl<i<m-1

In a manner similar to the two level protocol we can express k, for the m level protocol
as

— 1 2 2 m-1 2’ 2 ¥y 2 riz 1
h = — | = + . —F —_ _ . _
r R2 [3 riry i:/:,l[(rwl i) 5 3 (rig1 + rin riil )

If we assume the constant / = 1 then
ri = Rf/m = rli

S
1 M...
—
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For large m (m > 10), ignoring the lower order terms of m we have

2 o = 22, m3 o md =
P +—R ™ +—R ™ 4 —_—_R ™M __R ™M™ 4 _pm
he 3R 2 2 3 6
VISR = h__l 3 3 1 1 3

T— + —l— + i + —3— - _4— + i ......
4R™ 4R™ R™ 4R™ 4R™

From Equation 4.9 the optimal number of levels for SNP is given by

m=21n—1i
l
1 1
Since R™ =R 2R = 2 therefore
3 3 1 1
MISR =1+ =+ oty = g+ g o
=2.1

For an optimal SNP we have
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RPL=1.1

Assuming that the constant [ is equal to one and the probability for a process to send a
message to any process is equal irrespective of its location, we determine that the average
message trajectory stretch ratio for SNP with an optimal neighborhood structure is given
by a converging series which when summed to 12 terms is equal to 2.05. The average
message trajectory stretch ratio in general will depend on /, the constant related to the
average size of a move.

We thus show an important property of the Shifting Neighborhood Protocol, i.e.
for an optimal neighborhood structure the average message trajectory stretch ratio is
independent of the size of the system. The optimal neighborhood structure minimizes the
update bandwidth. From Equation 4.10 we observe that the update bandwidth due to the
migration of a single process in the Shifting Neighborhood Protocol is O (logR). This
shows that the Shifting Neighborhood Protocol is scalable with the size of the system.

The assumptions that we make in showing SNP is scalable is that the time for
updates to be broadcast is small compared to the time between successive migrations of a
process. In addition we assume in the calculation of the stretch ratio for a message that
the process does not move while the message is enroute to it. The motion of a process is
assumed to be an unrestricted random walk. The target topology is assumed to be a 2
dimensional square toroidal mesh.

Comparison of the Performance of Optimal SNP with 1-level SNP

From the preceding analysis the Shifting Neighborhood Protocol is shown to be
scalable with the size of the system. The optimal neighborhood structure, the average
update bandwidth and the average message trajectory stretch ratio for the Shifting
Neighborhood Protocol is summarized in Table 4.4. The optimal neighborhood structure
is the neighborhood structure chosen to minimize update bandwidth. We compare the
performance of SNP operating with an optimal neighborhood structure to the
performance of a 1-level SNP executing on a square toroidal mesh. The 1-level SNP is
equivalent to the protocol with Complete Broadcast on Migration (CBM). From Section
2.4 and Equation 4.8 we obtain the update bandwidth for a 1-level SNP as

Cepy =v R2 update_msg-hops/sec
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Protocol | Optimal Nhbd. | Optimal No. of Update Message Trajectory
Dimensions Levels Bandwidth Stretch Ratio

" 2 ln% 2vel? ln% Constant

forl<i<m =2.1(whenl=1)

NP | n=(3)

Table 4.4 : Optimal Protocol Parameters, Cost and Performance of SNP

From Table 4.4 we note that the update bandwidth for SNP with an optimal
neighborhood structure is

Coyp=2vel? ln£ update_msg-hops/sec

l
Int
SNP__ /2 {
Ceam 2

The message trajectory stretch ratio for the CBM protocol is equal to one assuming that
the time between successive migrations of a process is large compared to the time to
broadcast updates in a neighborhood and that the process does not migrate while a
message is enroute to it. Since we have determined that the average message trajectory
ratio for SNP is a constant hence the ratio of the message trajectory stretch ratios for the
two protocols is

MTSRsnp

————— = Constant
MTSRcpm

Hence SNP has bandwidth that is significantly lower than CBM while the message
trajectory stretch ratios for the two schemes are comparable.
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Stretch Ratio for the 2-level Shifting Neighborhood Protocol with Adaptive Routing

Message routing in the SNP(AR) protocol is different from routing in SNP
because of the use of adaptive message routing in the SNP(AR). In SNP(AR) a message
is re-routed at intermediate nodes on the message trajectory, if the intermediate nodes
have more recent routing information about the destination process than the message has.
We evaluate the stretch ratio for the simplest version of SNP(AR) described in Section
4.5 where messages are routed towards the center of a lower level neighborhood of the
destination process.

The neighborhood dimensions are chosen in order to minimize the update
bandwidth for the 2 - level protocol. Consider a message that is sent from a source
process s to a destination process d. The neighborhoods of process d are {N Ny} with
corresponding sizes {r; R}. As in the analysis of the 2-level SNP we consider two cases
- when process s is in and outside neighborhood N of process d. Let

h_a: = The length of the trajectory of a message in hops averaged over all possible
source and destination process locations when messages are adaptively routed

L; = Average length of message trajectory from s to d for case i
(1) Source Process s located in N

This case is illustrated in Figure 4.15 where a message is sent from source process
s to destination process d. If we assume that the time for updates to be delivered is small
compared to the time for which a process is resident at a node then according to
SNP(AR) nodes in N; will have an up-to-date routing entry for process d. Hence a
message from process s is directly routed to the location of process d. Hence for case (i)
the average length of a message trajectory for SNP and SNP(AR) is identical. From
Equation 4.36 we have

E=%f1

(2) Source Process s located outside N
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Figure 4.15 : 2 Level SNP with Adaptive Routing - Source of Message Located
in the Lowest Level Neighborhood of Destination Process

This case is illustrated in Figure 4.16. In the Shifting Neighborhood Protocol with
Adaptive Routing, a message from process s is initially routed towards node Y the center
of Ny, but at intermediate node Z the message is re-routed to the current location of
process d.

Ly=d +d;
From Equations 4.38 we have

5?‘1

di =
1" 7%

_2
3

From Equations 4.39 and 4.40 we have

- 2
2 rTo1 3
dy={ £ —_— Y= =2 (=1
3(R+R R) 4(r1 )

2
— 2 ry.2ry 1 2
Ly=2R+—~ e

2= RY LT3R T 12 3R
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Figure 4.16 : 2 Level SNP with Adaptive Routing - Source of Message Located
outside the Lowest Level Neighborhood of Destination Process

To evaluate the average trajectory length of a message sent from an arbitrary source to an
arbitrary destination the trajectory lengths obtained for the two cases are weighted with
the probability of the occurrence of each case, i.e.

—_ 1 12 3 _p2__ 2|2 rioo2rt g 2
bhar=—5 | wr"+R —r") | ZR+—+ — -
o R2[3 : [3 12738 T 12 3R

The choice of the size of the lowest level neighborhood that minimizes the update
bandwidth for a 2-level SNP(AR) is identical to that for SNP and is obtained from
Equation 4.6 as

?‘1=\/1_2—'\/T

2
hm=ZR+
Qar 3

From Equation 4.36 we have
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The relative increase in the path length for the 2-level Shifting Neighborhood with

Adaptive Routing is also of order 0(—\—!%—). However the stretch ratio and relative

increase in path length for SNP(AR) is smaller by a constant factor than the
corresponding measures for SNP. The difference in the message trajectory stretch ratio
for a 2-level SNP with and without adaptive routing is given by

541 1 1 5141 i
MTSRsnp — MTSRsNp (aR) = o ( v )+

§yR B8R R+yR 8 8 R2

Thus we observe that the message trajectory stretch ratio is reduced when messages are
routed adaptively in the Shifting Neighborhood Protocol. The ratio of the message
trajectory stretch ratios for SNP and SNP(AR) is

MTSRsvp | 541

= — + ....... lower order terms
MTSRsNp (AR) 8 VR
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Summary of Stretch Ratio results for SNP and SNP(AR)

In this sub-section we have calculated the average message trajectory stretch ratio
for SNP and SNP(AR). The underlying topology is assumed to be a 2-dimensional square
toroidal mesh. To calculate the stretch ratio we assume the uniform probability model of
communication, i.e. a process sends a message to any process with equal probability. We
also assume that the time interval between successive migrations of a process is large
compared to the time for updates to be broadcast in a neighborhood. In addition as before
we assume that process motion can be modeled as an unrestricted random walk. The
dimensions of neighborhoods are assumed to be real valued.

Protocol No. of Levels Neighborhood Message Trajectory

Dimensions Stretch Ratio
SNP 2 ry=vR1 UL Y
4R
rq = R
for min. update bw.
SNP(AR) 2 ri=vR1 PUEA
8 VR
rp= R
for min. update bw.
A
SNP 2 ln% r = (ile—) " Constant
forl<i<m =2.1 (whenl=1)
for min. update bw. | for min. update bw.

Table 4.5 : Stretch Ratio results for SNP and SNP(AR)

Table 4.5 summarizes the stretch ratio results for a 2-level SNP, 2-levels
SNP(AR) and SNP with optimal number of levels. For the 2-level schemes the
neighborhood dimensions are chosen such that the update bandwidth is minimized. For
SNP with optimal number of levels the neighborhood dimensions and the number of
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levels are chosen such that the update bandwidth is minimized.

For the 2-level SNP we find that the average message trajectory stretch ratio is
close to 1 and the relative increase in path length is of O (R™!/2). For the 2-level
SNP(AR) we determine that the average message trajectory stretch ratio is lower than the
ratio for a 2-level SNP. However the relative increase in path length for SNP(AR) is
lower than SNP only by a constant factor assuming that the pattern of message
communication can be modeled by the uniform communication model. The important
result that we derive in this sub-section is that for SNP with optimal number of levels the
message trajectory stretch ratio only depends on the average size of a move and is
independent of the size of the system. However while the performance of SNP is
independent of the size of the system, the cost in terms of update bandwidth increases as
O (logR), where R is the dimension of the underlying toroidal mesh.

4.7 Simulation of the Shifting Neighborhood Protocol and Related Protocols

We simulate the Shifting Neighborhood Protocol operating in a large distributed
system and study the the effect of the variation of protocol and system parameters on the
performance of the protocol. We compare the performance of the four proposed
protocols, i.e. Shifting Neighborhood Protocol (SNP), Shifting Neighborhood Protocol
with Dynamic Broadcast (SNP(DB)), Shifting Neighborhood Protocol with Adaptive
Routing (SNP(AR)), and Moving Home Node Protocol (MHNP), and investigate the
circumstances under which one protocol performs better than another.

As in the simulation of the caching schemes (Section 3.3.2) the simulator
developed for the simulation of SNP and related protocols is based on SIMON [Swope
86]. SIMON provides mechanisms for the definition of objects that may send messages
to each other which makes it convenient to model message passing multiprocessor
systems. In particular one of the features of SIMON that was very useful for our
simulation was the ability to move objects and to dynamically make connections between
objects. This feature facilitated the implementation of process migration in the
simulation.
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In the simulation we consider a particular process g that is migrating in a large
distributed system. Processes located at the different nodes of the system send messages
at different times to process g. We consider a single destination process receiving
messages and a number of source processes sending messages. Since process g is
migrating, messages sent to ¢ may have to be re-routed before they are delivered to the
process. Every node in the system is assumed to have a routing entry for process ¢. In
other words we assume that the routing table at any node is complete.

In the simulation model we assume that processes are uniformly distributed over
nodes so that there are an equal number of processes per node at any time. We model a
number of source processes located at a node and that send messages to process ¢ by
implementing a single message source per node.

The topology of the underlying system chosen for the simulation is the 2-
dimensional square toroidal mesh. By choosing the square toroidal mesh we take
advantage of the symmetry and the lack of edges in the toroidal mesh.

4.7.1 Model of Message Communication between Processes

In the analytical model for the evaluation of the average message stretch ratio in
Section 4.6.2 we assumed the uniform probability model of communication between
processes where each process irrespective of its location has an equal probability of
sending a message to a particular process g. We now consider a more general model of
communication between processes - the spatial locality model that captures a range of
communication patterns between processes including the uniform probability model.

Let the probability of sending a message to a process located / hops away from
the source be

' where0<ac<1

cXa
The parameter a called the Locality Base controls the degree of locality in the
communication, while ¢ is a normalizing constant. When a approaches 1 the probability
of sending a message from a source process at any node location to the destination
process ¢ is almost equal and therefore approximates uniform routing. If a approaches 0
we have a traffic pattern of high spatial locality. The spatial locality model is similar to
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Figure 4.17 : Square Mesh

one adopted by [Reed 87].

The underlying square toroidal mesh topology is shown in Figure 4.17 with end to
end connections between the edge nodes. In the square toroidal mesh due to symmetry
any node U/ can be considered to be the center of the mesh. Without loss of generality
and for the convenience of the analysis we assume that the side R of the square toroidal
mesh is odd. The normalizing constant ¢ is chosen so that the probability of sending a
message to the process is 1. That is

R-1 :
Yexa'xN;=1
i=0

where N; = No. of nodes at distance i from a process located at node U
a = Locality Base
¢ = Normalizing constant
R = Side of toroidal mesh
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From Figure 4.17 we observe

1 i=0
N;=44i 1<i<R-1)/2
4R—i) (R+1)/2<i<R-i

(R-1)/2 . R-1 .
l=c|1+ ¥ 4iad+ ¥ 4R-)d’
i=1 i=(R+1)/2

e (1-ay’
(l_a)2+4a(l_a(R-—l)IZ)(l_a(R+l)12)

We can also calculate the average distance between the source and destination when a
message is sent as

1 R-1 ; .
T X ¢ Za X N; x i
XN =0
i=0

4.7.2 Model for Process Migration

The model of process migration chosen for the simulation of the Shifting
Neighborhood Protocol is similar to the model of process migration used for the analysis.
In the analysis we assumed that the size of a move of a process is constant. In the
simulation of SNP the size of the move is geometrically distributed. The motion of the
process is modeled as a random walk.

Consider a process executing at a particular node. After every load management
interval T, the load management policy decides on whether to let the process execute at
the same node or to migrate it. In our model of the load management policy the load
management interval T is assumed to be constant.

Let

p = Probability that the process is not moved at the load management decision time
and

X = Number of hops that the process is moved at a load management decision time
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Then the probability that a process is moved i hops at a load management interval is
P[X=il=p(-p) wherei=0,1,2, ..R-1

The average size of moves including moves of size 0 is

R-1 .
EX]1=3p(-p)i
i=0
P(1=p)[1-R (1=p)F "1 +(R=1)(1-p)?]

p2

If the system is large, i.e. R is large then
ElX]= 1-p
p
The average size of a move excluding moves of size 0 is

R-1
EX1X>0/=YiPX=i1X>0]
i=0
Rlip (1-p)
-y pl_ p)
i=0 p
R—I. i-1
=p ¥ i(l-p)
i=0

If R — oo then

E[X1X>0=L
)

We now calculate the average residence time of a process at a node. Let

Z = Number of load management policy decisions including the first time the load
management policy decides to move the process from the node on which it is resident.

The probability that the random variable Z has value £ is

P(Z=kl=p*1(1-p) wherek=1,2, ...
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The expected value of Z is given by

EZ]1=Skp*' (1-p)
i=0

The process remains at a node for the duration of E[Z] load management intervals
including the interval when the process first arrives at a node. If the load management
interval is T secs then the average residence time of a process at a node is

L SE€CS
1-p

The rate of migration of a process is

l%p moves/sec

4.7.3 Organization and Parameterization of the Simulation

The target topology we consider is an R x R toroidal mesh. The neighborhoods of
a process are chosen to be square regions of the mesh as illustrated in Figure 4.10. In the
simulation the system consists of nodes connected together by communication links. A
node as implemented in the simulation is shown in Figure 4.18. The source models
multiple source processes at a node sending messages to different processes in the system
including to the process ¢ under observation, Figure 4.19 represents the node where the
process ¢ is currently resident. If the destination process of the message generated by the
source at a node is the process g then the message is passed to the Communication Co-
Processor (CCP) else no action is taken on the message since we are only interested in
monitoring those messages destined for the particular process ¢. The CCP handles the
interaction of a node with other nodes. Tt is responsible for routing user messages,
broadcasting update messages, updating routing tables based on information in update
messages received, and delivering user messages to the destination process located at that
node. The CCP is connected by four incoming and four outgoing links to the neighbors
of that node. The process shown in Figure 4.19 is the destination process ¢ that receives
messages sent from different nodes in the system.
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Figure 4.18 : Representation of a Node in the Simulation
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Figure 4.19 : Representation of Node containing Destination Process
in the Simulation
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Broadcast of update messages to a square mesh region around a node is done by
tree broadcasting. Broadcast from a node U to a 7 X 7 mesh around U is shown in Figure
4.20. An update message carries a counter that is used to constrain the broadcast to the
7x7 sub-mesh. The initial direction of broadcast, i.e. along the x or y axis is chosen
randomly. The number of update messages generated by this broadcast mechanism is
optimal and any node in the broadcast region receives the update in the shortest possible
ume.

Figure 4.20 : Broadcast in a Mesh

The parameters for the simulation of SNP and related protocols are given in Table
4.6.

At every Msglnterval each node independently sends a message to the destination
process ¢ with probability ¢ x @’ where a is the locality base and ! is the distance of that
node from the location of the process g. Because of the way the normalization constant ¢
is calculated, on the average the process receives 1 message per Msglnterval.

The time taken to migrate a process from one node to another is

Tsiart + m X Tpfoveprocess + TSIopProcess

where m is the number of hops that the process is moved.

134



R Dimension (side) of the entire square toroidal mesh

m No. of levels or neighborhoods for a process

r; Dimension (side) of neighborhood N;

Msginterval Mean interval between messages sent by a process
DistMsglnterval Distribution of msg. interval ("geometric” or "constant")
LoadMgmitlInterval  Constant period between decision to move process or not
P Prob. that process is not moved at load mgmt. decision time
LocalityBase Parameter to control degree of locality in communication
TUsersg Expected time for user message to traverse a hop
TypdateMsg Expected time for update message to traverse a hop
TroveProcess Expected time for a process to be sent as a msg. over a hop
TstopProcess Expected time to stop a process and collect its state

T SiartProcess Expected time to install a process at a node and start it

Trr Expected time to access (read or write) a routing table

Table 4.6 : Parameters for the Simulation of the Shifting Neighborhood Protocol

The time for a user message to traverse a hop is Tygpms which includes the
protocol overhead, software overhead and queueing delays. Similarly the time for an
update message to traverse a hop is Typduemsg- The time to read or modify a routing
entry is Tpr. Consider a message that is sent from a process located at node U to the
process g located at node V, where the distance between nodes U and V is m hops. At the
time the message is sent from node U let us assume that U has an up-to-date routing entry
for process g. Let us also assume that the process g does not migrate away from V while

the message is enroute to it. Then for SNP the total time taken to deliver the message to g
will be

m X TUserMsg +2 X Tyrr

The routing table is checked at nodes U/ and V.
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If however we consider the Shifting Neighborhood Protocol with Adaptive
Routing and assume that routing tables are checked at all intermediate nodes, then the
total time taken to deliver the message to ¢ will be

mXTUserMsg+(m+1)XTRT

Whenever a message is forwarded or re-routed the routing table is accessed and
hence a delay of Tgy is incurred. If a message for process g is sent to a node V and the
routing entry for g at node V is locked because the process g is currently being migrated
away from V then the message is buffered at node V. Therefore some messages will incur
additional delays due to time spent in intermediate buffers.

We assume the capacity of links to be large and do not take into account the
additional delay for user and update messages due to congestion of communication links.

The message types defined in the simulation are shown in Table 4.7. User
messages are application messages sent from one process to another. Update Broadcast
messages are routing update messages broadcast to nodes in a square mesh
neighborhood. Update messages on the other hand are sent from one node to another to
update a routing entry at the destination node. Move messages carry the process control
block, state, code etc. of the process being migrated. A Move Confirm message sent to
the previous location of a process confirms that the process has been installed at its new
location. Finally Simulation messages are messages used for the internal operation of the
simulation.

User
Update_Broadcast
Update

Move
Move_Confirm
Simulation

Table 4.7 : Message Types in the Simulation of the Shifting Neighborhood Protocol
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For each performance metric we computed the 95 % confidence intervals using
the ¢ distribution. In the performance graphs the average is plotted as a point and vertical
bars indicate the confidence intervals. To eliminate from consideration start-up transient
effects, the performance measurements are monitored after the simulation has stabilized.

4.7.4 Results of the Simulation of the Shifting Neighborhood Protocol and Related
Protocols

We first study the performance of the Shifting Neighborhood Protocol and the
effect of the change in protocol parameters on the performance of the protocol. The
parameters for these set of simulations are given in Table 4.8. The system parameters are
chosen so that process migration occurs at a very rapid rate in order to test the
performance of SNP at its limit.

R 21 Tysermsg 25 psecs
Msglnterval 250 usecs Typdatemsg 5 Hsecs
DistMsglnterval Constant TiytoveProc 500 psecs
LoadMgmitlnterval 18750 psecs || Tsiopproc 100 psecs
p 0.33 TsiartProc 100 psecs
LocalityBase 0.6 Tar 5 usecs

Table 4.8 : System Parameters Chosen for the Study of the Effect of Variation
in Protocol Parameters on the Performance of the Shifting Neighborhood Protocol

The parameter values are chosen in order to test the performance of the protocols
under the most extreme conditions. The load management interval is chosen so that the
process receives on the average 75 messages in every load management interval. After
every load management interval the process is moved to a new location with probability

2 T . .
3 Thus the rate of process migration is extremely rapid for the current state of operating

systems technology. The average size of a move excluding moves of size 0 is about 3
hops. The locality base is chosen to be 0.6 which results in an average distance between
the source and destination process at the time the message is sent equal to 3.63 hops.
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Figure 4.21 : Average Update Bandwidth vs. Dimension of Level 1 Neighborhood

We consider a 20 Mips processor where each instruction takes 50 nsecs. An

application message is sent out by a process after every 5000 instructions, i.e. every
Msglnterval secs, where Msglnterval = 5% 10° x50 x 1079 = 250 usecs. The average

application message length is chosen to be be 256 bytes and the average update message
length is 4 bytes. We assume a very fast communication medium of 100 Mbits/sec which

is equivalent to % x 105 bytes/sec. Each copy instruction in the hypothetical processor

can copy 1 word or 4 bytes. Hence to copy 256 bytes the processor will execute 64

instructions. We compute Tygerpsy and Typgaemsg by calculating the sum of the time to
copy the message content, transmit it and an additional overhead due to queueing and
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other effects. The size of processes are assumed to be small in order to be able to migrate
processes rapidly. We assume that the active part of the process state is 7.5 Kbytes which
has to be transferred to the new location of a process before the process can be re-started

at the new location. Therefore the time to move a process across a hop Tagoveproc 18 €qual

to 7.5 x 10° x -1% x 107® which we we approximate to 500 Msecs, i.e. a factor of 20

times Tygerpsg- The time to start and stop the process is dominated by the time to copy

the process state which will take 7_5_){_((1_0_3_ instructions. Therefore Tsrproc = TsiopProc =

50 x 107 x iz—loi which is approximately 100 psecs.

The system was simulated for 7.5 secs and the performance was monitored after
37500 psecs.

As stated before the capacities of links are assumed to be large and the simulation
does not account for the additional time spent by messages in queues. The simulation
also does not consider the effects of flow control and the competetion amongst messages
for buffers.

Figure 4.21 plots the average update bandwidth versus the dimension of the level
1 neighborhood for a 2-level SNP. The update bandwidth is due to the migration of a
single process and is expressed in update_msg-hops/sec.

The convex shape of the update bandwidth curve is in accordance with our earlier
analysis. When the dimension of the first level neighborhood is small (ex. r; = 3) then
the process frequently moves out of its first level neighborhood resulting in frequent
broadcasts to the entire system. On the other hand when the dimension of the first level
neighborhood is large (ex. ry =13) then every time the process migrates update
messages have to be broadcast to a large region resulting in high update bandwidth. The
update bandwidth for the 21 x 21 system is minimum at r; = 9.

The results obtained from the simulation and illustrated in Figure 4.21 also
conform to the results obtained from the analysis of Section 4.6.1. In the analysis we
assume that the dimensions of SNP are real valued. Moreover the analysis is based on the

assumption that the system is very large. From Equation 4.6 of the analysis we have
i

r;=(-11i)ml for 1 <i <m-1
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Figure 4.22 : Average Message Trajectory Stretch Ratio vs.
Dimension of Level 1 Neighborhood

where R is the dimension (side) of the entire square toroidal mesh and / is a constant
related to the average size of a move.

Form =2, =3.2 and R =21 we obtain from the analysis

1
2

1
ri=322%212 =82

Approximating the dimension of the first level neighborhood to the closest integer value
we obtain
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Figure 4.23 : Average Time Stretch Ratio vs. Dimension of Level 1 Neighborhood
ri=9
For a fixed number of levels m we obtain from Equation 4.7
C =vmry?
where v is the rate of migration of the process (moves/sec).
From the simulation we observe v = 34.13 moves/sec. For m =2 and r{ =9 we obtain

from the analysis

Canalysis = 5529 update_msg-hops/sec
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From the simulation we obtain the minimum update bandwidth at 7, =9 as
Csim = 5540 £ 45 update_msg-hops/sec

Thus the results obtained from the analytical model of the SNP are in close conformance
with the simulation results.

In the experiment of Figure 4.21 with the dimension of the first level
neighborhood chosen as 9 hops we observe the average update bandwidth per link due to
a single process is 6.3 update_msgs/link/sec. The percentage of broadcasts to a 9 x 9
neighborhood is 77.3 % while the rest (22.7 %) of the broadcasts are to the entire system,
i.e.to a2l x 21 mesh,

In Figure 4.22 we plot the average message trajectory stretch ratio versus the
dimension of the level 1 neighborhood for a 2-level SNP. Observe that the MTSR varies
from 1.2 to 1.5 as the dimension of the level 1 neighborhood is varied. For the point in
the curve of Figure 4.22 where the update bandwidth is minimum, i.e. 7; =9 the average
message trajectory stretch ratio is observed to be 1.5. The message trajectory stretch ratio
was calculated for an average of 29846 user messages received by the process. Since the
destination process can move while messages are enroute to it and the time for updates to
traverse a hop is not zero hence the minimum message trajectory stretch ratio achievable
by any protocol will be greater than 1.

Figure 4.23 illustrates for a 2-level SNP the change in the average time stretch
ratio for messages when the dimension of the level 1 neighborhood is varied. We observe
that the time stretch ratios shown in Figure 4.23 are larger than the message trajectory
stretch ratios of Figure 4.22. This is because the time to forward a message and the time
spent by messages in buffers are taken into account in calculating the time stretch ratio
while costs associated with forwarding and buffering of messages do not figure in the
calculation of the message trajectory stretch ratio. The fraction of messages that are
forwarded when ry =9 is 0.30 and hence almost a third of the messages incur the
additional cost of the time taken to access the routing table while forwarding. When
r1 =9 the fraction of messages that are buffered is 0.06. The parameters chosen for this
experiment are such that the time to move a process across a hop is an order of
magnitude larger than the time for a message to traverse a hop. Moreover since process
migration is also relatively rapid, hence messages spend a large fraction of time in
buffers waiting for the process to be relocated to its new location before the messages
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Figure 4.24 : Average Time to Deliver a Message vs.
Dimension of Level 1 Neighborhood

can be forwarded to the destination process. Therefore even though the fraction of
messages that are buffered is small, the time spent by messages in buffers is large thus
contributing to the increase in the time stretch ratio.

Figure 4.24 plots the average time taken for messages to be delivered to their
destinations versus the dimension of the first level neighborhood. We observe that the
average delivery time in Figure 4.24 like the average time stretch ratio shown Figure 4.23
is relatively constant with the change in the dimension of the lowest level neighborhood.
Thus a reduction in the update bandwidth achieved by choosing the appropriate first level
neighborhood dimension does not result in higher delivery times or time stretch ratios for
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Figure 4.25 : Average Update Bandwidth vs. No. of Levels in Protocol

messages.

For a 21 x 21 system the optimal number of levels for the Shifting Neighborhood
Protocol is determined from the simulation to be three levels. For a 3-level SNP with
parameters as given in Table 4.8 we determine from simulations that the optimum size of
the neighborhoods that results in minimum update bandwidth are

riy=5 and rp=11
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In Figure 4.25 we plot the minimum update bandwidth for an one, two and three
level SNP. For a 1-level SNP which is equivalent to the Complete Broadcast on
Migration (CBM) protocol, the update bandwidth is 15,000 + 70 update_msg-hops/sec
while for the 3-level SNP the average minimum update bandwidth is 4250 + 42
update_msg-hops/sec. Thus even for a relatively small system by choosing optimal
protocol parameters the update bandwidth is reduced by a factor of 3.5.

We contrast the optimal neighborhood structure values and the update bandwidth
obtained in the simulation with values obtained from our analytical model. From the
analytical model the optimal number of levels for the Shifting Neighborhood Protocol is
given by Equation 4.9 as

R
=2 ln—
m n=

If as before we choose I = 3.2 then

21
=21—= d =
m n3.2 3.7=3

From Equation 4.6 of the analysis we obtain the optimal neighborhood dimensions for a
m level SNP as

i
r,-=(%)’”l for1<i<m-1

Therefore for a 3-level SNP we obtain
ri=59=5
rp=11.2=11

Since neighborhood dimensions have to be odd integers, hence r; is approximated from
5.9 to the closest odd integer, i.e. 5.

Therefore the optimal neighborhood structure, i.e. the optimum number of levels

and dimensions of neighborhoods for a 21 x 21 toroidal mesh as obtained by the analysis
and simulation are identical thus lending validity to the analytical model.
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Figure 4.26 : Average Message Trajectory Stretch Ratio vs. No. of Levels in Protocol

Based on the analytical model the update bandwidth C for the 1-level SNP is
given by

C=vr?

=34.13 x 212 = 15051 update_msg-hops/sec

This is contrast to the average update bandwidth of 15000 £ 70 update_msg-hops/sec
obtained from the simulation.
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For the 2-level SNP as noted earlier the average minimum update bandwidth
calculated from the analysis is 5529 update_msg-hops/sec while the value obtained from
the simulation is 5540 * 45 update_msg-hops/sec.

For the 3-level SNP we obtain the average update bandwidth due to the migration
of a single process from Equation 4.2 as

252 2;2
rzl r3l]
C=v[r12+ —+

r ra

update_msg-hops/sec

With / =3.2, v = 34.13 moves/sec,r, =5,r5 =11 and R =21 we obtain

121 441
C=34.1 %3224+ - k322
3 3[25+ G x 3.2+ 1 % 3.2

= 3819 update_msg-hops/sec

In contrast the average update bandwidth for the 3-level SNP obtained from the
simulation is 4250 * 42 update_msg-hops/sec. The reason for this discrepency is because
the results derived from the random walk model of process migration in the analytical
model are accurate only when neighborhood sizes are large. In this case the size of the
system is small and the number of levels in the protocol is large resulting in small
neighborhood sizes.

The reduction in the average minimum update bandwidth by choosing a 3-level
SNP instead of a 1-level SNP is however accompanied by an increase in the message
trajectory stretch ratio. The graph of Figure 4.26 illustrates the variation of the average
message trajectory stretch ratio with the number of levels of SNP in a 21 x 21 systemn.
Note that when the number of levels is increased from 1 to 3 the average message
trajectory stretch ratio increases by a factor of 1.53.

For the Shifting Neighborhood Protocol the average message trajectory stretch
ratio for the 3-level scheme is 1.59 * 0.03. This value is somewhat high because of
anomalies in the performance of SNP discussed in Section 4.3 when a process moves
close to the boundary of the neighborhood of that process. Later in this section we
observe that SNP(DB) and SNP(AR) have significantly lower message trajectory stretch
ratios than SNP.
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Figure 4.27 : Average Time Stretch Ratio vs. No. of Levels in Protocol

Observe in Figure 4.27 that the variation in the average time stretch ratio with the
number of levels is much smaller than the variation of the average message trajectory
stretch ratio with the number of levels. This is because the average time stretch ratio is a
function of not only the number of hops that a message traverses but also the fraction of
messages that are buffered and forwarded, the time taken to forward messages and the
time spent by messages in buffers. From the simulation results we observe that while the
fraction of messages that are buffered is constant (0.06) as the number of levels of SNP is
varied, the fraction of messages that are are forwarded is 0.07 for the 1-level SNP, 0.28
for the 2-level SNP and 0.40 for the 3-level SNP.
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Figure 4.28 : Average Time to Deliver A Message vs. No. of Levels in Protocol

In Figure 4.28 we observe the average time to deliver a message versus the
number of levels for the Shifting Neighborhood Protocol. Note that the increase in the
average delivery time with the increase in the number of levels of SNP is small in
contrast to the corresponding decrease in the update bandwidth for the optimal number of
levels of SNP.

We now compare the performance of the four schemes - SNP, SNP(DB), MHNP
and SNP(AR). The parameters chosen are given in Table 4.8.
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Figure 4.29 : Average Update Bandwidth vs. Dimension of Level 1 Neighborhood

The version of SNP(AR) that we have simulated is the one where messages are
routed towards the center of of the lower level neighborhood of the destination process.
The version of SNP(AR) where messages are routed to the closest node in the lower level
neighborhood will however result in lower average message trajectory and time stretch
ratios. Moreover in the simulation at each intermediate node of the message path the
routing table is checked for a more recent routing entry for the destination process. In an
optimized SNP(AR), routing tables in the path of a message are checked only at nodes on
the boundaries of the neighborhoods of the destination process.
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Figure 4.30 : Average Message Trajectory Stretch Ratio vs.
Dimension of Level 1 Neighborhood

Figure 4.29 shows the average update bandwidth due to the migration of a single
process versus the dimension of the first level neighborhood for a two level scheme. We
first observe that the average update bandwidth for SNP and SNP(AR) is identical since
the broadcast of updates takes place identically in the two schemes. As expected the
average update bandwidth is the highest for SNP(DB) and the the lowest for MHNP.
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Figure 4.31 : Average Time Stretch Ratio vs. Dimension of Level 1 Neighborhood

For 2-level SNP and 2-level SNP(AR) the dimensions of the lowest level
neighborhood for which the update bandwidth is a minimum is

r =9

For a 2-level SNP(DB) the dimensions of the lowest level neighborhood for which the

update bandwidth is a minimum is

r1=5

For the MHNP the update bandwidth decreases with the increase in the size of the first
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Figure 4.32 : Average Time to Deliver a Message vs.

Dimension of Level 1 Neighborhood

level neighborhood. This is in accordance with the analytical expression of the update
bandwidth of MHNP given in Equation 4.24.

The average update bandwidth for a 2-level SNP with optimal neighborhood size
is 5540 = 45 update_msg-hops/sec while for a 2-level SNP(DB) it is 8020 + 397

update_msg-hops/sec which is a factor of 1.45 greater.
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Figure 4.30 shows the average message trajectory stretch ratio versus the
dimension of the first level neighborhood for a 2-level scheme. There are several
interesting observations that we can make by observing the plots of Figure 4.30. We first
observe that SNP(DB) has the lowest message trajectory stretch ratio of all the schemes.
The average message trajectory stretch ratio when the update bandwidth is minimum, i.e.
ri1 =35, is 1.073 £ 0.008 which is exteremely close to 1. Thus implementing SNP(DB)
instead of SNP avoids the anamolies in the performance of SNP as discussed in Section
4.3 and results in stretch ratios almost equal to one. An indication as to why SNP(DB)
has a much lower message trajectory stretch ratio than SNP can be found in simulation
results that indicate that for SNP with optimal neighborhood size the fraction of
messages that are forwarded are 0.28 while for SNP(DB) with optimal neighborhood size
itis 0.16.

The second interesting observation to note is the significant improvement of the
performance of SNP(AR) over SNP. We observe that Adaptive Routing is an extremely
powerful tool that can significantly enhance the performance of SNP. From the
simulation results we observe that the average message trajectory stretch ratio for
SNP(AR) is almost constant at 1.104 as the dimension of the first level neighborhood is
changed. In fact the average message trajectory stretch ratio for SNP(AR) is very close to
that of SNP(DB) without the accompanying increase in update bandwidth.

The reduction in the update bandwidth of the 2-level MHNP with the increase in
the dimension of the lowest level neighborhood as observed in Figure 4.29 is
accompanied by an almost linear increase in the message trajectory stretch ratio (Figure
4.30). When the dimension of the lowest level neighborhood is increased from 3 to 13,
the update bandwidth for MHNP decreases by a factor of 4.5 while the message
trajectory stretch ratio increases by a factor of 2.7. It may be tempting to attempt to
improve the message trajectory stretch ratio of MHNP by implementing Adaptive
Routing. However this is unlikely to work since in the Moving Home Node Protocol only
the Home node is kept updated and hence as a message approaches the destination
process nodes on the path of the message will not have more recent information about the
location of the destination process.

In Figures 4.31 and 4.32 we plot the average time stretch ratio and average delay
for messages to be delivered versus the dimension of the lowest level neighborhood for a
2-level scheme. The important observation to make here is that the average delay and
time stretch ratios for SNP(AR) are significantly lower than the delay and time stretch
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ratios for SNP.

Protocol m=2 m=3

SNP ri=9 | ri=5 rp=11
&
SNP(AR)

SNPOB) | r;=5 | ri=5 rp=7

MHNP | ry=7 | r;=7 ry=13

Table 4.9 : Optimal Neighborhood Dimensions for the Protocols

This is particularly notable since in our implementation of Adaptive Routing routing
tables at each intermediate node on the path of a message are checked thus incurring a
significant delay for accessing routing tables. An optimized version of SNP(AR) with
routing of messages towards the closest node of the destination neighborhood and with
adaptive routing only at nodes on the boundaries of the neighborhoods of the destination
process will result in even better performance that that demonstrated here. Thus using
Adaptive Routing for the Shifting Neighborhood Protocol results in a significant
improvement of its performance.

We now study the performance of the four protocols when the number of levels
for the 21 x 21 system are increased from 1 to 3. The neighborhood dimensions for the
2-level and 3-level protocols are given in Table 4.9. The neighborhood dimensions for
the protocols, except the dimension of the first level protocol for MHNP, are chosen from
the simulations to be values that result in minimum update bandwidth. For the MHNP the
dimension of the first level neighborhood is chosen independently based on other criteria.
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Figure 4.33 : Average Update Bandwidth vs. No. of Levels in Protocol

If we observe the plot of Figures-4.33 we note that on going from two levels to
three levels the relative reduction in the update bandwidth for each of the protocols is
approximately the same. However the corresponding relative increase in the message
trajectory stretch ratio (Figure 4.34) for MHNP and SNP are significantly higher than the
increase in the message trajectory stretch ratio for SNP(DB) and SNP(AR). In fact the
message trajectory stretch ratios for SNP(DB) and SNP(AR) are almost constant with the
variation in the number of levels of the protocol. The minimum message trajectory
stretch ratio achievable by any protocol is that achieved by the Complete Broadcast on
Migration (CBM) protocol, and is equal to the message trajectory stretch ratio of the four
protocols with a single level. Thus the message trajectory stretch ratio for SNP(DB) and
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Figure 4.34 : Average Message Trajectory Stretch Ratio vs.

No. of Levels in Protocol

SNP(AR) with varying number of levels is very close to the minimum stretch ratio

achievable.

Figures 4.35 and 4.36 plot the variation of the average time stretch ratio and the
average time to deliver a message to a process as the number of levels for the four
protcols are varied. As before note that the time stretch ratio and message delay for
SNP(DB) and SNP(AR) are almost constant with the variation of the number of levels of
the protocol. Note that for the 1-level SNP(AR) the time stretch ratio and delivery time
are larger than for the other three protocols because of the additional delay incurred in

SNP(AR) due to adaptive routing at intermediate nodes.
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Figure 4.35 : Average Time Stretch Ratio vs. No. of Levels in Protocol

We conclude that of the four protocols the performance of the the Shifting
Neighborhood Protocol with Dynamic Broadcast SNP(DB) is the best and close to the
best achievable performance by any possible protocol. However this performance is

achieved at a higher update bandwidth compared to the other protocols.

The performance of the Shifting Neighborhood Protocol with Adaptive Routing
SNP(AR) is close to that of SNP(DB) and is a particularly attractive protocol to
implement because of the low update bandwidth in comparison to SNP(DB). An
optimized version of SNP(AR), where messages are routed to the closest node of the
neighborhood of the destination process instead of the center of a neighborhood and
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Figure 4.36 : Average Time to Deliver a Message vs. No. of Levels in Protocol

where messages are routed adaptively only at neighborhood boundary nodes, is likely to

have performance matching that of SNP(DB).

The Moving Home Node Protocol MHNP may be chosen to be implemented if a
higher time stretch ratio can be tolerated and the bandwidth available for control traffic is

limited.

For the rest of this section we study the performance of SNP(DB) and SNP(AR)

and how their performance is affected by the change in different system parameters.
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R 21 LocalityBase 0.6
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Msginterval 250 psecs | Tseopproc 100 psecs
DistMsginterval  Constant TstartProc 100 psecs
P 0.33 Trr 5 Usecs

Table 4.10 : Parameters Chosen for the Study of the Effect of the Variation
of the Load Management Interval on the Performance of SNP(DB)

We first study the effect of varying the load management interval on the
performance of SNP(DB). By varying the load mangement interval the rate of process
migration is varied. Hence in this experiment we study the effect of the rate of process
migration on the performance of SNP(DB). The parameters chosen for this set of
simulations are given in Table 4.10.

The load management interval is varied from 6.25 msecs to 0.5 secs. which
results in an average of 25 messages to 2000 messages respectively received by a process
in a load management interval. Note that the largest load management interval chosen by
us is still too small for current operating systems due to the high cost of migrating a
process. Our intention is to to test the proposed protocols for the worst case i.e. when the
rate of process migration is rapid.

Figure 4.37 shows the variation of the average update bandwidth with the change
in the load management interval. In Figure 4.38 we plot the percentage of the total
message bandwidth that is due to updates versus the load management interval. The
update bandwidth that we consider is the bandwidth resulting from the broadcast of
routing updates due to the migration of a single process. The total message bandwidth is
the sum of the bandwidths due to user messages and update messages. In calculating the
traffic due to user messages we only consider application messages destined to one
particular process. The load management interval is plotted on a log scale in both graphs.
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Figure 4.37 : Average Update Bandwidth vs. Load Management Interval

Figure 4.39 shows the corresponding variation of the average message trajectory
stretch ratio with the load management interval. The load management interval is plotted
on a log scale. Observe that the change in the message trajectory stretch ratio for
SNP(DB) is small as the rate of process migration is varied. However as expected the

update bandwidth is significantly higher at extremely rapid rates of migration.
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Figure 4.38 : Percentage of the Total Bandwidth due to Update Traffic vs.
Load Management Interval

When the load management interval is 0.125 secs and the process receives an
average of about 500 messages in every load management interval then the update
bandwidth is 1080 * 120 update_msg-hops/sec. This amounts to 6.19 £ 0.64 % of the
total bandwidth. The corresponding average message trajectory stretch ratio is 1,032 +
0.004.
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Figure 4.39 : Average Message Trajectory Stretch Ratio vs.
Load Management Interval

We conclude that the Shifting Neighborhood Protocol with Dynamic Broadcast
performs very well over a range of process migration frequencies. However at extremely
high rates of process migration it is necessary to allocate larger link capacities to carry
routing update traffic.
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Figure 4.40 : Average Message Trajectory Stretch Ratio vs. Mean Distance
between Source & Destination at the time of the Sending of the Message

We now study the effect of changing the degree of locality of message
communication between processes on the average message trajectory stretch ratios for
SNP(DB) and SNP(AR). The locality base is varied from (.01 to 0.99. With the locality
base equal to 0.99 the communication model is approximately equivalent to the uniform
probability model where the probability of a process sending a message to any process is
equal. When the locality base is chosen to be 0.01 then the source and destination in most
cases are allocated to the same node. The choice of different locality base parameters in
the simulation manifests itself as the choice of different average distances between the
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source and destination at the time a message is sent.

In Figure 4.40 we plot the average message trajectory ratio for SNP(DB) and
SNP(AR) as the average distance between the source and destination at the time a
message is sent is varied. We consider a 21 x 21 toroidal mesh with the average distance
between the source and destination varying from 0.04 to 10.28 hops. The number of
levels chosen for both the protocols is 3 and

For SNP(MDB) r;=5,r,=9andrs =21
For SNP(AR) r;=5,r,=11andr; =21

The average message trajectory stretch ratio for SNP(DB) is smaller than that for
SNP(AR) over the range of degree of localities for communication. When there is no
locality in communication the message trajectory stretch ratio for SNP(DB) is 1.15 +
0.01 while for SNP(AR) it is 1.17 £ 0.006. Hence we conclude that both protocols
perform very well even when there is no locality in the communication between
processes.
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System Dimension | Nodes | No. of Levels | Neighborhood Dimensions

21 441 3 ri=5 ra=11 ry3=21

31 961 4 ri=5 r;=9 r3 =17
rqs =31

41 1681 5 ry=5 ry=9 r3=15
rg =25 rs=41

51 2601 5 ry=5ry=9 ry=17
rs =29 r5=>51

67 4489 6 ri=5ry3=9 ry=15
rg=25 rs=41 rg=067

Table 4.11 : Optimal Neighborhood Structure for SNP(AR)

Finally we study how the Shifting Neighborhood Protocol with Adaptive Routing
scales up with the size of the system. The number of nodes is varied from 441 to 4489,
The protocol parameters, i.e. the number of levels and the size of neighborhoods is
derived from the analytical model to minimize update bandwidth. We assume the
constant / to be equal to 3.2 as before. Table 4.11 lists the protocol parameters chosen for
different sizes of the system.

For these set of simulations the average distance between the source and the
destination at the time of sending a message is 3.73 hops. The average size of a move is
about 3 hops and the average rate of migration is 34.13 moves/sec. The number of user
messages received by the process is 4 x 10° msgs/sec.
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Figure 4.41 : Average Message Trajectory Stretch Ratio vs. No. of Nodes for SNP(AR)

In Figures 4.41 and 4.42 we show the average message trajectory stretch ratio and
the average time stretch ratio for SNP(AR) as the number of nodes is varied. Observe
that both stretch ratios are relatively constant as the number of nodes N is increased.

In Figure 4.43 we observe the the change in the update bandwidth of SNP(AR) as
the number of nodes is varied. The update bandwidth due to the migration of a single
process is a slowly increasing linear function of the number of nodes. When the number
of nodes is increased from 441 to 4489, i.e. a 10.2 fold increase, the average update
bandwidth increases by a factor of only 2.45.
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Figure 4.42 : Average Time Stretch Ratio vs. No. of Nodes for SNP(AR)

Hence we conclude that the Shifting Neighborhood Protocol with Adaptive
Routing scales up well with the size of the system. The stretch ratios remain constant
with the change in the number of nodes while the update bandwidth is a slowly

increasing function of the number of nodes.
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4.7.5 Conclusions from the Simulation

We have simulated the Shifting Neighborhood Protocol and related protocols
operating in a large distributed system where processes are migrating rapidly. The effect
of the variation of protocol and system parameters on the performance and overhead of
the different protocols have been studied. The performance of the four protocols
proposed in this chapter are compared and the conditions under which one protocol
performs better than another are investigated.
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For a two level SNP we study the change in the update bandwidth, the message
trajectory stretch ratio, the time stretch ratio and the average message delivery time with
the variation in the dimension of the lowest level neighborhood of a process. The convex
shape of the update bandwidth curve obtained from the simulation is in accordance with
the expression for update bandwidth derived from the analytical model of the previous
section.

We obtain the optimal neighborhood dimensions for a multi-level SNP protocol
that results in minimum update bandwidth. We observe that the choice of the number of
levels in the protocol to be the optimal number of levels can result in a substantial saving
in terms of update bandwidth. For a 21 x 21 system with appropriate system parameters
we determine from the simulation that the optimal number of levels for SNP is three. The
values of the update bandwidth obtained for SNP with different number of levels and the
values for the optimal neighborhood structure for SNP are in close conformance with the
values obtained from the analytical model.

In the comparison of the four protocols we make several interesting observations.
SNP(DB) has the lowest message trajectory and time stretch ratios of all the schemes.
The average message trajectory ratio for SNP(DB) is observed to be extremely close to 1
over a wide range of system parameter values. It is closely followed by SNP(AR) whose
stretch ratios are very close to that of SNP(DB) without the accompanying increase in
update bandwidth.

The Shifting Neighborhood Protocol may be implemented instead of SNP(AR) if
the cost and additional implementation complexity of adaptive routing is very high. The
update bandwidth for SNP is identical to that for SNP(AR). For a 21 x 21 system with
reasonable system parameters and optimal protocol parameters we observe that the

message trajectory stretch ratio for SNP even though greater than that for SNP(AR) is
close to 1.5.

MHNP s the lowest cost protocol of the four protocols proposed by us. When the
rate of process migration is not rapid or when the capacities of communication links are
restricted then it would be preferable to implement MHNP. However accompanying the
reduction of update bandwidth in MHNP is the increase in the stretch ratio for MHNP
which is significantly larger than the value of the stretch ratio for the other protocols.
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We study the effect of the variation of the rate of process migration on the
performance of SNP(DB). We observe that the protocol performs well over a range of
rates of process migration. At extremely rapid rates of process migration while the
message trajectory stretch ratio is still close to 1 the update bandwidth increases
considerably, thus indicating the need for the allocation of larger communication link
capacities when process migration rates are very high.

We compare the performance of SNP(DB) and SNP(AR) when the degree of
spatial locality in communication is varied. While the message trajectory stretch ratio for
SNP(DB) is consistently lower than that of SNP(AR), both protocols perform very well
even when there is no spatial locality.

Finally we study the performance of SNP(AR) with the increase in the size of the
system. As predicted by the analysis we observe that the value of the message trajectory
stretch ratio is independent of the size of the system. The update bandwidth is a slowly
increasing function of the number of nodes. This confirms that SNP(AR) is scalable with
the size of the system.
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CHAPTER V
Other Issues

5.1 Locating Remote Routing Entries

In a distributed system if routing entries for a process are stored at each of the N
nodes of the system then N*P storage entries will be required to keep routing information
for P processes. When the number of nodes N is very large then it may not be possible to
keep routing entries for each process at every node because of the prohibitive size of
memory required for routing tables at each node. In this section we investigate methods
for efficient access of routing entries for a process from any node, when routing entries
for a process are stored only in select nodes.

We consider two mechanisms for locating remote routing entries:
e Wave Searching

¢ Hashing

5.1.1 Wave Searching

When the operating system at a node requires a particular routing entry which is
not in the local routing table and the operating system does not know where that routing
entry may be found, then the node has to begin searching other nodes. This can be done
by broadcasting a request for the routing entry and waiting for a response. The problem
with broadcasting however is that once a routing entry is obtained it is difficult to
terminate the ongoing broadcast. To address this problem we introduce a controlled
broadcast scheme called wave searching.
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Figure 5.1 : Bounded Broadcast

Wave searching can be viewed as a wavefront of queries originating at the source
node and expanding till the entry being searched for is located. The expansion of the
wave takes place in discrete steps and is controlled at the source of the broadcast. A wave
secarch originating at node U is equivalent to a controlled breadth first search of the
network with U as the center.

Wave search consists of a series of bounded broadcasts from the source node;
each bounded broadcast followed by a wait time when the source waits for a response
indicating whether the routing entry is found or not. A bounded broadcast with lower
bound r; and upper bound r,, is a broadcast of messages to all nodes that are at a distance
between r; and r, from the source of the broadcast. The nodes whose distance from the
source is between r; and r, are said to be covered by a bounded broadcast with bounds r;
and r,. The difference (r, - r;) between the bounds is the span of the bounded broadcast.
A bounded broadcast is illustrated in Figure 5.1.
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Wave search is done as follows. Initially a bounded broadcast is initiated at the
source node U and covers all nodes within a distance r hops from U. Node U then waits
for a response to the broadcast request, and if the routing entry is not found then it sends
broadcast requests to nodes at distance between rg and 7, hops from U. The node U
continues to broadcast larger waves till the required routing entry is received, and the

condition for termination of the wave search is satisfied. Wave search is shown in Figure
5.2.

The concept of wave search was suggested by Boggs [Boggs 83] for searching for
a resource in an internet. The communication cost of wave search has been analyzed by
Ahamad [Ahamad 87b], for various probability distributions (exponentially deceasing,
linearly decreasing and uniform) of finding the location information as the distance from
the source of the broadcast increases. Chlamtac [Chlamtac 87) has proposed a wave
expansion algorithm in the context of collision free broadcasting in multi-hop radio
networks. Hillis [Hillis 81] considered the problem of terminating broadcasts and
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suggested cancellation messages that propagate faster than requests and hence catch up
and cancel the propagating request.

Bounded broadcasts can be implemented by using a shortest path spanning tree
([Dalal 77], [Dalal 78] & [Wall 80]) that covers all the nodes. A broadcast message has a
hop count field that is incremented when it is received by a node. Messages that arrive at
a node are sent out on all other edges of the spanning tree connecting that node except
the one it arrived on. Messages with a hop count greater than or equal to the upper bound
of the bounded broadcast are not propagated. Every node receives a message only once
which makes this method efficient in terms of communication bandwidth costs. This
scheme is similar to one proposed by Kung and Shacham [Kung 87].

Bounded broadcast to nodes that are at a distance within distance r; and r, hops
from the source node using a spanning tree is done as follows:

1. A message BMSG with fields ry, r,, hop_count = 0 and containing a request for
the routing entry for process ¢ taken is sent from the source node to all its
neighbors on the spanning tree.

2. When a node receives a BMSG, the hop _count is incremented by one and if the
hop_count is between r; and r, then the local routing table is checked for an entry
for q. If the hop_count is less than the r, and the routing entry is not found then
the BMSG with the updated hop count is propagated to all neighbors on the
spanning tree except the predecessor node that sent the BMSG. If the hop_count
is equal to the r, or the routing entry for g4 is found then a BMSG_ACK message
is returned to the predecessor node that sent the BMSG. If the routing entry for ¢
is found locally then the BMSG_ACK contains the routing entry.

3. When an intermediate node receives a BMSG_ACK message the operating
system updates the number of BMSG_ACK messages received by that node. If
the number is equal to the number of spanning tree edges incident on the node
minus one, then a BMSG_ACK message is sent to the predecessor node that sent
this node the BMSG message. If any of the BMSG_ACK messages received at
the intermediate node contained a routing entry then the BMSG_ACK message
sent from this node also contains the routing entry.

4. When the source node receives a BMSG_ACK, the operating system updates the
number of BMSG_ACK messages received by the source node. If the number is
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equal to the number of spanning tree edges incident on the source node, then the
operating system at the source node detects that the bounded broadcast is
complete. If any of the BMSG_ACK messages received by the source node
contain a routing entry then an entry for process g has been obtained from nodes
that are at distance between r; and r, hops from the source node.

In irregular topologies, the edges of the shortest path spanning tree that are
incident on a node have to be stored at that node. Unfortunately, the shortest path
spanning tree for different nodes of an irregular topology need not be the same, resulting
in O(N?%) space for storing the links of the shortest path spanning trees, where N is the
number of nodes. An alternative is to select a single spanning tree with "good" delay
properties. The broadcast delay of a shortest path spanning tree rooted at the center of a
graph has been shown by Wall ({Wall 80]) to be bounded by a small constant factor
times the minimum delay. Distributed algorithms for locating the center of a graph have
been discussed by Korach et. al. {Korach 84]. This strategy requires O (N) storage space
for the entire network.

In many regular topologies, the edges of the shortest path spanning tree can be
determined algorithmically, thus avoiding the need for storing the tree.

The problem with using spanning trees for broadcast is that the failure of any
node or edge of the spanning tree, partitions the tree. One solution is to switch to backup
trees that do not include the failed link or node. In regular topologies it may be possible
to route messages around the failure if it is detected by the neighboring node. An
alternative to using spanning trees for bounded broadcast is to use the Propogation of
Information with Feedback (PIF) protocol proposed in [Segall 83]. The PIF protocol
consists of the flooding mechansim to propagate messages and a feedback mechanism
that conveys any results of the message propagation and indicates the termination of the
protocol. A hop-count field can be used to bound the broadcast. The disadvantage of this
approach however is that a node receives a number of copies of a message resulting in
large communication bandwidths and high costs of processing messages.
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5.1.2 Hashing

We consider an alternate mechanism that requires much lower communication
bandwidth compared to wave searching and which relies on a hash or mapping function
that maps a process name to a set of addresses of nodes. These set of nodes are required
to have a routing entry for that process. Hence the location of routing entries for a
process are encoded in the name of a process and any node can derive the set of node
addresses that have a routing entry for a particular process.

We assume the existence of a hash or mapping function A such that the
application of the function to a process name ¢ results in a set of node addresses that are
uniformly distributed in the network. The hash function is known to all nodes and the
operating system at any node can derive the set of nodes given by s {g). We also assume
that any node U can evaluate DIST (U, V) the distance between U and an arbirary node
V. Thus the operating system at a node U can determine which of the k nodes given by
h{q) are closest to node U. These are the k—closest nodes to U that belong to A (gq).

Initially when a process gq is created, routing entries for g are installed at all nodes
belonging to h(g), and contain the location of the process and the initial migration-count
zero. When g migrates away from node U, the k—closest nodes in h(q) are sent updates
indicating the new location and migration-count of g. When a process at a node V
requires a routing entry for g, a request for a routing entry is sent to the node closest to V
in i (q).

The value of k is chosen based on reliability requirements. The minimum value of
k that can be chosen is one.

The choice of an appropriate hash function is dependent on the topology and the
scheme for naming processes and adressing nodes. Ideally the location of the m nodes
whose adresses are given by the application of the hash function on a process name
should be such that the shortest distance from any node to the closest of the m nodes
should be minimized.

Unlike the wave searching scheme that can be applied to any topology the

hashing scheme can be applied only to select regular topologies for which appropriate
hash functions can be found.
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5.2 Reliability Issues

The protocol proposed by us for routing messages to moving processes in large
distributed systems, i.e. the Shifting Neighborhood Protocol (or one of its variations)
with caches, is designed to be robust to failures in the distributed system. The robustness
of our protocol is derived from three features:

¢ Propogation of routing updates when a process migrates
e Association of a migration-count field with a process
e Routing function distributed uniformly over all nodes

In the Basic Routing and Migration Protocol when a process ¢ migrates from
node U the routing entry for g at U is updated and the nodes belonging to &surrogate(U,
q} are also updated. After the completion of the migration of process ¢ and the updating
of the surrogate set if the node U fails then an up-to-date routing entry for ¢ can be
obtained from the surrogate set &surrogate(U, gq). The size k of the surrogate set
&surrogate(U, q) is chosen based on reliability requirements and the surrogate set is
chosen to be the location of the k —closest routing entries for g from U. In Section 5.1 we
discussed two alternate ways for choosing the surrogate sets. In the hashing scheme any
node can determine the set &surrogate(U, q) while in the wave search scheme a node
adjacent to U can easily obtain a routing entry belonging to &surrogate(U, q} by
initiating waves of bounded broadcasts. Thus if a process g has migrated away from node
U and if node U fails, then a message for g that is routed to U can be forwarded by a
node adjacent to U. The ability to forward messages that are routed to a node, that is a
previous location of a process, even on the failure of that node is because when a process
migrates, routing entries at a surrogate set of nodes are updated in addition to the local
routing entry and the surrogate set of nodes are chosen to be nodes that are nearby the
node to which messages are routed. Thus in contrast to conventional forwarding address
schemes a process does not become inaccessible when a node, that is a previous location
of the process, fails.

The Shifting Neighborhood Protocol and related protocols are extensions of the
Basic Routing and Migration Protocol with the additional feature that updates are
broadcast to a neighborhood around the location of a process on the migration of a
process. The Shifting Neighborhood Protocol is in contrast to proposed protocols
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([Fowler 85] & [Fowler 86]) where routing entries are updated as a side effect of routing
a message to a process. In our protocol, information about a process migration is also
broadcast to a neighborhood of the process at the time of process migration while in
Fowler’s protocol the updating of routing information is done only when the process is
accessed. The advantage of using a scheme that actively informs other nodes about the
migration of a process when the process migrates is that information about process
migration is disseminated in the system immediately and hence the failure of a single
node does not result in the loss of this information.

The protocols we have proposed make use of a migration-count associated with a
process that is incremented whenever the process migrates. Routing entries for a process
also have a migration-count field associated with it. Messages that are routed based on a
certain routing entry can also carry the migration-count field of the entry. In the BRM
protocol we have shown that when a message is re-routed at a particular node, as long as
the re-routed message has a larger migration-count than the incoming message before
re-routing, the message will be delivered to the process. Since the message and all
routing entries for the process carry the migration-count, it is relatively easy to guarantee
in the presence of failures that the message is re-routed using a larger migration-count
than the one it already has. In the presence of failure of nodes if the operating system
needs a remote routing entry to re-route a message and if wave search is used to locate
remote routing entries then a wave search can be initiated to search for routing entries for
the destination process of the message. The wave search is terminated only when an
entry with a higher migration-count than the one in the message is obtained. If the
hashing method is used to locate remote entries a similar approach can be used.

The Shifting Neighborhood Protocol and related protocols are designed so that
the all nodes in the system have an identical routing function. If the rate at which
different processes receive messages is almost equal then even though different nodes
have routing entries for different processes, all the nodes will have approximately equal
proccesing load due to routing. Thus unlike several hierarchical routing schemes there
are no special nodes that perform special routing functions which are vulnerable to
failure.

To protect the content of routing tables and messages from alteration due to noise
we can use error detecting and correcting codes.
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If a node on which a process is executing abruptly fails the the process fails along
with it. We can increase the availability of processes by replicating them and the
operating system can perform the necessary updating to keep the state of the copies
consistent if it is necessary. We can also checkpoint the process so that the process state
is stored at alternate node sites or reliable storage sites periodically. If the process fails
because of the failure of the node on which it is resident then it can be re-started at an
alternate node.

The Basic Routing and Migration protocol can be modified to make it more
reliable so that the chances of the success of process migration are improved even if the
the location from which a process migrates fails during proccess migration.

5.3 Unbounded Migration-Count

Our protocols makes use of unbounded sequence numbers for the migration-count
of a process. The migration-count field is contained in messages, routing table entries,
and the process control block.

The migration-count for a process is incremented whenever a process migrates. In
our protocols the migration-count field associated with routing entries for a particular
process is compared to determine which routing entry for the process is most recent.
When a routing entry for a process is updated in our protocols, it is always replaced with
more recent information about the location of the process. For the adaptive routing of
messages or for the routing of messages in the presence of node failures, the migration-
count field in messages is essential to guarantee that messages are re-routed to a more
recent location of the process.

Since the migration-count field associated with a process increases monotonically
hence the number of bits chosen to represent the migration-count variable has to be large
enough to hold the number of migrations of the process during its lifetime.

However if the migration-count field for a particular process overflows, the
operating system can reinitialize the migration-count of the process by sending a
broadcast message to the entire system. Additional mechanisms are required to guarantee
that application messages for the process that are in transit when a migration-count re-
initialization message is broadcast are reliably delivered to their destinations.
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CHAPTER VI
Conclusions and Future Research

6.1 Conclusions

In this disseration we have investigated protocols for routing messages to
migrating processes in large distributed systems. We develop a decentralized routing
scheme with a routing table at each node consisting of routing entries for processes.
Routing tables may be out-of-date and incomplete. Our main objective has been to
develop protocols that scale up with the size of the system.

We first present a Basic Routing and Migration (BRM) protocol which captures
the fundamental synchronization and correctness issues associated with process
migration and routing messages to migrating processes. In the BRM protocol it is not
necessary for every node to have a routing entry for every process. If a routing entry for a
particular process is required by the operating system at a node and is not present in the
local routing table then it is obtained from the routing table at a nearby surrogare node.

The routing of messages to a particular process is based on re-routing or
Sforwarding the messages to a more recent location of the process.

The BRM protocol is shown to be deadlock free and we prove that messages are
eventually delivered to their destination processes. The correctness argument is based on
the following properties of BRM: First, if a routing entry for a process is updated it is
always replaced with more recent information about the location of the process. Second,
when a message is re-routed or forwarded at a node because the destination process is no
longer located at that node, it is sent to a more recent location of the process. Finally we
assume that on the average messages travel at a faster rate than a process does. For
extensions to the BRM protocol we ensure that these properties continue to hold so that
the extended protocol is also correct.
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In order for the operating system at a node to obtain remote routing entries we
have proposed two techniques - wave searching and hashing. Wave searching can be
viewed as a wavefront of queries originating at the source node and expanding till the
entry being searched for is located. In the hashing scheme the location of routing entries
for a particular process can be derived by applying a hash or mapping function to the
process name. The hashing function is known to all the nodes. The hashing scheme is
preferable to the wave search scheme because of the significant difference in the number
of messages required by the two schemes to locate a routing entry for a particular
process. The hashing scheme however is only applicable to regular toplogies for which a
suitable hash function is known. The delay for a node to obtain a remote routing entry for
both schemes however is orders of magnitude larger on current hardware than the time to
access a local routing entry.

To reduce the probability of accessing remote routing entries we propose a
routing table hierarchy consisting of a local cache of routing entries, the local routing
table, and remote routing tables. While entries in the local routing table are permanent,
the contents of local caches adapt to the pattern of communication between processes.
Routing entries that are repeatedly used are retained in the cache thus reducing the
number of requests for remote routing entries.

Another purpose of the proposed caching schemes is to keep local entries up-to-
date. When a message after being re-routed reaches its destination process, the location
of the source process is sent an update indicating the latest location of the destination
process. Moreover processes that repeatedly send messages to a destination process can
be sent immediate updates when the destination process moves.

We propose three schemes to incorporate caches in the BRM protocol - the
Process Caching Scheme with placement on Routing Fault (PCS(RF)), the Process
Caching Scheme with placement on Cache Miss (PCS(CM)) and the Node Caching
Scheme (NCS). In PCS(RF) and PCS(CM) caches are associated with a process and are
moved along with the process when the process moves, thus avoiding a cold start of the
process with empty caches after migration. In PCS(RF) an entry is added to the cache
when there is a routing fault, i.e. the routing entry is not found locally. In PCS(CM) an
entry is added to the cache when there is a cache miss, i.e. the routing entry is not found
in the cache. Thus in PCS(CM) the cache contains entries for all processes to which
messages have been sent recently. While in PCS(RF) memory space is effectively
utilized by avoiding duplication of entries in the process cache and the local routing
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table, the rate of routing faults increases slightly after a process migrates. This is because
some entries which were frequently accessed and were located in the routing table at the
previous location of the process are not in the local routing table at the new location of
the process. In PCS(CM) the rate of routing faults is independent of the rate of process
migration.

In NCS caches are associated with a node and shared by all the processes located
at that node. The advantage of NCS is that there is no duplication of entries for a
particular process at a node and the available memory space is effectively utilized.
Moreover the overhead for maintaining the node cache is much smaller than for process
caches. One disadvantage of NCS is that it is difficult to maintain fairness in the use of
the node cache by processes on a node, particularly when processes have different rates
of communication. The main disadvantage of NCS however is that when a process
moves to a new location, no cache entries are moved with it, resulting in high rates of
routing fault after migration.

We develop an analytical model for the performance of PCS(CM) and evaluate
the average time to obtain a routing entry. The performance of the three caching schemes
are compared by simulating the routing hierarchy for the three schemes. From the
simulations we conclude that in a majority of the cases

Tpcswry <Tpescmy < Tcs

where Tpcg(rry is the average time to find a routing entry for PCS(RF) etc. We observe
from the simulations that the effective use of memory space by avoiding duplication of
entrics between the cache and local routing table in PCS(RF) has a greater impact on the
time to obtain a routing entry than the advantage in PCS(CM) of moving al! the recently
used entries along with the process to the new location of the process thus avoiding an
increase in the rate of routing faults soon after migration. We observe that on the average
the time to obtain a routing entry for PCS(RF) is significantly better than PCS(CM)
except when cache sizes are very large, the rate of process migration is very rapid, or the
degree of locality in communication is very large. In these cases PCS(CM) performs
slightly better than PCS(RF).
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As expected NCS does not perform very well. The change of the rate of process
migration has a pronounced effect on the average time to find a routing entry under NCS.
However when processes migrate infrequently it is preferable to implement NCS since it
is easier to implement and the procedures for updating the routing table and cache are
simple,

The main contribution of our work is the Shifting Neighborhood Protocol (SNP)
and related protocols for updating routing information in large distributed systems. SNP
is an extension of the BRM protocol with the addition of the broadcast of routing updates
to a limited region in the system on the migration of a process. Thus while the caching
schemes make repeated communication between processes efficient, the Shifting
Neighborhood Protocol is a scheme to make first time communication between two
processes efficient.

The Shifting Neighborhood Protocol is a multi-level protocol where associated
with a process are a family of nested neighborhoods covering the nodes of the system. In
SNP routing entries located at nodes in different neighborhoods are updated with
different frequencies depending on the location of the process. The neighborhoods of a
process are not fixed but are dynamically reconfigured as the process moves. The multi-
level organization serves to reduce bandwidth in our protocol.

The motivation for SNP is that distant nodes need not know about small
perturbations in the location of a process because the relative increase in the path length
that a message from a distant process has to take is small compared to the actual distance
from the source to the destination.

We present three other variations of the Shifting Neighborhood Protocol (SNP) -
the Shifting Neighborhood Protocol with Dynamic Broadcast (SNP(DB)), the Shifting
Neighborhood Protocol with Adaptive Routing (SNP(AR)) and the Moving Home Node
Protocol (MHNP). The four protocols differ in their performance and overhead and have
different stretch ratios and update bandwidths.

We present an analytical model for the performance of SNP and related protocols
and analytically determine the optimal neighborhood structure, i.e. the number of levels
and the size of corresponding neighborhoods, that results in minimum update bandwidth.
The migration of a process is modeled as an unrestricted random walk. The underlying
topology is assumed to be a large square toroidal mesh. To obtain the optimal
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neighborhood structure that minimizes update bandwidth the number of levels and the
dimension of neighborhoods are assumed to be real valued. To calculate the average
message trajectory stretch ratio we assume that the time for updates to be broadcast is
small compared to the time between successive migrations of a process. In the analysis of
SNP, to calculate the average message trajectory stretch ratio we assume the uniform
probability model of communication between processes where a process sends a message
to any process in the system, irrespective of its location, with equal probability.

If the number of levels in SNP is fixed to be 2, and the neighborhood sizes are
chosen to be optimal then the average update bandwidth due to the migration of a single
process is O (R) update_msg-hops/sec, where R is the side of the square toroidal mesh.
This is a significant improvement over the update bandwidth of O (R?) update_msg-
hops/sec for the protocol where updates are broadcast to the entire system every time a
process moves. The corresponding message trajectory stretch ratio for a 2-level SNP is 1
plus a term thatis O (1 / VR).

The optimal number of levels for SNP that minimizes update bandwidth is
O (logR). With the choice of the optimal neighborhood structure we obtain the average
update bandwidth due to the migration of a single process to be O (logR) update_msg-
hops/sec. For SNP with an optimal neighborhood structure we determine from the
analysis that the average stretch ratio does not depend on the size of the system. Since the
average update bandwidth of SNP is a slowly increasing function of the size of the
system and the average stretch ratio is independent of the size of the system we conclude
that SNP is scalable with the size of the system and is a suitable protocol for updating
routing information in very large systems.

We simulate SNP and related protocols and study the effect of the variation of
protocol and system parameters on the performance and overhead of the protocols. For
the simulation we assume a general model of communication between processes - the
spatial locality model. The four protocols are simulated on a square toroidal mesh.

The wvalues of the optimal neighborhood structure and the corresponding

minimum update bandwidth obtained from the simulation of SNP confirm the values
obtained from the analytical model.
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From the simulations we conclude that of the four protocols the performance of
the the Shifting Neighborhood Protocol with Dynamic Broadcast SNP(DB) is the best
and close to the best achievable performance by any possible protocol. However this
performance is achieved at a higher update bandwidth compared to the other protocols.
The performance of the Shifting Neighborhood Protocol with Adaptive Routing
SNP(AR) is very close to that of SNP(DB) and is a particularly attractive protocol to
implement because of the low update bandwidth in comparison to SNP(DB). The
Shifting Neighborhood Protocol has update bandwidth equal to that for SNP(AR) but
with larger stretch ratios. The Moving Home Node Protocol MHNP is a low cost protocol
and may be chosen to be implemented if the average time stretch ratio that can be
tolerated is higher and the bandwidth available for control traffic is limited, or if the
system is small.

We study the performance of SNP(DB) and SNP(AR) and how it is affected by
the change in the degree of spatial locality in the communication between processes. For
both the protocols we observe that the average message trajectory stretch ratio slowly
increases as the locality decreases. However both protocols have stretch ratios very close
to one even when there is no spatial locality of communication between processes.

The results of the simulation of SNP(AR) indicate that while the update
bandwidth increases with the size of the system, both the time and message trajectory
stretch ratios are relatively constant as the number of nodes in the system is varied. Thus
the simulation results indicate that SNP(AR) is scalable with the size of the system.

In conclusion the composite protocol that we propose for routing messages to
moving processes in large distributed systems is the Shifting Neighborhood Protocol or
one of its variatons with caches to take advantage of temporal locality in the
communication. The protocols scale well with the rate of migration of a process and the
size of the system.

6.2 Future Work

The use of process migration as a tool for load management is not prevalent in
current operating systems technology because of the high cost of process migration.
General purpose processes currently have large states that are scattered in different parts
of the node memory. The state of a process typically consists of the code, the process
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control block, stacks and heap memory allocated to the process. As a result the amount of
processing and the time required to collect the state of a process for migration is very
large. Moreover a large number of messages are required to send the state from one node
to another. In view of the potential benefits of process migration future research should
investigate methods for making process migration inexpensive. The first possible
approach is to reconsider the conventional representation of the state of a process. We
should investigate methods to represent the state of a process in a compact form. By
having a so called freeze-dried state it becomes easier to checkpoint the state of a process
for fault tolerance and applications such as distributed simulation that allow a process to
rollback to a previous state. The second approach is to provide architectural support for
process migration, so that there is hardware assistance to collect and transmit the process
state.

In our protocol when a process is initially created it is not necessary to create
routing entries for the process at all nodes. The problem of the distribution of routing
entries is to decide the number of routing entries for a process that should be created and
where to place them. One technique for distributing routing entries in any topology is to
broadcast routing entries to all the nodes and each node independently decides with some
probability whether to keep the entry in its routing table or to discard it. Alternatively for
a given topology, say a hypercube, we can solve the following distribution problems:

L. Find the minimum number m of routing entries and their placement at nodes of
the given topology so that the maximum shortest distance from any node to the
closest routing entry is at most a specified distance max_distz.

2. Place a specified number » of routing entries at nodes of the toplogy such that the
maximum shortest from any node to the closest routing entry is minimized.

The design of hashing or mapping functions for a given topology to locate routing entries
for a process is also an open problem.,

Our protocol makes use of unbounded sequence numbers for the migration-count
of a process. The migration-count for a process is incremented whenever a process
migrates. We can investigate the modification of our protocols, under certain
assumptions of the underlying system, to avoid the use of unbounded sequence numbers.
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In the SNP protocol routing entries for a process are updated nonuniformly, with
entries that are located at nodes close to the process being updated more frequently.
While in the description and analysis of SNP we assume that routing entries for a process
are uniformly distributed throughout the system, there is nothing in the design of SNP
that precludes a non-uniform distribution of routing entries. An interesting problem
would be to combine SNP and Kleinrock and Kamoun’s mechanism so that different
levels have different degrees of information about the location of a node and are updated
with varying frequency. Thus a large fraction of routing entries for a process are located
close to the process and are also updated more frequently then the entries located at
distant nodes.

The difference between SNP with caches and Fowler’s path compression protocol
is that while in Fowler’s protocol routing entries for a process are updated only when the
process is accessed, in SNP with caches routing entries for a process are also updated at
the time a process migrates. A detailed simulation of the two protocols running on a large
distributed system which includes the modeling of failures will give us a better picture of
the difference between the two schemes.

Related to the problem that we considered is the problem of assigning unique
names to objects in large distributed systems. The problem is difficult because an
unbounded number of objects may be created dynamically at different nodes of the
system. Objects are also deleted which makes their name available for reuse.

Dynamic load managing distributed operating systems require large
communication bandwidth capacities because of the large amount of control traffic
required to communicate the changing state of the distributed system. Fortunately fiber
optic networks currently being developed have bandwidths that are orders of magnitude
larger than the bandwidths of conventional networks.

Finally the policy issues related to dynamic load management operating systems
is an open area for research.
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Appendix 1

We show in this Appendix that for an unconstrained random walk the following
holds:

If a process on every migration moves a distance that is constant then for the process to
2

. e .. “ rl
cross a boundary of radius r; around the initial position of the process will take g

moves, where [ is a constant.
Let the distance moved on each migration of the process be | hops.
Let D be the distance from the initial location of the process to its location after » steps,

In general for an unrestricted random walk the expected value E[D]=0. Instead

NE{1D12] is used as the characteristic distance that the process has traveled in n steps.
This is similar to the method for calculating the characteristic length of a polymer chain
as described in [Doi 86].

We will show in the following section that

E[|D|2]=C1 n  where ¢ is a constant

Therefore in n steps the process travels an average of VE[ID %] = \jaxl; hops

Because the next position of a process depends only on its current position and not its
previous history , hence we can apply the scaling property to say that

2
.r .
To travel r hops the average number of steps taken by a process is E where [ is a

constant.
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Random Walk on a Two Dimensional Mesh
Consider a two dimensional mesh where each node has four neighbors.

We assume that the average size of a move is 1 hop. We will show that
E[ID1?]=n for for an unrestricted random walk in a two dimensional mesh. The
analysis will be similar when the average size of a move is greater than 1 hop. Let D be
the distance from the initial location of the process to its position after n steps. Let D;
denote the change in the position of the process on the ith step. Each step is randomly
chosen to be in one of the four possible directions. Then

E[IDI2]=E[£:ID,-!2]+2E[ Y YiD;l 1D;1]

i=1 i%j
Since D; are independent and identically distributed for all { hence
E[IDI21=n E{ID;1?]+2n (n-1) (E [ID; 1 *
We know that

1 1 1 1
D 11= —_— — ——lx ==
E[ID;1] 1><4 1x4+1><4 ><4 0

and

E[ED;I2]=4><-211—=1

E[ID1%]=n

In fact the result E[1D1%]=¢, n holds in general for arbitrary number of
dimensions and is shown for the continuous case in [Doi 86).
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Appendix 2

In this Appendix we show that the point (7, rs, 71, ..... rm—1) at which B_C =0

ar,‘
for 1 €£i <m-1, is a minimum, where

, r2212 r£212 rm212
C=vin“+ +o + 7 5
r Fi-g Fm-1
Let us define
c - 0°C
e 8r;8rj
and
C"l’l C?'arz Cflfa e Crlr,,
C"z"l C"z’z szra T C"z’k
C"3f1 C"s’z Cr3r3 ) ) C’s’k
Ap=
Crkrl Cr,,rz Cr,‘r3 L Crtrk

Based on Sylvester’s Theorem [Pierre 69], to prove that the point (ry, 73, r3, ..... rm_1) at

., oC . . . .
which — =0for 1<i <m-1, is a minimum, we have to show

ar,-

The matrix A,,_; is positive semidefinite, i.e.
Det(Ay) >0 for 1<k <m-1, where Der (Ay) is the determinant of A,

From Equation 4.6 (Section 4.6.1) we know that

-a£=0for 1£i<m-1,
ar,-
£
= r,-=(§)’" [ forl<i<m-1

From the expression for C we have
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[ 2(i-1)
Cr.r,=8v (— for 1<i<m-1

r
I 2i-1
Criry = —4V (r_) for 1<i<m-2
1
C,J_,J=O for |j—il >2
Cr,—r,-:err;
Therefore

Det(A))=C, , =8v>0

12
Det(A2)=C"1’1 Crzrz-cr1r22:48v2_;_§_>0
1
Det(A?’):C"lrl [Crzrzxcrsrg_cfzrgz]
_C"l"z [C"z"l xc’a"s _Crzra xcrzn ]
+Cryrs [Cryr, XCrir,=Cryry XCryr, ]
16
=256v> —>0
r
112
Det(A4)=1280 v — >0
r
In general
j k=1
Det (Ay) = (4v)F k+1) — for 1<k <m-1
1

which is always > O since v > 0.

Thus we have shown that the point (ry, 3, 73, ..... I;y—1) at which g_c = 0 for
: r:

1<i<m-11is aminima,

199



Appendix 3

In this Appendix we determine the average distance d between two distinct nodes
of a p X g mesh. The following derivation is from [Kamoun 76]. Let X and U be two
arbitrary nodes of the mesh as shown in Figure A7.1 with coordinates (x, ¥) and (u, v)
respectively,

A

Y

2+ o—» ———¢—0—9—¢
i
1 &———o—o—o—0o—o—9
I l ! l [ l l | 1 -
0 1 2 3 p X

Figure A.7.1 : Average Shortest Distance between Two Nodes in a p X q mesh
The distance between the two nodes is given by
dyy=lu—x|+Ilv-yl

Let D (x, y) be the sum of the distances from any node in the mesh to the node (x, y).
Then

P g
DG, y)=3% E[ lu—x! + Iv—le

u=1 v=1
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E=! 4 y-1 q
=q| X(x=u)+ ¥ (u-x)+p| T(y~v)+ Y -y

‘_u=1 u=x+1 v=1 v=y+1

2 2

=q x2—(p+1)x+M~)-]+p [yz—(q+1)y+-—-—4(q+l)]

\

The total number of pairs of distinct nodes in a p x ¢ mesh is equal to

pq(pg-—-1)
Therefore

d % $Dxy)

= x’y

pg(pq-1) ;5 ;5

1 1 1 1 »

= — +Dp-+= +D@-D
rapa-1) |3 2PP+DE-D+>pTa@+D(
_p+q

3

. - .2
For a p x p square mesh the average shortest distance between two distinct nodes is 4.
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Appendix 4

Here we find the average shortest distance d between the center of a mesh to any
other random node of the mesh.

A

Y
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]
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Figure A.8.1 : Average Distance between an Arbitrary Node
and the Center of a p x p mesh

Consider the p x p mesh shown in Figure A8.1. Without loss of generality we
assume that p is odd. Let Ny be the number of nodes at distance & from the center.

NIREY: 1<k <(p-1)/2
Yok peD)2<k<p-

The total number of nodes in the mesh excluding the center is

pr-1

202



The average length of the shortest path from the center to any other node in the mesh is

- 1 b2 p-l

d= Y 4k°+ ¥ 4(p-k)k

2
pe—1 k=1 k=(p+1)/2

4 (1.'7—1)(p+1)p+‘D (p-1)p (p-L(p+1)
pZ-1 2x6x2 2 2x2x2

_p=DpQ@p-1) (p=-Dp+D)p
6 2x2x6

=2
2

Therefore the average shortest distance d from the center of a p X p mesh to any other

random node of the mesh is %
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Appendix 5

We determine the average shortest distance d between a random node in a P Xp
mesh and a random node that lies on the edge of the mesh. Let D (x, y) be the average
shortest distance between a particular node with coordinates (x, y) that lies on the mesh
and a random node on the edge of the mesh (Figure A9.1).

A

Y
(1, p) (P, P)
P $—9—9—0—9—9—9
— —0—9— 999 9
— 9 —o—0—o—9—9
- S ——9 9 —§—@
3 e—eo—e (x,.y) ——o—¢
2 o¢—oeop—o—o—0——9
1 @ ® - ® —¢ ®
1,1 , 1
I R R T i -
0 1 2 3 P X

Figure A.9.1 : Average Distance Between a Node of a p x p mesh
and a random Edge Node

D(x, y)= — [

oD )E [(x—1)+ Iv—ys]+ $ [(p—x)+ 1v-y|]

v=1 v=]1

+ 5 [u-xiv -] - [x-Drr =D+ p-x)+r-1)]

u=l1
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+)E {|u—x|+(P—y)]-[(x-—l)+(p—y)+(p—X)+(p-y)ﬂ

u=l1

Now from analysis similar to Appendix 3

p y-1 P
Tlv=yl=F(y-v)+ ¥ (v-y)
=1

v=l v=y+l
=(y-1)y—(y-1)y/2+p(p+1)/2-yQ+1)/12—(p-y)Yy
=y~ (p+1)y+p(p+1)2
Similarly
14
Slu—xl=x2—(p+1)x+p (p+1)/2

u=1

1
D (x, )’)=m[(x—1)p+y2—(p+1)y+p (p+1)/2
+(p-x)p+¥y —(p+L)y+p(p+1)/2

+x2=(p+1)x+p (p+1)2+(y—-1)p
-2(y-1)-(p—-1)
+x2—(p+1)x+p (p+1)/ 2+(p-y)p
—2(p—y)—(p~1)]
= z(pl_l) [2(p2—p+1)+x2—(p+1)x+y2—(p+1)y]

Since there are p? nodes in the mesh, hence

- 1 g P
d=—2—x Y 3D y)
p x=1 y=l
-l 2p2(p2-p+1)+p ixz—(pﬂ) )Ex
2P2 (p'—l) x=1 x=1

-]
+p| Xy —(p+1) Xy

y=1 y=1
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Therefore the average distance from a random node in a p X p mesh and a random node
on the edge of the mesh is 5?‘0 - —g—
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Appendix 6

We determine the average distance d from the center of a p x p mesh to nodes on
the edge of the mesh.

Figure A.10.1 : Average Distance between the Center of a p x p mesh
and an Edge Node

Without loss of generality we assume that p is odd. From Figure A10.1 we observe that
the shortest distance of the edge nodes from the center node is as follows:
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No. of Edge Nodes  Distance from Center

4 p-1/2
8 p+1)/2
8 Pp+3)/2
8 p—-2
p-1

The average distance from the center of the mesh to nodes on the edge is

- 1 4(p-1) P2
d= +4( —1)+8 H
4%x2+4+8(p—-1~(p+1)/2) 2 P i=(p§1),’2
_ 3p2—6p+3
4(p-1)
_3(p-1)
4
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Appendix 7

Here we calculate the average distance d between two nodes U and Y (Figure
A11.1) such that U and Y belong to r; X ro mesh, Y is the center of a ry X r{ mesh,
where ro > ry, and node U lies outside the r; x r1 mesh.

~t ) -
N
:::::?:L.J::::::::::::::::::
-
i e e L
::::::::::Zi{ :'Y:‘:" e
Y| i

Figure A.11.1: Average Distance between Node U and Node Y

We first find the sum of the lengths Dy, and the number of shortest paths L,
between two arbitrary nodes in a mesh without any constraints on their relative locations.
From Appendix 3 we know that the average shortest distance between two arbitrary

distinct nodes of a r9 X ro mesh is and further

Lsum=r22(r22_1)

2)’2

3
_2r? (- 1)
- 3

Dsum= Xr22(r22—1)
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We have to however take into account the constraint that U lies outside the
boundary of a 71 x r; mesh centered at Y. Therefore from the computation of all possible
paths with arbitrary locations of U and Y, some paths have to be excluded. In order to do
so we compute the sum of the lengths D4y and number of shortest paths Ly between
two nodes U and Y such that U and Y lie on the ro X ro mesh and U lies in a ry X r,
sub-mesh with Y as center. Thus we can compute das

E - D sum D diff
Lsum - Ld::ff

To compute Dy and Ly we consider three cases illustrated in Figure A.11.2
(1) Node Y is in region 1
(2) Node Y is in region 2
(3) Node Y is in region 3

Case (1) Node Y is in region 1

Consider node Y the center of a ry X | mesh and U to be any node distinct from
Y in the ry x ry mesh. Node Y can be any arbitrary node in region 1 as shown in Figure
Al11.2. When Y is located in region 1 then note that the entire ry X r{ mesh centered at Y
is located in the ro X ry mesh. From Appendix 4 we know that the number of paths from
the center of a ri x ry mesh to any other node of the r{ x r; mesh is 7,2 ~ 1 and the

. .
average shortest distance from the center to any other node of the mesh is -5 For a

particular node Y in region 1 the sum of the shortest path lengths from Y to an arbitrary
node U that lies in a r{ x r; mesh centered at Y is therefore

ri(r?-1)
2
Since there are (r, — ry + 1)% possible positions for node Y in region 1 hence the sum of
the length of shortest paths D 4ig 1y between any two nodes U and ¥, such that Y lies in
region 1 and U lies in a r1 x r| mesh centered at Y is given by

ri(ri?-1)

Dda;:jr(l)=(r2—’”1+1)2>< 2
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0 (rq ~I1)/2 | r; I"-x

Figure A.11.2 : Different Regions where Node Y may be Located

and the corresponding number of paths Ly (1) is

Lagay=(r2~r1 + 12 x(r;2-1)
Case (2) Node Y is in region 2

Consider node Y to be an arbitrary node located in region 2 of the ry x r, mesh.
Consider another arbitrary node U that lies on a r| % r; mesh centered at Y such that U is
also on the r; Xry mesh. We calculate the sum of the lengths of the shortest paths
D 4ir (2) between U and Y and the number of paths Lgig (2) between U and Y.

Consider region 2 shown in Figure A11.2. We consider two sub-cases here - when

the y-coordinate of U is less than or equal to the y coordinate of ¥ and when the y-
coordinate of U is greater than the y-coordinate of Y.
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Case (2.1) y-coordinate of U < y-coordinate of Y

In Figure A11.3 we determine the path lengths and number of paths from Y with
coordinates ((r; + 1) / 2, j) to nodes in the r x j mesh.

Y

A ((rq+1)72,])

j- 90— —9—9—0—¢—¢—o
*—o & . L L & L 9
*—o 99— 9 & L 99—

@ @ & & @ . & *——
| X
0 Py

Figure A.11.3 : Sum of Path Lengths from Node Y to Nodes in the r; x j mesh

The value of j ranges from 1 to (r; — 1) / 2. By analysis similar to that of Appendix 3 we
obtain the sum of the shortest distances from a particular node Y to nodes in the r; x j
mesh (Figure A11.3) is

jl:(r1+1 KGRI VI PN rl(r1+1)j|

2 2 2
2 i1
A= AL ’}
=J'(r1+1)(’"1—1)+j"1(f—1)
4 2

By keeping the x-coordinate of U fixed and varying j we obtain the sum of the shortest
distance from U to nodes in the r, X j mesh as

TR DY) =D
j=1 4 ?
_ (r12_1)(5r12—6r1—3)

96
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The x-coordinate of node Y can take (r; —r; + 1) possible values, and hence for Case
(2.1) the sum of the lengths of shortest paths from node ¥ to U is

1
Ddiﬁ‘(z.l)=-9g(r2-r1+1)(r12—1)(5r12—6r1-3)

The number of shortest paths from node Y to U for Case (2.1) is given by
(r=1)/2
Lggey=r2—-ri+l) Y (jri—1)
j=1
(n-1) ry?
2

+2L
s vt D

=(rg—r1+1)
Case (2.2) y-coordinate of U > y-coordinate of Y

In Figure A11.4 we determine the path lengths and number of paths from U with
coordinates ((ry + 1) / 2, 1) to nodes in the r; X (r; — 1) / 2 mesh.

Y

A

(ri+1)/2 - ¢—¢—9—0¢—9—0—9—9¢—9

((r1+1)/2,1)/.

Figure A.11.4 ;: Case 2.2 - y-coordinate of Node U > y-coordinate of Node Y

Note that when ¥ is located in region 2 and y-coordinate of U > y-coordinate of ¥ then
there are

(ri—1)

- 1
(ro~r1+1) >
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possible locations of Y.

In order to compute the path lengths from ¥ to an arbitrary node U belonging to
the r; X (ry — 1) / 2 mesh shown in Figure Al1.4 we consider two cases - when U
belongs to a ry X (r; + 1) / 2 mesh (Figure A11.5) and when U belongs to a linear array
of nodes consisting of r; nodes with ¥ at the center (Figure A11.6). The number and the
sum of the length of shortest paths for Case (2.2) will be the difference of these two
cases.

Case (2.2.1) Figure A11.5

Consider the case illustrated in Figure A11.5. We find the sum of the shortest
paths from node Y with coordinates ((ry +1)/2, 1) to an arbitrary node U in the
r ><(r1 +1)/2meSh.

Y
A

(H+1)/2— #—0—0—0—0—0—¢—9—9

L L 4 L 4 L 4 \ 4 ® L 4 4 L J

1P @ & & L @ & & & L
((ry+1)72,1)77

Figure A.11.5 : Case 2.2.1-ry x (ry +1) / 2 mesh

From analysis similar to that of Appendix 3 we obtain the sum of the path lengths from ¥
to U as

rq+1 ri+1 2 (ri+1) (ri+1)
2 ( > )_(r1+1)_—§_—+r1_2_

Dyg21) =
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frf1—( 1+1+1 rn+l ri+1 )
1 2 )+ 2 ( > )
P’ o1

4 8 4

Case (2.2.2) Figure A11.6

Consider Figure A11.6 where Y is the center of a linear array of r; nodes.

Y

1 L 4  J o—@ & 4 & @
((ry+1)72,1)7 !

> X
0 ry

Figure A.11.6 : Case 2.2.2 - Linear Array of r; nodes

The sum of the path lengths from Y to an arbitrary node on the linear array is
(rl-l) /2

Dyigra22)=2 i
i=1
(ri2-1)
- 4

Dagr 221y — Dayr 2.2
_r1_3+r12 ry 1 n 1
4 8 4 8 4 4
(2r;—=1)(ry?-1)

8

Since there are
(ri—-1)
2
possible locations of Y for Case 2.2, hence we obtain the sum of the path lengths from a

(rp—ri+1)

node Y to an arbitrary node U belonging to the r1 X (r; — 1) / 2 mesh as shown in Figure
All.d as
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1
Dagren =g (2ri-1)(n*=1)(ra=ri+ 1) (r1~1)

r1—1

The number of paths from Y to an arbitrary node U belonging to the r; X mesh as

shown in Figure A11.4 is
r, — i
2

r

For all possible locations of ¥ for Case 2.2 we have

1
Ldgf(z.z)=z("2—r1+1)("1—1)2r1

Therefore for Case 2 when Y is in region 2 we find

1
Dagry=gg (ra=r1+ 1 (r* =1)(5r12=6r; -3)

+Tlg<2r1—1)(r12~1)(r2—r1+1>(r1—1)

(r1-1) r? nr

Laigay=@a—-r1+1) 3 ( 1 +T_1)

+ o o=+ D (r =12 r,

Case (3) Node Y is in region 3

Consider Figure A11.7 where node Y is located at ((r; +1) /2, (r; +1)/2) and U is
an arbilrary node on the { x j mesh such that i and j range from (r;+1)/2tor; —1.
From analysis similar to that of Appendix 3 we observe that the distance from a node ¥
whoses coordinates are (x, y) such that x =y =(r{ + 1) / 2 to an arbitrary node in the
mesh of Figure A11.7 is

}H{yz—(fﬂ)yuﬁ’"—”

DG, y)=j|x2=(i+1)x+ i (‘;l)

2

Therefore when Y is in region 3 we have
r, — 1 ry,— 1

Dagay= X 2 Dy
=+ 1)/2j=@,+1)/2

=616(,-12_1)(r1+1)(3r1-1)(2r1—3)
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| .l - X-Axis
0 (rq+1)/2 |

Figure A.11.7 : Node Y is in Region 3

The number of shortest paths from ¥ to U when Y is in region 3 is given by
ry—1 ri-1

Lygay = P Y (ij-1)
i=(r +1)/2  i=(ry+1)/2

1
=—éz-(r1—1)2[(3r1—1)2—16]

Since there are four regions identical to region 2 and four regions identical to region 3
hence we have

D iy = Daigr 1y + 4 Daigr 2y +4 Daygr 3)
and

Ly = Laygr 1y + 4 Layr 2) + 4 Laig (3)

By summing up the terms and simplifying we obtain

2 2
Dum Ddz_,ff—3 "25—31’2 —5 T2 ri(ri*-1)
T 45 2.1, N _9 .2
+r2(24f1 1 8) 24(-"1 2ri+1)

and

1 1
Lsm—Ld,-ﬂr=r24—r22r12+3r2 ri (r12~1)—-1—6—(r14—2r12+1)
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If ro > > ry and in particular when ry = QO (-JE) we obtain

E= Dsum_Ddiff
Lsum-Ldijf
2 2 (ri2=1) 5ri(r2=1) (6r*=7r2+1)
=_r2+-.—- —_— 2 + 3 ......
3 3 ra 67‘2 6?‘2

Therefore the average distance d between two nodes U and ¥ such that U and ¥
belong to a ry X r, mesh, Y is the center of a ry x r; mesh, where r, > ry, and node U
2

. . . . 2 2 N 2 . .
lies outside the rj X ry mesh is approximately 3 rp+ — ——— — —, assuming r is

3 ra 3 ra
OGr2).
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